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Supported Lipid Membranes and Their Use for the Characterization of Biological Nanoparticles 

SILVER JÕEMETSA 

Department of Physics 

Chalmers University of Technology 

Abstract 

Biological nanoparticles (BNPs) are nano-sized lipid vesicles of biological origin, which are involved in multiple 

biological processes. BNP characterization techniques are critical for improving the understanding of how these 

particles contribute to cellular communication, viral infections and drug-delivery applications. However, due to 

their small size (between 50 and 200 nm in diameter) and molecular heterogeneity, quantitative characterization 

of their physical, chemical and biological properties is demanding, especially since their large structural and 

compositional heterogeneity calls for methods with single nanoparticle resolution. To address this challenge, work 

in this thesis has been focused on investigating and using supported lipid bilayers (SLBs) and their two-

dimensional fluidity as a platform for nanoparticle characterization.  

To investigate SLBs, we combined confocal microscopy with microfluidics to identify the mechanisms by 

which lipid vesicles are spontaneously converted into various types of planar membranes on a multitude of 

surfaces (Paper I) and found that most of the studied materials can support lipid film formation. In the context of 

SLB formation, specific focus was put on using total internal reflection fluorescence (TIRF) microscopy to 

monitor the kinetics of vesicle adsorption, rupture and spreading of individual SLB patches on glass (Paper II), 

revealing that the SLB formation process was driven by the autocatalytic growth and merger of multiple small 

SLB patches at appreciably high vesicle coverage. TIRF was also successfully employed to monitor lipid-

enveloped drug permeation through an SLB formed on a mesoporous silica thin film (Paper III). The insights 

gained from investigating SLBs was also used for in depth characterization of BNPs using the surface-based flow-

nanometry method, allowing for independent determination of size and fluorescence emission of individual BNPs 

tethered to a laterally fluid SLB formed on the floor of a microfluidic channel. This way we could demonstrate 

that the fluorescence emission from lipophilic dyes depends in a non-trivial way on nanoparticle size, and varies 

significantly between the different types of BNPs (Paper IV). The flow-nanometry concept was also used to 

elucidate the effect of vesicle size on their diffusivity on the SLB in the limit of few tethers (Paper V).  

The insights gained in this thesis work on lipid self-assembly at different surfaces and the possibility to use 

SLBs on silica for in-depth characterization of BNPs demonstrate this as a promising approach in the field of 

single nanoparticle analytics, which in future work will be possible to extend into a novel means to probe 

interactions between BNPs and cell-membrane mimics representing a near-native situation. 

Keywords: supported lipid bilayer, fluorescence microscopy, diffusion, size determination, lipophilic dyes, 

microfluidics 
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Introduction 

 

“The oldest and strongest emotion of mankind is fear, and the oldest and strongest kind 

of fear is fear of the unknown.” – H. P. Lovecraft 

Life is a complex interplay between various physical and chemical processes that are integral 

to maintaining life, facilitating growth and preventing disease. Debilitating and fatal diseases 

that exist without a cure threaten this balance and consequently our well-being, be it cancer, 

viral infections or neurodegenerative disorders, such as Alzheimer’s disease (AD). As an 

instructive illustration, it is worth considering AD as an increasingly common, fatal and 

incurable neurodegenerative disorder that impairs the memory and intellectual functioning of 

about 50 million people worldwide [1]. Current treatment methods are capable of suppressing 

symptoms and slowing the progression of the disease, but for such techniques to be effective, 

early identification and diagnosis is paramount. Since the largest personal suffering, both for 

the patient and family, as well as cost for AD comes from continued patient support and care, 

once the disease has already progressed, there is an urgent need to develop new technologies 

that can detect the disease prior to symptoms being prevalent. 

One of the common factors involved in AD and many other incurable conditions are small, 

nano-sized objects of biological origin, called biological nanoparticles (BNPs). Many of these 

particles are enveloped by a lipid membrane, thus sharing similarities with the host cell’s 

plasma membrane. This membrane, containing various phospholipids, proteins and 

carbohydrates, protects the internal content from the external environment. BNPs are 

responsible for a multitude of processes in the body, ranging from the aforementioned 

pathological conditions [2] to intercellular communication that maintain health [3]. 

Furthermore, these particles have been proven to be natural and effective carriers of bioactive 

molecules, such as miRNA, mRNA, DNA, lipids, and proteins. This combination of 

biocompatible envelope and their ability to carry bioactive cargo makes them an attractive 

target and serves as inspiration for drug delivery carriers. It has therefore been hypothesized 

that improved nanoparticle analysis techniques should contribute to better diagnosis [4] while 

simultaneously enhancing the understanding of the pathogenic and functional role of BNPs [5] 

as well as their potential use as drug delivery carriers or inspiration for the same [6,7]. 
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Extracellular vesicles (EVs) are one example of BNPs, being excreted from every cell type 

into body fluids such as plasma, urine and saliva [8]. They are highly heterogeneous and 

believed to be involved in the progression and infection steps of a multitude of diseases, such 

as cancer [9] and different neurological conditions [2,8]. For instance, EVs are suggested to be 

involved in transferring proteins associated with AD between cells, thus causing accumulation 

and aggregation of proteins in otherwise healthy cells [2]. There are also recent findings 

suggesting that various viruses are transmitted as viral cargo inside EVs [10,11]. Consequently, 

their abundance and involvement in various biological processes makes EVs relevant as 

diagnostic biomarkers. In order to gain insight into how they contribute to the development of 

diseases, as well as cellular functions, it is of relevance to investigate their huge compositional 

heterogeneity, which would enable their future use as both diagnostic biomarkers and novel 

therapeutic delivery vehicles. However, the combination of nano-scale size (typically 50 to 200 

nm in diameter) and high molecular heterogeneity makes the characterization of these 

nanoparticles challenging [12]. 

This thesis work puts focus on gaining fundamental knowledge of the properties of BNPs 

and their interactions with model cell membranes. In order to first characterize how different 

biologically relevant materials interface with lipid membranes, for potential biophysical as well 

as biomedical applications such as implants and drug-delivery, we combined confocal laser 

scanning microscopy (CLSM) with an open-volume microfluidic device, to deliver lipid 

vesicles onto a multitude of biologically relevant planar surfaces to identify the mechanism by 

which the membranes interfaced with the material and the fluidic properties of the membrane 

assemblies (Paper I). A specific objective was to gain insight about the supported lipid bilayer 

(SLB) formation on borosilicate glass, by which total internal reflection fluorescence (TIRF) 

microscopy was used to monitor the kinetics of vesicle adsorption and subsequent rupture into 

individual SLB patches on borosilicate glass (Paper II). Once SLB formation was successfully 

characterized on various surfaces, we were interested in monitoring lipid-enveloped drug 

permeation across an SLB formed on a mesoporous silica thin film, by confining the TIRF 

evanescent wave within the pores of the thin film (Paper III).  

For the purpose of characterizing the heterogeneity of BNPs, a newly developed tool for 

the characterization of individual nanoparticles was utilized, enabling simultaneous 

determination of size and molecular content [13] on the level of individual BNPs by propelling 

them using a hydrodynamic force after being tethered to a mobile SLB. One key aim of this 

work was to elucidate how the incorporation efficiency of dyes depends on the size of BNPs 
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by independently measuring size and fluorescence emission of self-inserting dyes (Paper IV). 

More specifically, by comparing synthetic lipid vesicles, native-membrane vesicles and EVs, 

the approach was utilized to investigate how the incorporation efficiency of a commonly used 

membrane-staining dye depends on BNP size and membrane properties. This size 

determination tool was also employed to differentiate between vesicle populations tethered to 

the SLB with different number of linker molecules and to disentangle the effect of vesicle size 

on their diffusivity from the diffusivity of the linker itself (Paper V). 

The objective of this thesis is to provide the foundation for the experimental and analytical 

work leading up to the results presented in the appended papers. Specifically, to familiarize the 

reader with the biologically relevant concepts, Chapter 1 presents in further detail lipid vesicles, 

supported lipid membranes, their interactions with surfaces and BNPs. Chapter 2 gives an 

overview of the most commonly used single-nanoparticle characterization tools for BNPs; 

listing their unique strengths and limitations with an emphasis on size and molecular content 

determination. Chapter 3 includes the principles for the methods used in this research with an 

emphasis on two-dimensional flow nanometry. Chapter 4 summarizes and discusses the results 

of the appended papers. Finally, Chapter 5 concludes this thesis with an outlook for future 

research plans towards an even greater BNP characterization toolbox. 
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1 Biological background 

The cells in our bodies are amazingly complicated 

autonomous units of life, which contain many 

biomolecules that serve as the building blocks of 

our bodies – e.g., proteins and lipids. Similarly, to 

how proteins assemble into higher ordered 

structures, so do the lipids which comprise the 

protective layer around cells. This chapter will be 

insightful to those who are interested in what lipids 

are and the various ordered structures they 

spontaneously form into. 

 

1.1 Phospholipids and self-assembly 

Lipids are amphiphilic molecules that are characterized by a unique molecular structure 

comprised of a hydrophilic (polar) head-group attached to hydrophobic (non-polar) alkyl 

chains or ‘tail-groups’ [14]. Lipids are essential to all forms of life and the functional properties 

of each are controlled by the chemical nature of their head-group and the length, number and 

saturation of the tail groups [15]. 

Of significant interest are phospholipids (phosphoglycerides), which are the main 

constituents of biological cell membranes and are, thus, essential for regulating cellular 

processes, function and health [16,17]. The plasma membrane constitutes a two-dimensional 

medium made up of a fluidic phospholipid bilayer that is host to a multitude of biological 

macromolecules, such as transmembrane proteins and carbohydrates. Owing to its unique 

structure, the cell membrane acts as a protective vessel for cell organelles separating the 

intracellular and extracellular spaces, while its semi-permeable properties facilitate transport 

of specific nutrients and waste products into and out of the cell [18]. The latter function, which 

is crucial for cellular communication, depends critically on key proteins and lipids that are 

embedded within the phospholipid bilayer.  

Phospholipids are structurally comprised of two fatty acid groups linked to a glyceryl 

backbone [19]. Unlike other lipids such as triglycerides, the third glycerol hydroxyl group is 

replaced with a phosphate head-group, rather than a fatty acid chain (Figure 1). In biological 
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membranes, hydrocarbon tails typically contain 10 to 18 carbons per chain, which are linked 

together by single bonds (saturated) or double bonds (unsaturated). 

 

Figure 1. (a) Schematic representation of the phospholipid molecule 1-palmitoyl-2-oleoyl-glycero-3-
phosphocholine (POPC) depicting the polar head-group, non-polar tail-groups, fatty acid chain 

saturation and additional chemical units. (b) A simplified illustration of a phospholipid. 

In the process of minimizing the free energy, the hydrophilic head of lipids screen the 

hydrophobic tails by spontaneously forming aggregates when dispersed in an aqueous solution, 

which is often referred to as the ’hydrophobic effect‘ [20]. The spontaneous organization 

process of lipids (and other amphiphiles) from a disordered state to an ordered or semi-ordered 

arrangement is a thermodynamically driven process referred to as molecular self-assembly. 

Exposure of water molecules to the non-polar component of lipid molecules contributes to a 

reduction in H-bonding between water molecules [21]. If the hydrophobic molecule is small, 

water molecules salvage the lost H-bonds by forming cages that envelope the molecule with 

minimal termination of these bonds, known as hydrophobic solvation. However, the interaction 

between water molecules near a larger hydrophobic interface is highly thermodynamically 

unfavorable, because the newly formed configurations have an increased degree of order, 

which in turn corresponds to a reduction in entropy. All closed systems strive towards 

increasing the entropy and thereby contributing to minimizing the Gibbs free energy (Δ𝐺) of 

the system, given by: 

 Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆 , 1.1.1 
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where Δ𝐻 is the change in enthalpy, Δ𝑆 is the change in entropy and 𝑇 the temperature. It 

should be noted that for a spontaneous process, such as molecular self-assembly, to occur, the 

change in free energy must be Δ𝐺 <  0. Despite the self-assembly of lipid molecules into an 

organized lipid membrane contributing to a lowering of the entropy, the overall entropy of the 

lipid-containing aqueous solution increases (Δ𝑆 > 0) due to release of ordered water around 

the hydrophobic tails, and accordingly the free energy is reduced. It should also be noted that 

in the case of lipid self-assembly in aqueous solutions, the change in enthalpy (Δ𝐻) is negligible 

compared to the 𝑇Δ𝑆 term [22], which means that it is an entropy driven process. This is a 

biological design principle that goes beyond lipid molecules, and although the enthalpic 

contribution is often appreciable, spontaneously self-assemble into various organized 

structures in aqueous media can often be viewed as a tendency to ‘hide’ their hydrophobic 

regions from water. 

Different lipid molecules can form colloidal structures of various types and geometries. 

These are determined by the effective head-group area, critical chain-length and hydrocarbon 

volume of the lipids [15]. This can be stipulated by relating the shape of the amphiphile to the 

critical packing parameter (𝐶𝑃𝑃): 

 𝐶𝑃𝑃 =
𝑉

𝐴𝐿
 , 

 

1.1.2 

where 𝑉 is the volume taken by the hydrophobic (tail) part, 𝐴 is the effective surface area of 

the head-group and 𝐿 is the length of the tail-group. Single-chained lipids with bulky head-

groups, defined by 𝐶𝑃𝑃 < 1/3 , such as the common detergent sodium dodecyl sulfate (SDS), 

tend to form spherical micelles; single-chained lipids with small head-groups, defined by 

1/3 < 𝐶𝑃𝑃 < 0.5 tend to form cylindrical micelles; phospholipids with two tails and a fairly 

large head-group, defined by 0.5 < 𝐶𝑃𝑃 < 1 tend to form bilayers and vesicles; and lipids with 

large hydrophobic tails, defined by 𝐶𝑃𝑃 > 1, prefer to form reverse phases, such as inverted 

micelles [22]. Most phospholipids have a cylindrical shape, i.e., 𝐶𝑃𝑃 ~ 1, and therefore tend 

to form lipid bilayer structures. However, the 𝐶𝑃𝑃 of the self-assembled lipid-based structure 

depends on numerous parameters, such as electrolyte composition and water to lipid ratio, pH, 

and temperature, as these factors influence the interactions between the lipid aggregates and 

also the intermolecular forces within each aggregate.  

One of the most attractive lipid-based structures used extensively in biophysical 

investigations of cell-membrane properties are vesicles or liposomes, which are spherical 
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compartments defined by an outer lipid bilayer structure. In living organisms, vesicles are 

either naturally occurring, originating from the cell, such as extracellular vesicles and 

exosomes [23] or they may be artificially created from preselected lipid components. 

Specifically, they can be produced directly from cell membranes, such as the native membrane 

vesicles used in this thesis work, isolated from cells [4] or artificially made from dissolved 

lipids [24]. Vesicles are typically classified according to their size and number of bilayers. That 

is, vesicles may be classified as small (10-100 nm), large (100-1000 nm) and giant vesicles 

(larger than 1 μm), and as either uni- or multi-lamellar. The hydrophobic interior of lipid 

bilayers is a relatively homogeneous region of hydrocarbon chains, whereas the exterior is 

comprised of the hydrophilic head-groups, which orient towards the aqueous medium [22,25]. 

Due to the simplicity by which they can be produced, intrinsic biocompatibility and 

biodegradability, vesicles have been used extensively in the food industry. They are also 

employed as nanocarriers in drug-delivery applications thanks to their high stability and life-

time, and as biophysical models to probe different cell-to-cell interactions [26]. Different types 

of vesicles are also used as simplified model systems for cell membranes, and are in fact the 

key component in most artificial cell systems [27–30]. 

1.2 Lipid-surface interactions 

The structure and orientation of lipid assemblies on inorganic surfaces are dependent on 

fundamental properties associated with the underlying solid surface, such as surface chemistry 

and roughness. Accordingly, it is critical to know the properties of the surfaces in question, in 

order to control the propagation of lipid molecules. One of the fundamental properties of 

surfaces is their excess energy, due to unsatisfied coordination of the surface molecules. Since 

all systems strive to minimize their free energy, surface atoms tend to decrease this excess 

energy by forming new bonds with molecules in their vicinity. This difference in energy 

between the atoms on the surface and in the bulk is called the surface free energy (ℱ) which is 

a measure of how much work is necessary to form a unit area of surface [31]. In the case of a 

solid material, the creation of this area can be visualized by cleaving a block of material into 

two pieces, which will result in the breakage of chemical bonds. During this process the number 

of atoms will not change, only the surface area of the material. 
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 The surface tension of a material (𝛾) is determined by the surface free energy (ℱ) and is 

represented as the tangential stress (force per unit length) in the surface layer [32]: 

 
𝛾 = ℱ + 𝐴

∂ℱ

𝜕𝐴
 , 

 

1.2.3 

where 𝐴 is the area of the surface and the derivate ∂ℱ/𝜕𝐴 describes the induced bulk stress in 

a solid after deformation (elastic strain changing the surface density of atoms). Solid materials 

cannot balance this stress since their atoms are immobile thus preserving their relative positions 

after deformation. In case of one-component liquids, since the molecules can move freely 

between the surface and the interior during deformation, ∂ℱ/𝜕𝐴 = 0, hence 𝛾 = ℱ [33]. 

Based on the strength of the bonds holding a material together, it is possible to predict the 

tendencies to be wetted by liquids. Materials with high energy bonds such as covalent, ionic 

and metallic are considered high-energy surfaces, whereas low-energy surfaces are often 

polymers with covalently bonded chains that are held together by weak intermolecular van der 

Waals forces. It is common to categorize surfaces based on their interactions with water only. 

They can be hydrophilic (polar) i.e., water-friendly or hydrophobic (non-polar) i.e., water-

fearing. For hydrophilic high-energy surfaces, the energy of the system is minimized by 

increasing the contact area between the lipid and surface. However, the reason why lipid 

monolayer adsorption and spreading occurs on hydrophobic low energy substrates is because 

the hydrophobic tails of the lipid shield the surface from water [34].  

Since many lipid molecules are charged, the charge on the surface can affect lipid-surface 

interactions as well. In principle, all surfaces in contact with a liquid of a high dielectric 

constant, such as water, carry a surface charge [22]. The charge can either originate from the 

ionization or dissociation of surface groups or by the association of ions from solution onto 

previously uncharged surfaces [22,35]. For chemically inert materials such as Teflon AF, the 

preferential adsorption of hydroxyl ions due to the orientation of water at the hydrophobic 

interface appears to be the reason [35,36]. The surface charge on oxides results from the 

ionization of the previously formed hydroxyl groups on the surface upon contact with water 

[37]. The charge on a surface can be negative, positive or zero, depending on the nature of the 

oxide in question and the pH of the surrounding buffer. Nonetheless, in such a solution, the 

charge on the surface is balanced by a thin stationary layer of oppositely charged but equal 

counterions (called the Stern layer). These ions originate from the so-called diffuse layer in 

close proximity of the surface, where rapid thermal motion between both counter- and co-ions 
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occurs. The charge on a surface can thus be assessed by the zeta potential at the slip surface 

within the diffuse layer [38]. These properties affect lipid propagation/spreading on surfaces 

among others, such as the roughness of the surface [39]. 

1.3 Supported cell-membrane mimics 

In order to gain insights into cellular processes and activities that are fundamental for cell 

survival, considerable focus in recent decades has been directed towards analyzing the 

molecular interactions with and between lipid bilayer membranes. One attractive approach to 

investigate key biophysical features of biological cell membranes that meets the requirements 

of many high-end analytical tools is to make use of the property that vesicles can be converted 

to various membrane assemblies when interacting with solid surfaces. Indeed, a large variety 

of different lipid structures can be formed on solid interfaces [40,41], including single bilayers 

[42], double bilayers [39,43] or monolayer lipid films [44,45], which can be controlled by the 

preparation technique, the lipid composition and charge, the ionic strength of the surrounding 

solution and the properties of the support surface. Considering the aforementioned complex 

lipid-surface interactions, it is non-obvious what type of pathway, e.g., adhesion, rupture and/or 

spreading, the vesicles will follow. Supported membranes are typically formed on borosilicate 

glass, silica and atomically smooth mica [46–48]. However, since other biologically relevant 

surfaces offer various benefits, studying the membrane formation and integrity on these 

surfaces is of practical and scientific relevance. The formation of membranes on inorganic 

solids and polymers allows for biological functionalization [49]. Thus, a better understanding 

of the lipid-surface interactions can potentially increase biocompatibility of implant materials, 

such as aluminum oxides [50] and TiO2 [51] even further. Another application of interest is the 

design of biosensors based on supported membranes, where sensing is based on the signal of 

conductive materials, such as Au, graphene [52,53] and ITO [54,55]. SiC combines these two 

applications by being a potential in-vitro biosensor due to its sensing capabilities and 

biocompatibility [56,57]. All of these materials are optically transparent and therefore 

compatible with microscopy approaches. In Paper I, the interactions between lipids and the 

aforementioned surfaces were investigated. 

One particularly attractive cell membrane mimic of this type is the so-called supported 

lipid bilayer (SLB), which exists as a planar surface confined lipid membrane that retains two-

dimensional fluidity, while providing reduced complexity and greater stability for the lipid 

membrane compared with cell membranes. The 2D fluidity of SLBs is believed to be 

maintained by a 1–2 nm layer of trapped water between the substrate and the bilayer [58–60]. 
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When combined with the compatibility of arbitrary sized planar surfaces, SLB fluidity is the 

prime reason for their functionality and efficacy in providing detailed insights into cellular 

membranes, when applied in combination with sensitive analytical techniques e.g., atomic 

force microscopy [61], fluorescence microscopy [62], quartz crystal microbalance, surface 

plasmon resonance [63] among others [64]. However, owing to the reduced complexity, it is 

crucial to carefully characterize these native membrane mimics as accurately as possible to 

represent the appropriate membrane function for a given application. Thus, significant efforts 

have been invested into the characterization of the formation mechanism under various 

conditions [34,40,46,48,65,66]. In this work, we contributed to this tradition by investigating 

the SLB formation process on borosilicate glass, which was investigated in both Papers I and II. 

In addition to SLBs, other types of biologically relevant membranes can be assembled 

depending on the surface. In contrast to SLBs which require hydrophilic supports, lipid 

monolayers assemble on hydrophobic low-energy surfaces such as certain photoresists and 

fluorinated polymers e.g., SU8, or Teflon AF, where the hydrophobic tails of the single layered 

lipid film are arranged towards the substrate [34]. Albeit the use of lipid monolayers as cell 

membrane models is limited due to their inability to incorporate transmembrane proteins and 

other components which are essential for many biophysical studies, they are found in biological 

systems, such as the lung surfactant in the alveoli [67,68] or the protective tear film on the 

corneal epithelium of the eye [69,70]. Due to their structural simplicity, they are also used as 

biomimetic coatings, for example in research towards novel targeting approaches to aid in the 

diagnosis of Alzheimer’s disease and dementia [71,72]. An alternative pathway compared to 

SLB formation on high-energy hydrophilic surfaces is the formation of double bilayer 

membranes, which are essentially surface-adhered giant unilamellar vesicles with a minimal 

encapsulated volume [39,43]. Small unilamellar vesicle (Figure 2a) adsorption and their 

rupture into various supported membranes upon contact with a favorable surface were 

systematically investigated in Paper I on different optically transparent microengineering 

materials. 

As a general rule, if the surface is hydrophilic, a single bilayer [42] or a double bilayer 

[39,43] is formed, while hydrophobic surfaces lead to monolayer lipid films [44,45] (Figure 

2b-d). Of particular interest are SLBs, which have a typical thickness of 4 to 5 nanometers 

(Figure 2b). In order to form SLBs with low defect density and high mobility, the surface 

should be hydrophilic, smooth and clean [73]. 
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Figure 2. The cross-section of a vesicle (a). Various supported membranes: (b) a supported lipid bilayer, 

(c) supported lipid monolayer, and (d) double bilayer. 

The historically predominant methods for surface deposition of lipid bilayers were 

Langmuir–Blodgett (LB) and Langmuir-Schaefer (LS) [34,74], with which multiple lipid 

monolayers are transferred onto planar surfaces as they are successively transferred up and 

down across a liquid-air interface containing a lipid monolayer, while more recent methods 

include solvent-assisted lipid deposition [75] and a method where freeze-thawing is used to 

induce vesicle rupture and subsequent membrane formation [76]. The most popular membrane 

formation method, which was also used in this thesis work, is the adsorption and fusion of 

vesicles [77,78]. In this case, vesicles approach the surface via diffusion from the bulk and 

adsorb if the surface-vesicle interaction is favorable. Although vesicles can occasionally 

rupture into small bilayer patches at a relatively low vesicle coverage, the SLB formation is 

initiated when a fairly high vesicle coverage is reached, after which they start to rupture into 

small patches that initiate growth and the auto-catalytic SLB formation cascade [63]. In Paper 

II, the aforementioned observations were investigated in detail by following the growth kinetics 

of individual SLB patches from the adsorption and rupture of vesicles on glass. 

Not only does the type of formed membrane depend on the surface, but the properties of 

the lipids themselves can be affected, such as their diffusivity. Planar silica and glass have been 

used extensively, therefore it is of interest to see how the porosity of the substrate reduces 

contact points with the membrane and consequently increases diffusivity of the lipids within 
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the SLB, thus we used mesoporous silica thin films (MSTF). MSTF are excellent interfaces for 

biomedical applications such as drug-delivery due to their tunable pore size and high 

biocompatibility [79]. The honeycomb-like porous structure enables the encapsulation of high 

concentrations of bioactive molecules such as proteins, retaining their function in the silica 

matrix [80,81]. MSTF have also been used as supports for SLBs enabling the incorporation of 

transmembrane proteins [82]. The diameter of pores in the mesoporous range are 2-50 nm by 

definition [83] and can be tuned by altering the soft templating agent, which is commonly either 

a surfactant [84] or block copolymer [85]. In Paper III, we monitored poorly water-soluble drug 

permeation through SLBs formed on MSTFs. These MSTFs were formed using a sol-gel 

process [86], in which the hydrolysis of the silica precursor tetraethyl orthosilicate (TEOS) was 

followed by the condensation into an amorphous silica network around a polymer template. 

The silica precursor solution was deposited on a glass surface via spin-coating. Later the 

templating polymer was burnt off to leave a thin film of mesoporous silica with an average 

pore size of 7 nm (Figure 3). The formed silica surface was treated with UV-ozone to promote 

the exposure of hydrophilic hydroxyl groups and carried a net negative charge at physiological 

pH.  

 

Figure 3. (a) Scanning electron and (b) transmission electron micrographs of MSTF. Scale bars are 

200 nm. 

SLBs are also attractive environments for the incorporation of biological molecules which 

function within the membrane, such as transmembrane proteins, or bind to the membrane, as 

covered in numerous review articles [21,49,60,87]. More artificial molecular constructs can 

also be attached to SLBs, where they can serve as linker molecules. The most popular example 

is the high-affinity binding between biotin and streptavidin [88]. Our group pioneered the use 

of membrane self-inserting cholesterol-DNA [89,90] to anchor and investigate the mobility of 

tethered nanoparticles [91]. This approach was used in Paper IV, which was focused on 
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studying the self-insertion of lipophilic dyes into various biological nanoparticles and in 

Paper V to study the properties of the actual linker itself. 

1.4 Biological nanoparticles 

Biological nanoparticles (BNPs), such as extracellular vesicles, exosomes and viruses are 

involved in a multitude of functional as well as pathogenic biological processes, including 

cellular communication and viral infection; the detailed molecular mechanisms of which are 

not yet fully understood. Accordingly, the characterization of BNPs and their associated 

processes has emerged as a focus area for the improved understanding of fundamental 

processes that control cellular health. Furthermore, many BNPs have been proven to be 

efficient carriers of various bioactive molecules, such as mRNA, DNA and proteins within 

their membrane envelope. Therefore, insights derived from investigations directed towards 

BNPs can be harnessed for biomimetic development of novel therapeutic delivery vehicles. 

1.4.1 Viruses 

Viruses are complex molecular machines capable of infecting allegedly all cellular life. Virus 

particles vary considerably in size and shape, ranging from 20 nm to 500 nm in diameter. 

Viruses carry genetic viral material, composed of either DNA or RNA, encapsulated within a 

protein capsid, which protects the genome from the extracellular environment. The protein 

capsid is in many cases enclosed within a lipid membrane that is derived from the outer plasma 

membrane of host cells or from one of the inner cellular membranes. Viruses are incapable of 

self-replication, but rather ‘hijack’ the replication machinery of cells by attaching and 

penetrating the cellular membrane and mixing their genetic material with the host cells 

genome [92]. In doing so, replication of the viral genome is facilitated and consequently the 

host cell is turned into a virus factory. Some viruses can even cause permanent genetic changes 

of infected cells, leading to the development of cancer and other debilitating diseases [93]. One 

such highly infectious viruses, which has infected over 67% of the global population, is the 

membrane-enveloped herpes simplex virus type 1 (HSV-1) [94]. In this thesis work, 

preliminary attempts were made to investigate HSV-1 with respect to the dependence on 

membrane staining as a function of virus size (see the Future outlook chapter).  

1.4.2 Extracellular vesicles 

Extracellular vesicles (EVs) are cell-secreted vesicles capable of carrying different cargo, such 

as lipids, proteins, DNA, mRNA and miRNA and are present in all body fluids [8,95]. These 
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nanovesicles have been identified to play an important role in a variety of biological processes, 

including pathological conditions such as cancer and different neurological conditions, and 

have even been proposed to represent a common route for transport of neurodegenerative 

disease-related proteins and nucleic acids [2]. Specifically, transfer of proteins via exosomes 

from diseased cells to healthy cells frequently leads to accumulation and aggregation of the 

protein in the target cell, which is linked to the pathogenesis of many neurodegenerative 

diseases, such as Alzheimer’s [2].  

EVs are heterogeneous both in size and composition, with sizes ranging from 30 nm to 

1 µm [96]. EVs include distinct subtypes such as exosomes, microvesicles and oncosomes 

(released by cancer cells) [97]. Exosomes are EVs produced in the endosomal compartment of 

most eukaryotic cells. They contain miRNA and mRNA, have been shown to transfer their 

genetic content, which upon delivery can be translated to proteins by the receiving cells [98]. 

There are also reports suggesting that EVs can in fact spread viral cargo such as HSV-1 in their 

envelope, which can be taken up by healthy cells, leading to viral infection [10]. Furthermore, 

studies have demonstrated that EV release kinetics from cancer cells varies considerably 

compared with healthy cells [9]. Therefore, EVs serve as promising biomarkers for a multitude 

of debilitating diseases. Due to their capacity to deliver biomolecular cargo, they may also 

guide the development of novel therapeutic delivery systems based on their mode of action.  

Consequently, in order to determine how these BNPs mediate biological processes and 

how EV malfunctioning contributes to the development of neurodegenerative and other 

diseases, there is a need to develop effective bioanalytical tools for improved characterization 

of BNPs. Despite the existence of several bioanalytical tools for investigations of single 

nanoparticles, which will be introduced in the next chapter, precise determination of both size 

and content of each individual EV has proven to be a challenge [12]. Measurements of EV size 

distribution in relation to their membrane content was investigated in Paper IV.  

1.4.3 Native membrane vesicles 

Since EVs and exosomes vary significantly in composition, based on the producer cell 

type [99], and exhibit complex structures that are difficult to characterize, simpler systems are 

helpful for the development of new single nanoparticle analytical tools. Native membrane 

vesicles (NMVs) are one such simplified BNP systems that can be produced in vitro from the 

plasma membrane of a cell. NMVs retain the membrane components of the parent cell: lipids, 

proteins, carbohydrates [100,101]. Hence, the membrane of NMVs closely mimics the 
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membrane composition of exosomes, since it is also derived from the host cell which it was 

released from [2,23]. However, unlike exosomes, NMVs are easy to produce from host cells 

with several simple ultracentrifugation steps [100], while still acting as a more closely related 

exosome model compared to synthetic vesicles. These simpler, native BNPs were in this thesis 

work utilized as a model system that acted as a precursor for EV and exosome characterization. 

Specifically, the size determination of NMVs in relation to their membrane content were 

compared to that of EVs and synthetic vesicles in Paper IV.  
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2 Single nanoparticle analytics 

Even though human height is measured in meters, 

the building blocks of life are in the length scale of 

several nanometers to a few microns. For example, 

a typical red blood cell is around 8 µm, viruses 

which infect cells are around 100 nm, whereas the 

thickness of the cell membrane, which the virus 

attaches onto and subsequently penetrates, is 

around 5 nm. For reference, this is  about a billion 

times smaller than the height of an average human. 

This chapter introduces the reader to the most 

common methods to study single biological 

nanoparticles. 

As mentioned in the previous chapter, a multitude of quantitative methods exist to characterize 

BNP properties. The predominant technique for the last few decades to gain insight on a 

particle’s physical properties has been electron microscopy. However, certain limitations, 

especially with respect to cumbersome sample preparation, low throughput and high costs, 

have called for the development of complementary techniques. This chapter provides an 

overview of the most commonly used BNP characterization methods (Table 1). 

Electron microscopy (EM) allows a direct read-out of both size and structural properties. 

Images in EM are created from accelerated electrons, that after being transmitted or scattered 

by the sample under investigation hit an electron detector. The short wavelengths of electrons 

translates into sub nm resolution [102] when used to probe structure. As EM experiments are 

conventionally performed in high vacuum, and since liposomes, virus particles and other BNPs 

do not withstand dehydration, metal staining and chemical fixation techniques are often 

required, which may in turn change the size and morphology of the sample [103]. This 

limitation can be overcome by using cryo-electron microscopy (cryoEM), which circumvents 

both staining and fixation protocols. Instead, a thin film of the NP suspension is spread on a 

EM support grid and thereafter submerged into liquid ethane [104], which rapidly freezes the 

water into amorphous ice without forming ice crystals [105]. This process both preserves the 

material in a native-like state and protects the sample from radiation damage. CryoEM has been 

employed successfully to characterize individual viruses [103], vesicles [106] and EVs [107–

109], providing insights on both their structural properties and size. In addition to direct 
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structural information, labelling of EVs with antibody-modified gold nanoparticles has been 

employed to identify sub-populations in the EV preparation [108]. However, the low 

throughput, complicated sample preparation protocols, long measurement times, and high cost 

are all limiting factors for cryoEM to become a standard BNP analysis tool [110].  

Atomic force microscopy (AFM) is another high-resolution method, which in contrast to 

cryoEM can be carried out at room temperature and in liquid-phase/wet conditions. In AFM, a 

surface is scanned with a very sharp tip (down to a few nanometers in width) coupled to a 

sensitive cantilever. The attractive or repulsive forces between the sharp tip and the surface 

deflect the cantilever. Since the bending constant of the cantilever is known, the force applied 

on it can be estimated from the magnitude of the reflection and a topographic map of the surface 

at sub-nanometer resolution [111]. AFM has thus been used to characterize the size of various 

EVs [112,113]. The immobilization of BNPs on a surface may nevertheless still impact 

structural integrity thus rendering it rather difficult to estimate the size for BNPs and other soft 

materials. A core limitation of both AFM and EM with respect to high variance, stems from 

their small sample utilization, especially for heterogenous EV samples, as only a few images 

can be captured in a reasonable amount of time. These time and cost limitations have largely 

triggered the search for higher throughput approaches [109].  

Certain properties of nanoscale objects can be extracted using light-based methods. One 

such method is flow cytometry (FCM), which is used routinely to analyze single cells and 

smaller particles in the sub-micrometer range [114]. In FCM, cells or particles in a 

hydrodynamically-focused fluid stream are illuminated by a laser. Ideally, each cell or particle 

passes the laser beam one at a time, from where the scattering and fluorescence signals are 

measured. The structural information obtained from light scattering, although limited 

compared with that obtained using EM, can thus be correlated with biomolecular composition 

via immunolabeling using specifically bound fluorescently labeled antibodies [115]. The 

measured optical signal is dependent on both the size of the particle and its refractive index, 

and drops dramatically with reducing radius. This signal reduction with size makes the 

detection of sub-wavelength particles very demanding [116]. As a result, the majority of 

conventional cytometers only detect individual polystyrene beads with a size larger than ~300 

nm [102,109], while sub-200 nm BNPs, such as viruses and exosomes, remain at the detection 

limit of conventional flow cytometers due to their weak scattering signals unless fluorescent 

labeling is employed [117,118].  
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To meet this limitation, a multitude of other methods have been developed. Inspired by the 

ensemble averaging method, dynamic light scattering (DLS) [119], the possibility to track the 

motion of individual nanoparticles, and to deduce their size from their individual motion has 

been made possible due to the recent technological advances in imaging sensors. In DLS, a 

dilute suspension containing monodisperse NPs undergoing Brownian motion is illuminated 

with a focused laser beam [120]. The illuminated NPs scatter light in all directions, which due 

to their Brownian motion within the illuminated volume leads to temporal fluctuations that 

depend on particle size. Using DLS, the size distributions of NP ranging between a few 

nanometers to several microns can be determined [102], with an impressive limit of detection, 

down to about 1 nm [121]. Owing to its broad range of detectable sizes, DLS is used routinely 

as a high-throughput and sensitive method for accurate size determination [116]. However, for 

BNP which possess high molecular and dimensional heterogeneity, such as EVs, it remains 

difficult to accurately determine their size as the intensity fluctuations of the recorded signal, 

become predominantly influenced by the presence of larger particles [102].  

Owing to the growing interest to investigate highly heterogeneous nanoparticle 

suspensions, nanoparticle tracking analysis (NTA) has become one of the most commonly used 

optical methods for nanoparticle size determination, especially for BNPs such as extracellular 

vesicles [114] and viruses [122], reaching down to the 50 nm size regime [123]. The underlying 

principle behind NTA is similar to that of DLS, where particles undergoing random motion in 

a suspension are illuminated by a collimated laser beam. The scattered (or fluorescent) light 

induced by the particles is then temporally imaged using an objective fitted to a conventional 

optical microscope, positioned above the sample [124]. However, in contrast to DLS, the 

imaging mode of NTA makes it possible to analyze the nanoparticles individually, allowing 

their size to be extracted from their Brownian movement. Unlike DLS, NTA copes better with 

polydisperse samples, however the quantitative determination of scattering and fluorescent 

intensities remain difficult to quantify, since the particles are free to diffuse in and out of the 

focal plane [117]. NTA was routinely used in this work for BNP size determination, and is 

discussed in further detail in the Experimental methods chapter. 

The size from NTA has shown to correlate well with alternative methods, such as those 

based on resistive pulse sensing (RPS). RPS is an indirect method, where individual NPs 

passing through an aperture change the conductance of an electrolyte solution in which the 

particles are dispersed. In addition to size, it has been demonstrated that charge, concentration 

and approximate shape of nm-sized objects can also be measured [125,126]. A notable example 
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is its use to sequence DNA [127] and to quantify time-dependent increase in size for 

viruses [128]. However, since the aperture size for RPS must be comparable to the size of the 

BNP [129], it poses limitations on the heterogeneity and size range of the sample. 

Since neither FCM, DLS, AFM nor NTA are best suited to unambiguously quantify 

multiple properties at the level of single nanoparticles, there exists a need for analytical 

concepts that enable multi-parametric analysis of individual BNPs. One such method is the 

two-dimensional flow nanometry (2DFN) developed by Block et al. [13], which offers a 

detection limit in the sub-30 nm range while simultaneously offering the possibility to quantify 

the scattering / fluorescence intensity by confining them close to a liquid-solid interface in a 

microfluidic setup. This method was further developed and used in Paper IV to quantify the 

efficiency by which BNPs can be labeled with membrane-specific dyes and in Paper V to 

investigate how the diffusivity of DNA-tethered vesicles depend on their size. Due to the 

central role of 2DFN in this thesis work, it will be presented more thoroughly in the 

Experimental Methods chapter. 

 

Table 1 Comparison of the bioanalytical methods discussed in this chapter. 

Method 
Limit of 

Detection 
Principle 

Mode of 

measurement 
Comments 

CryoEM ~1 nm 
electron 

transmission 
direct, individual 

arduous sample 

preparation, low statistics 

AFM <1 nm force direct, individual 
arduous sample 

preparation, low statistics  

FCM 200 nm light scattering indirect, individual multi-parametric 

DLS 1 nm diffusion indirect, ensemble 
monodisperse samples, 

relative size 

NTA 50 nm diffusion indirect, individual polydisperse samples 

RPS 30 nm conductivity indirect, ensemble  
multi-parametric, 

monodisperse samples  
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3 Experimental methods 

The interrogation of objects that cannot be resolved 

by the naked eye has for long been an integral part 

of the physical sciences. Among these techniques, 

optical methods have the broadest appeal due to the 

possibility to label biological systems with various 

markers, such as fluorescent dyes. This ability to 

track biological molecules, including proteins and 

lipids, has resulted in a vast array of notable 

discoveries in the fields of medicine and biology. 

The following techniques formed a basis upon 

which to build the novel nanoparticle analysis 

toolkit. 

3.1 Fluorescence microscopy 

Due to their small size, biological nanoparticles, such as lipid vesicles and other similarly sized 

objects, are not easily visualized directly with conventional optical microscopy. The most 

common method to increase their visibility is to attach fluorescent molecules, i.e., 

fluorophores1. Fluorophores are small chemical compounds that upon excitation can re-emit 

light. They come in various types and forms, can produce various colors and can in most cases 

be readily conjugated to other molecules such as lipids, allowing lipid membranes to be 

visualized. Alternatively, antibodies can be fluorescently labeled, which enables their 

unlabeled binding partners to be identified and visualized. The fluorescent molecule greatly 

increases the optical contrast between the labeled molecule and their surroundings, allowing 

different types of biomolecules to be detected and studied in a highly accurate spatiotemporal 

manner, even within cells, and more complex biological structures.  

A fluorophore is a molecule which can absorb an incoming photon with an energy 

corresponding to the difference between the ground and first electronic excitation states. This 

photon energy absorption excites an electron in the ground state, S0, to the first excited singlet 

state, S1. This excited state is unstable with a short lifetime, typically in the range of 10-7 to 

10-9 s. In order to lower its energy, the electron will relax down to the ground state either 

radiatively or non-radiatively, each with a certain probability. A non-radiative relaxation 

                                                
1 For a molecule to fluoresce, certain conditions have to be met, such as high rigidity of the molecule, the 

presence of electron-donor species, and naturally the molecule has to absorb the excitatory light and favor radiative 

transitions.  
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corresponds to all processes where the system relaxes without the emission of a photon, 

whereas the radiative process from S1-S0 with the re-emission of a photon is referred to as 

fluorescence [130]. Since a small portion of the absorbed energy is converted into vibrational 

energy, i.e., dissipated as heat, the re-emitted photon typically has a longer wavelength (lower 

energy) than the absorbed photon. This shift between the excitation wavelength and the 

emission wavelength of the fluorophore can be utilized for imaging purposes, which was a 

breakthrough discovery attributed to Oskar Heimstädt in 1911 [131]. An illustration of the 

phenomenon can be seen in a Jablonski diagram in Figure 4a [132]. The absorption process 

occurs on the order of 10-15 s, a process faster than molecular rearrangement and therefore the 

vibrational states do not change (Franck-Condon principle).  

 

Figure 4. (a) A Jablonski diagram illustrating the concept of fluorescence on an energy plot. (b) 
Examples of two fluorophores used as lipid conjugated markers in this research – Rhodamine-DOPE 

and SP-DiOC18(3) (only the fluorescing subunit is shown for clarity). Each fluorophore is overlaid with 

their typical excitation (left) and emission (right) wavelengths. 

One of the key characteristics of fluorescent dyes is their quantum yield, which 

corresponds to the number ratio of the emitted and absorbed photons. Therefore, fluorophores 

which have a higher radiative to non-radiative rate back to the ground state, S0, also have a 

high quantum yield. Examples include bright dyes such as Rhodamine. The brightness of a 

fluorophore is also influenced by the overall relaxation rate to the ground state, which governs 

how rapidly the dye molecule is available for repeated excitations. The lifetime of fluorescence 

is the average time the molecule spends in the excited state prior to returning to the ground 

state. Typical fluorophores have lifetimes in the order of a few nanoseconds. Fluorophores with 

longer lifetimes will also have more time to interact with their environment while in the excited 

state, increasing the probability of non-radiative processes to occur. As the decay properties of 
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fluorophores can be influenced by their local environment, measuring these changes in their 

lifetime can offer valuable insight into their interactions with other surrounding molecules (e.g., 

other fluorophores). 

A fluorescent molecule, being sensitive to its local environment, can thus have its emission 

suppressed or completely quenched. Fluorescence quenching refers to any process which 

decreases the fluorescence emission intensity of a given fluorophore. Quenching can occur via 

for example oxidation or energy transfer (of the excited state) to another molecule. Self-

quenching is a special type of fluorescence quenching in which the fluorophore and quencher 

molecules are the same. When passing a given concentration threshold for a fluorophore, the 

relative distance between two molecules will become small enough (a few nanometers) so that 

their electronic and vibrational levels begin to overlap with each other, which allows energy 

transfer to occur between them, reducing or quenching the fluorescence signal. Thus, due to 

self-quenching effects, the addition of more fluorescence molecules will eventually decrease 

the ensemble intensity instead of increasing it [133]. Therefore, one must be careful in choosing 

the number of fluorophores to be used for each system.  

Another important aspect of a fluorophore is its chemical stability. At high light intensities, 

a fluorophore will undergo many excitation-relaxation cycles. The stochastic nature of this 

process can have different outcomes. Since the dye molecule is more reactive in an excited 

state, it is probable that an absorbed photon can induce a chemical change in the fluorophore, 

which will result in a non-fluorescing (photobleached) state. Thus, in fluorescence microscopy, 

it is preferable to select dyes with superior photostability (in the order of ~1 million cycles), as 

high fluorescence quantum yield as possible and appropriate difference between the 

wavelengths of the absorbed and emitted light. 

Many different kinds of fluorescence microscopy systems exist, including confocal laser 

scanning microscopy [134,135], super resolution microscopy such as stimulated emission 

depletion microscopy [136], and total internal reflection fluorescence microscopy [137], which 

was the main tool used for the research within this thesis. 

3.1.1 Total internal reflection fluorescence microscopy 

Total internal reflection fluorescence (TIRF) microscopy is an extension of conventional 

fluorescence microscopy, developed to illuminate only a thin layer directly above the substrate 

surface. This technique has been a prolific tool since its invention by Axelrod et al. during the 
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1980s [138] and is based on utilizing the evanescent electromagnetic wave formed at the 

interface between two optically transparent media of different refractive indices (𝑛). When a 

beam of light travels from medium of high refractive index (𝑛high) to medium of lower 

refractive index (𝑛low) at an incident angle 𝛩incident larger than the critical angle Θcritical, all 

light will be reflected at the interface. This mechanism is described by Snell’s law, in the case 

where the angle of refraction becomes 90°: 

 
Θincident  > Θcritical = arcsin (

𝑛low
𝑛high

)  , 

 

 

3.1.1 

However, a non-radiative, evanescent, electromagnetic field confined at the interface is formed. 

This evanescent field slightly penetrates (a few hundred nanometers) into the medium of lower 

refractive index and decays exponentially with distance from the surface. The exponentially 

decaying light intensity 𝐼 at distance 𝑧 away from the interface can be described as: 

 𝐼 = 𝐼0𝑒
−
𝑧
𝛿  , 

 , 

 

3.1.2 

where 𝐼0 is the intensity of light at the interface and the distance where the light intensity has 

decayed 1/𝑒 times with respect to the value at the interface is called the penetration depth 𝛿. 

The latter is defined as the following: 

 
𝛿 =

𝜆0
4𝜋
(𝑛high

2 sin2 Θincident − 𝑛low
2 )

−
1
2 , 

, 

3.1.3 

where 𝜆0 is the wavelength of the incident light [138]. As the light is totally reflected for 

angles Θincident > Θcritical, the penetration depth of the evanescent wave can be adjusted by a 

few hundred nanometers by simply changing the incident angle Θincident  [139]. Using this 

evanescent light to excite fluorophores near the surface enables high contrast as the background 

signal of fluorophores from the bulk is significantly reduced.  

In Papers II to V, an inverted TIRF microscope was used to image the sample from below, 

through a transparent borosilicate glass substrate (as shown on Figure 5). Lipid vesicles and 

SLBs were simultaneously imaged with this TIRF setup by using two different types of 

fluorescently-labelled molecules. The vesicles used in the experiments to form SLBs, were 

formed using a fraction of fluorophore-conjugated lipids (Rhodamine-DOPE or ATTO488PE), 

labeled at the hydrophilic head-group of the lipid. In Papers II-V only a fraction (1:100) of the 

vesicles were labelled for SLB formation to increase contrast between SLB patches and 

vesicles and thus enabling to monitor the SLB formation process. However, these lipid-dyes 
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cannot be used with native biological membranes without disturbing the membrane 

environment, as they need to be mixed in via sonication. Therefore, of particular interest is how 

lipophilic membrane-staining dyes, such as DiO and DiI, which have been utilized routinely to 

label cell membranes without negatively affecting membrane fluidity [140,141], incorporate 

into complex BNPs, and how this incorporation depends on particle size, type and molecular 

composition. Consequently, in Paper IV, small unilamellar vesicles (SUVs), native membrane 

vesicles (NMVs) and extracellular vesicles (EVs) were labelled with the lipophilic membrane-

staining dye SP-DiOC18(3)2 (hereafter spDIO) which is weakly fluorescent in water but highly 

fluorescent and quite photostable when incorporated into a lipid membrane. 

 

Figure 5. Diagram showing the working principle and main components of a TIRF microscopy. An 

off-axis light source is used to impact the sample at a large enough angle to fulfill the total internal 
reflection condition, resulting in the generation of an evanescent wave, exciting the fluorophores near 

the surface. A filter cube consisting of an excitation filter, dichroic mirror and an emission filter is 

present to select and direct the appropriate wavelengths for the fluorophore used and to isolate the 

fluorophore emission from the excitation source. 

                                                
2 3,3’-Dioctadecyl-5,5’-Di(4-Sulfophenyl)Oxacarbocyanine 
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3.1.2 Confocal laser scanning microscopy 

Confocal laser scanning microscopy (CLSM) is another fluorescence-based imaging method 

with high vertical resolution (~1.5 𝜆o) compared to ordinary fluorescence microscopy. The 

first incarnation of a confocal microscope was invented by Marvin Minsky during the 

1950s [134,135]. In conventional fluorescence microscopy, where the entire sample in the 

field-of-view is illuminated more-or-less evenly by the light source, both out-of-focus light 

from above and below the image plane is collected. In CLSM, a focused laser beam is scanned 

across the sample, whereas a pinhole eliminates most of light scattering from the out-of-focus 

sample points. Hence, at any given instant only one point of the sample is observed and the 

light intensities collected from each point are then reconstructed into an image, pixel-by-pixel. 

Since CLSM illuminates only a point of the sample at a time and features high vertical 

resolution, it is possible to construct three-dimensional images for which CLSM by also 

scanning the focus point vertically i.e., in the z-direction. The focal volume for confocal is 

larger than for TIRF microscopy, but since it is possible to have high accuracy in the z-

direction, one can use it to select and focus on a thin slice further away from the surface, 

something that is not possible using TIRF microscopy. In Paper I, this unique property of 

CLSM was used to first focus on the BioPen (see section 3.2) enabling it to be positioned in a 

close proximity of a surface, and thereafter enabled to focus on the surface to monitor vesicle 

adsorption, membrane formation and spreading behavior. 

3.1.3 Fluorescence recovery after photobleaching 

In the context of lipid membranes, fluorescence recovery after photobleaching (FRAP) is an 

optical method, which makes use of the finite lifetime of fluorophores during high-intensity 

illumination to give insight on the lateral diffusion of fluorophores in a lipid membrane [142]. 

Specifically, a well-defined area of the sample is briefly exposed to a high-intensity laser beam, 

resulting in irreversible photobleaching of the fluorophores. This exposed area is seen as a dark 

spot under the microscope. If the lipids are able to diffuse e.g., in the case of a fluid lipid 

membrane, then the bleached fluorophore-conjugated lipids move out of the bleached spot and 

non-bleached lipids diffuse into the bleached area over time. The diffusivity of both bleached 

and non-bleached lipids leads to a fluorescence recovery of the previously bleached spot. By 

monitoring the extent and time of recovery with low-intensity light illumination, it is possible 

to estimate the diffusivity of the fluorophores, since a faster recovery is indicative of higher 

diffusivity and vice versa.  
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In Paper I, FRAP was used to measure the fluidity of deposited lipid patches. Whereas in 

Papers II-V, FRAP was used to confirm whether a fluid supported membrane was formed and 

still mobile after subsequent experimental steps.  

3.2 Microfluidics and BioPen 

Microfluidics, as the name states, is the manipulation of fluids in channels with dimensions in 

the range of micrometers (1-100 µm). The benefits of using microfluidics over traditional large 

volume bulk containers include, but are not limited to: (i) the ability to handle very small 

volumes of liquids (10-9 to 10-18 liters) and thus, reduce the consumption of samples, solvents 

and reagents, (ii) laminar flow (characterized by low Reynolds numbers), (iii) high resolution 

and sensitivity in separation and detection, and (iv) finely controlled flow rates and rapid 

exchange of liquids. These unique characteristics can be utilized to promote hydrodynamic 

shear flow that induces movement of molecules attached to an SLB [143], as discussed in 

Papers IV and V.  

A simple straight microfluidic channel was fabricated from the optically transparent 

elastomer poly-(dimethylsiloxane) (PDMS) using soft-lithography; a simple fabrication 

method based on replica-molding from a predefined structural stamp [144]. This channel was 

used in Papers IV and V to enable controlled fluid flows, whereas simpler punched PDMS 

wells, conformally sealed to a support, were used in Papers II and III and throughout the thesis 

work for proof-of-concept measurements. 

In Paper I, a multifunctional pipette, also made from PDMS called the BioPen [145] was 

used to produce lipid films with desired composition. The BioPen is a non-contact open-

volume microfluidic device which can be loaded with several different vesicle suspensions. 

This pipette can then be submerged into the buffer and micromanipulated to being in close 

proximity to a surface of interest, which can then deliver an appropriate vesicle suspension. It 

utilizes a hydrodynamically confined flow (HFC) at the tip of the BioPen to create a confined 

solution droplet. Since this HFC region is dominated by laminar flow, then the circulating 

vesicle suspension does not mix with the buffer it is submerged in, but temporarily replaces the 

buffer with the vesicle suspension. The confined volume at the tip is maintained by means of 

positive pressure, injecting a fluid stream out of the tip into an open volume whereas negative 

pressures from adjacent channels, aspirate the solution back into the device, continuously re-

circulating the solution and maintaining a constant concentration. Adjusting different pressure 

levels allows control over the speed, area and solution type, which will be delivered to the 
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surface. In Paper I, the pipette was employed to produce lipid films with desired composition 

on a variety of surfaces. 

3.3 Size determination 

A multitude of crucial interactions and functions of biological nanoparticles are based on their 

size. As a result, there is a need to develop sensitive and powerful particle size determination 

techniques that can detect sub-200 nm particles. Current state-of-the-art particle sizing 

technologies take advantage of the random thermal motion of particles, known as Brownian 

motion. This random movement of particles was first identified by Robert Brown when he 

observed small particles ejected from pollen grains undergoing continuous, random motion 

when dispersed in water. The particle’s movement is characterized by rapidly changing 

velocities due to collision with solvent molecules, which are in constant motion with a thermal 

energy in the order of 𝑘B𝑇. Collisions between dispersed NPs and solvent molecules occur in 

all directions and at all interfaces in a motion known as a random walk, first characterized by 

Albert Einstein in 1905 (Figure 6) [146]. Einstein determined that the Brownian motion of 

particles relate to their diffusivity, 𝐷, through their mean squared displacement (MSD), which 

is the measure of particle deviation from its reference position as a function of time [146–148]: 

 𝑀𝑆𝐷(𝑡) = 〈(𝒓(𝑡) − 𝒓0)
2)〉 = 2𝑑𝐷𝑡 , 

 

3.3.4 

where 𝑑 is the number of dimensions (2 in our case), 𝒓0 is the reference position of the particle 

and 𝒓(𝑡) the position at time 𝑡. The probability distribution of such a particle’s displacement 

follows a Gaussian shape [146]. Here we should note the following assumptions: the mean free 

path of molecules is small compared to that of the particles [149]. We also neglect the inertia 

since 𝑡 is large [150]. However, for small time scales one could potentially see the effect of 

inertia (since the particle movement would be visible between collisions).  

Most commonly the MSD of an individual particle can be estimated from its 

experimentally measured trajectory for a given duration 𝑛Δ𝑡 (lag time) as follows 

[147,151,152]: 

 
𝑀𝑆𝐷(𝑛Δ𝑡) =

1

𝑁 − 𝑛
∑(𝒓𝑖 − 𝒓𝑖+𝑛)

2

𝑁−𝑛

𝑖=1

 , 𝑛 = 1, … , 𝑁 − 1 , 

 , 

 

3.3.5 

where 𝑁 is the number of frames, 𝒓𝑖 the particle position at frame 𝑖, whereas 𝒓𝑖+𝑛 the particle 

position after 𝑛 frames and Δ𝑡 the time interval characterized by the frame rate 1/Δ𝑡. 
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Figure 6. A simulated 2D random walk. 

Einstein also showed, among others [153,154], how the aforementioned diffusivity relates 

to the mobility of a particle [146], which is known as the Einstein relation: 

 𝐷 = 𝜇𝑘B𝑇 . 

 

3.3.6 

The mobility, 𝜇, of a particle is the ratio between its drift velocity, 𝑣, and the applied drag 

force 𝐹 (𝜇 = 𝑣/𝐹), and is inversely proportional to the friction (drag) coefficient, 𝜁, which 

characterizes the influence of the surrounding medium. In the case of spherical particles at low 

Reynolds numbers [149], the Stokes’s law [155] states that the friction coefficient is 

proportional to the (dynamic) viscosity, 𝜂, of the medium and the hydrodynamic radius, 𝑟, of 

the particle (𝜁 = 6𝜋𝜂𝑟). Thus, the Stokes-Einstein equation can be written: 

 𝐷 =
𝑘BT

6𝜋𝜂𝑟
 , 

 , 

 

3.3.7 

which shows that the diffusivity of a spherical particle depends (except for the thermal 

energy 𝑘B𝑇), only on the viscosity of the solution and the hydrodynamic radius of the particle 

itself [146]. 

The aforementioned relation between the size and diffusivity of a particle (eq. 3.3.7) and 

the possibility to determine the diffusivity from the MSD of a particle’s trajectory (eq. 3.3.4) 

are fundamental for the subsequent methods, as they enable to determine the hydrodynamic 

size of NPs from their trajectories. 
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3.3.1 Nanoparticle tracking analysis 

Nanoparticle tracking analysis (NTA) is one of the most commonly used optical methods for 

nanoparticle size determination, especially for BNPs such as extracellular vesicles [114]. 

Conventional NTA uses a collimated laser beam to illuminate particles in a suspension. The 

particles within the beam scatter light in every direction. This scattered light by each particle 

in the field of view can then be collected by an objective placed above the sample, fitted to an 

otherwise conventional optical microscope [124]. The scattered light is captured by a high-

speed camera, where the particles ongoing random movements in three dimensions will be 

visualized as bright/illuminated spots in the field of view. This facilitates individual 

identification and analysis of single particles by firstly calculating the diffusivity from its two-

dimensional MSD (eq. 3.3.4). From this, the hydrodynamic radius (𝑟) of each particle is 

extracted using the Stokes-Einstein equation (eq. 3.3.7) to reveal: 

  𝑟 =
𝑘B𝑇

6𝜋𝜂𝐷
 

 , 

 , 

 

3.3.8 

Since conventional NTA operates in scattering mode, with few instruments operating in 

both fluorescence and scattering mode [116], this size determination method is highly 

dependent on the optical properties (scattering cross-section) of the particles [156]. 

Consequently, materials with a refractive index significantly different from the dispersion 

medium (such as gold in water) are more easily detected than materials with a refractive index 

similar to the surrounding medium, such as lipid vesicles in buffer. Therefore, gold particles 

down to 30 nm can be detected whereas dielectric particles need to be somewhat larger (ranges 

from 70 nm to 1 µm [102,117] with rare examples of size determination down to 50 nm being 

possible [123]). The upper limit in size-determination is due to the inherently slow diffusion of 

particles larger than ~1 µm, which renders accurate size determination challenging. 

Furthermore, there are additional limitations associated with detecting and quantifying 

particle size distributions using NTA. The trajectory of particles within the solution can only 

be accurately observed as a two-dimensional projection. However, within a solution, particles 

are free to move in three-dimensions, which causes particles to move in and out of the focal 

plane. This 3D movement of particles leads to significant errors in the position-determination 

since the scattering from out-of-focus particles appears dimmer than when they are confined 

within the focal plane. Such particles thus appear faint or are even lost from the field of view 

altogether during tracking. The effect of the latter is more dramatic for smaller NPs, which 

diffuse faster and have a lower intensity due to a smaller scattering cross-section. Furthermore, 
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particles that are out-of-focus may contribute to an increased background signal and particles 

that are moving in and out of the focal plane, may be re-counted by the algorithm, thus leading 

to a bias in the statistics of the size distribution.  

In summary, although NTA can be utilized to estimate the size of NPs based on the 

fluorescence or scattering intensity, the accuracy of the method will be highly dependent on 

the signal intensity (contrast) and on how accurately the algorithm is able to determine the 

position of the NP, which should remain within the focal plane of the objective for as long as 

possible. The 3D movement of particles, however, leads to significant variance in the signal 

intensity, which can lead to unwanted artefacts and makes attempts to correlate intensity with 

NP size extremely challenging [157].  

3.3.2 Two-dimensional flow nanometry 

Some of the limitations associated with conventional NTA can be overcome by confining and 

restricting the movement of NPs within two dimensions. This was achieved recently by our 

group by coupling NPs to a fluid SLB, and thereby restricting the particles to the focal plane 

for a longer period of time [13]. This technique, known as two-dimensional flow nanometry 

(2DFN), improves the accuracy of both intensity and diffusivity estimations substantially, 

compared to NTA, allowing for precise size determinations of NPs 20-400 nm in diameter due 

to longer track lengths. 

In order to couple BNPs to a fluidic interface, a linker, such as self-inserting cholesterol-

modified DNA, must be inserted within the membrane of BNPs to allow for tethering to an 

SLB containing mobile complementary DNA (Figure 7). Due to this tethering approach, the 

theoretical principles used in NTA cannot be directly applied for 2DFN, as the lateral 

diffusivity of the linker-NP system is not primarily defined by NP size but rather by the slow 

diffusion of linker molecule in the SLB [90]. Specifically, the membrane friction experienced 

by the tethered particles is mostly defined by the number of linkers that are coupled to the fluid 

interface. Consequently, increasing the number of linkers between the NP and SLB will 

increase the membrane friction experienced by the linker, resulting in a decreased particle 

velocity. Since the diffusivity is reduced in the SLB, then in 2DFN it is possible to study the 

motion of fluorescently-labelled BNPs tethered to an SLB when subjected to a shear flow using 

a microfluidic channel. The applied shear force will scale with the particle size; thus, a larger 

force will make the BNPs move faster. In brief, by introducing hydrodynamic shear flow 

parallel to the SLB, the in-plane movements of BNPs can be monitored using total internal 
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reflection (TIRF) microscopy. In doing so, the individual size of the SLB-tethered BNPs can 

be elucidated by analyzing their trajectories when subjected to a shear flow [13], the physical 

principle of which is summarized below. 

 

Figure 7. Simplified schematic of 2DFN depicting the main components of the system with the 

respective forces and velocities: 𝐹shear is the relative force acting on the NP caused by the fluid flow 

velocity 𝑣fluid, resulting in a net flow-directional velocity of 𝑣𝑥  for the BNP. Whereas 𝐹friction is the 

frictional force stemming from the linkers in the SLB resisting the movement. 

When a bulk flow of liquid is applied above a planar SLB, the lipid bilayer and its 

constituents move in the direction of the bulk flow [158] and different sized components move 

with markedly different velocities. The friction coefficient, 𝜁, of a particle can be deduced from 

a laminar bulk-flow-induced shear force 𝐹shear, which creates a directed movement of the 

particle in direction of the flow [146]. Hence, it can be inferred that a larger force will cause 

an increase in the particle’s velocity. In a system consisting of a NP tethered to a fluid SLB via 

DNA linker molecules, the major two forces acting in the system (Figure 7) can be described 

as: 

 𝐹friction = 𝜁DNA𝑣𝑥  , 

 

3.3.9 

 𝐹shear = 𝜁NP(𝑣fluid − 𝑣𝑥) . 

 

3.3.10 

These forces are proportional to the friction coefficients 𝜁DNA and 𝜁NP, where 𝐹shear is the 

relative force acting on the NP caused by the fluid flow velocity 𝑣fluid, resulting in a net flow-

directional velocity of 𝑣𝑥 for the NPs, and 𝐹friction is the frictional force stemming from the 

linkers in the SLB resisting the movement. It should be noted that the flow-induced motion of 
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the SLB is negligible at the volumetric flow rates used in this work. When the NP reaches 

equilibrium velocity these two forces are opposite and equal in magnitude: 

 𝐹friction = 𝐹shear . 

 

 

3.3.11 

Therefore, by combining equations 3.3.9 and 3.3.10 we get: 

 𝜁DNA𝑣𝑥 = 𝜁NP(𝑣fluid − 𝑣𝑥) ⇔ 𝑣fluid𝜁NP = 𝑣𝑥(𝜁DNA + 𝜁NP) . 

 

3.3.12 

Furthermore, the fluctuation-dissipation theorem states that the forces that cause random 

fluctuations in a system at equilibrium, also create dissipation/friction when the system is 

subject to a non-random force [159]. In our context, the non-random drag force in the system 

creates a directed movement of the NP whereas the dissipation is related to the diffusivity of 

the NP and the tether system. By assuming that the frictions are additive in such a multi-

component system, then 𝜁 = 𝜁NP + 𝜁DNA. 

Therefore, according to Einstein’s relation (eq. 3.3.6), the friction coefficient 𝜁 (inverse of 

mobility) is also related to the diffusivity of the NP-linker system [146]: 

 
𝜁 =

𝑘B𝑇

𝐷
 . 

 

3.3.13 

Thus, the movement of a NP tethered to an SLB under an applied shear force can be divided 

into two components: (i) directed, non-random NP movement in the flow direction induced by 

the shear force, and (ii) random movement perpendicular to the flow due to lipids diffusing and 

interacting with the linker in the membrane. Combining the previous equations 3.3.12 and 

3.3.13 yields: 

 
 𝑣fluid𝜁NP =

𝑘B𝑇𝑣𝑥
𝐷

 , 

 

3.3.14 

with the left side of equation 3.3.14 being simply the shear-force on the particle and is given 

by Stokes’s law (𝜁NP = 6𝜋𝜂𝑟) [155]. Hence the expression can be reduced to:  

 6𝜋𝜂𝑟𝑣fluid⏟      
Stokes

= (𝑘B𝑇𝑣𝑥)/𝐷 ⏟      
measured

  , 

 

3.3.15 

where 𝜂 is the dynamic viscosity of the surrounding medium, 𝑣𝑥  the average velocity of the 

particle. Here it is important to note, that since the force on the left side of equation 3.3.15 

contains no tether dependence, then 𝑣𝑥  and 𝐷 on the right side will cancel out tether 

dependency and thus the force acting on the particle can be extracted directly. 
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By measuring the individual trajectories, i.e., MSD of tethered NPs in the xy-plane as a 

function of time, the diffusion coefficient, 𝐷, can be evaluated by studying the NP’s y-position 

(Figure 8, bottom left), while the flow-directional velocity (𝑣𝑥) of the NP can be deduced by 

studying the NP’s x-position (Figure 8, bottom right).  

 

Figure 8. Characteristic track of a tethered BNP, showing the x-directional motion being dominated by 

a directed movement while the y-directional motion follows random Brownian motion. 

Although equation 3.3.15 is valid for a simple system, some assumptions will still need to 

be made to determine the size distribution of NPs tethered to an SLB. This is because for fluids 

with non-zero viscosity, 𝑣fluid is strictly speaking position dependent. For laminar flow, the 

velocity profile of the fluid will have a parabolic shape with maximum velocity in the center 

of the channel and lower at the walls, floor or ceiling [160]. However, close to the surface and 

over short distances, the velocity profile can be approximated by a linear function (
𝜕𝑣fluid

𝜕𝑧
=

𝑢0) [158,161–163] as seen in Figure 9a. Furthermore, it is usually assumed that the flow 

velocity of a viscous fluid close to a surface is zero, as mass cannot penetrate the solid surface 

and the cohesive forces between the molecules of the fluid are overcome by their adhesion to 

the surface [160]. However, there are several reports claiming that this so-called “no-slip” 

boundary condition is not strictly valid in all scenarios [164–167], thus a slip length must be 

introduced into our equations. The slip length 𝜆 can be described as an imaginary distance 

below the surface where the no-slip boundary condition would otherwise be satisfied while 

assuming a parabolic flow profile (Figure 9a) [167] and can also include the length of the linker 

molecule. Taking these two assumptions into account, the flow-directional velocity 𝑣fluid  at the 

center of the tethered NP of radius 𝑟, can be presented as: 
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 𝑣fluid = 𝑢0(𝑟 + 𝜆) ,   

 

3.3.16 

Consequently, by combining equations 3.3.15 and 3.3.16, the force 𝐹measured acting on a 

particle in a 2DFN experiment can be determined via: 

 
𝐹measured ≡

𝑘B𝑇𝑣𝑥
𝐷

= 6𝜋𝜂𝑟𝑣fluid = 𝐴𝜂𝑢0𝑟(𝑟 + 𝜆) 

 , 

 

3.3.17 

where A is a constant that accounts for the channel geometry and inhomogeneous flow profile 

around the NP. It should be noted that both 𝐴 and 𝜆 can be determined via calibration with NPs 

of known size for a specific channel geometry.  

Thus, by measuring the individual trajectories of BNPs, the flow-directional velocity of a 

nanoparticle (𝑣𝑥) and the average diffusivity of the NP-linker system (𝐷) can be found. 

Consequently, if the latter two are known, the hydrodynamic force acting on each tracked NP 

can be directly determined via eq. 3.3.14. The shear force, along with the determined 

calibration parameters, can subsequently be used to determine the hydrodynamic size of the 

bound nanoparticles without directly probing a signal proportional to their size (Figure 9b). 

 

Figure 9. (a) A BNP tethered to an SLB via DNA linkers, experiencing a laminar shear flow causing 

the particle to move in the flow direction. 𝜆 indicates the slip length. (b) EV size distribution acquired 

with 2DFN. 

2DFN offers several key advantages as a size determination technique, compared to 

conventional NTA. One clear advantage of 2DFN is the ability to accurately quantify the 

fluorescence intensity of BNPs. This is achievable since in the TIRF microscopy setup, the 

BNPs are confined to the surface during measurements, which allows to accurately probe the 

intensity of those fluorescently labeled BNPs that are coupled to the surface. Therefore, it is 

possible to correlate the fluorescence intensity of BNPs to their independently determined size. 
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For example, for BNPs with a homogenous surface dye concentration such as vesicles 

containing lipid-conjugated dyes, the TIRF intensity is expected to be proportional to their 

size [168]. However, it is speculated that dye distribution is commonly inhomogeneous in more 

complex biological systems, such as viruses and exosomes, where lipid-conjugated dyes cannot 

be used. Thus, in Paper IV, the 2DFN technique was used to determine the size, independent 

of fluorescent intensity, of the following BNP systems: artificial lipid vesicles, NMVs and EVs 

(Figure 9b).  

3.3.2.1 Hindered diffusion 

It has been previously demonstrated that fluorescence microscopy combined with single 

particle tracking can resolve the different number of cholesterol-DNA linkers, based on the 

diffusivity of vesicles tethered to an SLB [169]. However, in diffusion measurements for linked 

NPs the contribution of the vesicle is often assumed to be negligible. Under the assumption 

that the frictions are additive the contributions of the NP-linker system can be written as: 

 𝜁Σ = 𝑁𝜁linker + 𝜁NP  , 

 

3.3.18 

where, 𝑁 specifies the number of linkers between the NP and SLB, whereas 𝜁linker and 𝜁NP are 

the friction coefficients of a single linker and tethered NP, respectively. Thus, if the number of 

tethers is known for a certain NP size distribution and if 𝜁linker is independent on BNP size, 

then the two contributions can be separated by using 2DFN, which enables simultaneous 

measurements of the diffusion and size of the NP-linker system. However, to be able to directly 

categorize the vesicles into classes containing a certain number of tethers, the effect from an 

additional tether must be large enough, so that the relative change in diffusion is larger than 

the spread in measured diffusivities.  

The diffusion of a particle near an interface is different compared to bulk, and is influenced 

by its distance to the interface. The correction imposed on the hindered lateral diffusivity 𝐷 of 

a NP due to the presence of a wall can be expressed as [150]: 

 𝐷 ≈ 𝐷∗ [1 −
9
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3.3.19 

where 𝜆 is the slip length (Figure 9) and 𝐷∗ is the free diffusion in bulk. Thus, by investigating 

how the diffusion of the tethered NP scales with size, we can get information on the slip length. 

These aspects were studied in Paper V by using SUVs with a few numbers of tethers, to 

determine the drag contribution from the SUV and to estimate the slip length. 
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3.3.2.2 Data analysis 

The data analysis of 2DFN is very sensitive to several parameters, which will be discussed 

more thoroughly below.  

One such parameter is the distance cutoff, determining whether it is a unique particle that 

is being followed, i.e., if it belongs to a unique track, which is defined by a maximum distance 

between two ‘particles’ in two consecutive frames. This value is dependent on the surface 

coverage of the particles, since to avoid linking of two different particles in close proximity, 

the cutoff must be lowered when the density is high. This value is selected by using a large 

distance cutoff and plotting all mean squared displacements. By linearly fitting the initial data 

points, it is possible to evaluate where the true tracks meet the noise (the false linking events). 

This intersection (Figure 10) then defines the cutoff value that is used in the analysis.  

 

Figure 10. Logarithmic representation of the normalized count as a function of MSD. The cutoff value 

is evaluated at the intersection where the linear fit (red line) crosses the average noise, which in this 

case is 50.  

For accurate intensity determination, multiple parameters which help to mitigate the 

influence of potential bleaching and other factors, must be chosen very carefully, since the 

resulting intensity distribution can be affected by several factors, such as uneven illumination, 

tracking errors, dye transfer to the SLB and mode of illumination (TIRF vs. EPI). Due to the 

aforementioned factors, the intensity of an individual particle can fluctuate quite significantly 

along the particle trajectory as it moves across the field-of-view. Typically, the average 

intensity throughout the whole trajectory is measured, but this would result in unnecessary 

fluctuations. Therefore, to lower the fluctuations, the intensity was determined in the middle 

100 px of the field-of-view, where the TIR light hits the sample and consequently results in the 
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greatest signal-to-noise. Furthermore, to remove any potential tracking errors, which cannot be 

excluded with the distance cutoff, e.g., the linkage of two particles that are in close proximity, 

tracks with unreasonably large fluctuations around their average intensity value were removed. 

This was done by first measuring the intensity over time for a few immobile particles per 

movie. The particle with the highest standard deviation relative to its mean value was used as 

an upper limit, to include everything below that value in the intensity versus size graph. 

Specifically, this relative standard deviation of the intensity ranged between 10-25%. 
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4 Summary of results 

The majority of findings obtained in this thesis work are captured in five papers, which are 

summarized and detailed below. A few additional results are briefly summarized in the Future 

outlook chapter. 

4.1 Paper I 

Supported membranes are attractive cell membrane mimics, as well as excellent interfaces in 

sensing and implants. Since the type of lipid structure formed on inorganic surfaces is 

dependent on the structural and chemical properties associated with the substrate, it is 

fundamentally important to understand (i) what surfaces support lipid membranes, and (ii) the 

key surface characteristics that control membrane self-assembly. Accordingly, the application 

of supported membranes in the development of new sensors and devices incorporating lipid 

membranes is dependent on finding compatible lipid-surface combinations. In the context of 

this thesis, it was important to know which substrate-lipid combination will yield the most 

suitable membrane assembly for attachment of biological nanoparticles. Therefore, in Paper I, 

we employed confocal laser scanning microscopy (CLSM) to study vesicle adsorption and 

membrane formation on a multitude of biologically relevant microengineering materials. These 

optically transparent materials comprised of borosilicate glass, mica, SiO2, Al (native oxide), 

Al2O3, TiO2, ITO, SiC, Au, Teflon AF, SU-8 and graphene. A key component to facilitate this 

study was the BioPen [145], which enabled local deposition of small unilamellar vesicles 

(SUVs) containing various ratios of zwitterionic POPC and cationic DOTAP lipids. Using this 

microfluidic device, the SUVs were circulated in a hydrodynamically confined volume near 

the device tip in close proximity to the surface, which led to adsorption of the vesicles, under 

certain conditions being followed by vesicle rupture and formation of planar membrane films. 

Since the cationic nature of DOTAP affects membrane formation, we measured the surface 

potential for each surface and, to our knowledge, for the first time on graphene. The findings 

of this work are summarized in Figure 11. Typically, adhesion without immediate rupture was 

associated with a high fraction of POPC lipids while an increasing content of positively charged 

lipids rendered membrane formation and spreading increasingly favourable. In general, mono-, 

bilayer and double bilayer formation was observed depending on the lipid content and 

underlying surface. Since borosilicate glass facilitated formation of continuous fluid supported 

lipid bilayers irrespective of lipid composition, it emerged as the most ideal and robust substrate 

for membrane formation. 
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Figure 11. Diagram of lipid-surface interactions depending on the lipid composition and surface charge 

(displayed on the y-axis as Ζ-potential at pH 7.4). Colors represent different film structures, ranging 

from adhered vesicles (magenta) to mono-(blue), bi-(green) or double bilayer (orange and red) 

membranes. Shapes denote observed spreading (squares - non-spreading and circles - spreading films, 
while the diameter of the circles is proportional to the delta-spreading radius). Background shades are 

used to indicate approximate regions in the diagram, where certain behaviors are more dominant, even 

though there are exception to these general tendencies. 
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4.2 Paper II 

Supported lipid bilayers (SLBs) mimic several key features of cellular membranes, such as 

planar geometry and lateral fluidity. In all studies concerning SLBs, the quality of the SLB is 

a critical factor that influences its function and utility. Therefore, significant efforts have been 

invested to gain an in-depth understanding of the SLB formation process [62,63,170–175]. 

Further, utilizing SLBs as a core of the measurement approach taken to characterize biological 

nanoparticles (Papers IV and V), places specific weight upon highly reproducible SLBs. 

Therefore, in Paper II, we employed TIRF microscopy to study SLB formation kinetics on 

borosilicate glass. In comparison to how fluorescence microscopy was previously employed to 

study SLB formation [176,177], we labelled only a small fraction (1%) of the vesicles, allowing 

the individual adsorbed vesicles and SLB patches to be monitored simultaneously, since in this 

way, vesicle rupture into SLB patches increased the optical contrast between the patches, 

adsorbed vesicles and uncovered regions of the surface [100]. Resolving individual vesicles 

allowed the entire SLB formation process to be observed, from individual vesicles to small 

SLB patches, and finally coalescence to a full SLB. To quantify the individual SLB patches 

and variations in patch-growth scenarios, the boundary of each patch was identified for each 

analyzed time point and subsequently used to calculate the average front velocity. It was 

concluded from our analysis that the average front velocity tends to increase dramatically, up 

to one order of magnitude, even though the surface density of adsorbed vesicles increases only 

marginally by about 8% (Figure 12). This finding is considered significant as typically the front 

velocity of a spreading lipid mono-or bi-layer front on hydrophobic and hydrophilic surfaces, 

respectively, is either decreasing or stagnant over time [39,42,45]. 
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Figure 12. Typical patterns observed during the SLB patch growth and the corresponding dependence 
of the average front velocity with time: (a) single patch formation and expansion (snapshot interval 

60 s), (b) small patches merging into a bigger patch (snapshot interval 24 sec), and (c) propagating SLB 

front (snapshot interval 30 sec). Scale bars represent 20 µm. The color of the perimeter lines used in the 

images, indicates the local front velocity of the SLB patch. 

To theoretically address the rate of SLB growth, two different scenarios regarding the 

incorporation of lipids into the SLB patch after the rupture were examined: local relaxation 

and global relaxation. In the local relaxation scenario, the lipids belonging to a ruptured vesicle 

are assumed to form a circular SLB, where the growth is restricted to the immediate vicinity of 

each ruptured vesicle. In this scheme, no significant lipid rearrangement in newly-formed 

patches occurs, implying that the overlap with the existing SLB patches can be interpreted as 

either a double bilayer or material loss. In the global relaxation scenario, all lipids from 

ruptured vesicles will instead rapidly diffuse along the substrate and merge with the patch 

inducing their rupture, resulting in a circular SLB. The majority of the experimental 

observations followed the global relaxation model, manifesting in increasing front velocities 

(Figure 12). The global model also describes the observed cases, where the local coverage of 

vesicles was low. In these cases, the growth halted until more material for sustainable growth 

was introduced.   
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4.3 Paper III 

A major challenge in oral drug delivery is the transport of drug molecules across the intestinal 

epithelia, which is limited by the aqueous solubility and permeability of the drug compound 

[178]. This is complicated by the fact that the major portion of newly-developed drug entities 

are poorly soluble and poorly permeable [179], which limits their oral absorption into the 

systemic bloodstream. Subsequently, it is of significant interest to investigate how poorly 

soluble drug molecules interact with lipid bilayers to simulate the absorption pathway across 

intestinal epithelia cells, especially when the drug is solubilized by exogenous lipid vesicles 

present in the gastrointestinal tract. Motivated by the SLB formation studies in Paper II, we 

devised a method in Paper III to monitor drug permeability through synthetic SLBs formed on 

a mesoporous silica thin film (MSTF) substrate. MSTFs were selected as the optimal substrate 

for this study since they (i) have previously been shown to be suitable supports for SLBs 

containing transmembrane proteins [82], and (ii) are highly porous substrates which introduces 

the ability to monitor drug diffusion across the lipid bilayer, into the silica mesopores. The 

integrity of the lipid membrane was verified using fluorescence recovery after photobleaching 

(FRAP), and it was found that POPC SLB adsorbed on MSTF exerted a ~2-fold greater 

diffusion rate compared to the POPC SLB on the flat silica substrate.  

Importantly, since the MSTF was spin-coated on glass, it was possible to illuminate the 

sample at a greater angle of incidence, thereby restricting the evanescent illumination to within 

the MSTF only, i.e., below the SLB. In doing so, it was possible to monitor the time-dependent 

permeation of the model poorly water-soluble drug, felodipine, across the SLB by examining 

changes in fluorescence intensity within the MSTF (Figure 13). To solubilize felodipine and 

mimic the conditions in the small intestine, a fasted-state simulated intestinal fluid (FaSSIF) 

media was used, which contains a biologically relevant concentration of exogenous lipids that 

form micelles and other solubilizing colloidal vesicles [180]. The permeation behavior of 

felodipine was contrasted between (i) the pure drug, (ii) drug solubilized in fasted-state 

micelles, and (iii) drug solubilized in fasted-state micelles coupled with a widely used 

permeability enhancer, caprylic acid (C8). The change in fluorescence intensity associated with 

felodipine permeating across the SLB, into the MSTF pores, was insignificant for the pure 

drug, highlighting its poor solubility and inability for precipitated drug to diffuse across the 

SLB. When solubilized in FaSSIF, the fluorescence intensity within the MSTF pores was 

several times greater than the pure drug, indicating that felodipine is permeable in its dissolved 

form. However, of greatest significance, when felodipine was administer with FaSSIF and C8, 
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drug permeation was increased by a factor of 5 compared to FaSSIF alone, providing evidence 

for C8-mediated drug transport across a lipid membrane, while validating the potential for this 

approach to successfully quantify formulation-induced changes to drug-permeation. 

 

Figure 13. (A) TIRF micrographs at various time points highlighting felodipine permeation across the 

lipid bilayer into the pores of the MSTF, when solubilized within FaSSIF without a permeation enhancer 

(top row) and with C8 (bottom row). Scale bars = 20 µm. (B) Fluorescent intensity distributions, fit 

with a normal distribution, for felodipine patches within MSTF when combined with FaSSIF (blue bars) 
and FaSSIF with C8 (red bars). (C) Mean normalised fluorescence as a function of time for felodipine 

within MSTF when administered with buffer (green triangles), FaSSIF (blue squares) and FaSSIF with 

C8 (red circles). 
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4.4 Paper IV 

The development and advancement of novel nanoparticle size determination and 

characterization techniques is integral for improved understanding of cellular processes 

involving biological nanoparticles (BNPs), such as cellular communication and viral infections 

[95,98,181,182]. Since BNPs are typically very heterogeneous, there is a demand for 

techniques that provide simultaneous information of multiple parameters, such as size and 

concentration, preferably with single BNP resolution. To achieve this, we used TIRF 

microscopy combined with microfluidics in Paper IV to study fluorescently-labelled BNPs 

with varying complexity tethered to an SLB. Two-dimensional flow nanometry (2DFN) was 

utilized in this approach by applying shear force to the vesicles, allowing for the Brownian 

motion of tethered vesicles to be decoupled from their directed motion. In doing so, the 

hydrodynamic size and fluorescent emission could be determined independently for each 

tracked BNP [13].  

In previous work, it was verified that fluorescence intensity could be correlated to vesicle 

size for a fluorescent lipid-dye (Rhodamine-DOPE), which was incorporated during vesicle 

fabrication [13]. However, dye-labeled lipids cannot be incorporated into native biological 

membranes without severely disturbing the lipid organization, since they need to be introduced 

by lysing the membrane through sonication or similar. To this end, self-inserting lipophilic 

dyes originally developed for cell-membrane labeling have gained increased popularity for 

labeling of BNPs [183–186]. However, despite the extensive use of lipophilic dyes, it remains 

unclear how they are incorporated into complex BNPs, and how this incorporation depends on 

BNP type, size and molecular composition. In this paper, we therefore used 2DFN to explore 

the correlation between the dye incorporation efficiency and BNP size. Specifically, 2DFN was 

utilized to independently derive the size and fluorescence intensity of model BNPs with varying 

complexities, ranging from artificial vesicles to NMVs and EVs, using the lipophilic-staining 

dye, spDIO, which has been routinely utilized to label cell membranes without negatively 

affecting membrane fluidity [140,141].  

It was shown that the fluorescent intensity of synthetic vesicles scaled with their membrane 

area, while for more complex BNPs, labelled with spDIO, the incorporation efficiency was 

significantly lower than for synthetic POPC and a significantly weaker dependence on size was 

observed (Figure 14). The latter observation is attributed to a size dependent difference in 

membrane composition, which may influence either the optical properties of the dye and/or the 
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insertion efficiency, indicating that the fluorescence emission of this type of self-inserting dyes 

may not serve as reliable probes to estimate the size of BNPs with complex lipid compositions. 

While the observed reduction in fluorescence intensity is attributed to lower incorporation 

efficiency, an influence on the fluorescence emission from membrane environment cannot be 

excluded.  

 

Figure 14. Size distribution determined using 2DFN of spDIO-labelled a) POPC vesicles and b) EVs 

with corresponding log-normal fits (black lines). The insets in a) and b) depict the spread of diffusivity 
in relation to the hydrodynamic radius of the BNPs. Fluorescence intensity versus hydrodynamic radius 

log-log plots for spDIO-labelled c) vesicles with a linear fit (red) of 2.0 ± 0.3 (with 95% confidence 

bands) and d) EVs with a linear fit (red) of 0.6 ± 0.2 (with 95% confidence bands, 10 cholesterol-

DNA/BNP). Only tracks longer than 100 frames were used in the analysis.   
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4.5 Paper V 

Multivalent interactions are widespread in biological processes, especially in the interaction 

between biological nanoparticles and cellular membranes [187,188]. Lipid vesicles tethered to 

SLBs offer a unique model system to quantify multivalent interactions in physiologically 

relevant conditions via the dependence of nanoparticle diffusivity on the number of discrete 

linkers [91,189]. More specifically, since it can be assumed that various friction contributions 

are additive, the inverse diffusion scales approximately linearly with the number of linkers and 

the size of the vesicle. However, in these systems the friction contribution originating from the 

size of the NP in the NP-linker system is often assumed to be negligible compared to the friction 

of the linkers. 2DFN, which was used in Paper IV, can test the limits of this assumption, since 

it enables to simultaneously investigate the diffusivity and size of the NP-linker system under 

controlled flow conditions. Thus, in Paper V, we employed 2DFN with small unilamellar 

vesicles (SUVs; r~30 nm) containing only a few cholesterol-DNA linkers to disentangle the 

contribution of the NP and tether from the total mobility of the system. When monitoring the 

diffusivity and velocity of a single NP, we observed that in the regime of few tethers, the data 

is spontaneously organized in clusters which are related to vesicles tethered with different 

numbers of linkers (Figure 15). Note that inverse diffusivity has been used here, because it 

makes the interpretation of the results easier as it is directly proportional the addition of friction 

terms in the NP-linker system, and helps to illustrate that the effect of the particle size of the 

NP-tether system should not be disregarded when the number of DNA tethers is 1 – 3. 

Furthermore, by changing the ionic strength of the system, it was observed that the relative 

ratio of vesicles for the various tether populations changes (Figure 15c). An additional result is 

that the diffusion coefficient of a single DNA linker for our case can be estimated to be 

2 – 2.5 µm2/s, which is reasonable in comparison with diffusivity values for single lipids within 

SLBs on a glass surface.  
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Figure 15. Flow-directional velocity versus inverse average diffusivity at 50 mM NaCl of (a) small 

unilamellar vesicles (SUVs), where the clustering, indicating differently tethered populations, is visible. 

The SUVs have on average 3 tethers per vesicle. The dashed red lines in (a) designate the selection 
based on the number of tethers (1, 2 and 3 respectively). (b) Inverse average diffusivity versus the 

hydrodynamic radius for SUVs based on each selection. The intercepts correspond to the diffusivity of 

the tethers without the contribution of the SUV. The linear fits (orange) are the following: 1-tether: 

𝐷𝑎𝑣
−1 = 0.009𝑟ℎ𝑦𝑑𝑟𝑜 + 0.42; 2-tether: 𝐷𝑎𝑣

−1 = 0.010𝑟ℎ𝑦𝑑𝑟𝑜 + 0.82; 3-tether: 𝐷𝑎𝑣
−1 = 0.009𝑟ℎ𝑦𝑑𝑟𝑜 +

1.37. (c) Relative frequency of few (≤2) and many (>2) tethers versus external salt concentration 
showing that the average amount of tethers per vesicle increases with increasing salt. The average 

diffusivity (red) decreases with increasing salt concentration. 

 

  



49 

 

5 Future outlook 

In addition to the papers included in the thesis, there are several prospective projects furthering 

nanoparticle characterization, which will be discussed below. 

5.1 Determination of BNP concentration 

To compliment the information about the size, molecular content and structure obtained by 

using the techniques described in this thesis, it is also crucial to quantify the concentration of 

BNPs. The BNP concentration can be central for medical applications, for example, it is 

believed that the concentration of specific EVs, e.g., exosomes, is altered for patients affected 

with certain diseases [190]. Recently, Rupert et al. used surface plasmon resonance 

spectroscopy to determine exosome concentration in solution from the rate of exosome binding 

under diffusion limited conditions [191]. We planned to further this research by measuring both 

the rate binding of individual vesicles to an SLB combined with the 2DFN approach described 

in section 3.3.2 and Papers IV and V. The adsorption kinetics of vesicles can be investigated 

by directly measuring the rate of binding to a surface or to an SLB via tethering-chemistry. The 

rate of adsorption to the surface can follow two pathways: (i) reaction-limited binding, where 

the binding kinetics is determined by the actual binding to the surface or (ii) diffusion-limited 

binding, where the binding to the surface is so fast that the rate of binding is controlled by 

diffusion across a depletion zone near the surface. For rectangular flow geometry, the mass 

transfer to the surface can be characterized by the mass-transport coefficient [192,193]: 
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5.1.1 

where 𝐷𝑖 is the diffusion coefficient of the vesicle population with size 𝑖, 𝑄 the volumetric flow 

rate, and h, w, l are the height, width, and length of the channel, respectively. The rate of 

binding is then proportional to the analyte concentration according to [170,194]:  

 Γi
Δ𝑡
= 𝑘𝑀𝐶𝑖  , 

 

5.1.2 

where Γ𝑖/Δ𝑡 is the rate of binding per surface area of vesicle subpopulation with size 𝑖 and 𝐶𝑖  is 

the concentration of the corresponding subpopulation. However, the adsorption rate to the 

surface under flow conditions may differ at various points on the surface, depending on the 

distance from the inlet to the measurement area [170]. Therefore, we designed a PDMS chip 

(Figure 16a) to minimize effects from depletion and buildup of a depletion layer, which can be 

caused due to liquid passage between the measurement area and the sample container. In order 
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to test the PDMS chip design, we measured several time series of Rhodamine-labelled POPC 

vesicles binding to the glass floor of a microfluidic chip. Figure 16b shows two binding 

experiments with the same flow rate, but in different regions of the PDMS chip. The higher 

rate of binding was observed in the second region of the channel, which consequently lead to 

differences in the concentration estimation. The concentration was calculated according to eq. 

5.1.2 and compared to the concentration value estimated from the molar concentration of 

vesicles in the prepared solution determined the total amount of lipids and their size distribution 

according to NTA data. While comparing these two values, an agreement better than >90% 

(out of >10 experiments) was obtained for the data recorded in the second region of the channel. 

In principle, this result suggested that the chip design was suitable for further experiments.  

 

Figure 16. Microfluidic flow chamber specifics (a) Schematic of the channel geometry. Two equal 

flows of the sample from inlet 1, and buffer from inlet 2, are introduced simultaneously, whereas 3 acts 
as an outlet. During this introduction, a fluorescent time series of images is taken in the 1st region. 

Following this, outlet 3 is closed, and inlet 2 is opened, while the sample is still being introduced from 

inlet 1. Another time series is taken in the 2nd region. (b) Number of detected vesicles within the 1st 
(black dots) and 2nd (red squares) regions of the channel plotted versus time, for a 100 × 100 μm2 surface 

area. 

This approach can in principle be extended to BNP binding to an SLB. However, it remains 

difficult to combine both the size and concentration determination in one experiment, to in that 

way determine both the concentration of differently sized particle sub-populations and 

molecular content. To ensure mass-transport limited conditions, a high-affinity binding 

chemistry such as neutravidin-biotin is needed. However, particles tethered in this way are not 

easy to shear with a hydrodynamic flow. Another option is to continue with DNA-tethering, 

with mobile vesicles as was done in 2DFN. However, this might switch the rate of binding to 

the reaction-limited regime, which will require calibration data in which the reaction kinetics 

is verified. Alternatively, as the 2DFN method can be used to determine if a specific BNP-dye 
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combination incorporates proportionally to particle size (Paper IV), this approach could be 

combined with the concentration determination of BNPs obtained from the rate by which they 

bind to the surface. In this way, one could in principle determine both the concentration and 

individual size of complex BNP sub-populations. In either case, this would enable for the 

method to become more multi-parametric, by enabling size, concentration and molecular 

content determinations – all in one experiment.  

5.2 Native drug-delivery vehicles 

Since drug delivery vehicles made of synthetic lipids encounter a multitude of limitations for 

in vivo applications, much interest has been focused on harnessing BNPs for drug-delivery 

applications [195]. For example, limitations such as poor uptake and non-specific drug release 

can potentially be overcome by using NMVs (more thoroughly discussed in section 1.4.3), 

which are obtained via mechanical cell lysis [100], or exosomes [196]. Compared to synthetic 

vesicles, NMVs have high biocompatibility, long retention time in vivo and efficient cellular 

uptake [197]. Further, NMVs can be combined with mesoporous silica nanoparticles (MSNs) 

which have several beneficial properties – tunable size, high stability, high biocompatibility, 

high drug loading, and controlled drug release [79]. In future work, we will explore this 

possibility by sonicating NMVs together with MSNs, similarly to how synthetic vesicles were 

previously used for the same purpose [198]. To validate if the MSNs are lipid coated, both 

membrane dyes and TEM will be used (having uncoated bare particles as the control) [199]. If 

protocols can be found to ensure the encapsulation of MSNs was effective, we plan to 

determine if cellular uptake of native MSNs is increased in vivo, compared to non-native 

protocells. 

5.3 Multiplexed characterization of biological nanoparticles under flow 

BNPs like viruses and EVs commonly serve as carriers of various bioactive cargo, such as 

mRNA, DNA and proteins protected by the membrane envelope. In Paper IV we found that 

the complex membranes of NMVs and EVs affect incorporation efficiency of linkers and dye 

labels. Membrane composition and morphology is instrumental for the biological function of 

BNPs as membrane-membrane interactions will define the entry, or absence thereof, of the 

BNPs in a given cell. However, the final biological effect, whether beneficial or hazardous, 

will be determined by the interaction of the contents of the BNPs with the cell machinery. Thus, 

it is of relevance to precisely determine the content within BNPs and identify their sub-

populations in size using 2DFN. One instructive illustration of the significance of such 
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investigations is that for viruses such as influenza A and HSV-1, only a small sub-population 

of the whole virus population is infectious and it is currently very challenging to ascertain 

which parameters differentiate the harmful viruses from the inert ones [200–202]. Furthermore, 

for BNPs, depending exclusively on labeling restricts the analysis to components which can be 

efficiently labelled and may also perturb the function of the particle. To overcome these 

potential limitations, but still benefit from chemical recognition given by fluorophore labels, a 

combined TIRF and interferometric scattering microscopy (iSCAT) approach may be 

used [203]. iSCAT does not rely on efficient dye incorporation since it is a label-free technique 

where the signal is based on interferometric scattering [203]. This signal is related to the dry 

mass of the BNP, which in turn, can be used to estimate the amount of cargo inside the 

BNP [204]. Furthermore, the combined information about size and iSCAT signal could 

potentially be used to quantify both size and effective refractive index on a single-particle level. 

Nevertheless, the complimentary fluorescence signal can still be used to label the BNP itself. 

The multiplexed nature of the technique could also be used to measure and thus differentiate 

between sub-populations of different EVs or separate viruses with and without cargo. This 

combined approach could also solve the potential issue of encapsulation efficiency in the 

prospective NMV-coated MSNs approach by using membrane-dyes in the native lipid 

membrane while observing whether the NPs are indeed loaded with MSNs by monitoring their 

scattering signal with iSCAT. 

5.4 Viruses and two-dimensional flow nanometry 

Many membrane-enveloped viruses, for instance HSV-1, are known to attach to the membrane 

of the host cell and diffuse through a rather large region of the membrane surface before 

entering the cell through fusion between its viral envelope and the plasma membrane, whereby 

the host cell is usually killed in the viral replication process [205]. Attachment of various 

viruses is mediated by specific glycoproteins on the surface of the virus, which bind to 

receptors/sugar molecules on the cell surface [206], facilitating transmission of virus between 

the host cells. Since the viral entry is mediated by membrane fusion through the binding of 

protein ligands to cell-surface receptors, this opens up a possibility to monitor virus binding to 

cell membrane mimics (see section 1.3) and the mobility of the virus on the surface using 

advanced surface-based characterization techniques, such as 2DFN, that can effectively 

monitor this process. A better understanding of the virus-membrane interaction could help 

develop new drugs that inhibit the binding/mobility of the viral particle and therefore stop the 

infection in the early stage. In addition, such experiments may shed light on differentiating two 
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sub-populations as mentioned above. It might be the case that the virus particles in the non-

infectious sub-population have all the genetic material and proteins needed for a successful 

infection, but, due to some defect, lack the capabilities for entering the cell efficiently. As 

described in previous chapters 2DFN can simultaneously access size and composition (via 

targeted protein or membrane labelling) of BNPs. This will allow performing population 

studies in virus samples, which can be compared with independent infective tests such as the 

well-established plaque assay. Even though, it was evident from the results presented in Paper 

IV that the incorporation of cholesterol-DNA as well as labelling was affected in case of native 

BNPs, preliminary experiments have already demonstrated that, from the point of view of 

labelling and cholesterol-DNA tethering to an SLB, 2DFN can be successfully applied to 

HSV-1 as well.  

5.5 High-throughput size determination 

Since incorporation efficiency of DNA-linkers is dependent on the membrane of the BNP as 

inferred from Paper IV or even impossible in the case of BNPs without a membrane envelope, 

it is crucial to find means to carry out similar measurements in bulk. Contrarily to ordinary 

2DFN, it is possible to confine individual particles in high-aspect ratio nanochannels of 300 

nm in both width and height, but several millimeters in length. Since the particles are of similar 

size as the channel cross-section, they will be unable to diffuse perpendicularly to the flow 

direction. In the flow direction they will experience hindered diffusion and thus a similar 

correction factor as presented in eq. 3.3.19 can be used together with the contribution from all 

channel walls [207]. In this way, the size of BNPs can be estimated from their flow-directional 

diffusivity by taking appropriate corrections into account. Furthermore, as these NPs stay 

within the focal plane, the intensity determination will be similar to the 2DFN case, which 

consequently enables the simultaneous determination of size and intensity of different BNPs 

in a high-throughput manner. Figure 17 shows the measurement set up and a dataset with 

Rhodamine-labelled vesicles, depicting a size distribution of these particles. Furthermore, the 

size distribution in this case does not need adjustment or calibration, as the size of each BNP 

is calculated directly from their diffusivity according to equation 3.3.8 by taking into account 

the effect of the walls [207], illustrating the applicability of this method for non-tethered 

nanometer-scale biological systems. The development of this nanofluidic platform is currently 

in progress and has been used to distinguish complex size distributions, determine size and 

colocalize individual particles while maintaining a high throughput [208]. 
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Figure 17. Analysis of Rhodamine-labelled vesicles (a) Measurement setup, where two equal flows of 
the sample from inlet 1 and inlet 2 are introduced into the 300 nm width and height nanochannels, where 

the fluorescence time series is taken. 3 and 4 are the outlets. (b) size distribution with a log-normal fit 

(line) determined using the hindered diffusion model.  
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