
Towards FPGA Emulation of Fiber-Optic Channels for Deep-BER
Evaluation of DSP Implementations

Downloaded from: https://research.chalmers.se, 2025-06-18 02:22 UTC

Citation for the original published paper (version of record):
Börjeson, E., Fougstedt, C., Larsson-Edefors, P. (2019). Towards FPGA Emulation of Fiber-Optic
Channels for Deep-BER Evaluation of DSP Implementations. Optics InfoBase Conference Papers,
Part F137-SPPCom 2019. http://dx.doi.org/10.1364/SPPCOM.2019.SpTh1E.4

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Towards FPGA Emulation of Fiber-Optic Channels
for Deep-BER Evaluation of DSP Implementations

Erik Börjeson, Christoffer Fougstedt, and Per Larsson-Edefors
Dept. of Computer Science and Engineering,

Chalmers University of Technology, SE-412 96 Göteborg, Sweden
erikbor@chalmers.se

Abstract: We introduce an FPGA-based fiber-optic channel emulator, including both AWGN and
carrier phase noise, which can be used to perform deep-BER simulations of DSP implementations
and accurately evaluate DSP implementation penalties. © 2019 The Authors(s)
OCIS codes: (060.0060) Fiber optics and optical communication; (060.1660) Coherent communications

1. Introduction

Efficient implementation of digital signal processing (DSP) algorithms is critical to the advancement of high-speed
fiber-optic communication systems. However, as these systems become more complex, the effort spent on test and
characterization of the implementation can become prohibitively large [1]. For designs in which deep bit-error rate
(BER) results are needed, e.g., forward error correction (FEC), the time spent on testing will increase further, since
simulations of up to 1016 transmitted bits are not uncommon [2]. An additional methodological challenge is that algo-
rithms implemented in hardware description languages (HDLs) likely differ from ideal floating-point MATLAB or C
implementations, since the mapping of algorithms to fixed-point, sequential hardware creates implementation artifacts
that are not only hard to anticipate, but also hard to model in hardware-agnostic environments like MATLAB [3].

A method commonly used to test hardware implementations is MATLAB-HDL co-simulation, where input data
are generated in MATLAB, simulated using a software model of the hardware, and imported back into MATLAB for
analysis. Although accurate, this method is very slow. To speed up simulation and enable deep-BER analysis, field-
programmable gate arrays (FPGAs) have become indispensable, especially for FECs [2]. The additive white Gaussian
noise (AWGN) source traditionally in focus is clearly necessary when modelling a realistic channel [4]. However,
for rigorous evaluations of DSP implementations, we need to digitally emulate other end-to-end fiber channel impair-
ments. We here present an FPGA-based emulator for AWGN and carrier phase noise (CPN), which enables practical
deep-BER simulations of carrier phase estimation, such as our previous blind phase search (BPS) implementation [5].

2. FPGA-Based Emulation System

Since FPGAs have a limited amount of hardware resources, it is imperative to limit the complexity of the AWGN+CPN
emulator, both to allow for additional DSP functionality and to later be able to add other impairments to the emulation
system. A block diagram of the FPGA implementation is shown in Fig. 1, where the first block is used to generate
the binary data to be transmitted through the emulated channel. The data generation uses an xorshift random number
generator (RNG), composed of linear-feedback shift registers, to generate a pseudo-random bit sequence (PRBS) [6].
The RNG has an adjustable internal word length of k bits, resulting in a periodicity of 2k −1 bits. (For our simulations
we chose k = 64.) To increase throughput, the components following the RNG are parallelized in P lanes, and the
PRBS is split to these lanes and modulated using a look-up table (LUT) based approach. The modulated signal is fed
to a block, which is emulating an AWGN channel by using a Gaussian noise generator (GNG) IP Core, based on [7],
with tails extending to ±9.1σ .

The phase noise present in a fiber-optic channel can be modelled as a Wiener process, θi = θi−1 +∆i, where θi is
the phase of the ith sample and ∆i is a normally distributed random variable. The distribution of ∆i has a zero mean
and a variance, σ2

∆i
= 2π∆ f Ts, where ∆ f is the combined phase noise of the carrier and local oscillator lasers and Ts is

the symbol period. Our CPN generator implementation, shown in Fig. 2, uses the same GNG as the AWGN generator
described above, to generate ∆i. The output from the GNG is scaled by 2π∆ f Ts, before being added to the θi−1 signal.
A LUT is used to convert ∆i to a complex value, which is multiplied with the IQ input. The DSP block under test is

RNG Modulator AWGN CPN Demodulator Error

Counter

DSP

Fig. 1: Block diagram of the implemented system.



GNG Scale + z LUT ×

GNG Scale + z LUT ×

GNG Scale + z LUT ×

in_0

in_1

in_P

out_0

out_1

out_P

-1

-1

-1...

...

Fig. 2: Block diagram of the CPN generator.

KC705 [8] VC709 [8] VCU110 [8]

LUTs 22,043 (10.8%) 22,043 (5.0%) 21,697 (2.0%)
BRAMs 12 (2.7%) 12 (0.8%) 12 (0.3%)
DSPs 48 (5.7%) 48 (1.3%) 48 (2.7%)

Table 1: FPGA resources used for the fiber-channel emulator;
given as total number of blocks used (proportion of available
blocks used).

5 10 15
Signal-to-Noise Ratio [dB]

10 -15

10 -10

10 -5

BE
R

FPGA - 8 bits
FPGA - 9 bits
MATLAB - floating point
Theory

7.8 7.9 8 8.1 8.2

10 -2
Penalty

80 s

80 ms (37 min)

80 µs (8 s)

Fig. 3: BER for 16QAM BPS, showing implementation
penalty and simulation runtime as FPGA (MATLAB-HDL).

connected after the CPN generator, and the output from this block is fed to a demodulator. The resulting bit sequence
is compared to the output of the RNG and the number of errors is calculated.

3. Simulation Results and FPGA Utilization

First the AWGN+CPN emulator, without any DSP blocks, was synthesized from an HDL implementation using Xil-
inx Vivado for three different development boards, featuring three Xilinx FPGAs representing very different capabil-
ity/cost tradeoffs. The resource usage and utilization for a 16QAM AWGN+CPN emulator, parallelized in four lanes,
with a signal word length of 8 bits, are shown in Table 1. We use a clock rate of 80 MHz for all three FPGAs, which
corresponds to a bit rate of 1.28 Gbps. The bottleneck of the design is the parallelization of the CPN generator, which
currently does not allow for more than four lanes due to the feedback loop. The utilization is, however, low for all of
the boards, which opens up for the possibility to run multiple instances of the emulation system simultaneously. Such
an approach could increase the bit rate by a factor of 10, depending on the size of the DSP block under test and the
type of FPGA used.

Next, an instance of our BPS implementation [5] was inserted as the DSP block shown in Fig.1 and a new synthesis
was carried out. The results for a 16QAM implementation with 8-bit word length and 16 test phases are shown in
Fig. 3. The penalty of the HDL implementation compared to a floating point one is less than 0.2 dB at BER = 10−2,
for a linewidth of 20 kHz and a simulated symbol rate of 20 GBd, which is consistent with our previous findings. The
speed up of using FPGA emulation, compared to MATLAB-HDL co-simulation, is at least 5 orders of magnitude.

4. Conclusion

We have demonstrated FPGA-based emulation of two important channel properties, viz. AWGN and CPN, to reduce
the runtime of HDL simulations of DSP implementations. The method takes the effect of algorithm mapping to fixed-
point, sequential hardware into account, creating opportunities to test and characterize hardware implementations of
DSP algorithms at deep BERs and to identify implementation penalties.
Acknowledgement: This work was financially supported by the Knut and Alice Wallenberg Foundation and Vinnova.

References
[1] W. Haas, “Comparison of current FPGA technology: Case study implementing FEC for the 100G optical transport network,” in “ECOC,”

(2009), p. 4.4.4.
[2] Y. Cai et al., “FPGA investigation on error-floor performance of a concatenated staircase and Hamming code for 400G-ZR forward error

correction,” in “OFC,” (2018), p. Th4C.2.
[3] D. Cardenas et al., “Fixed point and power consumption analysis of a coherent receiver for optical access networks implemented in FPGA,” in

“ECOC,” (2013), p. Mo.3.C.4.
[4] Z. Zhang et al., “Investigation of error floors of structured low-density parity-check codes by hardware emulation,” in “IEEE Globecom 2006,”

(2006), p. GEN03-6.
[5] E. Börjeson et al., “ASIC design exploration of phase recovery algorithms for M-QAM fiber-optic systems,” in “OFC,” (2019), p. W3H.7.
[6] G. Marsaglia, “Xorshift RNGs,” J. Stat. Softw. 8, 1–6 (2003).
[7] R. Gutierrez et al., “Hardware architecture of a Gaussian noise generator based on the inversion method,” TCAS II 59, 501–505 (2012).
[8] Xilinx Inc., Boards, Kits and Modules (2019). https://www.xilinx.com/products/boards-and-kits.html.


