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Run-to-run control for active balancing of lithium
iron phosphate battery packs

Xiaopeng Tang, Changfu Zou, Member, IEEE, Torsten Wik, Ke Yao, Yongxiao Xia, Yujie Wang,
Duo Yang, and Furong Gao

Abstract—Lithium iron phosphate battery packs are widely
employed for energy storage in electrified vehicles and power
grids. However, their flat voltage curves rendering the weakly
observable state of charge are a critical stumbling block for
charge equalization management. This paper focuses on real-
time active balancing of series-connected lithium iron phosphate
batteries. In the absence of accurate in-situ state information
in the voltage plateau, a balancing current ratio (BCR) based
algorithm is proposed for battery balancing. Then, BCR-based
and voltage-based algorithms are fused, responsible for the
balancing task within and beyond the voltage plateau, respec-
tively. The balancing process is formulated as a batch-based
run-to-run control problem, as the first time in the research
area of battery management. The control algorithm acts in two
timescales, including time-wise control within each batch run and
batch-wise control at the end of each batch. Hardware-in-the-loop
experiments demonstrate that the proposed balancing algorithm
is able to release 97.1% of the theoretical capacity and can
improve the capacity utilization by 5.7% from its benchmarking
algorithm. Furthermore, the proposed algorithm can be coded
in C language with the binary code in 118,328 bytes only and
thus is readily implementable in real-time.

Index Terms—Battery management system, active battery
balancing, lithium-ion battery, run-to-run control

I. INTRODUCTION

A. Motivation & technical challenges

Lithium-ion batteries are playing a crucial role in elec-
trified transportation and smart grid with renewable energy
integration, leading to an efficient and environmentally adapted
society [1], [2]. To enable such a revolutionary paradigm
shift, the battery’s safety, reliability, and cost are critical con-
cerns. Amongst various battery types, lithium iron phosphate
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(LiFePO4, LFP) batteries are superior in these three factors
and thus are widely deployed in today’s electromobility market
[3]. To satisfy vehicle requirements on power and energy,
hundreds or thousands of individual battery cells are needed
and connected in series and parallel, forming battery packs.
Due to variability/uncertainty in manufacturing and operating
conditions, cells in a series-connected pack are inherently
different [4], [5]. In turn, different heat generation rates and
aging processes in heterogeneous cells can increase the non-
uniformity. The overall pack performance is limited by the
weakest cell which usually has the lowest actual rated capacity
but the highest internal resistance. Such a cell in general is
the first to reach and then dominate the cut-off conditions
at charging/discharging operations, leading to a substantial
amount of energy underutilized in other cells. This fact will
inevitably significantly lower the cost-efficiency and incurs
heavy and voluminous energy systems.

To address the above problem, a sophisticated battery bal-
ancing system to improve pack-level performance by appro-
priately transferring and coordinating energy among different
cells is imperative but technically challenging from at least
three aspects.
• To balance the charge of a battery pack, the cell state-

of-charge (SoC), defined as the ratio of the remaining
capacity and actual rated capacity, is usually required
in real-time. However, such a state cannot be measured
directly, which makes its online estimation necessary [6],
[7].

• LFP batteries have very flat voltage curves in a large
working range, e.g., 20-90% SoC levels, due to their elec-
trochemical properties [8], [9]. Under this circumstance,
it is difficult to estimate the SoC from noisy voltage
measurements and imperfect battery models [10].

• Estimating each cell’s states in real-time can cause a
significant computational burden to microprocessors of
battery management systems (BMSs) [11], [12] and may
be infeasible for many applications.

B. Literature review

To overcome existing challenges, battery balancing tech-
niques in the literature can be classified into two types
based on hardware design, i.e., passive dissipation and active
balancing. In passive dissipation based configurations, the
portion of cell-level energy above that of the lowest cell is all
consumed through resistors or transistors [13]. The balancing
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currents are typically limited by temperature constraints of
hardware, and the energy efficiency is regarded as zero [14].
These configurations are still widely used because of their
simple system structure and high reliability. By contrast, active
balancing configurations transfer energy among battery cells
until some equalization state is reached. Obviously, such a
class of balancing approaches are energy-efficient and have
the potential to achieve a balancing state quickly [11]. In this
regard, various active balancing protocols have been proposed
using different hardware components, including inductor based
[15], capacitor based [16], and bi-directional DC-DC converter
based [17].

Control algorithms are of great importance to use the hard-
ware for balancing battery cells in an efficient way. Among a
number of existing control schemes, SoC-based balancing is
widely used by moving capacity from cells with higher SoC
levels to the lower ones [18]–[20]. The effectiveness of SoC
enabled equalization techniques have been validated against
LiNiMnCoO2 batteries [21], LiNiCoAlO2 batteries [22], and
NiMH batteries [23]. However, these techniques heavily rely
on the accuracy of SoC estimation for each battery cell in the
pack. Although considerable research efforts have been made
to improve the state estimation performance, such as in [24],
the weak observability and computational issues have not been
addressed for LFP batteries rigorously and comprehensively.

To reduce the computational cost, voltage-based balancing
strategies have been used to circumvent SoC estimation. Dif-
ferent to SoC-based strategies is that voltage-based strategies
transfer energy among battery cells based on their voltage
difference [25], [26]. Voltage-based strategies are widely used
in both passive and active balancing structures, thanks to
their capability in realizing charge equalization with simple
hardware and quick response. However, it should be noted that
these strategies are often inferior in balancing performance,
such as capacity utilization, relative to SoC-based ones under
the same condition. This is because cells with the same
SoC can have different internal resistances and then maintain
dissimilar terminal voltages.

Recently, some sophisticated control schemes, such as
model predictive control (MPC), were emerged for battery
equalization, in which both the current states (voltage and/or
SoC) and prediction of the future ones are considered in a real-
time optimization problem [27], [28]. In the case where states
can be either accurately measured or estimated, these control
schemes demonstrated enhanced performance at the sacrifice
of massive computational resources and time. However, this
work aims to balance LFP batteries in embedded systems with
limited computational power and without requiring estimation
of any internal battery state.

Repetitive processes are common in our daily life and indus-
trial operations, for instance, thermoplastic injection molding
that repeatedly makes the same plastic part [29]. By defining
each repetitive process as a batch, batch control methodolo-
gies enhance system performance by using both the current
information and information learned from previous batches
via some feed-forward control schemes. Run-to-run control
is a typical batch control algorithm and well suits processes
with relatively bad repetitive nature (i.e., repeatability among

a sequence of batches is low) [29]. It was initially proposed
by Sachs et al. [30] in the early 1990s and then was extended
with a number of variants. Comparisons of different run-to-
run control algorithms can be found in [31]. These algorithms
are especially motivated by the control processes in which the
product qualities of interest cannot be measured in real-time,
particularly during the batch run, but some interested states
can be measured at the end of each batch. As a consequence,
the control has to be operated in an open-loop fashion within
each batch and gets update recursively using the end-of-batch
information. Run-to-run control has been used in numerous
areas successfully [29], [32], [33] and can be potentially
useful to solve the battery balancing problem, where charging,
discharging, and relaxed modes are operated recursively.

C. Key contributions

The primary purpose of this paper is to propose a com-
putationally and energy efficient balancing strategy for LFP
batteries connected in series. Four original contributions made
in this work distinguish it from the relevant literature. First, the
concept of balancing current ratio (BCR) is proposed as a bat-
tery state, alternative to SoC and terminal voltage, for battery
pack balancing management. Next, BCR-based and voltage-
based balancing algorithms are pertinently combined to realize
battery charge equalization within and beyond the voltage
plateau, respectively. Then, the overall balancing problem is
formulated in the framework of batch-based run-to-run control,
for the first time. Finally, the developed balancing control
algorithm is experimentally implemented via hardware-in-the-
loop facilities with a low-cost microcontroller unit (MCU)
with 128kB flash memory only. Extensive battery tests are
performed to examine the performance of the proposed algo-
rithm and its comparison with the conventional voltage-based
algorithm.

D. Paper organization

The remaining content is arranged as follows. Section II in-
troduces some important concepts and the balancing hardware
topology. The time-wise and batch-wise balancing control
algorithms are formulated and explained in Section III. Experi-
mental validation and discussions on the result are presented in
Section IV, followed by a concluding summary in Section V.

II. CONCEPT DEFINITION AND HARDWARE

This section first mathematically defines and explains con-
cepts of the SoC, state-of-health (SoH), batches, and balancing
current ratio to be used throughout this paper. Then, the
topology of battery balancing hardware is introduced.

A. Concept definition

SoC and SoH. For series-connected battery cells in a pack,
the SoC of cell j at the sampling step k can be derived by

SoCj(k) = SoCj(0) +
∑l=k

l=0

η∆t [I(l) + ij(l)]

Qj
(1)
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where SoCj(0) is the battery cell’s initial SoC. I and i are
currents of the battery pack and the balancing electric circuit,
respectively. ∆t is the sampling time and is specified as 1
second in this work. Qj is the cell’s actual rated capacity, and
η is the coulombic efficiency. The currents are defined to be
positive for charging and negative for discharging.

For cell j, its SoH is defined as the ratio between Qj and
the rated capacity Qrated on the datasheet provided by its
manufacturer, where Qrated corresponds to the rated capacity
at the beginning of service life. Consequently, there exists

SoHj = Qj/Qrated. (2)

Batches. Before defining batches, we distinguish the state
of a battery pack by its average operating current Iavg(M,k)
over the time period [k −M + 1, k], namely

Iavg(M,k) =
∑l=k

l=k−M+1
I(l)/M. (3)

For a small positive real number ε, if Iavg(M,k) > ε, the
battery pack is in its refueling mode; if Iavg(M,k) < −ε, it
is in its working mode; and it is a waiting mode when −ε ≤
Iavg(M,k) ≤ ε. Here ε is used to compensate for uncertainties
due to current sensor drifting and noise. M is a time window
for evaluating the average applied/supplied current. Note that
at the waiting mode, the battery is close to or already on a
relaxed state.

Based on the above prescript modes, different batches can
be defined for battery operation. Explicitly, a batch includes
the current trajectory across a time period whose starting
and terminal points are determined by the transition moment
between two contiguous operating modes. For example, for a
working batch, its starting point is defined as the time when
the operation changes from a waiting/refueling mode into a
working mode, and its endpoint is the time when the battery
operation shifts to a waiting/refueling mode. The refueling
batch and waiting batch are defined in a similar way. It is
worth mentioning that these batch definitions are general so
that applications in electrified vehicles and stationary energy
storage can all be covered. In addition, the end-of-batch volt-
age and end-of-batch SoC are defined as the battery terminal
voltage and SoC at the end of a batch, respectively. The
problem to be solved in this work is to balance battery cells
for refueling and working batches.

Balancing current ratio. The balancing current ratio (BCR)
of cell j at time step k in a batch is defined as:

BCRj(k) =
∑l=k

l=0
ij(l)/

[∑l=k

l=0
I(l)

]
. (4)

It is easy to know that for refueling and working batches, the
denominator of the right-hand side of (4) will not be zero.
This concept is introduced for battery balancing control, as an
alternative to terminal voltage or SoC information.

B. Topology of battery balancing hardware

The topology of balancing hardware to be studied for
lithium-ion batteries is illustrated in Fig. 1. In this structure,
we aim to balance N series-connected battery cells through
an isolated bi-directional DC-DC converter, MCU, and switch

Isolated 
Bi-directional

DC-DC Converter

Shut Down Control
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MCU
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Switch Array Control

Switch Array

In/Out

Fig. 1. Topology of the balancing hardware for lithium-ion batteries.

array. The balancing current i is not measured in most com-
mercial BMSs to avoid increasing cost and system complexity.
Currently, many commercialized battery equalizers support the
output of constant currents, e.g., LTC3300, LTC8584, and
EMB1499. With these two factors in mind, the converter’s
nominal output current denoted inom (a positive value) is used
as the balancing current. Any single cell can be connected to
the battery pack via the converter by controlling the switch
array. The current direction can be decided flexibly to realize
charge or discharge operation.

Suppose no energy loss and that the voltage of cell j is 1/N
of the pack voltage, the summation of every cell’s current for
balancing is zero. For a cell being charged by the balancing
hardware, it can be easily calculated according to Kirchhoff’s
current law that the branch balancing current is inom(N−1)/N .
In this case, the balancing current supplied by the remaining
cells is −inom/N . Similarly, for a cell being discharged, its
branch balancing current is −inom(N −1)/N , and at the same
time, the remaining cells absorb inom/N for charging. Without
a doubt, when the hardware is not working, the balancing
current for each cell is zero.

III. THE PROPOSED BALANCING ALGORITHM

This section exposes the main technical contributions of
this paper. A novel battery balancing algorithm is proposed
by leveraging a batch control methodology, in which control
actions are implemented in two time-scales, namely time-wise
control and batch-wise control. In particular, while the time-
wise control is responsible for balancing batteries within a
batch, the batch-wise control comes into play at the end of
each batch. Each ingredient of this algorithm is motivated and
explained step by step in the following.

A. Time-wise control

Time-wise control is realized within each batch through
a hybrid balancing protocol, fusing voltage-based and BCR-
based methods. The BCR-based method is proposed to balance
LFP batteries inside the voltage plateau, where the SoC is
weakly observable from voltage measurements. Once battery
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operation is beyond the voltage plateau, a voltage-based bal-
ancing method is employed.

For the hardware specified in Section II-B, the balanc-
ing current vector for all the N batteries is denoted i :=
[i1, ..., iN ]. To simplify the problem description, the state of
the battery pack to control is denoted x, which for example
can be SoC, terminal voltage, and BCR. xref is the battery’s
reference state. Based on these notations, the general time-
wise balancing control at time step k can be formulated as a
constrained tracking problem

min
i(k)

∥∥xref (k)− x(k)
∥∥
∞ (5a)

s.t. ij(k) ∈ {inom(1−N)/N,−inom/N,

0, inom/N, inom(N − 1)/N} (5b)
i1(k) + i2(k) + · · ·+ iN (k) = 0 (5c)

where j = 1, · · · , N , and ‖·‖∞ is the infinity norm. By
using (5a), the difference between the weakest and strongest
cells in the pack can be minimized. Now it is positioned to
embody the general balancing algorithm based on certain real-
time battery information. For the purpose of comparison and
motivating other algorithms, the classical SoC-based balancing
is introduced first.

1) SoC-based balancing algorithm:
Assumption 1: At each time step k, the SoC of each cell in

the battery pack can be acquired accurately.
Once Assumption 1 is valid, the state vector x in the

general problem formulation (5) can be replaced by in-situ
SoC information of all battery cells, namely, x = SoC :=
[SoC1, · · · , SoCN ]. The SoC tracking reference, SoCref =
[SoCref1 , · · · , SoCrefN ], can be given by the average SoC of
these battery cells

SoCrefj (k) =
∑j=N

j=1
SoCj(k)/N. (6)

By implementing the above SoC-based balancing algorithm,
the SoC values of different cells will equal to each other when
the battery pack state converges to its quasi-steady state at time
step k+ h. Similar statements can be found, e.g., in [34]. We
define this quasi-steady state as the ideal pack SoC, SoCpack,
which can be calculated in the form of

SoCpack(k) :=
∑j=N

j=1
Cj(k)

[∑j=N

j=1
Qj

]−1

=

j=N∑
j=1

SoHjSoCj(k)

(∑j=N

j=1
SoHj

)−1

(7)

where Cj(k) is the available capacity of cell j at time k. Then,
there exists an optimal SoC, SoC∗j , satisfying

SoC∗j (k + h) = SoCpack(k + h), ∀j ∈ [1, · · · , N ]. (8)

Although the SoC-based algorithm has been introduced, it
may not be applicable for LFP batteries because Assumption 1
is hard to always hold within the voltage plateau. Indeed, this
algorithm will be used as a valuable test bed and a starting
point for other balancing algorithms.

2) Voltage-based balancing algorithm: As stated in Sec-
tion I, the voltage-based balancing algorithm is preferred due
to its simpleness in obtaining measurements and implemen-
tation. This algorithm is selected to balance batteries beyond
the voltage plateau, and its underlying assumption is explicitly
stated here.

Assumption 2: Batteries in a pack having the same terminal
voltage maintain the same SoC.

Based on Assumption 2, the voltage-based balancing algo-
rithm can approximate the SoC-based algorithm and finally
leads to the steady state in (7)-(8). By using the general
formulation in (5), the key idea and procedure of the voltage-
based algorithm are presented to complete the overall balanc-
ing objective. The battery pack state is defined as x = V :=
[V1, ..., VN ], and the reference state, Vref = [V ref1 , ..., V refN ],
is calculated as

V refj (k) =
∑N

j=1
Vj(k)/N, ∀j ∈ [1, · · · , N ]. (9)

In this way, the battery balancing problem becomes a
voltage tracking problem. By defining the tracking errors as

βV (k) := Vref (k)−V(k) (10a)

βVmax(k) := max{βV (k)}, βVmin(k) := min{βV (k)} (10b)

the procedure to implement the balancing control algorithm is
proposed as follows:

Procedure 1:

1) Obtain the voltage tracking error βV (k) and calculate
βVmax(k) and βVmin(k);

2) If βVmax(k)− βVmin(k)<10 mV, the balancing hardware
does not come into work; else

3) If the battery pack is being discharged, then charge the
cell corresponding to βVmax(k); else

4) If the battery pack is being charged, then discharge the
cell corresponding to βVmin(k);

5) Increment k to k + 1 and go to Step 1).

In the above procedure, the threshold of 10mV is specified for
the equalization task by following [35]. This is to sidestep in-
stability caused by too frequent switching between charge and
discharge operations in the presence of voltage measurement
noise.

3) BCR-based balancing algorithm: In the voltage plateau
of LFP batteries, both Assumptions 1 and 2 can be violated
so that SoC-based and voltage-based balancing algorithms are
not effective any longer. To resolve this problem, an algorithm
armed with BCR information defined in (4) is sought to
balance battery cells. By again following the general problem
formulation in (5), the state of a battery pack in a batch is
defined as x = BCR := [BCR1, ..., BCRN ], and the ref-
erence state is xref = BCRref := [BCRref1 , ..., BCRrefN ].
The value of BCRref cannot be specified intuitively as the
SoC- or voltage-based balancing methods. Its determination is
guided by the following proposition.

Proposition 1: If each battery’s SoH is available within a
batch and if the referenced BCR, BCRref , is equal to its
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optimal value, BCR∗(k) := [BCR∗1(k), ..., BCR∗N (k)], with
each element satisfying

BCRrefj = BCR∗j :=
N · SoHj∑N
j=1 SoHj

− 1 (11)

∀j ∈ [1, · · · , N ], then the BCR-based balancing algorithm is
equivalent to the SoC-based algorithm stated in Section III-A1.

Proof 1: By defining ∆Cj and ∆Cpack as the capacity
changes of cell j and the battery pack from time step k to
k + h respectively, it can be inferred from (1), (7), and (8)
that the pack SoC change is equal to the cell SoC change
from time step k to k + h. This leads to

∆Cpack
Qpack

=
∆Cj
Qj

and
∆Cj

∆Cpack
=

Qj
Qpack

(12)

where Qpack is the pack capacity and is defined as the average
value of the rated capacity of all cells in the battery pack.

The relationship between BCR∗j and the two capacity
changes (∆Cj and ∆Cpack) can be found from the BCR
definition of the balancing process given in (4). As a result,
there exists

BCRrefj =
∑l=k+h

l=k
ij(l)

[∑l=k+h

l=k
I(l)

]−1

=
∆Cj −∆Cpack

∆Cpack
=

∆Cj
∆Cpack

− 1. (13)

Substituting (2) and (12) into (13) results in

BCRrefj =
Qj
Qpack

− 1 =
Qj/Qrated∑N

j=1Qj/(N ·Qrated)
− 1

=
N · SoHj∑N
j=1 SoHj

− 1. (14)

Up to this point, the proof of Proposition 1 is completed.
It can be known from Proposition 1 that BCR∗ and

BCRref are independent of the time step k within each batch.
Similarly to the voltage-based balancing method, the BCR
tracking errors are defined as

βBCR(k) := BCRref −BCR(k) (15a)

βBCRmin (k) := min{βBCR(k)}. (15b)

The following four-step procedure is used to implement the
BCR-based algorithm:

Procedure 2:
1) Obtain the BCR tracking error βBCR(k) and calculate

βBCRmin (k);
2) If the battery pack is being discharged, then charge

the cell (whose BCR is negative) corresponding to
βBCRmin (k); else.

3) If the battery pack is being charged, then discharge the
cell corresponding to βBCRmin (k);

4) Increment k to k + 1 and go to Step 1).
The BCR-based balancing algorithm has been presented,

and its validity and practicability are discussed as follows.
Remark 1: The effectiveness of the proposed BCR-based

algorithm depends on (11) in Proposition 1, where the central
premise is to know every battery’s SoH accurately. However,

batteries, for example in EV and hybrid EV applications, are
often only partially discharged/charged in daily usage due
to vehicle range anxiety or conservative design for battery
health protection. Due to this together with the noisy nature
of current measurements, it is difficult to achieve the true
SoH information if directly follow (1)-(2). Meanwhile, highly
accurate estimation for SoH of each cell in the pack is an
active research topic and can be technically challenging or
computationally expensive.

Remark 2: As stated earlier, the balancing current is usually
not measured in BMSs to keep a low cost and hardware
complexity. Therefore, an engineering compromise is to use
the nominal balancing current provided in the datasheet to
calculate the BCR. In this way, errors will be introduced
inevitably to the BCR calculation and then may degrade the
balancing performance.

To circumvent the issues concerning the absence of SoH
information and the uncertainty in BCR, a run-to-run control
algorithm within the batch control framework is proposed for
LFP battery balancing in the next subsection.

B. Batch-wise tracking algorithms

A batch-wise run-to-run control algorithm is proposed for
BCRref so that it can converge quickly to the optimal value
BCR∗ defined in (11) without calculating SoC or SoH. In
principle, run-to-run control is an open-loop based approach
in time-wise but closes up the loop in batch-wise based on the
repetitive nature of processes. A thorough exposition of run-to-
run control can be found in [29], [31]–[33]. In this subsection,
the main control theory and its underlying assumptions are
presented first, followed by an application to solve the LFP
battery balancing problem.

For a repetitive dynamic process, u is the control input
vector, which typically has a low number of elements, denoted
u ∈ Rn. y is the process output vector with the same size as
u, and a square dynamic system is considered.

Assumption 3: There exists a static map between u and y.
Assumption 4: For the optimal point (u∗,y∗) on the map

u→ y, if u = u∗, then y = y∗.
Assumption 5: The value of u can be obtained at the

beginning of each batch.
Assumption 6: y is available through measurements or

observers at the end of each batch.
Theorem 1: Let Assumptions 3-6 all hold, and if there exist

a full-rank n×n matrix G, a positive scalar α, and the control
gain γ, and the following two inequalities hold

||y∗ − y||2 < α(y∗ − y)TG(u∗ − u), ∀u 6= u∗ (16a)
0 < γ < 2/α (16b)

where || · ||2 is the 2-norm, then the batch-wise updating law
for u with the form of

us+1 = us + γG−1(y∗ − ys) (17)

can guarantee us → u∗ and ys → y∗ as s→∞.
The proof and comprehensive interpretation of Theorem 1

can be found in [33] and are ignored here for brevity. The
emphasis is placed on its application to balance battery packs.
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For the dynamic process of a battery pack across successive
batches, BCRref is considered as the process input and the
battery state of charge can be the process output. In this case,
the goal is to steer BCRref to its optimal value BCR∗ using
the error between SoC and its optimal value SoC∗ defined
in (7)-(8). The initial time and terminal time of any batch are
assigned to 0 and t1, respectively. By following (17), for a
given BCRref

1 , the referenced BCR for batch s + 1 can be
derived at the end of batch s in the form of

BCRref
s+1 = BCRref

s

+ γG−1 [SoC∗(t1)− SoCs(t1)] . (18)

Before using the run-to-run control, an additional assump-
tion is applied, and then all these assumptions are justified or
remarked on the battery system.

Assumption 7: The SoC changing range remains unchanged
at different batches.

Justification 1 (for Assumption 3): The relationship of
BCRref and SoC(t1) can be derived from (1) and (4). As a
result, for each cell j, there exists

SoCj(t1) = SoCj(0) +
η∆t

Qj

∑l=t1

l=0
I(l)

+
η∆t

Qj
BCRj(t1)

∑l=t1

l=0
I(l). (19)

Based on Assumption 7 and (19), it can be concluded that
there exists a static map between BCRref and SoC(t1).

Justification 2 (for Assumption 4): This assumption implies
that there exist optimal SoC and BCR, and if BCRref =
BCR∗, then SoCs(t1) = SoC∗(t1). While the existence of
optimal values is naturally satisfied according to (11) and (8),
the second condition is valid based on Proposition 1.

Remark 3 (for Assumptions 5-6): To satisfy Assumption 5
according to (18) and satisfy Assumption 6, one has to estimate
SoC and SoH of each battery cell for obtaining SoCs(t1) and
SoC∗(t1). However, it is important to avoid performing this
task because estimating SoC and SoH gives rise to a large
computational burden while the estimation itself may not be
accurate.

Remark 4 (for Assumption 7): The SoC changing range
of lithium-ion batteries is dependent on practical utilization
and user habits. For cycling operation of batteries in electric
vehicles (EVs) and hybrid EVs, similar driving schedules
such as urban dynamometer driving schedule (UDDS) are
often performed repeatedly. In a general sense, the users
tend to recharge their batteries from the same lower level to
the high one, e.g., 10-90%. Therefore, Assumption 7 can be
plausible and largely simplifies the control implementation.
Furthermore, run-to-run control often works well in practice
for processes with relatively bad repetitive nature [29].

In (18), γ and G−1 are two tuning parameters. Increasing
their values makes the batch-wise control converge faster but
more sensitive to the voltage error. The choice of these two
parameters can be guided by (16). By setting α = 1 and
γ = 1 that satisfies (16b), the selection of G can follow the
proposition:

Proposition 2: For a full-rank G = diag{G1, · · · , GN} ∈
RN×N , and for each j ∈ [1, · · · , N ], if there exist

Gj ≥
η∆t

Qj

∑l=t1

l=0
I(l), for refueling batches (20a)

Gj ≤
η∆t

Qj

∑l=t1

l=0
I(l), for working batches (20b)

then (16) can always be satisfied.
Proof 2: Based on Assumption 3 and Justification 1, the

following two equations can be established

BCR∗j =
SoC∗j (t1)− SoCj(0)− η∆t

Qj

∑l=t1
l=0 I(l)

η∆t
Qj

∑l=t1
l=0 I(l)

(21)

BCRrefj =
SoCj(t1)− SoCj(0)− η∆t

Qj

∑l=t1
l=0 I(l)

η∆t
Qj

∑l=t1
l=0 I(l)

. (22)

Subtracting (21) from (22) results in

BCR∗j −BCR
ref
j =

SoC∗j (t1)− SoCj(t1)
η∆t
Qj

∑l=t1
l=0 I(l)

. (23)

For all BCRrefj 6= BCR∗j , based on (23), we can easily derive(
SoC∗j − SoCj)Gj(BCR

∗
j −BCR

ref
j )

=
(
SoC∗j − SoCj

) Gj (SoC∗j − SoCrefj )
η∆t
Qj

∑l=t1
l=0 I(l)

≥
(
SoC∗j − SoCj

)2
. (24)

The right-hand side of (20) represents a battery cell’s SoC
change. Since the SoC change in a batch is always within the
set [−1, 1], Gj can be chosen as 1 for refueling batches and
−1 for working batches to satisfy (20).

Based on Remark 3, the voltage tracking error and a full-
rank matrix Ḡ−1 are adopted to approximate (18) to decrease
the computational cost, leading to

BCRref
s+1 = BCRref

s + γḠ−1
[
Vref (t1)−Vs(t1)

]
. (25)

To ensure (25) is equivalent to (18), Ḡ =
diag{Ḡ1, · · · , ḠN} can be specified as

Ḡj = Gj
V refj (t1)− Vj(t1)

SoCrefj (t1)− SoCj(t1)
. (26)

In the battery model-free approach, it is difficult to calculate
Ḡj accurately from (26). Considering the open circuit voltage
U is a static function of SoC, dU/dSoC can be used to
approximate (V refj − Vj)/(SoC

ref
j − SoCj). Consequently,

Ḡj is selected according to

Ḡj ≥ (dU/dSoC)max + δ, for refueling batches (27a)
Ḡj ≤ − (dU/dSoC)max − δ, for working batches (27b)

where δ is a positive parameter as a margin to compensate
for the error introduced by the approximation. If one can
select appropriate values for (dU/dSoC)max and δ based on
the static function U(SoC), the computation of BCR via (25)
becomes a trivial task. Ḡj will affect the designed control in
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both its convergence rate and sensitivity to voltage measure-
ment noise. Increasing its magnitude will be instrumental to
noise suppression but reduces the convergence rate, and vice
versa.

When using the control algorithm (25), the integral overflow
can be triggered if the balancing current required to track
BCRref exceeds the limitation of hardware. To address this
issue, the BCR calculated at the end of the corresponding
batch via (4) can be used in (25). In this case, the batch-wise
updating law for BCRref

s+1 becomes

BCRref
s+1 = BCRs(t1) + γḠ−1

[
Vref (t1)−Vs(t1)

]
.
(28)

For the employed run-to-run control with the gain deter-
mined via (27), a rigorous analysis of its overall performance
can be difficult to conduct. This is due to the employed
approximation of (25) to (28) and potential violations of
Assumptions 5-7. As a result, it is not straightforward whether
the proposed algorithm can inherit the convergence property
provided in Theorem 1. Alternatively, numerical examination
through battery-in-the-loop experiments will be performed in
Section IV.

End of 
Batch s ?

BCR Update
-- Eq. (28)

s = s+1k = k+1

Test End

Test Begin
s=k=1,

N Y

Y

In the 
plateau?

Y N

Voltage-Based
-- Procedure 1

BCR-Based
-- Procedure 2

Time-Wise Control Batch-Wise Control

End of 
Test ?

N
Batch s
Step k

BCR1
𝑟𝑟𝑟𝑟𝑟𝑟 = 0

Assumption 2Proposition 1
Assumptions 3~7 
Proposition 2

Fig. 2. Schematic of the proposed balancing algorithm for LFP batteries.

C. Summary

So far, the batch control based balance algorithm has been
presented for LFP batteries, in which the control actions are
taken both time-wisely and batch-wisely. This algorithm relies
on BCR information within the plateau but voltage information
outside of the plateau. It is completely model-free and does
not depend on any battery’s SoC and SoH, which significantly
lowers the computational and memory requirements in BMS
microprocessors. A flowchart to summarize the proposed bal-
ance algorithm is shown in Fig. 2.

IV. EXPERIMENTAL IMPLEMENTATION

The proposed run-to-run control based balancing algorithm
in the previous section is now implemented for real-world

Host PCGPL®Battery
Pack

DC2064
Balancing Platform

Wireless
Kit

Balancing Control Hardware Placed in Thermal Chamber

S9KEA128AMLK
MCU

Signal/Data Energy

Sunway®

Battery Test System

Thermal Chamber GPL Battery Pack

DC2064

Battery Test System

Wireless Kit

Host PC

MCU

Fig. 3. Top: Photograph of the balancing hardware. Bottom: Schematic of
the experimental battery tester.

LFP batteries. Its effectiveness is characterized quantitatively,
followed by discussions on the practicability.

A. Specifications

1) Hardware configurations: The balancing hardware plat-
form and experimental schematic are shown in Fig. 3. The
hardware included six components, including a battery pack,
battery test system, host PC, balancing platform, microcon-
troller unit (MCU), and wireless kit. In details, the battery
pack constituted 6 LFP battery cells connected in series, and
each had 20Ah rated capacity and a 3.2V nominal voltage.
The balancing platform, armed with a DC2064 demo board
produced by Linear Technology [36], was a monitor and
actuator controlled by a low-cost MCU. DC2064 is, in fact,
powerful to balance multiple cells simultaneously but has been
artificially designed to manipulate one cell only at a time in
the experiments. By doing so, the obtained balancing hardware
topology is equivalent to Fig. 1, that is typically used in
commercialized BMSs thanks to its simplicity and low cost.
The MCU communicated with the host computer through a
blue-tooth based wireless communication kit.

To generate measurements, the module LTC6803 embedded
in the DC2064 platform recorded the battery voltage, while the
pack current was measured by a 2.5mΩ shunt and a current
amplifier, INA199 produced by Texas Instruments (TI). The
isolated DC-DC converters were controlled by the module
LTC3300. The converters’ nominal balancing current is 2.4A
for discharging and 2.2A for charging, which was used to
calculate the BCR in (4). The batteries, DC2064 demo board,
MCU, and wireless kit were all placed in a thermal chamber
with a fixed temperature of 25◦C. The battery pack was
charged and discharged through a Sunway battery test system,
which was also controlled by the host computer.

The detailed specifications of the main hardware compo-
nents are summarized in Table I.
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TABLE I
HARDWARE SPECIFICATIONS.

Name Model Specifications

Battery test system Sunway CE-7001 Pack: 500V, 100A, 0.1% accuracy;
Single cell voltage: 5V, 0.1% accuracy.

Thermal chamber HongZhan 25±2 ◦C fixed.
Battery pack GPL Battery 6S1P LFP cells.

Balancing platform Linear DC2064

Nominal balancing current: 2.4A for discharge,
2.2A for charge; Voltage sampling accuracy:

±1.5mV at room temperature; Nominal efficiency
through the flyback converter: 92%.

MCU NXP
S9KEA128AMLK

Core: Cortex M0+ @48MHz; ADC resolution:
12bit SAR at 64 times over sampling = 16bit.

Voltage reference Linear LTC6658
Channel 1: 5.0V±0.05% (trimmed) with source

current of 150mA; Channel 2: 2.5V±0.05%
(initial) with source current of 50mA.

Current sensor ZYCN 2.5mΩ, 0.5% accuracy at full temperature range.
Current amplifier TI INA199 >0.5% accuracy at room temperature (trimmed).

2) Load, parameters, and initialization: The safety voltage
level for every single cell was set as 3.65V for charging and
2.5V for discharging. For pack operation, when any cell’s cut-
off voltage has been reached, the battery pack was considered
to be fully charged/discharged. Following this rule, the battery
pack was first fully discharged and then was fully charged
at constant currents for ten times. This process resulted in
ten refueling batches and ten working batches. As run-to-run
control gets feedback of the measured voltage only at the
batch end, regardless of the other voltage sampling points
in the batch, using constant current profiles for verification
will not lose generality. Furthermore, to examine the proposed
balancing algorithm in more complex conditions, these load
profiles have been specified deliberately to be different among
some batches. The current profiles for all these batches are
listed in Table II.

For the experimental implementation, the BCR was updated
after each batch of the same type. In other words, the BCR
for the next refueling batch was obtained from the previous
refueling process, rather than the adjacent working process.
The initial referenced BCR in (15) was BCRref

s=1 = 0. The
element Ḡj in (27) was chosen as 5 for refueling batches
and −5 for working batches. The voltage boundaries of the
plateau were 3.1 and 3.5V. The coulombic efficiency η was
treated as 1 and Qrated was 20Ah based on the datasheet
provided by GPL. For the specified load profiles, i.e. constant
currents listed in Table II, M = 1 in (3) is selected to simplify
the software implementation, and ε = 0.1A is selected as a
margin to account for the current amplifier error.

The initial SoCs of battery cells were all set as 100%. This
situation aligns with real-world applications when the batteries
are initially packed together or after regular maintenance. Note
that the primary challenge for battery equalization over multi-
ple cycles stems from unbalanced SoH levels. The controller’s
capability to address this challenge will be examined.

3) Software: The control algorithm was written using stan-
dard C language in a CodeWarrior development platform and
then was downloaded to the MCU. After compilation, the
generated binary code size was 118,328 bytes in total. Such
a small code size indicates that the proposed algorithm can
be implemented readily in real-time in commercial BMSs.

It should be pointed out that in the experiments, a large
amount of data has been sent back to the host PC for
debugging, testing, and further data analysis. Most of the data
is unnecessary to send and store in the host PC, implying ap-
preciable reductions in the code size can be achieved. Further
improvements in computational efficiency can be achieved by
code optimization, but are not focused in the present work.

B. Experimental results: Battery calibration & evaluation

Before experimentally testing the proposed balancing algo-
rithm, the battery cells are parameterized and their properties
are studied.

The actual rated capacity of each cell is calibrated using
a constant-current constant-voltage (CCCV) charging protocol
under a current rate of 0.75C at 25◦C, where voltage limits are
2.5 and 3.65V, the cutoff current is 0.05C. The current and
voltage of battery packs are critical quantities in designing
pack-level charging management algorithms, in which cell-
level voltages are usually not controlled individually and thus
can be dissimilar among cells. To avoid overcharging some
cells, only the constant-current phase is used for battery pack
charging operation. In this regard, “CC capacity” representing
the total capacity delivered in the constant-current phase is in-
troduced to evaluate the performance of balancing algorithms.

The obtained capacities of each cell are listed in Table III.
Clearly, these cells are completely different in capacities. In
details, the weakest cell, #03, has 16.95Ah actual capacity,
corresponding to SoH level of 0.848. On the contrary, the
actual capacity of the strongest cell, #05, is 18.41Ah and
the SoH is 0.921. Furthermore, it can be calculated that each
cell’s CC capacity takes account of more than 90% of its rated
capacity. When the 6 cells are assembled into a pack, the ideal
CC capacity of the pack is 17.016Ah, which is the average CC
capacity. If no balancing is applied, the pack CC capacity is
termed as “static capacity” and is equal to that of the weakest
cell, i.e., 15.351Ah.

In addition, discharging characteristics of these cells are
investigated. Fig. 4 depicts their voltage trajectories under
0.75C discharge operation. In general, cells with lower voltage
curves tend to have less rated capacities. However, here is
a more complex situation with the considered battery pack.
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TABLE II
LOAD PROFILES.

Batch Number 01 02 03 04 05 06 07 08 09 10
Discharging current (A) -12.5 -17.5 -10 -15 -17.5 -15 -15 -10 -12.5 -15

Charging current (A) 15 15 15 15 15 15 15 15 15 15

Fig. 4. Voltage evolution profiles at discharging for six selected battery cells.

TABLE III
ACTUAL RATED CAPACITY AND CC CAPACITY OF BATTERY CELLS.

Battery Number Actual Rated Capacity (Ah) CC Capacity (Ah)
01 18.215 17.262
02 18.304 17.373
03 16.954 15.351
04 17.682 16.806
05 18.819 17.836
06 18.410 17.467

Average 18.064 17.016

Specifically, cell #05 has the largest capacity, but the lowest
voltage in the plateau. Meanwhile, the capacity of cell #03 is
smaller than others, but its voltage in the plateau is not the
lowest.

C. Experimental results: Battery balancing performance

Based on the above experimental specifications and bat-
teries, the performance of the proposed balancing algorithm
is comprehensively examined and analyzed. The ideal and
static pack capacities are used to benchmark the proposed
algorithm. For further comparison, a conventional voltage-
based balancing algorithm following Procedure 1 is also
implemented based on identical configurations and conditions.
By using the two algorithms in succession, the battery pack
has been balanced during cycling operation.

1) Balanced voltage profiles: The voltage evolution profiles
of all cells over the specified twenty batches are shown in
Fig. 5, where the discharging curves in the first and tenth
working batches are zoomed in with Sub-figures (c) and (d).
As expected, the voltage trajectories are not only different
among battery cells but also different for the same cell when
two balancing algorithms are applied. Specifically, charging
operations are dominated by the cell with the highest voltage,
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Fig. 5. Comparison of the proposed balancing algorithm and conventional
voltage-based algorithm over ten working batches, in terms of the terminal
voltages of each cell.

while discharging operations terminate when the weakest cell
meets its low voltage bound. Second, it can be seen in
Fig. 5(a)-(b) that the battery pack equipped with the proposed
algorithm can work for 25.11h, which is longer than 23.86h
performed by its counterpoint. In other words, by using the
proposed algorithm, batteries can release and absorb more
capacity in the entire process than its benchmark.

Fig. 5(c) shows that in the first working batch, the voltage
curves of #03 and #05 in the proposed algorithm, particularly
when outside the defined plateau, drop more quickly than those
in the voltage-based algorithm. However, the opposite situation
can be observed in Fig. 5(d). These phenomena imply that the
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Fig. 6. Voltages at the end of the working batches (a) and refueling batches
(b). Vpro,j and Vcon,j are the voltages of cell j in the proposed and
conventional balancing algorithms, respectively. Vmax and Vmin represent
the maximum and minimum voltages of each cell in the battery pack,
respectively.

voltage-based algorithm offers more capacity in the first batch
but less in the tenth, compared to the proposed algorithm. For
the situation in the first batch, it is because the referenced
BCR in the proposed method has been specified as zero, and
then no balancing is performed in the plateau.

The BCR- and voltage-based balancing parts in the pro-
posed algorithm, following Procedures 1-2 respectively, are
switched at boundaries of the voltage plateau. As a result,
using the BCR-based strategy, the cell whose voltage first
reaches 3.1V will stay there for a while (due to charging by
the balancing hardware), until another cell’s voltage becomes
this value, as shown in Fig. 5(e)-(f).

Additionally, the voltages at the end of batches are pre-
sented in Fig. 6. To facilitate the description, the minimum
(maximum) voltage of all battery cells in the pack is named
as “pack discharge (charge) voltage”. It can be seen that the
proposed approach ends up with lower pack discharge voltage
but higher pack charge voltage than the conventional approach.

2) Capacity improvements: Capacity utilization of the two
balancing algorithms is examined quantitatively. Correspond-
ing to the voltage profiles in Fig. 5, the delivered capacities
of each working batch are shown in Fig. 7(a). Clearly, the
proposed balancing approach can release more capacity than
the conventional one from the second batch to the end.
In these nine batches, the average discharging capacity of
the conventional and proposed approaches is 15.636Ah and
16.520Ah, respectively. Therefore, the proposed approach is
able to extract 97.1% of the theoretical capacity and improves
the capacity utilization 5.7% and 7.6% from its benchmark

and static capacity, respectively.
The proposed approach is able to accommodate its perfor-

mance by learning from the previous batches. For example,
when using the conventional algorithm, the 6, 7, and 10th
batches having the same load profile provide almost the same
capacity. In the proposed algorithm, due to effects of the 9th
batch, the discharging capacity of the 10th batch is smaller
than those of the 6 and 7th batches. The released capacity
of the proposed method can increase gradually when load
profiles among contiguous batches are similar. This process
can be evidenced from the 4–7th batches. As a result of
insignificant load changes in these batches, the discharging
capacity from the 5–8th batches based on the updating law in
(28) can achieve substantial growth. However, no appreciable
improvements are seen in the benchmarking method.

Indeed, the proposed method’s performance may degrade
or improve in the next batch if the load has a significant
change. As can be seen, with a large load change in batch
8, the capacity decreases appreciably in batch 9. However, a
different case is observed from batch 4 to 5. This uncertainty
is potentially due to violations of Assumption 2. That is, under
severely variant currents, batteries with the same SoC can be
very different in their terminal voltages, because of voltage
variations caused by internal resistance and charge-transfer
reaction, for example.

3) Actions of balancing hardware: The real-time balancing
actions regarding which cell is being operated by hardware are
studied. Experimental results of the first and ninth working
batches are illustrated in Fig. 8, where the circle at each time
step means that the corresponding cell is being charged by
the hardware, and charging cell 0 means that the hardware is
waiting.

When using the conventional algorithm, cell 05 is charged
by the balancing hardware very frequently in the plateau for
both the first and ninth batches. However, this cell with the
largest capacity should be discharged to enlarge the overall
pack capacity. Again, such charging actions are due to the
invalidity of Assumption 2 and can cause fault operations.

Using the proposed algorithm in the first batch, all cells have
been charged only at the boundary of the voltage plateau. In
the plateau of the ninth batch, cell 03 who has the lowest
capacity is charged most frequently, but cell 05 is never
charged. Therefore, the proposed algorithm equipped with the
BCR information can help the hardware to balance the pack
properly.

In the conventional algorithm, the balancing actions shift
higher frequently among cells than those of the proposed
one, leading to more energy loss in the balancing circuit
and converter. The switching frequency can increase along
with voltage measurement noise. Increasing the threshold in
Procedure 1 can efficiently address this problem but implies
a larger tolerance to cell imbalance.

4) Tracking error of the batch-wise control: The tracking
performance of the batch-wise control with the updating law
(28) is examined. Fig. 7(b) demonstrates BCRref values ob-
tained before each discharging batch. BCR∗ can be calculated
by using (11) and CC capacity. A comparison of BCR∗ and
BCRref is carried out and the results are shown in Table IV.
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(a) (b)

Fig. 7. (a): Discharging capacity of each batch; (b): The BCR evolution profiles over different batches.
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Fig. 8. Real-time actions of balancing hardware toward battery cells in the pack.

TABLE IV
BATCH-WISE BCR TRACKING RESULTS.

Battery Number 01 02 03 04 05 06
BCR∗ (%) 1.45 2.10 -9.78 -1.23 4.82 2.65
BCRref

11 (%) -0.33 3.37 -11.74 -0.33 4.78 4.24
Error (%) 1.78 -1.27 1.96 -0.90 0.04 -1.59

Obviously, the batch-wise BCR tracking error is bounded by
2% within ten iterations. It can be inferred from (19) and (23)
that the 2% error in BCR gives a less than 2% error in SoC.
As known from start-of-the-art SoC estimation techniques in
[8], [37]–[39], only carefully designed model-based SoC esti-
mators can stand a chance to achieve 98% accuracy. Moreover,

the proposed batch-wise control for battery balancing achieves
such high accuracy in the presence of time-varying balancing
currents and conversion efficiencies. When a more accurate
initial referenced BCR can be calculated (e.g., via (11) and
initial SoH of battery cells), even better tracking performance
is likely to obtain.

D. Further Discussions

The nominal balancing current (inom) and the number of
cells (N ) in the pack are constant parameters in the problem
formulation. Quantitatively speaking, more powerful hardware
with larger balancing currents can generally lead to faster
control convergence, associated with better balancing results.
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Whereas this means more hardware costs and energy losses.
Although six cells have been considered in the exemplary
implementation, the developed control algorithm is sufficiently
general for charge equalization of different numbers of cells
in the topology of Fig. 1.

Future research opportunities exist in extensions of the
proposed algorithm to incorporate effects of temperature and
battery aging. Code optimization to further improve compu-
tational efficiency is another direction towards commercial
BMSs in more applications.

V. CONCLUSIONS

This paper addressed the weak observability problem inside
the voltage plateau and the computational issue caused by real-
time state estimation for balancing management of lithium
iron phosphate batteries. The technical novelties first arise
from the introduction of a balancing current ratio (BCR)
based algorithm and its combination with a voltage-based
algorithm, separately responsible for the balancing task within
and beyond the voltage plateau. The battery balancing process
was formulated as a batch-based run-to-run control problem, in
which the control policy was implemented in two timescales,
i.e., time-wise and batch-wise. To the best of our knowledge,
this is the first application of run-to-run control in the field of
battery management. In addition, assumptions underlying each
control algorithm are explicitly stated and remarked/justified
on the battery system.

The proposed balancing algorithm was coded in C language
with the binary code in 118,328 bytes only. Consequently,
this model-free and state-of-charge independent algorithm is
readily real-time implementable in many embedded systems.
By implementing it on battery-in-the-loop facilities with a
low-cost MCU, extensive results were obtained for battery
balancing during different batches. It has been demonstrated
that the proposed algorithm is able to extract 97.1% of the
theoretical pack capacity and is 5.7% more efficient than the
conventional voltage-based algorithm.
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