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there exist unique solutions and obtain the explicit integral 
kernels of the solution operators as well as some of their 
properties.
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0. Introduction

Classical harmonic analysis in Euclidean space deals to a large extent with the anal-
ysis and geometry of the Laplace operator; for boundary value problems for harmonic 
functions one studies Poisson integral operators, and also analogous problems involving 
fractional powers of the Laplacian have become very important in recent years. Not only 
Euclidean geometry plays a role here, but also conformal geometry – and singular ellip-
tic boundary value problems lead to new insight about exactly the fractional Laplacians 
as observed by Caffarelli–Silvestre in their influencial paper [2]. Their interpretation of 
the fractional Laplacian as Dirichlet-to-Neumann operator of a singular elliptic boundary 
value problem has led to further development in classical PDEs and has been generalized 
for instance to conformally compact Einstein manifolds [3].

In this work we attempt to extend their theory for functions and distributions to 
the case of differential forms; these are also important for physical theories – as would 
also be other types of fields and vector bundles. In particular there is an interesting 
family of integral operators analogous to the Poisson transform with both nice analytic 
and geometric properties. The corresponding Dirichlet-to-Neumann operators on differ-
ential forms which play the role of the fractional Laplacian are the so-called fractional 
Branson–Gover operators. They do not interpolate between powers of the Laplacian on 
differential forms, but instead between their conformally invariant analogs, the Branson–
Gover operators, which play an important role in conformal geometry.

0.1. The case of functions

Let us first briefly recall the results from Caffarelli–Silvestre [2] and our previous 
work [12]. For a ∈ R Caffarelli–Silvestre consider the following Dirichlet boundary value 
problem for functions on Rn:(

x2
nΔ + axn

∂

∂xn

)
u = 0, u|Rn−1 = f, (0.1)

where Δ is the Euclidean Laplacian on Rn and Rn−1 = {x ∈ Rn : xn = 0}. By determin-
ing explicitly the integral kernel of the Poisson transform Pa which maps the Dirichlet 
boundary value f to the solution u, they show that for s = 1−a

2 ∈ (0, 1) the Neumann 
boundary value limxn→0 x

a
n∂xn

u(x′, xn) is up to a constant equal to Δsf , i.e. the frac-
tional Laplacian Δs is a type of Dirichlet-to-Neumann operator for the boundary value 
problem (0.1).

In our work [12] we found a suitable Hilbert space setting for the boundary value 
problem of Caffarelli–Silvestre. More precisely, in [12, Theorem A] we showed that for 2 −
n < a ≤ 2 the operator Δa = x2

nΔ +axn
∂

∂xn
is essentially self-adjoint on the homogeneous 

Sobolev space Ḣ
2−a
2 (Rn) and that for 2 − n < a < 1 the boundary value problem (0.1)

has a unique solution u ∈ Ḣ
2−a
2 (Rn) for every boundary value f ∈ Ḣ

1−a
2 (Rn−1). In 
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[12, Theorem B] we further proved that the Poisson transform Pa is (up to a constant) 
isometric as an operator Pa : Ḣ 1−a

2 (Rn−1) → Ḣ
2−a
2 (Rn) and even Lp-Lq-bounded for 

certain p and q. The goal of this paper is to generalize all these results to the case of 
differential forms on Rn in a conformally invariant way.

0.2. Boundary value problems for differential forms

On Rn (n ≥ 2) we consider the standard Euclidean metric. The space Ωp(Rn) of 
smooth p-forms on Rn will be identified with C∞(Rn) ⊗

∧p Cn. In this way we can 
view S ′(Rn) ⊗

∧p Cn as distribution-valued p-forms. We write ei for the standard basis 
vectors in Cn and denote by εx and ix the exterior and interior multiplication on 

∧• Cn

by x ∈ Cn.
For 0 ≤ p ≤ n and a ∈ R we consider the following second order differential operator 

on differential p-forms on Rn:

Δa,p := x2
nΔ + axn

∂

∂xn
+ 2xn(iend′ − εenδ

′) − (n− 2p)εenien , (0.2)

where Δ is the Euclidean Laplacian on differential forms and

d′ =
n−1∑
j=1

εej
∂

∂xj
, δ′ = −

n−1∑
j=1

iej
∂

∂xj
(0.3)

are the Euclidean differential and codifferential on the subspace Rn−1. Note that for 
p = 0 this operator equals the operator occurring in [2].

The appropriate Hilbert space on which this operator acts is a homogeneous Sobolev 
space which is most easily defined in terms of the Euclidean Fourier transform û of a 
p-form u (see Section 1.4 for details):

Ḣs,p(Rn) =

⎧⎨⎩u ∈ S ′(Rn) ⊗
p∧
Cn :

∫
Rn

|ξ|2s‖û(ξ)‖2 dξ < ∞

⎫⎬⎭ .

Note that Ḣ0,p(Rn) = L2,p(Rn) is the space of L2-forms of degree p. Instead of working 
with the obvious norm on Ḣs,p(Rn), we use a slightly different but equivalent norm 
‖ · ‖s,p which has the advantage that it is conformally invariant (see Proposition 1.2 for 
the precise definition).

To state the boundary value problem we remark that by the Sobolev Trace Theorem 
(see Corollary 2.4) there exists for 1

2 < s < n
2 a bounded restriction map

Ḣs,p(Rn) → Ḣs− 1
2 ,p(Rn−1), u 	→ u|Rn−1 ,
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which agrees with the pullback by the embedding Rn−1 ↪→ Rn on smooth differential 
forms. We further note that by duality 

∧n−p Rn 

∧p Rn it suffices to consider the case 

0 ≤ p ≤ n
2 .

Theorem A (see Section 2.3). Assume 0 ≤ p ≤ n
2 .

(1) For 2 −n +2p < a ≤ 2 the operator Δa,p is essentially self-adjoint on the homogeneous 
Sobolev space Ḣ

2−a
2 ,p(Rn) with respect to the conformally invariant norm ‖ · ‖ 2−a

2 ,p. 
Its point spectrum contains {k(k + a − 1) : k ∈ N, k < 1−a

2 }.
(2) For 2 − n + 2p < a < 1 and f ∈ Ḣ

1−a
2 ,p(Rn−1) the Dirichlet problem

Δa,pu = 0, u|Rn−1 = f (0.4)

has a unique solution u ∈ Ḣ
2−a
2 ,p(Rn).

It is worth mentioning that the differential operator Δa,p is invariant under the action 
of the conformal group of the subspace Rn−1 ⊆ Rn (but not under the action of the 
conformal group of Rn).

0.3. The Poisson transform

For a bounded function f on Rn−1 we define

Pa,pf(x) = ca,p

∫
Rn−1

|xn|1−a

(|x′ − y|2 + x2
n)n−a+2

2

(
ix−yεx−y − εx−yix−y

)
f(y) dy (x ∈ Rn)

where ca,p = 2π−n−1
2 Γ(n−a+2

2 )Γ(1−a
2 )−1(n − 2p − a)−1. The integral operator Pa,p turns 

out to be the Poisson transform of the boundary value problem (0.4) and it extends to 
an isometry (up to a scalar) between the corresponding homogeneous Sobolev spaces:

Theorem B (see Section 2.4). Assume 0 ≤ p ≤ n
2 and 2 − n + 2p < a < 1.

(1) The integral operator Pa,p extends to a continuous linear operator

Pa,p : Ḣ
1−a
2 ,p(Rn−1) → Ḣ

2−a
2 ,p(Rn),

which maps f to the unique solution u = Pa,pf of the boundary value problem (0.4).
(2) The operator Pa,p is isometric up to a constant. More precisely,

‖Pa,pf‖2
2−a
2 ,p

=
2
√
π(n− 2p− a + 2)Γ(2−a

2 )
(n− 2p− a)Γ(1−a

2 )
· ‖f‖2

1−a
2 ,p

.
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In Section 4 we even find an explicit formula for the Fourier transform ̂Pa,pf of Pa,pf

in terms of the Fourier transform f̂ of f (see Theorem 4.1). In fact, this formula is used 
to find the precise constant in the isometry property.

0.4. Fractional Branson–Gover operators

We finally identify the Dirichlet-to-Neumann map of the boundary value problem (0.4)
as a fractional Branson–Gover operator. For this we consider, instead of the ordinary 
powers of the Laplacian on differential forms on Rn−1

ΔN = (δd + dδ)N = (δd)N + (dδ)N

the conformally invariant operators

DN,p =
(n− 1

2 − p + N
)
(δd)N +

(n− 1
2 − p−N

)
(dδ)N

found by Branson–Gover [1]. These operators play an important role in conformal geom-
etry since their construction can be generalized to conformal manifolds. The Branson–
Gover operators are interpolated by the fractional Branson–Gover operators

Ls,pω(x) = 1
Γ(−s)

∫
Rn

|y|−2s−n−2(iyεy − εyiy)
[
ω(x + y) − ω(x)

]
dy,

which are also conformally invariant. More precisely, for N ∈ N we have (see Fischmann–
Ørsted [5, Corollary 4.6])

LN,p = π
n
2

4NΓ(n2 + N + 1)DN,p.

In analogy to the work of Caffarelli–Silvestre [2] for the fractional powers Δs of the 
scalar Laplacian, the fractional Branson–Gover operators Ls,p can be interpreted as the 
Dirichlet-to-Neumann map of the boundary value problem (0.4):

Theorem C. Assume 0 ≤ p ≤ n−3
2 and let s ∈ (0, 1) and a = 1 − 2s. For f ∈

Ḣ
1−a
2 ,p(Rn−1) let u = Pa,pf ∈ Ḣ

2−a
2 ,p(Rn) be the unique solution of (0.4). Then

Ls,pf(y) = ds,p lim
xn→0

xa
n∂xn

u(x′, xn)

with ds,p = (Γ(−s)ca,p)−1.

Since the operator Δa,p is also invariant under the conformal group of Rn−1, the 
description of the fractional Branson–Gover operators as Dirichlet-to-Neumann maps of 
the boundary value problems (0.4) respects the action of the conformal group of Rn−1.
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0.5. Relation to other work

In the recent work [10] La Nave–Phillips find an alternative generalization of the 
Caffarelli–Silvestre mechanism to differential forms. The main difference between their 
approach and our approach is that our Dirichlet-to-Neumann map Ls,p is conformally 
invariant whereas they consider fractional powers of the Hodge Laplacian on forms which 
are not conformally invariant. In fact, on Euclidean space the Hodge Laplacian reduces 
to the ordinary Laplacian on functions, i.e.

Δ(f · dxi1 ∧ . . . ∧ dxik) = (Δf) · dxi1 ∧ . . . ∧ dxik ,

so that they are able to apply the results from [2] for the scalar case.
We remark that the conformal invariance of the operators Δa,p, Pa,p and Ls,p might 

play an important role in a possible generalization of our results to conformally compact 
Einstein manifolds (see e.g. [3] for the case of functions).

0.6. Methods

Most of our proofs rely on the representation theory of the conformal group O(1, n +1)
of Rn and its subgroup O(1, n). More precisely, the group O(1, n + 1) acts on the 
homogeneous Sobolev space Ḣs,p(Rn), −n

2 + p < s < n
2 − p, by an irreducible uni-

tary representation (the complementary series). Restricted to the subgroup O(1, n) ⊆
O(1, n + 1), the representation decomposes into irreducible unitary representations of 
O(1, n). For 1

2 < s < n
2 − p one of these representations is the corresponding com-

plementary series representation of O(1, n) on Ḣs− 1
2 ,p(Rn−1), and the restriction map 

Ḣs,p(Rn) → Ḣs− 1
2 ,p(Rn−1) projects onto this component. This observation makes it 

possible to use the machinery of symmetry breaking operators whose study was re-
cently initiated by Kobayashi [7] (see also [4,8,9,6]). In this language the differential 
operator Δa,p (a = 2(1 − s)) corresponds to the action of the Casimir element of 
O(1, n) in Ḣs,p(Rn) and the fractional Branson–Gover operators are the standard 
Knapp–Stein intertwining operators between principal series representations of the group 
O(1, n).

0.7. Outlook

In principle, the methods of this paper are robust and should allow generalizations 
to other vector bundles and also to other geometries, i.e. other pairs of groups (G, G′)
than just (O(1, n + 1), O(1, n)). For instance, in our previous work [12] we already dis-
cussed a boundary value problem on the Heisenberg group which belongs to the pair 
(G, G′) = (U(1, n + 1), U(1, n)). In fact, principal series representations can be formed 
for any reductive group and the standard Knapp–Stein intertwining operators always 
provide a meromorphic family of integral operators. Further, the recent work [11] by 
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the first named author shows that meromorphic families of symmetry breaking oper-
ators also exist in many situations. We therefore believe that there are many other 
cases in which our methods can be used to provide analytically and geometrically in-
teresting boundary value problems, and we hope to return to this point in a future 
work.

However, there are a few observations one has to take into account when considering 
generalizations. First of all, the differential operator Δa,p is essentially the Casimir op-
erator of the group G′ and should in higher rank situations be replaced by an algebra of 
invariant differential operators which will in general not be generated by a single operator. 
Therefore one is most likely forced to study systems of differential equations rather than 
a single equation. Another issue is that complementary series representations are quite 
rare, so that there will not always be canonical Hilbert spaces for the relevant boundary 
value problems. Finally, the pairs (O(1, n + 1), O(1, n)) and (U(1, n + 1), U(1, n)) are so-
called multiplicity-one pairs, a property that is connected to the uniqueness of solutions 
to the relevant boundary value problem. Already the pair (Sp(1, n +1), Sp(1, n)) of rank 
one groups fails to have this property, so that one cannot expect unique solutions in 
general.

0.8. Structure of the paper

In Section 1 we briefly recall the action of the conformal group O(1, n + 1) on Rn

and the corresponding unitary representations on homogeneous Sobolev spaces of dif-
ferential forms on Rn, the complementary series representations. Here we also give a 
representation theoretic interpretation of the fractional Branson–Gover operators as in-
tertwining operators between complementary series representations. In Section 2 the 
relation between symmetry breaking operators in representation theory and boundary 
value problems and Poisson transforms is established. Here most of the statements in 
Theorem A and B are proven. The remaining points are addressed in Section 3 (explicit 
normalization of the integral formula for Pa,p), Section 4 (uniqueness of solutions to (0.4)) 
and Section 5 (isometry property of Pa,p). Finally, in Section 6 the fractional Branson–
Gover operators are identified with the Dirichlet-to-Neumann map of the boundary value 
problem (0.4), providing a proof of Theorem C.

In Appendix A we further give some computational details related to the interpre-
tation of Δa,p as a Casimir operator, and in Appendix B we compare Δa,p with the 
Laplace–Beltrami operator on differential forms on the hyperbolic space realized as the 
upper half space Hn ⊆ Rn.

1. Action of the conformal group on differential forms

In this section we sketch the construction of the complementary series representations 
of the conformal group G = O(1, n + 1) on differential forms.
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1.1. The conformal group

We realize the rank one orthogonal group G = O(1, n +1), n ≥ 1, as (n +2) × (n +2)
matrices preserving the bilinear form

(x, y) 	→ x0y0 − x1y1 − · · · − xn+1yn+1.

Let g denote the Lie algebra of G and define

H :=

⎛⎜⎝ 0 1
1 0

0n

⎞⎟⎠ ∈ g.

Then the adjoint action ad(H) on g has eigenvalues +1, 0 and −1 and we write n, l and 
n for the respective eigenspaces which are in fact subalgebras. The subalgebra l can be 
further decomposed as l = m ⊕ a with m the Lie algebra of

M :=
{(

ε
ε

m

)
: ε = ±1,m ∈ O(n)

}

 O(1) × O(n)

and a = RH. We further write A = exp(a), N = exp(n) and N = exp(n), then P =
MAN and P = MAN are parabolic subgroups of G. They are conjugate via the element 
w0 = diag(−1, 1, . . . , 1) ∈ G, i.e. w0Pw−1

0 = P . In what follows we identify N 
 Rn by

Rn → N, x 	→ nx := exp

⎛⎜⎝ 0 0 x�

0 0 −x�

x x 0n

⎞⎟⎠ . (1.1)

The group G acts by rational conformal transformations on Rn in the following way: 
The subset NMAN ⊆ G is open and dense, so that for fixed g ∈ G and almost all 
x ∈ Rn we can decompose

gnx = ng·xm(g, x)e− log(j(g,x))Hn

with g · x ∈ Rn, m(g, x) ∈ M , j(g, x) > 0 and n ∈ N . This defines a rational conformal 
action (g, x) 	→ g · x of G on Rn with conformal factor j(g, x) in the sense that the 
derivative Dg(x) of g at x ∈ Rn satisfies

|Dg(x)ξ| = j(g, x)|ξ| ∀ ξ ∈ Rn.
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1.2. Principal series representations on differential forms

We identify a∗C 
 C by λ 	→ λ(H). Then the half sum of positive roots ρ := 1
2 tr ad |n ∈

a∗ is given by ρ = n
2 . For λ ∈ a∗C 
 C the character eλ of A is given by eλ(etH) = eλt.

For an irreducible representation (ξ, V ) of M and λ ∈ C we define the principal series 
representation (smooth normalized parabolic induction)

π∞
λ,ξ := IndG

P (ξ ⊗ eλ ⊗ 1)

as the representation of G on the Fréchet space

{u ∈ C∞(G,V ) : u(gman) = a−λ−ρξ(m)−1u(g) ∀ g ∈ G,man ∈ MAN}

by left-translation, i.e. π∞
λ,ξ(g)u(x) = u(g−1x), g, x ∈ G.

We will mostly work in a different and more convenient realization of these represen-
tations, the non-compact picture, which we briefly explain. The subset NMAN ⊆ G is 
open and dense and therefore, restriction to N 
 Rn realizes the representation π∞

λ,ξ on 
a space

I∞λ,ξ ⊆ C∞(Rn, V )

of smooth V -valued functions on Rn.
Here we are mostly interested in the case where ξ is the p-th exterior power of the 

standard representation of O(n) on Cn, i.e. V =
∧p Cn, 0 ≤ p ≤ n. We denote this action 

by ξp and extend it trivially to the group M 
 O(1) × O(n). We write π∞
λ,p = π∞

λ,ξp
and 

I∞λ,p = I∞λ,ξp for short. Identifying ei with dxi the space I∞λ,p can be viewed as subspace 
of the space Ωp(Rn) of differential p-forms on Rn. We note that I∞λ,p always contains the 
space S(Rn, 

∧p Cn) of rapidly decreasing p-forms.
On 

∧p Cn we use the standard inner product so that {ei1 ∧ . . . ∧ eip : 1 ≤ i1 <

. . . < ip ≤ n} forms an orthonormal basis. With respect to this inner product the 
representation ξp of M on 

∧p Cn is unitary. Moreover, the inner product can be used to 
define a G-invariant continuous bilinear pairing

I∞λ,p × I∞−λ,p → C, (u1, u2) 	→
∫
Rn

〈u1(x), u2(x)〉 dx

and hence identify I∞λ,p with a subspace of the dual space I−∞
λ,p := (I∞−λ,p)∗. We have

S(Rn,

p∧
Cn) ⊆ I∞λ,p ⊆ I−∞

λ,p ⊆ S ′(Rn,

p∧
Cn)

and the representation π∞
λ,p extends by duality to a representation π−∞

λ,p on I−∞
λ,p . In terms 

of the conformal action of G on Rn the representation is given by
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πλ,p(g)u(x) = j(g−1, x)λ+ρξp(m(g−1, x))−1u(g−1 · x) ∀ g ∈ G, x ∈ Rn.

1.3. Knapp–Stein intertwining operators

There exists a meromorphic family of intertwining operators Tλ,p : π∞
λ,p → π∞

−λ,p, 
the so-called Knapp–Stein intertwiners. For Reλ > 0 the operator Tλ,p is given by the 
convergent integral

Tλ,pu(g) =
∫
N

u(gw0n) dn.

Abusing notation we also write Tλ,p for the corresponding operator I∞λ,p → I∞−λ,p. In 
[5,13] the following expression for Tλ,p as an integral kernel operator was obtained:

Lemma 1.1. Let 0 ≤ p ≤ n. For Reλ > 0 the Knapp–Stein intertwining operator is given 
by

Tλ,pu(x) =
∫
Rn

|y|2(λ−ρ−1)(iyεy − εyiy)u(x + y) dy.

Note that with the notation y = |y|ŷ the operator Tλ,p can also be written as

Tλ,pu(x) =
∫
Rn

|y|2(λ−ρ)(iŷεŷ − εŷiŷ)u(x + y) dy.

Of particular importance for us are the Knapp–Stein intertwiners Tλ,p for −1 < λ < 0, 
so we describe their regularization in detail. Let u ∈ S(Rn, 

∧p Cn), then for Reλ > 0
we can write

Tλ,pu(x) =
∞∫
0

r2λ−1ũ(x, r) dr with ũ(x, r) =
∫

Sn−1

(iωεω − εωiω)u(x + rω) dω.

Note that ũ(x, r) is an even function of r, i.e. ũ(x, −r) = ũ(x, r). Now the standard 
regularization for the distributions |r|2λ−1 on R gives for λ ∈ (−1, 0):

Tλ,pu(x) = P.V.

∞∫
0

r2λ−1(f̃(x, r) − f̃(x, 0)) dr

= P.V.

∞∫
r2λ−1

∫
(iωεω − εωiω)(f(x + rω) − f(x)) dω dr
0 Sn−1
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= P.V.

∫
Rn

|y|2λ−n(iŷεŷ − εŷiŷ)(f(x + y) − f(x)) dy.

1.4. Complementary series representations and homogeneous Sobolev spaces

Let 0 ≤ p ≤ n. For λ ∈ iR the representation π∞
λ,p is irreducible except for the case 

(λ, p) = (0, n2 ) with n even where it decomposes into the direct sum of two irreducible 
representations. For all λ ∈ iR the representation π∞

λ,p is unitary on L2(Rn, 
∧p Cn) which 

we interpret as the space L2,p(Rn) of L2-forms of degree p.
More subtle is the question about unitarizability for λ ∈ R. For simplicity we assume 

0 ≤ p ≤ n
2 , the remaining cases can be treated similarly. It turns out that π∞

λ,p is 
irreducible and unitarizable if and only if |λ| < n

2 − p. In this case the G-invariant norm 
on I∞λ,p is given by

‖u‖2
λ =

∫
Rn

〈Tλ,pu(x), u(x)〉 dx (1.2)

for λ ∈ (0, n2 − p) and by a regularization of the integral in the remaining cases. We 
write Iλ,p for the corresponding Hilbert space and extend π∞

λ,p to an irreducible uni-
tary representation πλ,p on Iλ,p, the complementary series. The smooth vectors of this 
representation are given by I∞λ,p and we have the following inclusions:

S(Rn,

p∧
Cn) ⊆ I∞λ,p ⊆ Iλ,p ⊆ I−∞

λ,p ⊆ S ′(Rn,

p∧
Cn).

A convenient way to handle the regularization of the integral is by taking the Euclidean 
Fourier transform. We use the following normalization:

û(ξ) = (2π)−n
2

∫
Rn

e−ix·ξu(x) dx, u ∈ S ′(Rn,

p∧
Cn).

In [5, Corollary 4.2, Remark 4.10] the following equivalent description of the invariant 
norm is given:

Proposition 1.2. For |λ| < n
2 − p the G-invariant norm on Iλ,p is given by

‖u‖2
λ =

∫
Rn

|ξ|−2λ−2
〈((n

2 − p− λ
)
iξεξ +

(n
2 − p + λ

)
εξiξ

)
û(ξ), û(ξ)

〉
dξ

=
∫
Rn

|ξ|−2λ
〈((n

2 − p− λ
)
iξ̂εξ̂ +

(n
2 − p + λ

)
εξ̂iξ̂

)
û(ξ), û(ξ)

〉
dξ.

(1.3)
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Sometimes it is more convenient to work with an equivalent norm which is not 
G-invariant but easier to handle:

Lemma 1.3. For |λ| < n
2 − p the norm | · |λ given by

|u|2λ :=
∫
Rn

|ξ|−2λ‖û(ξ)‖2 dξ (1.4)

is equivalent to the norm ‖ · ‖λ in (1.3). More precisely,(n
2 − p− |λ|

)
|u|2λ ≤ ‖u‖2

λ ≤
(n

2 − p + |λ|
)
|u|2λ.

Proof. For any unit vector u we have iuεu ≥ 0, εuiu ≥ 0 and iuεu + εuiu = id as 
operators on 

∧p Cn. Thus(n
2 − p− |λ|

)
id ≤

(n
2 − p− λ

)
iξ̂εξ̂ +

(n
2 − p + λ

)
εξ̂iξ̂ ≤

(n
2 − p + |λ|

)
id

for |λ| < n
2 − p. The claimed estimate now follows by integration. �

The previous lemma shows that for p = 0 the Hilbert space Iλ,0 equals the homoge-
neous Sobolev space

Ḣs(Rn) =

⎧⎨⎩u ∈ S ′(Rn) :
∫
Rn

|ξ|2s|û(ξ)|2 dξ < ∞

⎫⎬⎭
of degree s = −λ. We therefore call Iλ,p the homogeneous Sobolev space of p-forms on 
Rn of degree s:

Ḣs,p(Rn) =

⎧⎨⎩u ∈ S ′(Rn,

p∧
Cn) :

∫
Rn

|ξ|2s‖û(ξ)‖2 dξ < ∞

⎫⎬⎭ .

2. Symmetry breaking, boundary value problems and Poisson transforms

We recall the construction of symmetry breaking operators for differential forms from 
[9,6] and describe their relation to boundary value problems. Analogous results in the 
scalar case were obtained in [12, Section 3]. Although the proofs in this section resemble 
those in [12], we include them for the sake of completeness.

2.1. The subgroup O(1, n) and its representations

The conformal group G′ = O(1, n) of the subspace Rn−1 ⊆ Rn can be embedded as a 
subgroup of G = O(1, n + 1) as the upper left corner. Then P ′ = P ∩G′ is a parabolic 
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subgroup of G′ with Langlands decomposition P ′ = M ′AN ′, where M ′ = M ∩ G′ 

O(1) × O(n − 1) and N ′ = N ∩ G′ 
 Rn−1. Under the identification N 
 Rn the 
subgroup N

′ = N ∩G′ corresponds to the subspace Rn−1 
 {(x′, 0) : x′ ∈ Rn−1} ⊆ Rn.
For 0 ≤ q ≤ n − 1 we let ηq denote the representation of M ′ on 

∧q Cn−1. As above, 
we consider for ν ∈ C the principal series representations

τ∞ν,q := IndG′

P ′(ηq ⊗ eν ⊗ 1)

of G′. Again we realize these representations on a space J∞
ν,q of smooth differential 

q-forms on N
′ 
 Rn−1. The dual space J−∞

ν,q := (J∞
−ν,q)∗ will be identified with a 

space of distributional q-forms on Rn−1 on which G′ acts via duality by a representation 
τ−∞
ν,q .

For |ν| < n−1
2 − q the representation τ∞ν,q is irreducible and unitarizable and we write 

Jν,q for the corresponding Hilbert space completion of J∞
ν,q and τν,q for the extension of 

τ∞ν,q to Jν,q. As before we have Jν,q = Ḣ−ν,q(Rn−1).

2.2. The Casimir operator

On the Lie algebra g the Killing form

B(X,Y ) := 1
2 tr(XY ), X, Y ∈ g,

is non-degenerate, bilinear and G-invariant, and it restricts to a non-degenerate bilinear 
form on the Lie algebra g′ of G′. Let (Xα)α ⊆ g′ be a basis of g′ and let (X̂α)α be its 
dual basis with respect to the form B. Then the Casimir element

C =
∑
α

XαX̂α ∈ U(g)

in the universal enveloping algebra of g is independent of the chosen basis and invariant 
under Ad(G′). We study the action of C in the representation π∞

λ,p. For this denote by 
dπ∞

λ,p the derived representation of U(g) on I∞λ,p.

Proposition 2.1. For 0 ≤ p ≤ n and λ ∈ C we have

dπ∞
λ,p(C) = Δ2(λ+1),p + (λ + ρ)(λ− ρ + 1) + p(n− p− 1),

where Δa,p denotes the differential operator defined in (0.2) and d′ and δ′ are the differ-
ential and codifferential on Rn−1 defined in (0.3).
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Proof. By the computation (A.1) in Appendix A we have

dπ∞
λ,p(C) = x2

nΔ + 2(λ + 1)xn
∂

∂xn
− 2xn

n−1∑
j=1

dξp(Mjn) ∂

∂xj

−
∑

1≤j<k≤n−1

dξp(Mjk)2 + (λ + ρ)(λ− ρ + 1).

Now we first note that dξp(Mjn) = −(ienεej +εeniej ), then the first sum can be computed 
with (0.3):

−2xn

n−1∑
j=1

dξp(Mjn) ∂

∂xj
= 2xn(iend′ − εenδ

′).

Further, the expression 
∑

1≤j<k≤n−1 dξ
(p)(Mjk)2 is simply the Casimir operator of so(n −

1) acting on 
∧p Cn. The irreducible representation 

∧p Cn of so(n) decomposes into two 
irreducible summands when restricted to so(n −1), namely 

∧p Cn−1 and 
∧p−1 Cn−1∧en. 

The projection onto 
∧p Cn−1 is given by ienεen and the projection onto 

∧p−1 Cn−1 ∧ en
is given by εenien . Moreover, the Casimir element of so(n − 1) acts on 

∧q Cn−1 by the 
scalar −q(n − q − 1) (q = p − 1, p), so that∑

1≤j<k≤n−1

dξp(Mjk)2 = −p(n− p− 1)ienεen − (p− 1)(n− p)εenien .

Using ienεen + εenien = id finally yields the claimed formula. �
2.3. Differential symmetry breaking operators and boundary value problems

The restriction of the irreducible representation π∞
λ,p of G on I∞λ,p ⊆ Ωp(Rn) to the 

subgroup G′ ⊆ G defines a representation π∞
λ,p|G′ of G′ which is highly reducible. The 

irreducible representations of G′ which occur inside π∞
λ,p|G′ are described in terms of so-

called symmetry breaking operators (see e.g. Kobayashi [7]). In our setting, a continuous 
linear operator T : I∞λ,p → J∞

ν,q is called symmetry breaking operator if T intertwines the 
representations π∞

λ,p|G′ and τ∞ν,q:

T ◦ π∞
λ,p(g) = τ∞ν,q(G) ◦ T ∀ g ∈ G′.

The symmetry breaking operators between π∞
λ,p and τ∞ν,q were classified by Kobayashi–

Speh [9]. Of particular importance for us are differential symmetry breaking operators. 
In our special case these are symmetry breaking operators which arise as the composi-
tion of a differential operator on Ωp(Rn) and the restriction from Ωp(Rn) → Ωp(Rn−1). 
Differential symmetry breaking operators between differential forms were classified by 
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Fischmann–Juhl–Somberg [4] and Kobayashi–Kubo–Pevzner [8], and their classification 
contains one particular family of operators which is important for our purpose:

Theorem 2.2 ([8, Theorem 1.6 (1)]). Suppose λ + ρ − ν − ρ′ = −2k for some integer 
k ≥ 0, then there exists a non-trivial differential symmetry breaking operator

Cλ,ν,p : I∞λ,p → J∞
ν,p

which is of the form

Cλ,ν,pu(x′) = (Pλ,νu)(x′, 0)

where Pλ,ν = pλ,ν( ∂
∂x1

, . . . , ∂
∂xn

) for a HomC(
∧p Cn, 

∧p Cn−1)-valued homogeneous poly-
nomial pλ,ν(ξ1, . . . , ξn) of degree 2k.

We remark that for k = 0 the polynomial pλ,ν is constant, so that the operator Cλ,ν,p

is (up to scaling) the restriction of differential forms on Rn to Rn−1.

Theorem 2.3. Assume 0 ≤ p ≤ n
2 and suppose that λ + ρ − ν − ρ′ = −2k, k ≥ 0. If 

λ ∈ (−n
2 + p, 0) and ν ∈ (−n−1

2 + p, 0), then the differential symmetry breaking operator 
Cλ,ν,p extends to a non-trivial continuous linear operator between the Hilbert spaces Iλ,p
and Jν,p:

Cλ,ν,p : Iλ,p → Jν,p.

Proof. We write R for the restriction operator Ru(x′) = u(x′, 0), so that we have the 
identity Cλ,ν,p = R ◦ Pλ,ν . The Fourier inversion formula shows that

R̂u(ξ′) = (2π)− 1
2

∫
R

û(ξ′, ξn) dξn.

This implies

̂Cλ,ν,pu(ξ′) = (2π)− 1
2

∫
R

̂Pλ,νu(ξ′, ξn) dξn = (2π)− 1
2

∫
R

pλ,ν(iξ1, . . . , iξn)û(ξ′, ξn) dξn.

Since pλ,ν is homogeneous of degree 2k its matrix norm can be estimated by

‖pλ,ν(iξ1, . . . , iξn)‖ ≤ C · |ξ|2k

for some constant C > 0, whence

‖ ̂Cλ,ν,pu(ξ′)‖ ≤ C

∫
|ξ|2k‖û(ξ′, ξn)‖ dξn = C

∫
|ξ|λ+2k|ξ|−λ‖û(ξ′, ξn)‖ dξn.
R R
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Applying the Cauchy–Schwartz inequality gives

‖ ̂Cλ,ν,pu(ξ′)‖2 ≤ C2
∫
R

|ξ|2λ+4k dξn

∫
R

|ξ|−2λ‖û(ξ′, ξn)‖2 dξn.

The first integral can be computed using the substitution ξn = |ξ′|t:∫
R

|ξ|2λ+4k dξn = |ξ′|2λ+4k+1
∫
R

(1 + t2)λ+2k dt = C ′|ξ′|2ν

with C ′ =
∫
R(1 + t2)λ+2k dt < ∞ since λ + 2k = ν − 1

2 < −1
2 . Hence we obtain

|ξ′|−2ν‖ ̂Cλ,ν,pu(ξ′)‖ ≤ C2C ′
∫
R

|ξ|−2λ‖û(ξ′, ξn)‖2 dξn,

so that integration over ξ′ ∈ Rn−1 finally shows that

|Cλ,ν,pu|2ν ≤ C2C ′|u|2λ. �
Corollary 2.4. Assume that 0 ≤ p ≤ n

2 . Then for 12 < s < n
2 −p the restriction u 	→ u|Rn−1

of compactly supported smooth p-forms on Rn to Rn−1 extends to a continuous linear 
map

R : Ḣs,p(Rn) → Ḣs− 1
2 ,p(Rn−1).

Proof. Let λ = −s and ν = 1
2 − s, then Cλ,ν,p is up to a scalar multiple the restriction 

operator. Now the result follows from Theorem 2.3 since Iλ,p = Ḣ−λ,p(Rn) and Jν,p =
Ḣ−ν,p(Rn−1). �

Using the differential symmetry breaking operators Cλ,ν,p we can show that certain 
complementary series representations τν,p of G′ occur as direct summands inside the 
restriction πλ,p|G′ of a complementary series representation of G to G′:

Corollary 2.5. The adjoint operator C∗
λ,ν,p : Jν,p → Iλ,p is a G′-equivariant isometry 

(up to a scalar) and identifies τν,p with a subrepresentation of πλ,p|G′ . In particular, the 
Casimir operator dπ∞

λ,p(C) acts on the image C∗
λ,ν,p(Jν,p) by the scalar ν2 − ρ′ 2 + p(n −

p −1) and the composition Cλ,ν,p ◦C∗
λ,ν,p : Jν,p → Jν,p is a scalar multiple of the identity.

Proof. Since Cλ,ν,p is G′-intertwining, its adjoint C∗
λ,ν,p is G′-intertwining as well. Now 

τν,p is irreducible and therefore, by Schur’s Lemma, the intertwiner C∗
λ,ν,p has to be a 

scalar multiple of an isometry which proves the first statement. To prove the second 
statement we observe that, as a parabolically induced representation, τν,p has infinites-
imal character ν plus the infinitesimal character of 

∧p Cn−1. Therefore the Casimir 
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element C acts by dτ∞ν,p(C) = ν2 − ρ′ 2 + p(n − p − 1). Since C∗
λ,ν,p is G′-intertwining, 

the Casimir element acts by the same scalar on the image C∗
λ,ν,p(Jν,p). Finally, the 

composition Cλ,ν,p ◦ C∗
λ,ν,p : Jν,p → Jν,p is a G′-intertwining operator from the irre-

ducible representation Jν,p to itself and hence a scalar multiple of the identity by Schur’s 
Lemma. �
Proof of Theorem A. Let λ = a−2

2 ∈ (−n
2 +p, 0). By Proposition 2.1 the operator Δa,p =

Δ2(λ+1),p only differs from dπ∞
λ,p(C) by a constant. Now, in any unitary representation the 

Casimir element defines a self-adjoint operator by [15, Theorem 4.4.4.3] which implies 
that dπ∞

λ,p(C) (or equivalently Δa,p) is essentially self-adjoint on Ḣ
2−a
2 ,p(Rn) = Iλ,p. 

Further, by Corollary 2.5 the operator dπ∞
λ,p(C) has ν2 − ρ′ 2 + p(n − p − 1) as an 

eigenvalue whenever

ν ∈
(
λ + 1

2 + 2N
)
∩
(
−n− 1

2 + p, 0
)

=
{
a− 1

2 + 2k : k ∈ N, k <
1 − a

2

}
.

By Proposition 2.1 we have dπ∞
λ,p(C) = Δa,p + (λ + ρ)(λ − ρ + 1) + p(n − p − 1), so the 

operator Δa,p has the eigenvalues (ν + ρ′)(ν − ρ′) − (λ + ρ)(λ − ρ + 1). For ν = a−1
2 + 2k

this expression equals k(k + a − 1). This completes the proof of (1).
To show (2) consider the special case ν = a−1

2 , then λ + ρ − ν − ρ′ = 0, i.e. k =
0, and therefore the operator Cλ,ν,p can be taken to be the restriction of p-forms on 
Rn to Rn−1. Corollary 2.5 now implies C∗

λ,ν,p ◦ Cλ,ν,p = cλ,ν,p · id. Hence, for every 

f ∈ Ḣ
1−a
2 ,p(Rn−1) = Jν,p the function u = c−1

λ,ν,pC
∗
λ,ν,pf ∈ Iλ,p = Ḣ

2−a
2 ,p(Rn) satisfies 

u|Rn−1 = Cλ,ν,pu = f and by Corollary 2.5 also Δa,pu = 0. This establishes the existence 
of a solution to (0.4). Uniqueness will be shown in Section 4. �
2.4. Integral symmetry breaking operators and Poisson transforms

The differential symmetry breaking operators Cλ,ν,p for λ + ρ − ν − ρ′ = −2k, k ∈
N, arise as residues of a family Aλ,ν,p : I∞λ,p → J∞

ν,p of symmetry breaking operators 
which depends meromorphically on (λ, ν) ∈ C2. This family of operators is for Re(λ +
ν), Re(ν) � 0 given by the convergent integral

Aλ,ν,pu(y) =
∫
Rn

|xn|λ−ρ+ν+ρ′

(|x′ − y|2 + x2
n)ν+ρ′+1 (ix−yεx−y − εx−yix−y)u(x) dx

y ∈ Rn−1, u ∈ I∞λ,p,

and extends meromorphically in (λ, ν) ∈ C2 (see [9,6]). In [9] all possible poles and 
residues of the family Aλ,ν,p are obtained.

More important for our purpose is the adjoint of Aλ,ν,p:

Bλ,ν,p := AT
−λ,−ν,p : J−∞

ν,p → I−∞
λ,p ,
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Bλ,ν,pf(x) =
∫

Rn−1

|xn|−λ−ρ−ν+ρ′

(|x′ − y|2 + x2
n)−ν+ρ′+1 (ix−yεx−y − εx−yix−y)f(y) dy.

Restricting Bλ,ν,p to J∞
ν,p gives a G′-intertwining operator J∞

ν,p → I−∞
λ,p . Another such 

operator arises from Corollary 2.5 if λ + ρ − ν − ρ′ = −2k and λ ∈ (−n
2 + p, 0), ν ∈

(−n−1
2 + p, 0) using the embeddings J∞

ν,p ⊆ Jnu,p and Iλ,p ⊆ I−∞
λ,p :

C∗
λ,ν,p : J∞

ν,p ↪→ Jν,p → Iλ,p ↪→ I−∞
λ,p .

To relate Bλ,ν,p and C∗
λ,ν,p we make use of the following Multiplicity One Theorem:

Fact 2.6 (see [14]). Let G = O(1, n + 1) and G′ = O(1, n), then for any irreducible 
Casselman–Wallach representations π of G and τ of G′, the space of G′-intertwining 
operators τ → (π∗)|G′ is at most one-dimensional.

Here a representation π of G is called Casselman–Wallach if it is a smooth represen-
tation on a Fréchet space which is admissible, of moderate growth and finite under the 
centre of the universal enveloping algebra. We note that the representations π∞

λ,p of G
and τ∞ν,p of G′ are Casselman–Wallach.

Proof of Theorem B. Let λ = a−2
2 and ν = a−1

2 , then λ + ρ − ν − ρ′ = 0, so that both 
Bλ,ν,p and C∗

λ,ν,p define G′-intertwining operators J∞
ν,p → I−∞

λ,p between the representa-
tions τ∞ν,p and π−∞

λ,p |G′ = (π∞
−λ,p)∗|G′ . Note that the representations (τ∞ν,p, J∞

ν,p) of G′ and 
(π∞

−λ,p, I
∞
−λ,p) of G are irreducible. Hence, by Fact 2.6 the operators Bλ,ν,p and C∗

λ,ν,p are 
proportional. By the proof of Theorem A the Poisson transform Pa,p is a scalar multiple 
of C∗

λ,ν,p, so it follows that Pa,p = ca,pBλ,ν,p for a constant ca,p depending only on a and 
p. This shows (1) up to the computation of ca,p which is carried out in Section 3. The 
proof of the isometry property (2) is contained in Section 5. �
3. Poisson transform of constant forms

In this section we compute the Poisson transform of a constant p-form. This is used 
to deduce the explicit value of the constant ca,p, and also in Section 6 to compute the 
Dirichlet-to-Neumann map of the boundary value problem (0.4).

Let ω ∈
∧p Cn−1 be a constant p-form on Rn−1. We will also view ω as a constant 

p-form on Rn which does not contain dxn. Then

Pa,pω(x) = ca,p

∫
Rn−1

|xn|1−a

(|x′ − y|2 + x2
n)n−a+2

2
(ix−yεx−y − εx−yix−y)ω dy

= ca,p

∫
Rn−1

|xn|1−a

(|y|2 + x2
n)n−a+2

2
(i(y,xn)ε(y,xn) − ε(y,xn)i(y,xn))ω dy.
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We have

(i(y,xn)ε(y,xn) − ε(y,xn)i(y,xn))

= (iyεy − εyiy) + xn(iyεen + ienεy − εeniy − εyien) + x2
n(ienεen − εenien).

Since the remaining part of the integrand is an even function of y, the integral over 
xn(iyεen + ienεy − εeniy − εyien) vanishes. Further, the substitution y = xnw yields

Pa,pω(x) = ca,p

∫
Rn−1

1
(1 + |w|2)n−a+2

2
(iwεw − εwiw)ω dw

+ ca,p

∫
Rn−1

1
(1 + |w|2)n−a+2

2
(ienεen − εenien)ω dw.

The second integral is easily evaluated using the Beta integral:

∫
Rn−1

1
(1 + |w|2)n−a+2

2
dw = 2π n−1

2

Γ(n−1
2 )

∞∫
0

(1 + r2)−
n−a+2

2 rn−2 dr =
π

n−1
2 Γ(3−a

2 )
Γ(n−a+2

2 )
.

For the first integral we note that

iwεw − εwiw =
n−1∑
i,j=1

wiwj(ieiεej − εej iei).

Integrating wiwj with i �= j gives zero whereas for i = j:∫
Rn−1

w2
i

(1 + |w|2)n−a+2
2

dz = 1
n− 1

∫
Rn−1

|w|2

(1 + |w|2)n−a+2
2

dz

= 2π n−1
2

(n− 1)Γ(n−1
2 )

∞∫
0

(1 + r2)−
n−a+2

2 rn dr =
π

n−1
2 Γ(1−a

2 )
2 Γ(n−a+2

2 )
.

Putting this together gives

Pa,pω(x) = ca,p
π

n−1
2 Γ(1−a

2 )
2 Γ(n−a+2

2 )

n−1∑
j=1

(iejεej − εej iej )ω + ca,p
π

n−1
2 Γ(3−a

2 )
Γ(n−a+2

2 )
(ienεen − εenien)ω

= ca,p
π

n−1
2 Γ(1−a

2 )
2 Γ(n−a+2

2 )
(n− 2p− a(ienεen − εenien))ω

= ca,p
π

n−1
2 (n− 2p− a)Γ(1−a

2 )
2 Γ(n−a+2 )

ω.

2
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Since Pa,pω|Rn−1 = ω we find

ca,p =
2 Γ(n−a+2

2 )
π

n−1
2 (n− 2p− a)Γ(1−a

2 )
.

4. Uniqueness

In this section we show the uniqueness of solutions to the boundary value problem (0.4)
in the homogeneous Sobolev space Ḣ

2−a
2 ,p(Rn). This is done using the Euclidean Fourier 

transform under which the differential equation Δa,pu = 0 essentially corresponds to a 
vector-valued second order differential equation in one variable which we solve explicitly 
(see Theorem 4.1.

4.1. Fourier transform of the boundary value problem

We use the following normalization of the Euclidean Fourier transform:

FRnu(ξ) = û(ξ) = (2π)−n
2

∫
Rn

e−ix·ξu(x) dx.

Then

x̂ju(ξ) = i∂ξj û(ξ), ∂̂xj
u(ξ) = iξj û(ξ).

Now assume u ∈ Ḣ
2−a
2 ,p(Rn) is a solution of (0.4), then

0 = Δ̂au(ξ) =
(
∂2
ξn |ξ|

2 − a∂ξnξn − 2∂ξn
(
ienεξ′ + εeniξ′

)
− (n− 2p)εenien

)
û(ξ)

=
(
|ξ|2∂2

ξn − (a− 4)ξn∂ξn − 2
(
ienεξ′ + εeniξ′

)
∂ξn

− (a− 2) − (n− 2p)εenien
)
û(ξ),

and ∫
R

û(ξ′, ξn) dξn =
√

2πf̂(ξ′).

Let z = ξn
|ξ′| and define

v(ξ′, z) := û(ξ′, |ξ′|z),

then



J. Frahm et al. / Journal of Functional Analysis 278 (2020) 108395 21
Δ̂au(ξ) = Dav(ξ′, z) and
∫
R

v(ξ′, z) dz =
√

2π
|ξ′| f̂(ξ′),

where

Da = (1 + z2) d2

dz2 −
[
(a− 4)z + 2

(
ienεξ̂′ + εeniξ̂′

)] d

dz
− (a− 2) − (n− 2p)εenien

with ξ̂′ = ξ′/|ξ′|. We decompose

f̂(ξ′) = f̂I(ξ′) + ξ̂′ ∧ f̂II(ξ′) (4.1)

with iξ′ f̂R(ξ′) = 0 for R = I, II, and similarly

v(ξ′, z) =
√

2π
|ξ′|

[
vI(ξ′, z) + ξ̂′ ∧ vII(ξ′, z) + en ∧ vIII(ξ′, z) + en ∧ ξ̂′ ∧ vIV(ξ′, z)

]
,

with iξ′vR(ξ′, z) = ienvR(ξ′, z) = 0 for R = I, II, III, IV. Then∫
R

vR(ξ′, z) dz = f̂R(ξ′) for R = I, II,

∫
R

vR(ξ′, z) dz = 0 for R = III, IV,

(4.2)

and for fixed ξ′ the following ODEs are satisfied:[
(1 + z2) d2

dz2 − (a− 4)z d

dz
− (a− 2)

]
vI = 0,[

(1 + z2) d2

dz2 − (a− 4)z d

dz
− (a− 2)

]
vII + 2 d

dz
vIII = 0,[

(1 + z2) d2

dz2 − (a− 4)z d

dz
− (n− 2p + a− 2)

]
vIII − 2 d

dz
vII = 0,[

(1 + z2) d2

dz2 − (a− 4)z d

dz
− (n− 2p + a− 2)

]
vIV = 0.

Further, the condition u ∈ Ḣ
2−a
2 ,p(Rn) implies that

|u|2λ =
∫
Rn

|ξ|2−a‖û(ξ)‖2 dξ =
∫

Rn−1

|ξ′|3−a

∫
R

(1 + z2)
2−a
2 ‖v(ξ′, z)‖2 dz dξ′

is finite. Therefore, for every R = I, II, III, IV we must have∫
R

|vR(ξ′, z)|2(1 + z2)
2−a
2 dz < ∞. (4.3)
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4.2. Equation I

The ODE for vI has a regular singularity at z = +∞. We therefore substitute y = z−1

and find [
(1 + y2)y2 d2

dy2 +
[
(a− 2)y + 2y3] d

dy
− (a− 2)

]
vI = 0.

The corresponding indicial equation at y = 0 is

μ(μ− 1) + (a− 2)μ− (a− 2) = 0

which has the two roots μ1 = 1 and μ2 = 2 − a. Since a < 1, the roots are distinct 
and we have μ1 < 3−a

2 < μ2. Hence, there exist two linearly independent solutions with 
asymptotic behaviour ∼ yμ1 = z−μ1 and ∼ yμ2 = z−μ2 as z → +∞. If vI(ξ′, z) ∼ z−μ1

as z → +∞, the integral (4.3) diverges, whence vI(ξ′, z) has to be a scalar multiple of 
the solution with asymptotic behaviour ∼ z−μ2 as z → +∞. To find this solution we 
first rewrite the differential equation using x = −z2 to find[

x(1 − x) d2

dx2 +
(1

2 + a− 5
2 x

) d

dx
+ a− 2

4

]
φI(z) = 0,

which is the hypergeometric equation with α = μ1
2 = 1

2 , β = μ2
2 = 2−a

2 and γ = 1
2 . The 

solution with asymptotic behaviour ∼ z−μ2 = (−x)−μ2/2 as z → +∞ resp. x → −∞ is 
given by

(−x)−β
2F1(β, 1 + β − γ; 1 + β − α;x−1) = (1 − x)

a−2
2 = (1 + z2)

a−2
2

and its asymptotic behaviour as z → −∞ is also ∼ |z|−μ2 whence the L2-condition (4.3)
is indeed satisfied. With the normalization (4.2) we find

vI(ξ′, z) =
Γ(2−a

2 )
√
πΓ(1−a

2 )
(1 + z2)

a−2
2 f̂I(ξ′),

where we have used the beta integral formula to compute the relevant integral.

4.3. Equation IV

Next we consider the ODE for vIV. As above it has a regular singularity at z = +∞
with corresponding indicial equation

μ(μ− 1) + (a− 2)μ− (n− 2p + a− 2) = 0

whose two roots are
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μ1 = 3−a
2 −

√( 3−a
2
)2 + (n− 2p + a− 2) and μ2 = 3−a

2 +
√( 3−a

2
)2 + (n− 2p + a− 2).

Since 2 − n + 2p < a < 1, the roots are also distinct and we have μ1 < 3−a
2 < μ2. 

Hence, there exist two linearly independent solutions with asymptotic behaviour ∼ z−μ1

and ∼ z−μ2 as z → +∞. Again, the asymptotic behaviour ∼ z−μ1 as z → +∞ can be 
ruled out due to the L2-condition (4.3), whence vIV(ξ′, z) has to be a scalar multiple of 
the solution with asymptotic behaviour ∼ z−μ2 as z → +∞. As above, the substitution 
x = −z2 gives[

x(1 − x) d2

dx2 +
(1

2 + a− 5
2 x

) d

dx
+ n− 2p + a− 2

4

]
φIV(z) = 0,

which is the hypergeometric equation with α = μ1
2 , β = μ2

2 and γ = 1
2 . The solution 

with asymptotic behaviour ∼ z−μ2 = (−x)−μ2/2 as z → +∞ resp. x → −∞ is given by

(−x)−β
2F1(β, 1 + β − γ; 1 + β − α;x−1) = Γ(1 − γ)Γ(1 + β − α)

Γ(1 + β − γ)Γ(1 − α) 2F1(α, β; γ;x)

+ Γ(γ − 1)Γ(1 + β − α)
Γ(β)Γ(γ − α) (−x)1−γ

2F1(1 + α− γ, 1 + β − γ; 2 − γ;x).

Resubstituting x = −z2 gives

Γ(1
2 )Γ(μ2−μ1+2

2 )
Γ(μ2+1

2 )Γ(2−μ1
2 ) 2F1(μ1

2 , μ2
2 ; 1

2 ;−z2) +
Γ(−1

2 )Γ(μ2−μ1+2
2 )

Γ(μ2
2 )Γ(1−μ1

2 )
z · 2F1(μ1+1

2 , μ2+1
2 ; 3

2 ;−z2)

which has asymptotic behaviour ∼ |z|−μ1 as z → −∞ and therefore the L2-condition 
(4.3) is violated. This implies vIV = 0.

4.4. Equations II & III

Now we treat the system of ODEs for vII and vIII:

(1 + z2) d2

dz2

(
vII
vIII

)
−
(

(a− 4)z −2
2 (a− 4)z

)
d

dz

(
vII
vIII

)
−
(
a− 2 0

0 n− 2p + a− 2

)(
vII
vIII

)
= 0.

To study the behaviour at z = +∞ we again substitute y = z−1:

y2 d2

dy2

(
vII
vIII

)
+ 1

1 + y2

(
(a− 2) + 2y2 −2y

2y (a− 2) + 2y2

)
y
d

dy

(
vII
vIII

)
− 1

1 + y2

(
a− 2 0

0 n− 2p + a− 2

)(
vII
vIII

)
= 0.
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The corresponding indicial equation at y = 0 is

det
(
μ(μ− 1)I + μ

(
a− 2 0

0 a− 2

)
−
(
a− 2 0

0 n− 2p + a− 2

))
= 0.

Its four roots in increasing order are

μ1 = 3−a
2 −

√(
a−3
2
)2 + (n− 2p + a− 2),

μ2 = 1,

μ3 = 2 − a,

μ4 = 3−a
2 +

√(
a−3
2
)2 + (n− 2p + a− 2).

They are distinct and therefore the system has four independent solutions with asymp-
totic behaviour ∼ yμj = z−μj , j = 1, 2, 3, 4. The solutions with asymptotics ∼ z−μ1 and 
∼ z−μ2 can again be ruled out since they do not satisfy the L2-condition (4.3). We now 
rule out the solution with asymptotics z−μ4 by making the Ansatz

vII(z) = z · ϕ(−z2) and vIII(z) = ψ(−z2).

Then ϕ and ψ solve

x(1 − x)ϕ′′(x) +
(

3
2 − 7 − a

2 x

)
ϕ′(x) − 3 − a

2 ϕ(x) + ψ′(x) = 0, (4.4)

x(1 − x)ψ′′(x) +
(

1
2 − 5 − a

2 x

)
ψ′(x) + n− 2p + a− 2

4 ψ(x) + xϕ′(x) + 1
2ϕ(x) = 0.

(4.5)

Differentiating (4.5) once and inserting (4.4) into the resulting equation for ψ′, ψ′′ and 
ψ′′′ gives

(
x(1 − x) d2

dx2 +
(

3
2 − 7 − a

2 x

)
d

dx
− 3 − a

2

)
×
(
x(1 − x) d2

dx2 +
(

3
2 − 9 − a

2 x

)
d

dx
+ n− 2p + 3a− 12

4

)
ϕ(x) = 0,

and inserting (4.4) directly into (4.5) gives

n− 2p + a− 2
4 ψ(x) = x2(1 − x)2ϕ′′′(x) + x(1 − x)(3 − (8 − a)x)ϕ′′(x)

+
(

3
4 +

(
2a− 23

2

)
x + (5 − a)(11 − a)

4 x2
)
ϕ′(x) − 5 − a

2

(
1
2 − 3 − a

2 x

)
ϕ(x).
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In particular, we have a solution (ϕ, ψ) for every solution ϕ of(
x(1 − x) d2

dx2 +
(

3
2 − 9 − a

2 x

)
d

dx
+ n− 2p + 3a− 12

4

)
ϕ(x) = 0

which is the hypergeometric equation with

α = 1
2

⎛⎝7 − a

2 +

√(
3 − a

2

)2

+ (n− 2p + a− 2)

⎞⎠ ,

β = 1
2

⎛⎝7 − a

2 −

√(
3 − a

2

)2

+ (n− 2p + a− 2)

⎞⎠ ,

γ = 3
2 .

The solution belonging to z−μ4 is

ϕ(x) = (−x)−α
2F1(α, 1 + α− γ; 1 + α− β;x−1)

= Γ(1 − γ)Γ(1 + α− β)
Γ(1 + α− γ)Γ(1 − β) 2F1(α, β; γ;x)

+ Γ(γ − 1)Γ(1 + α− β)
Γ(α)Γ(γ − β) (−x)1−γ

2F1(1 + α− γ, 1 + β − γ; 2 − γ;x).

Resubstituting x = −z2 gives

Γ(1 − γ)Γ(1 + α− β)
Γ(1 + α− γ)Γ(1 − β) 2F1(α, β; γ;−z2)

+ Γ(γ − 1)Γ(1 + α− β)
Γ(α)Γ(γ − β) z−1

2F1(1 + α− γ, 1 + β − γ; 2 − γ;−z2).

Since α, γ − β > 0 the coefficient of the second factor is non-zero and therefore the 
solution does not extend from (0, ∞) to R. Consequently, the one possible solution of 
equations II & III is the one with asymptotics ∼ z−μ3 . To find this solution we make the 
Ansatz

vII(z) = ϕ(−z2) and vIII(z) = z · ψ(−z2),

then ϕ and ψ solve the system

x(1 − x)ϕ′′(x) +
(

1
2 − 5 − a

2 x

)
ϕ′(x) − 2 − a

4 ϕ(x) − xψ′(x) − 1
2ψ(x) = 0, (4.6)

x(1 − x)ψ′′(x) +
(

3
2 − 7 − a

2 x

)
ψ′(x) + n− 2p + 2a− 6

4 ψ(x) − ϕ′(x) = 0. (4.7)
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Differentiating (4.6) once and inserting (4.7) into the resulting equation for ϕ′, ϕ′′

and ϕ′′′ gives

(
x(1 − x) d2

dx2 +
(

3
2 − 7 − a

2 x

)
d

dx
+ n− 2p + 2a− 6

4

)
×
(
x(1 − x) d2

dx2 +
(

3
2 − 9 − a

2 x

)
d

dx
− 12 − 3a

4

)
ψ(x) = 0,

and inserting (4.7) directly into (4.6) gives

2 − a

4 ϕ(x) = x2(1 − x)2ψ′′′(x) + x(1 − x)(3 − (8 − a)x)ψ′′(x)

+
(

3
4 + n− 2p + 8a− 46

4 x + (5 − a)(11 − a) − n + 2p
4 x2

)
ψ′(x)

+
(
n− 2p + 2a− 10

8 + (a− 5)(n− 2p + 2a− 6)
8 x

)
ψ(x).

In particular, we have a solution (ϕ, ψ) for every solution ψ of(
x(1 − x) d2

dx2 +
(

3
2 − 9 − a

2 x

)
d

dx
− 3(4 − a)

4

)
ψ(x) = 0

which is the hypergeometric equation with

α = 3
2 , β = 4 − a

2 , γ = 3
2 .

The solution belonging to z−μ3 is

ψ(x) = (−x)−β
2F1(β, 1 + β − γ; 1 + β − α;x−1) = (1 − x)

a−4
2

and hence

ϕ(x) = 1
2(2 − a) ((n− 2p− a + 2) − (n− 2p + a− 2)x) (1 − x)

a−4
2 .

With the normalization (4.2) we obtain

vII(ξ′, z) =
Γ(2−a

2 )
√
π(n− 2p− a)Γ(1−a

2 )
[
(n− 2p + a− 2)z2

+ (n− 2p− a + 2)
]
(1 + z2)

a−4
2 f̂II(ξ′),

vIII(ξ′, z) =
Γ(2−a

2 )
√
π(n− 2p− a)Γ(1−a

2 )
2(2 − a)z(1 + z2)

a−4
2 f̂II(ξ′).
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4.5. The Fourier transform of the solution

Summarizing we find

v(ξ′, z) =
√

2Γ(2−a
2 )

(n− 2p− a)Γ(1−a
2 )

|ξ′|−1
[
(n− 2p− a)(1 + z2)

a−2
2 f̂I(ξ′)

+ [(n− 2p + a− 2)z2 + (n− 2p− a + 2)](1 + z2)
a−4
2 ξ̂′ ∧ f̂II(ξ′)

+ 2(2 − a)z(1 + z2)
a−4
2 en ∧ f̂II(ξ′)

]
, (4.8)

which implies the following:

Theorem 4.1. Assume 0 ≤ p ≤ n
2 and 2 − n + 2 < a < 1. Then for f ∈ Ḣ

1−a
2 ,p(Rn−1)

with

f̂(ξ′) = f̂I(ξ′) + ξ̂′ ∧ f̂II(ξ′)

we have

̂Pa,pf(ξ′, ξn) =
√

2Γ(2−a
2 )

(n− 2p− a)Γ(1−a
2 )

|ξ′|1−a|ξ|a−4
[
(n− 2p− a)|ξ|2f̂I(ξ′)

+
[
(n− 2p− a + 2)|ξ′|2 + (n− 2p + a− 2)ξ2

n

]
ξ̂′ ∧ f̂II(ξ′)

+ 2(2 − a)ξn|ξ′|en ∧ f̂II(ξ′)
]
.

5. Isometry

In this section we prove the isometry property in Theorem B (2) using Theorem 4.1.

5.1. Norm of the solution

For a given boundary value f let u denote the unique solution. As before, we write 
v(ξ′, z) = û(ξ′, |ξ′|z), then

‖u‖2
λ =

∫
Rn

|ξ|−a

〈[(n
2 − p− a− 2

2

)
iξεξ +

(n
2 − p + a− 2

2

)
εξiξ

]
û(ξ), û(ξ)

〉
dξ

=
∫

Rn−1

|ξ′|1−a

∫
R

(1 + z2)− a
2

〈[(n
2 − p− a− 2

2

)
iξεξ

+
(n − p + a− 2)

εξiξ

]
v(ξ′, z), v(ξ′, z)

〉
dz dξ′.

(5.1)
2 2
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Using the notation of (4.1) and (4.8) we have

iξεξv(ξ′, z) =
√

2Γ(2−a
2 )

(n− 2p− a)Γ(1−a
2 )

|ξ′|
[
(n− 2p− a)(1 + z2) a

2 f̂I(ξ′)

+ (n− 2p + a− 2)z2(1 + z2)
a−2
2 ξ̂′ ∧ f̂II(ξ′)

− (n− 2p + a− 2)z(1 + z2)
a−2
2 en ∧ f̂II(ξ′)

]
,

εξiξv(ξ′, z) =
√

2Γ(2−a
2 )

(n− 2p− a)Γ(1−a
2 )

|ξ′|
[
(n− 2p− a + 2)(1 + z2)

a−2
2 ξ̂′ ∧ f̂II(ξ′)

+ (n− 2p− a + 2)z(1 + z2)
a−2
2 en ∧ f̂II(ξ′)

]
.

Together this gives

[(n
2 − p− a− 2

2

)
iξεξ +

(n
2 − p + a− 2

2

)
εξiξ

]
v(ξ′, z)

=
(n− 2p− a + 2)Γ(2−a

2 )√
2(n− 2p− a)Γ(1−a

2 )
|ξ′|

[
(n− 2p− a)(1 + z2) a

2 f̂I(ξ′)

+ (n− 2p + a− 2)(1 + z2) a
2 ξ̂′ ∧ f̂II(ξ′)

]
and hence〈[(

n
2 − p− a−2

2

)
iξεξ +

(
n
2 − p + a−2

2

)
εξiξ

]
v(ξ′, z), v(ξ′, z)

〉
=

(n− 2p− a + 2)Γ(2−a
2 )2

(n− 2p− a)2Γ(1−a
2 )2

[
(n− 2p− a)2(1 + z2)a−1‖f̂I(ξ′)‖2

+ (n− 2p + a− 2)
[
(n− 2p + a− 2)z2 + (n− 2p− a + 2)

]
(1 + z2)a−2‖f̂II(ξ′)‖2

]
.

Inserting this into (5.1) gives

‖u‖2
λ =

√
π(n− 2p− a + 2)Γ(2−a

2 )
(n− 2p− a)Γ(1−a

2 )

∫
Rn−1

|ξ′|1−a
[
(n− 2p− a)‖f̂I(ξ′)‖2

+ (n− 2p + a− 2)‖f̂II(ξ′)‖2
]
dξ′,

where we have used the following two integral formulas which follow from the Beta 
integral formula:

∫
R

(1 + z2)
a−2
2 dz =

√
πΓ(1−a

2 )
Γ(2−a

2 )
,
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∫
R

[
(n− 2p + a− 2)z2 + (n− 2p− a + 2)

]
(1 + z2)

a−4
2 dz = (n− 2p− a)

√
πΓ(1−a

2 )
Γ(2−a

2 )
.

5.2. Norm of the boundary value

On the other hand

‖f‖2
ν =

∫
Rn−1

|ξ′|1−a
〈[(

n−1
2 − 2p− a−1

2

)
iξ̂′εξ̂′ +

(
n−1

2 − 2p+ a−1
2

)
εξ̂′iξ̂′

]
f̂(ξ′), f̂(ξ′)

〉
dξ′.

Here

iξ̂′εξ̂′ f̂(ξ′) = f̂I(ξ′) and εξ̂′iξ̂′ f̂(ξ′) = ξ̂′ ∧ f̂II(ξ′),

so that

‖f‖2
ν = 1

2

∫
Rn−1

|ξ′|1−a
[
(n− 2p− a)‖f̂I(ξ′)‖2 + (n− 2p + a− 2)‖f̂II(ξ)‖2

]
dξ′

and hence

‖u‖2
λ =

2
√
π(n− 2p− a + 2)Γ(2−a

2 )
(n− 2p− a)Γ(1−a

2 )
‖f‖2

ν .

6. The Dirichlet-to-Neumann map as fractional Branson–Gover operator

In this section we prove Theorem C. For s ∈ (0, 1) let a = 1 − 2s ∈ (−1, 1). Note that 
2 −n +2p < a < 1 for 0 ≤ p ≤ n−3

2 . Given f ∈ Ḣ
1−a
2 ,p(Rn−1) let u = Pa,pf ∈ Ḣ

2−a
2 ,p(Rn)

be the unique solution to (0.4). We use the difference quotient to compute the derivative:

lim
xn↘0

xa
n∂xn

u(x′, xn) = lim
xn↘0

xa−1
n (u(x′, xn) − u(x′, 0))

= lim
xn↘0

xa−1
n (Pa,pf(x′, xn) − f(x′)).

Viewing f(x′) as a constant form on Rn−1 and using Section 3 we can write

= ca,p · lim
xn↘0

∫
Rn−1

1
(|x′ − y|2 + x2

n)n−a+2
2

(ix−yεx−y − εx−yix−y)(f(y) − f(x′)) dy

= ca,p · P.V.

∫
Rn−1

1
|x′ − y|n−a+2 (ix′−yεx′−y − εx′−yix′−y)(f(y) − f(x′)) dy

= ca,pΓ(−s)Ls,pf(x′).
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Appendix A. The Casimir computation

In this appendix we compute the action of the Casimir element C of G′ in an arbitrary 
principal series representation π∞

λ,ξ of G.
An explicit basis of the Lie algebra g = o(1, n + 1) is given by the generator H of a

and the elements

Mjk := Ej+2,k+2 −Ek+2,j+2, 1 ≤ j < k ≤ n,

Xj := Ej+2,1 − Ej+2,2 + E1,j+2 + E2,j+2, 1 ≤ j ≤ n,

Xj := Ej+2,1 + Ej+2,2 + E1,j+2 − E2,j+2, 1 ≤ j ≤ n.

Here Mjk span m, Xj span n and Xj span n.
The action of the generators MAN and w0 of G on I∞λ,ξ is then given by

π∞
λ,ξ(nx′)f(x) = f(x− x′), nx ∈ N,

π∞
λ,ξ(diag(λ, λ,m))f(x) = ξ(m)f(λm−1x), λ ∈ O(1),m ∈ O(n),

π∞
λ,ξ(esH)f(x) = e(λ+ρ)sf(esx), esH ∈ A,

π∞
λ,ξ(w0)f(x) = ξ

(
1n − 2xx�

|x|2
)
|x|−2(λ+ρ)f

(
− x

|x|2
)
.

By differentiation we obtain the action of m, a and n:

dπ∞
λ,ξ(Mjk) = xj

∂

∂xk
− xk

∂

∂xj
+ dξ(Mjk), dπ∞

λ,ξ(H) = E + λ + ρ,

dπ∞
λ,ξ(Xj) = − ∂

∂xj
,

where E =
∑n

k=1 xk
∂

∂xk
denotes the Euler operator on Rn. Thanks to the relation 

Ad(w0)Xj = −Xj we have

dπ∞
λ,ξ(Xj) = −π∞

λ,ξ(w0)dπ∞
λ,ξ(Xj)π∞

λ,ξ(w0),

which is easily shown to be equal to

dπ∞
λ,ξ(Xj) = −|x|2 ∂

∂xj
+ 2xj(E + λ + ρ) − 2

n∑
i=1

xi dξ(Mij).

Note that Mjj = 0 and Mij = −Mji.
The Casimir element C can be expressed using the above constructed basis of g:

C = H2 − (n− 1)H −
∑

M2
jk +

n−1∑
XjXj .
1≤j<k≤n−1 j=1
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An elementary calculation using the previously derived formulas for the differential rep-
resentation shows that

dπ∞
λ,ξ(C) = x2

nΔ + 2(λ + 1)xn
∂

∂xn
− 2xn

n−1∑
j=1

dξ(Mjn) ∂

∂xj

−
∑

1≤j<k≤n−1

dξ(Mjk)2 + (λ + ρ)(λ− ρ + 1), (A.1)

where Δ =
∑n

k=1
∂2

∂x2
k

denotes the Euclidean Laplacian on Rn.

Appendix B. Comparison with the Laplace–Beltrami operator on the hyperbolic 
upper half plane

In this appendix we compute the Laplace-Beltrami operator on p-forms on the hyper-
bolic upper half plane

Hn = {x ∈ Rn : xn > 0}

and compare it with the operator Δa,p. The upper half plane Hn is equipped with the 
hyperbolic metric g = x−2

n (dx2
1 + · · · + dx2

n), so that gij = x−2
n δij . The Riemannian 

volume form is dv = x−n
n dx since det(gij) = x−2n

n . Further, the corresponding inner 
product 〈 〈·, ·〉 〉x at x ∈ Hn is given by

〈〈α(x), β(x)〉〉x = x2p
n 〈α(x), β(x)〉 ∀α, β ∈ Ωp(Hn),

where 〈·, ·〉 is the standard inner product induced from the Euclidean metric. We write

〈〈α, β〉〉 =
∫
Hn

〈〈α(x), β(x)〉〉x dv =
∫
Hn

〈α(x), β(x)〉x2p−n
n dx

for the corresponding inner product on p-forms α, β.
We first compute the codifferential d∗ on Ωp(Hn). For this we write α =

∑
I αIdxI ∈

Ωp−1(Hn) and β =
∑

J βJdxJ ∈ Ωp(Hn), then

〈〈α, d∗β〉〉 = 〈〈dα, β〉〉

=
∫
Hn

〈dα(x), β(x)〉x2p−n
n dx

=
∑
I,J

n∑
j=1

∫
∂αI

∂xj
(x)βJ(x)〈εejdxI , dxJ〉x2p−n

n dx
Hn
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= −
∑
I,J

n∑
j=1

∫
Hn

αI(x) ∂

∂xj

[
βJ (x)x2p−n

n

]
〈dxI , iejdxJ〉 dx,

where we have integrated by parts in the last step. Clearly,

∂

∂xj

[
βJ(x)x2p−n

n

]
= ∂βJ

∂xj
(x)x2p−n

n + (2p− n)δjnβJ(x)x2p−n−1
n ,

so that

〈〈α, d∗β〉〉 = −
∑
I,J

n∑
j=1

∫
Hn

〈
αI(x)dxI , x

2
n

∂βJ

∂xj
(x)iejdxJ

+ (2p− n)δjnxnβJ (x)iendxJ

〉
x2(p−1)−n
n dx.

It follows that

d∗ = x2
nδ − (2p− n)xnien ,

where δ = − 
∑

j iej
∂

∂xj
is the Euclidean codifferential. Therefore, the hyperbolic Laplace–

Beltrami operator �p = −(d∗d + dd∗) on p-forms takes the following form:

�p = −x2
n(δd + dδ) + (2(p + 1) − n)xniend + (2p− n)(εenien + xndien) − 2xnεenδ.

The first term is −x2
n(δd + dδ) = x2

nΔ, where Δ =
∑

j
∂2

∂x2
j

is the Euclidean Laplacian. 
In the second, third and fourth term we can write

iend = iend
′ + ienεen

∂

∂xn
, dien = ∂

∂xn
− iend εenδ = εenδ

′ − εenien
∂

∂xn
,

with d′ and δ′ as in (0.3). Using εenien + ienεen = id this gives

�p = x2
nΔ + (2(p + 1) − n)xn

∂

∂xn
+ 2xn(iend′ − εenδ

′) − (n− 2p)εenien = Δ2(p+1)−n,p.

We note that for any a ∈ R we have

�p

[
x

a+n−2p−2
2

n u(x)
]

= x
a+n−2p−2

2
n

[
Δa,p + 1

4(a + n− 2p− 2)(a− n + 2p)
]
u(x),

so that the map u(x) 	→ x
a+n−2p−2

2
n u(x) transforms the Laplace–Beltrami operator �p

up to a constant into the operator Δa,p. For the case p = 0 this was already observed in 
[12, end of Section 1.1].
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