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A holistic view on transcriptional regulatory networks in S. cerevisiae: Implications and 
utilization  

David Bergenholm 

Department of Biology and Biological Engineering 

Chalmers University of Technology 

ABSTRACT  
Life; perhaps it is bold to start an abstract with this powerful word, but this is where I will start. 
My research is at the heart of life. How can a single human cell proliferate to become bones, 
eyes, fingers and, finally, a human being? How can different cells containing the same set of 
DNA be so versatile? The answer lies within the regulation of genes. To build upon our 
understanding of gene regulation, I have studied gene transcription and especially transcription 
factors in a holistic, systems biology way using the model organism Saccharomyces cerevisiae. 
Translation from S. cerevisiae to humans will help us get both a fundamental understanding of 
the networks and engineer better cell factories.    

Transcription factors play an essential role in transcription as they function to activate and 
suppress genes in response to stimuli. The transcription factors form transcriptional regulatory 
networks (TRNs), with intricate cross-talk and overlapping functions balancing the ability of 
the cells to react to stimuli but at the same time remain as steady as possible. This is a fine-
tuned machinery that has a built-in safety feature of self-regulation if the system is perturbed 
in any way. We study the TRNs with state-of-the-art methods for transcription factor-DNA 
interaction: Chromatin Immunoprecipitation with exonuclease treatment or ChIP-exo for short. 
This method provides us with all the DNA interactions of a selected transcription factor at the 
nucleotide level and to what degree these interactions occurs.  

To study these transcriptional regulatory networks, we put the yeast cells under nutrient 
starvation in fermentation systems. The fermentation system used is the chemostat, which 
enables a tight control on the environmental parameters, ensures a steady-state in the culture, 
and allows for high reproducibility. Ensuring that the cell culture is identical in-between runs 
is important since we can’t study all transcription factors at the same time.  

In this thesis, I present studies on transcription factors both individually, or as part of a bigger 
whole. We investigate stress response, NADPH generation, control over lipid and amino acid 
metabolism and the glycolytic pathway. Thanks to the different metabolic conditions used to 
study the transcription factors, we can both determine a core set of genes and genes that are 
specific for different conditions. We also employ statistical methods and regression models to 
understand and predict regulatory pathways. While doing so we discover novel functions and 
modularity and expand the transcriptional regulatory network for all studied transcription 
factors. We also constructed a multi-paralleled miniaturized chemostat-system to study these 
transcription factors in a high-throughput fashion. Finally, we have developed a toolbox for 
analysis of transcription factor data, including visual representation of the DNA binding, 
comparison of gene transcription and transcription binding between conditions and statistical 
methods for identifying regulatory pathways that can be used both for a fundamental 
understanding of TRNs and for better cell factory engineering.    
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A quick Hello from the Author 
 

Welcome to reading my thesis. I’m glad to see that you made it this far. Some of you read it 
because you have to, some of you read it because you want to and some of you might do it 
because of both previous reasons. Before getting started I would like to point out some 
personality traits, that if you haven’t already seen them, might be interesting to know.  
If you look at my publication list, you might discover three things. 1. There are rather many 
publications. This is because I love to talk to people and get involved in different projects and 
when I see that I can be a helping hand I do take the opportunity to say so, and that’s how the 
numbers go up. 2. If you look at the author list there is actually quite few papers that I have 
written completely by myself, and “completely by myself” it should also be noted that nothing 
is by myself, someone always corrects, gives inputs and so on. This is because I believe that 
1+1=5, thus meaning that the sum of the combined individual parts is MUCH greater than the 
sum of the individual parts alone. 3. I can’t keep my hands out of the cookie jar, and I want 
many different cookies! As you also might see is that the topic of the publications both included 
in this thesis but also the papers not included are from different areas: Fundamental science, 
applied science, computational science, biology and technology. I really enjoy testing different 
areas and I do to be honest easily get bored if I have to do the same task for too long, variety is 
the key to my wellbeing.  
It has been such a fantastic journey and I’m eternally grateful for being allowed to do all of 

these things.    
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1 A TALE OF THE CENTRAL DOGMA 
The earth shook, and a loud rumble was heard. The earth shook again. A volcano in the 
distance just had an eruption, spewing out its ashes into the atmosphere. Ionized particles 
ignited the sky and thunder and lightning was all around, turning the night sky fiery red. Zaap! 
Lightning struck a puddle nearby. It was not the first time that lightning had struck this puddle, 
but this time something was different. Earth was unrest and in great pain, mother earth was in 
labor, about to give birth to something spectacular. In that very puddle a new construct was 
being created, unlike anything the universe had seen before. A molecule capable of self-
replicating had seen the dawn of day, and life was formed.     

The central dogma is the story of how the single most important way of storing information, 
RNA, started replicating itself and thus life was formed. This occurred some 3.5-4.2 billion 
years ago, probably even earlier. It did of course not just appear at once. It was rather a buildup 
of all the components, RNA, fat and protein, that at some point reached a critical concentration 
that in combination with an energy burst kickstarted life itself. Miller and Urey found in 1952 
(Miller 1953) that most of the amino acids, lipids, sugars and some nucleotides are rather 
“easy” to form if the environmental conditions that earth was exhibiting in its youth are used. 
It has also been shown that fatty acids could help in building protein-like structures (Murillo-
Sanchez et al. 2016) as well as catalyze the formation of RNA (Black and Blosser 2016). A 
simple type of RNA called proto-RNA can also be self-assembled from nucleotides if the right 
molecules are in close proximity, and these molecules might have been present in the early 
days of the earth (Cafferty et al. 2018). But why did life arise at all? As Erwin Schrödinger 
stated, “How can the events in space and time which take places within the spatial boundary of 
a living organism be accounted for by physics and chemistry?” We turn to the laws of physics, 
to be precise the second law of thermodynamics, stating that a system goes from order to 
disorder. Life exists because it can cause disorder better than spontaneous disorder. By taking 
a molecule from the surrounding and incorporating it, life actually increases order, but it gives 
energy in the form of heat to the surroundings, thus increasing the disorder in the system as a 
whole.   

Proteins were formed based on the sequence that RNA was carrying, this allowed 
replication of RNA. RNA could convert between two structures, one that carries information 
and the other, ribosomes, that could read RNA. This system is simple and efficient, but 
mutations occur easily and so RNA evolved. Evolution generated the storing facility, DNA 
which was more stable to be able to keep the information intact. The central dogma, as we now 
are referring to occur in the following steps: i) replication: DNA is replicated, ii) transcription: 
DNA is transcribed to RNA iii) Reverse transcription: RNA is transcribed to DNA iv) 
replication: RNA is replicated and v) translation: RNA is translated into proteins (Figure 1). 
This is a much-simplified version of the process, but the central dogma holds true as a concept. 
In this thesis we will cover mostly one part of the central dogma and that is transcription, but 
to do so we need to dig deeper into the tale.  
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As RNA became the prominent way on Earth to increase disorder, evolution allowed it to be 
encased into cells. Probably this occurred to increase the probability of the stochastic events 
that allowed RNA to replicate and generate proteins to become more frequent as the 
encapsulation increased the concentration of molecules. The cells started to proliferate and 
became specialized into different tasks. To be able to tackle a continuously changing 
environment, a method to control the level of production of each protein was beneficial. 
Control of the transcription allows the cells to do just that, and maybe the RNA was the first 
transcription factors, controlling the gene expression in the form of riboswitches (Breaker 
2012).  By activating different genes in different conditions or at different levels the cell could 
both cope with an external changing environment and the internal environment. This way of 
protecting and adapting became very useful over the eons of time and at some point, even the 
cells became specialized in different tasks and soon multi-cellular organisms saw the light of 
day. We, humans, are one of evolutions finest creations, at least according to me. We have 
strength, endurance, flexibility, fine motoric skills, advanced hearing, tasting and seeing, and 
as we all know, we have the most powerful brain (that we yet know of) in the entire universe. 
This is thanks to the many different cell types that come together to form one entity.   
Unfortunately, it is difficult to study the transcription of such enormously complex and slowly 
replicating system that is us humans. To scale it down and study transcription in a more 
efficient way we turn to our favorite model organism: Saccharomyces cerevisiae.   
 

Saccharomyces cerevisiae, or the sugar loving (saccharo) fungus (myces), which makes beer 
(cerevisiae), has been used by humans since the Neolithic period for its great capability of 
turning carbohydrates into ethanol and carbon dioxide (Mortimer 2000) and the term enzyme 
meaning “in yeast” was coined by Kühne in 1877. The ethanol production is used for making 
beer and wine, and the yeast additionally provides some nice flavors in terms of esters to the 
beverage. In baking, the carbon dioxide helps to make the bread “fluffy” and the yeast also 

Figure 1 The central dogma of biology. DNA undergoes several stages of transformation: 
transcription to form mRNA and translation to form proteins. The DNA also needs to replicate itself 
to be able to be part of the dividing cells. 
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helps to generate flavors and texture to the bread (Querol and Fleet 2006). S. cerevisiae  has 
not only been used by humans for its great food and beverage production, it is also well studied 
in all omics fields (gen-, transcript-, prote-, metabol-,flux-, phen-) and was one of the first 
organisms to get its genome sequenced (Goffeau et al. 1996). S. cerevisiae is used in industrial 
settings as a cell factory due to its advantageous qualities of short generation time, high osmotic 
tolerance, broad range of pH tolerance, growth on complex and minimal media and as it is 
generally recognized as safe, holding the GRAS status (Hampsey 1997). The success of using 
yeast as a model organism is also due to the high degree of conservation of many key cellular 
processes between yeast and human cells, such as autophagy, protein translocation and 
secretion, heat shock and regulation hierarchies (Nielsen 2019). There is also a high degree of 
conservation between genes, as 47% of the 414 essential yeast genes can be replaced by their 
human orthologs (Kachroo et al. 2015). When it comes to engineering, S. cerevisiae is a good 
workhorse as it has a very efficient homologous recombination, which allows for integration 
of genetic fragments directly into the genomic DNA, which generates more robust engineered 
strains (Gietz and Woods 2001; Scherer and Davis 1979). These features also allow us to study 
proteins, and in my case transcription factors, in detail through various techniques.  

The S. cerevisiae genome contains around 6300 genes and the genome size is around 12 
million base pairs. However, only 9 million of these are protein encoding, while the remaining 
3 million base pairs, or 25%, of the whole genome are used for other processes (Goffeau et al. 
1996; Mackiewicz et al. 2002). In humans this number is a baffling 98%! In yeast most of the 
25% are regulatory elements, promoters. This is where we most likely will find our usual 
suspects and the focus of this thesis: Transcription factors.  

 

1.1 AIMS 
 

In this thesis, I hope to provide some answers and progress into the following broad questions:  
 Can we understand the regulation of genes by studying the transcription factors in a 

holistic, systems biology way?  
 Can we build transcriptional regulatory networks (TRNs) that implicates the role of a 

transcription factor in different metabolic states?  
 Can we utilize this information to understand the underlying function that constitutes 

transcriptional activation, and by doing so increase our understanding to construct 
better cell factories?  
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1.2 PROMOTER ARCHITECTURE 

1.2.1 PATTERNS, THEY ARE EVERYWHERE 
We humans love to find patterns. As Carl Sagan said: “Humans are good at discerning subtle 
patterns that are really there, but equally so at imagining them when they are altogether absent”. 
Since our entire genome is made up of patterns, perhaps it is therefore understandable that we 
try to find them everywhere. We will now look closer at some reoccurring genomic patterns in 
S. cerevisiae.  

The promoter is a DNA sequence located upstream of a gene that regulates the gene expression. 
The typical architecture of S. cerevisiae promoters includes the following core elements: the 
TATA/-like box, the transcription start site (TSS) and upstream activating/repressing 
sequences (UAS/URS) (Figure 2). The TATA/-like box is a sequence found in many 
promoters that contains a repeat of the nucleotides T and A. This sequence allows for binding 
of the TATA-binding protein (TBP) that is part of the preinitiation complex (PIC) involved in 
gene transcription, which is covered in more detail in section 1.3.1. The TSS defines the start 
of mRNA transcription, where a gene can have multiple TSSs, and is directly upstream of the 
start codon: 5’-ATG-3’ (Zhang and Dietrich 2005) and also covered in Paper XIII (not 
included in this thesis). Upstream UAS/URS contains sequences that attracts the transcription 
factors (motifs). Most promoters have a nucleosome depleted region (NPR) of 400 bp where  
UAS/URS is located (Ozonov and van Nimwegen 2013).    

Figure 2 The packaging of DNA into chromosomes. The chromosome is a condensed state 
of the chromatin which is composed of DNA and nucleosomes. Unwinding the chromosome 
reveals individual nucleosomes composed of histones and DNA. The promoter then is 
composed of short sequences that are required for binding of transcription factors (UAS/URS), 
or the pre-initiation complex (TATA/-like box). This leads to the formation of the transcript 
starting from the TSS and then reaching the coding sequence starting from the ATG.      
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1.3 TRANSCRIPTION FACTORS 
In S. cerevisiae, there are roughly 200-260 transcription factors (TFs) (Hughes and de Boer 
2013). The concept of transcriptional control was first coined by Jacob and Monod (Jacob and 
Monod 1961), and it was later established that this control was due to DNA binding proteins: 
transcription factors. These transcription factors belong to different families depending on their 
DNA binding domain (DBD). The major classes of transcription factors in S. cerevisiae are 
displayed in Figure 3. The first and most abundant class is the one containing a Zn2+ stabilized 
DBD consisting of ~120 proteins. This class includes the two major subclasses C2H2 and 
Zn2Cys6 and minor subclasses such as C4. We have studied several Zn2+ stabilized DBD 
transcription factors, including Cat8, Sip4, Ert1, Rds2, Rgt1, Hap1, Stb5, Oaf1, Pip2, Sut1 and 
Leu3. The C2H2 TF subclass forms an array, or tandem repeats, of zinc-stabilized alpha helixes 
that can interact with the DNA (Bohm et al. 1997). The Zn2Cys6 TF subclass are homodimers 
or heterodimers that together form the DBD. This class of zinc fingers is unique to fungi. Due 
to variations in the overall proteins, the dimerization mechanism can be different, but the 
principle of having two zinc fingers forming the DBD remains the same (MacPherson et al. 
2006). The second class is one containing a zipper DBD. We have studied several transcription 
factors from this class, including Cbf1, Tye7, Ino2, Ino4, Cst6, Gcn4 and Rtg1. This class is 
also divided into two subclasses: basic leucine zipper (bZIP) TFs (Fernandes et al. 1997) and 
basic-helix-loop-helix (bHLH) TFs (Robinson and Lopes 2000). This class of TFs can both 
form homodimers and heterodimers. In addition, smaller classes of transcription factors include 
the helix-turn-helix (HTH) and the forkhead (Fkh) TFs.       

Figure 3 The major classes of transcription factors in S. cerevisiae. The zink fingers C2H2, 
C4 and Zn2Cys6, and the zippers bZIP and bHLH.  
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Most transcription factors are dimers, where both proteins are required for DNA binding. 
However, there are also examples of heterodimers where one peptide contains the binding 
domain while the other contains the activation domain. Such an example is Gcr1 and Gcr2, 
where Gcr1 binds to DNA and Gcr2 contains the activating domain (Uemura and Jigami 1992).  
The different domains of the transcription factor also constitute its role in the regulatory 
machinery. While activating or repressing domains act by recruiting coactivator or corepressor 
complexes to the naked DNA, chromatin remodeler domains act upon recruiting other 
transcription factors to the DNA structure while assembled into chromatin (Workman and 
Kingston 1998). To understand how this is achieved, we need to return to the chromatin 
structure.  
 

1.3.1 WHERE’S THAT ON SWITCH? 
In its most common state, the DNA is covered with nucleosomes that cover most of the naked 
DNA. Nucleosomes consist of four histone pairs around which DNA is tightly folded and are 
used for packing the DNA into chromatin and then to chromosomes. Chromosomes are 
extremely compact and allow DNA to take up less space in the nucleus. Each nucleosome 
occupies a ~147 bp stretch on the DNA, which allows it to also act as repressors of transcription 
as it physically blocks the TATA/-like box, TSS or UAS from interaction with transcription 
factors or other proteins involved in transcription initiation (Juan et al. 1993). Transcription 
factors can however overcome this physical blockage through different mechanisms. Figure 4 
explains this initial setup that is required for gene expression to occur. 
The SWI/SNF complex, that was first discovered in yeast (Winston and Carlson 1992), is a 
nucleosome remodeler that can either act on its own or through interactions with transcription 
factors that guide the remodeling complex to the right location (Neely et al. 2002). These 
remodeling complexes work by modifying the histone tails that are susceptible for 
modifications. The most common modifications are acetylation and methylation, but also 
phosphorylation, ubiquitination and sumoylation occur  (Kouzarides 2007). Another example 
are pioneering transcription factors, which have higher affinity to the DNA than the 
nucleosome (Zaret and Carroll 2011). And the last group are the cooperative transcription 
factors that have multiple binding sites adjacent to each other, or multiple transcription factors 
that have binding sites next to each other. This increase the probability of DNA binding if one 
or more transcription factors are already bound, thereby outcompeting the nucleosome(s) 
(Adams and Workman 1995).  
When the nucleosome has been removed, other transcription factors can interact with the DNA 
to attract the proteins necessary for transcription. However, there is still an additional 
nucleosome blocking the TSS. Other transcription factors attract other chromatin remodelers: 
the SAGA complex and the TFIID. The SAGA and the TFIID complexes, contain subunits of 
histone acetyltransferase (HAT). These two complexes remodel the histone tail to remove the 
downstream of TSS (+1) nucleosome making the TATA and TSS available for binding. The 
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TATA-binding protein (TBP) is then recruited by the SAGA or TFIID to the TATA/like-box 
(Huisinga and Pugh 2004), which attracts and assembles with the general transcription factor 
complexes (GTFs) TFIIA and TFIIB into a stable complex. This recruits the RNA Polymerase 
II and TFIIF, followed by binding of TFIIE and TFIIH. Together all these parts form the 
preinitiation complex (PIC) (Rhee and Pugh 2012) that initiates the transcription of said gene. 
  

1.3.2 REGULATION OF THE REGULATORS 
To complicate gene regulation further, transcription factors are also regulated themselves. This 
regulation occurs primarily through two processes: change in concentration and activation 
(Calkhoven and Ab 1996). The simplest regulation of a transcription factor is through other 
transcription factors that bind to the promotor of said transcription factor gene, thus changing 
the concentration of the transcription factor (Figure 5A 1). This can also occur in an 
autoregulatory manner, where the transcription factor is involved in the transcriptional 
activation of its own gene. This can occur in a simple, direct manner through binding on its 
own promoter (Figure 5A 2), or indirectly through binding to the promoter of other 
transcription factors that then bind to the promoter of said transcription factor (Figure 5A 3).   

Figure 4 Transcription factor interaction with DNA for gene expression. Removal of 
nucleosomes can occur through different mechanisms such as the remodelers, pioneer TF or 
the cooperative TFs. The underlying DNA is revealed and allows for other TFs to bind. The 
TF attracts the TFIID or SAGA which leads to activation, gene expression, through first 
removal of the +1 nucleosome and second attracting the PIC.   
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Transcription factors can be active in their natural state; however, many transcription factors 
require activation through external stimuli (Figure 5B). This activation, or, for that matter, 
inactivation, occurs through direct interaction. Phosphorylation and glycosylation are two 
common posttranslational modifications that can activate/inactivate a transcription factor. 
These are useful modifications as they can be reversed, thus allowing the transcription factor 
to switch between active or inactive states. Transcription factors are the largest protein group 
to be subject to phosphorylation (Ptacek et al. 2005) and around 10 transcription factors are 
subject to glycosylation (Comer and Hart 1999) where for instance Cat8 is one of them (Cullen 
et al. 2006). Transcription factors can also interact with ligands, e.g. Oaf1, which contains a 
ligand binding domain (LBD) for oleate, leading to activation of Oaf1 (Phelps et al. 2006). 
Rgt1 is a fascinating transcription factor. Rgt1 acts as a repressor in low levels of glucose and 
as a de-repressor, or activator, in high levels of glucose (Figure 6). This regulation of Rgt1 is 
mediated through two mechanisms: phosphorylation and ligand binding. Rgt1, in low glucose, 
is bound to co-repressors Ssn6-Tup1, as well as Mth1 and Std1, which inhibits 
phosphorylation. Ssn6-Tup1 forms a repressive structure together with histones, to assemble 
nucleosomes, thus repressing transcription through physical blockage (Davie et al. 2002).  In 
high glucose media, Mth1 and Std1 are released from Rgt1, Rgt1 then becomes 
phosphorylated, which changes its protein structure and results in blocking of its DNA binding 
domain, thus releasing the repression (Polish et al. 2005). The recruitment of nucleosomes 
through Rgt1 binding can clearly be seen from the overlay of Rgt1 binding data from T-rEx 

Figure 5 Transcription factor regulation through abundance or activation. A) The 
abundance of transcription factors is regulated either through 1. Other transcription factors 2. 
Direct autoregulation or 3. Indirect autoregulation. B) Activation of transcription factors can 
occur through phosphorylation, glycosylation, ligand binding, cofactor binding or TF-TF 
dimerization.  
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(Paper VI) in Glu-lim (low glucose condition) and N-lim (high glucose condition) with 
nucleosome data from 0.05% Glucose and 2% glucose media (Dang et al. 2014) (Figure 6). 
Furthermore, transcription factors can also bind to other co-factors such as SWI/SNF 
mentioned earlier, and lastly the transcription factors can interact with other transcription 
factors. This occurs at a very large extent, where transcription factors can form both 
homodimers and heterodimers.    
 

  

Figure 6 Rgt1 repression and de-repression and its influence on expression of the hexose
transporter gene HXT1. Left panel: In low glucose media, Rgt1 binds to Mth1/Std1, which
blocks phosphorylation of Rgt1. This allows for binding of Ssn6-Tup1, which attracts histones
and the assembly of nucleosomes (grey shade) blocking expression of HXT1. In high glucose 
media, Mth1/Std1 is degraded and released from Rgt1. Rgt1 can then become phosphorylated
which causes a change in the protein structure of Rgt1, blocking Ssn6-Tup1 from binding, 
therefore releasing the repression. Right panel: Binding profiles of nucleosomes, Rgt1 and
Ino4 on the HXT1 promoter. Top: Rgt1 is present and attracts the nucleosomes. Bottom: in
high glucose Rgt1 is phosphorylated and the nucleosome is removed from the promoter
revealing for instance an Ino4 binding site, and HXT1 can be expressed.  
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2 THE PROMISCUOUS TRANSCRIPTION 
FACTOR 

The transcription factor moves stochastically in the cell, “searching” in three dimensions for 
DNA to bind to. When DNA is found, the transcription factor executes a linear “sliding” search 
along the DNA strand to find a motif (Hu et al. 2008). Motifs, I find them very fascinating, are 
a stretch of DNA containing a sequence of nucleotides that the transcription factor binds to. As 
mentioned before, transcription factors belong to different families depending on the DBD. 
Each family has a similar sequence motif that they bind to, but with some variations that allows 
varying degrees of precision in the binding. The consensus motif of a transcription factor is 
variable, where some positions in the motif allow several nucleotides, whereas other positions 
have a fixed nucleotide. Figure 7 A) illustrates the motif of the bHLH transcription factor Cbf1 
and the DNA binding sequences map. While some positions are fixed, others are variable. This 
promiscuity of the transcription factor allows extraordinary flexibility and ability to adapt to a 
changing environment, as each transcription factor binds with varying degree of affinity to 
many motifs, and each motif can in turn be controlled by many transcription factors. The 
sequence map shows how each binding (each row) has a core set of nucleotides that taken 
together (each column) form the consensus motif of the transcription factor. The transcription 
factor can also change its binding preferences depending on numerous factors, such as TF-TF 
interactions, TF-cofactor interactions, DNA shape (such as major or minor groove), genomic 
context such as GC rich regions surrounding the motif and the fact that some transcription 
factors have multiple binding motifs altogether (Inukai et al. 2017).  
 

Figure 7 Transcription factor binding motifs. A) A motif of a TF has fixed positions where 
the nucleotides do not change while other positions are variable and can be exchanged for 
other nucleotides, usually with a preference of two nucleotides. B) Transcription factors from 
the same DBD family e.g. leucin zippers exhibit similar binding motifs (green shade) while 
sub-families have almost identical binding (purple shade). 
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2.1 WHY ARE THEY ALL THERE? 

2.1.1 A RECURRING PATTERN 
A common motif for the leucin zipper family is the E-box motif CAnnTG. The individual 
transcription factors have different nucleotides in the nn part, and there are many examples 
where multiple transcription factors bind on the same position. For instance, the transcription 
factors Ino2, Ino4, Cbf1 and Tye7 all belong to the leucin zipper family (bHLH), with the 
motifs CATGTGA (Ino2 and Ino4) and CACGTGA (Cbf1 and Tye7), where the blue 
nucleotide indicates the major difference in their motifs. An example of binding for these 
transcription factors is the ACS1 promotor which contains an E-box motif 329 bp upstream of 
the TSS, TCACGTGTGACT, with the E-box motif marked in red. All four transcription factors 
bind at the same position, despite a mismatch in comparison to the Ino2/Ino4 consensus motif. 
Interestingly, also Gcn4, Rtg1 and Rtg3, which also belong to the leucin zipper family, bind to 
the ACS1 promotor. This is likely due to the motif (G)TGAC, marked in blue, that follows the 
E-box motif. Worth mentioning is that 5 nucleotides downstream of the E-box is the motif of 
Sip4/Cat8 which are also bound at the same location as the leucin zippers. Another example is 
the ADH3 promoter. At 326 bp upstream of the TSS there is an E-box motif of TCACGTGT. 
The 8-mer (including the T’s at the 5´- and 3´-end) is identical to that of the ACS1 promoter 
and also here all mentioned transcription factors bind, including Gcn4 and Rtg1. A third 
example is the ADP1 promoter. Here, there are two E-box motifs, one at 202 bp upstream of 
the TSS, CCACGTGC, and one at 410 bp from TSS, CCACATGC: There is only one 
nucleotide different in between these two motifs. Interestingly, the motif at 202 bp shows a 
strong binding of Cbf1, a weak binding of Ino4 and no binding of the other two transcription 
factors, while the motif at 410 bp has a strong binding of Tye7, moderate binding of Ino2 and 
Ino4 and very weak binding of Cbf1. This illustrates how the surrounding nucleotides and 

Figure 8 The zinc-finger motifs. The zinc-fingers bind to CSG (blue shade) with a region of
A’s or T’s (yellow shade) in between the two binding sites. 
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possibly the DNA shape are important for the binding. Figure 7 B) shows that the motifs of 
the leucin zipper family have a core set of nucleotides, GTGA, marked in green but that the 
sub-families (bHLH and bZip) differ in their preferences for the surrounding nucleotides.         
We, and others have identified numerous additional examples of such overlaps (Brindle et al. 
1990; Chen and Lopes 2007), not only for the leucin zipper TFs but also for the zinc fingers. 
The two zinc-fingers bind to a CCG/CGG motif on each side of a spacer in our case the spacer 
contains A’s or T’s (Figure 8). One of the CCG/CGG motifs cannot be identified for all 
transcription factors in a simple consensus motif as the length can vary between the two fingers.  
The A-T rich region gives the DNA an electronegative charge in the minor groove, allowing a 
positively charged linker of the Zn2Cys6 protein to interact (Rohs et al. 2010), see Figure 3 
Leu3 and Oaf1 types for a visual representation of this interaction. Interestingly, all 
transcription factors we have studied share a common motif of CSGnnWW (S=C/G, W=A/T), 
although the total length of the motif varies.  
 

2.1.2 NO ONE CAN ESCAPE THE LAW 
Why does the motif of a specific transcription factor vary at different locations and how can so 
many different transcription factors bind to the same location? This boils down to 
thermodynamics, as small variations in the motif of the transcription factor will change the 
affinity to each potential target. Briefly, a transcription factor has to be precise in its binding to 
ensure specificity, but still, the binding affinity cannot be too strong, as it may interact with the 
DNA permanently. Transcription factors have a transient binding behavior, were these DNA-
interactions occur for milliseconds to seconds (Swift and Coruzzi 2017). The disassociation 
and dynamics of transcription factors are thus very fast, and precision is the price for this fast 
dynamic. Concerning the sliding mechanism along the DNA, transcription factors from the 
same family with a similar DBD will have a certain probability of binding to any site that has 
a similar motif and that they encounter during this sliding process. These low affinity bindings 
are not only stochastic events, but may also be important for gene regulation (Crocker et al. 

Figure 9 The low and high affinity TF binding on the ENO1 promoter. Six TFs, all 
belonging to the bHLH family are bound at 8 of 9 CWCnTG motif sites (blue forward, red 
reverse). Three motifs (nr 1,2 and 4) are covered by five TFs  



 

14 
 

2016). The ENO1 promoter is a prime example of where the bHLH sub-family is showing this 
behavior (Chen and Lopes 2007). Using the motif CWCnTG (W=A/T) we can find 9 sites 
within the promoter, 8 of these sites have at least one of the six transcription factors (Ino2, 
Ino4, Cbf1, Tye7, Rtg1 and Rtg3) bound. At three positions, five of the six transcription factors 
are bound.  It has also been shown that even though many transcription factors are said to work 
in pairs as homodimers, many of them, especially in the bHLH sub-family, can also interact 
with each other as heterodimers. Ino4 is for instance recorded to work as a heterodimer not 
only with Ino2 but also Rtg1, Rtg3, Pho4 and Tye7 (Robinson et al. 2000). These different TF-
TF dimerizations are probably what causes some of the differences in binding motifs as the 
formed heterodimer then may have a higher affinity for a third motif compared to what the two 
individual homodimers would have (Rodriguez-Martinez et al. 2017).  
  
In summary, there is rarely one transcription factor that controls one gene in eukaryotes. 
Transcription is dynamic and responsive to the environment, and the system is highly complex 
with many transcription factors working together. To illustrate and store our understanding of 
these relationships, we explain the interactions of transcription factors and their targets through 
transcriptional regulatory networks (TRNs).  
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3 METABOLISM 
In our group, one aim is to improve cell factories for biofuels or other high value chemicals. 
At the center of all cellular metabolic networks, and therefore of value to this aim, is a set of 
twelve chemicals. These are called precursor metabolites from which all cellular building 
blocks and chemical products can be derived (Nielsen 2003). Three categories exist that all 
metabolic reactions can be divided into. Catabolic reactions comprise pathways that convert 
feedstock (e.g. carbon source) into precursor metabolites, reducing power and energy in the 
form of ATP. Anabolic reactions comprise pathways that consume reducing power and energy 
to produce cellular components (e.g. lipids, nucleic acids, cell wall) or desired chemical 
products. Central metabolic reactions are those that enable the cell to interconvert between the 
twelve precursor metabolites, and thereby permitting production of all cellular components 
from a single catabolic pathway (Figure 10). How these reactions and their products can be 
used in industrial processes was one of the first things I worked on when I started my project, 
and this is covered in a review (Paper IX). 

After performing the literature research for this review, my interest in using metabolic 
engineering and synthetic biology in the lab increased. Fortunately, a new project had just 
started, looking into the possibility of producing cocoa-butter as a food additive in yeast. Many 
engineered strains were created utilizing either the endogenous yeast enzymes or heterologous 
cocoa enzymes with the synthetic biology concept in mind, specifically, to use promoters that 

Figure 10 The bowtie structure of metabolism, adapted from Paper IX. Metabolism is 
shaped like a bowtie, with many pathways funneling into a small number of central metabolites 
that then branch out into a wide range of anabolic pathways. The 12 precursor metabolites are: 
glucose-6-phosphate, fructose-6-phosphate, ribose-5-phosphate, erythrose-4-
phosphate, glyceraldehyde-3-phosphate (G3P), glycerate-3P, phosphoenolpyruvate,
pyruvate, acetyl-CoA, α-ketoglutarate, succinate and oxaloacetate. 



 

16 
 

acts like switches, turning genes on or off, at certain growth phases. This work is presented in 
papers Paper X-XII but is not included in this thesis.   

Central carbon and lipid metabolism are core processes that generate many molecules needed 
for the production of biofuels, food additives, commodity chemicals, fine chemicals or 
proteins. To study central carbon and lipid metabolism at a regulatory level helps to understand 
how to engineer better cell factories and possibly understand human regulation better, as many 
of the enzymes and pathways are similar.  

3.1 CENTRAL CARBON METABOLISM 

3.1.1 GLYCOLYSIS 
A sugar molecule such as glucose, fructose, mannose or other hexose molecules is transported 
in to the cell via the hexose transporters (HXTs). The promoter regions of many of the HXT 
genes have been shown to be bound by the transcriptional regulator Rgt1 (Ozcan and Johnston 
1999). (See section 1.3.2 for more info.) The catabolic reactions start by converting the sugar 
molecule, in this case glucose as it is S. cerevisiae’s favorite food, to precursor metabolites. 
The first part is the glycolysis (Figure 11). Here, the sugar molecule is phosphorylated by 
hexokinases Hxk1 and Hxk2, generating glucose-6-phosphate (G6P). G6P is then converted 
into fructose-6-phosphate (F6P) by G6P isomerase Pgi1. F6P is converted to fructose-1,6-
bisphosphate (F1,6P2) via Pfk1 and Pfk2. F1,6P2 is split into two three-carbon compounds, 
glyceraldehyde-3-phosphate (GA-3P) and dihydroxyacetone phosphate (DHAP) by aldolase 
Fba1. DHAP can then be converted to GA-3P via triose phosphate isomerase Tpi1. Glycolysis 
has so far yielded 2 GA-3P molecules and consumed 2 ATP. The two GA-3P molecules are 
further converted to 1,3- bisphosphoglycerate (1,3P2G) via glyceraldehyde 3-phosphate 
dehydrogenase Tdh1, Tdh2 or Tdh3. 1,3P2G is converted into 3- phosphoglycerate (3PG) via 
3-phosphoglycerate kinase Pgk1. 3PG is converted to 2-phosphoglycerate (2PG) via 
phosphoglycerate mutase Gpm1. Phosphopyruvate hydratase, Eno1 or Eno2, converts 2PG into 
phosphoenolpyruvate (PEP). Finally, PEP is converted to pyruvate via the pyruvate kinases 
Pyk1 (Cdc19) and Pyk2. Gcr1 and Gcr2 are two key player TFs in the regulation of glycolytic 
genes (Baker 1986; Uemura and Fraenkel 1990) where Gcr1 contains the DBD and Gcr2 
contains the activating domain. Tye7, or Sgc1, is another transcription factor that has shown to 
be bound to many genes in the glycolysis (Nishi et al. 1995). Abf1 and Rap1 have also been 
shown to bind to several genes in the glycolytic pathway (Brindle et al. 1990). 

The glycolysis has now in total generated two pyruvate molecules, 2 NADH and 2 ATP. The 
pyruvate molecules can further be converted into a central precursor: Acetyl-CoA. 

     



Background 

17 
 

3.1.2 PENTOSE PHOSPHATE PATHWAY 
The pentose phosphate pathway (PPP) generates NADPH and precursors for nucleotide and 
amino acid synthesis. The first step of the PPP is to convert G6P into 6-phosphogluconolactone 
(6PGL) by G6P dehydrogenase Zwf1. 6PGL is converted to produce 6-phosphogluconate 
(6PGC) by 6-phosphogluconolactonase Sol3 or Sol4 and finally 6PGC is oxidized to ribulose-
5-phoshate (Ru5P) by 6PGC dehydrogenases Gnd1 and Gnd2. This first part is called the 
oxidative PPP and generates 2 NADPH and CO2. The Ru5P formed from the oxidative PPP is 
converted via Rki1, Rpe1, Tkl1, Tkl2, Tal1 and Nqm1 to form the glycolytic intermediates 
GA-3P and F6P or ribose-5- phosphate (R5P) that can be used in amino acid metabolism as 
well as nucleotide and nucleic acid metabolism. Upon oxidative stress Stb5 is the main 
transcription factor identified to act on the PPP genes (Larochelle et al. 2006)  

The 2 NADPH generated in the pentose phosphate pathway and the acetyl-CoA can e.g. be 
further used in anabolic reaction in the lipid metabolism. 

 

Figure 11 Glycolysis, gluconeogenesis, the pentose phosphate pathway and tricarboxylic
acid cycle. The carbon source (glucose) is transferred to the cell where it undergoes many
enzymatic reactions to form precursor metabolites. 
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3.1.3 GLUCONEOGENESIS 
Gluconeogenesis is basically the reversal of the glycolysis, with some additional steps and 
enzymes. It is highly important for the utilization of nonfermentable carbon sources to generate 
energy in the form of ATP and precursor metabolites. Pyruvate cannot directly be converted 
back to PEP but is so through conversion into the intermediate oxaloacetate (OA) by Pyc1 and 
Pyc2 and then from OA to PEP via Pck1.  Oxaloacetate can also be generated through the 
tricarboxylic acid cycle (TCA) (see below). A common feature in the gluconeogenesis 
promoters is the UASCSRE (CSRE: carbon source responsive element) CGGnnnAAnGG, which 
is the motif of Cat8-Sip4 (Hedges et al. 1995; Rahner et al. 1999; Roth and Schuller 2001). 
Gluconeogenesis has a strong connection to β-oxidation and so the UASORE (ORE: oleate 
responsive element) bound by Oaf1-Pip2 can also be found in many of the gluconeogenic 
promoters. Just as Oaf1-Pip2 and Cat8-Sip4, Hap4 also activates the gluconeogenesis pathway 
(Zampar et al. 2013). Rds2 and Ert1 are two other transcription factors involved in the 
gluconeogenesis to utilize nonfermentable carbon sources (i.e. ethanol) (Turcotte et al. 2010).  

 

3.1.4 TRICARBOXYLIC ACID CYCLE  
Glycolysis is the primary source of energy (ATP) for yeast cells under fermentative conditions. 
However, when yeast is grown on alternative carbon sources or when glucose is depleted, the 
metabolism shifts from fermentative to respiratory and carbon is shunted to the mitochondrial 
tricarboxylic acid (TCA) cycle thus increasing electron transport and respiration. The TCA 
cycle occurs in the matrix of the mitochondria, where pyruvate is converted through oxidization 
to form energy and precursor metabolites. It starts with pyruvate being converted to acetyl-
CoA via the pyruvate dehydrogenase complex (PDH), consisting of Pda1, Pdb1, Pdx1, Lat1 
and Lpd1. Acetyl-CoA combines with a four-carbon acceptor molecule, oxaloacetate (OA), to 
form a six-carbon molecule, citrate, by Cit1. Isocitrate is formed from citrate by Aco1. A 
carbon is released as CO2, and NADH is generated in the next step generating α-ketoglutarate 
by Idh1 and Idh2. Kgd1 and Kgd2 catalyze the reaction to form succinyl-CoA, again generating 
CO2 and NADH. Succinyl-CoA undergoes a series of additional reactions, first producing 
an ATP molecule by Lsc1 and Lsc2, then reducing the electron carrier FAD to FADH2 by 
SDH1. Fumarate is converted to malate through introduction of a water molecule by Fum1 and 
finally generating another NADH by Mdh1. This set of reactions regenerates the starting 
molecule, oxaloacetate, and so the cycle can repeat. From pyruvate, two CO2, three NADH, 
one FADH2 and one ATP molecule are generated. TFs Rtg1 and Rtg3 have shown to be both 
involved in the regulation of genes involved in the TCA cycle and in peroxisomal assembly 
(Chelstowska and Butow 1995).  

 

3.1.5 AMINO ACID METABOLISM  	

The pathways for the biosynthesis of amino acids (AA) are diverse. However, they have an 
important common feature as their carbon skeletons come from intermediates of glycolysis, the 
pentose phosphate pathway, or the tricarboxylic acid cycle. Yeast cells provided with an 
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appropriate source of carbon and nitrogen can synthesize all amino acids used in protein 
synthesis. Glutamate and glutamine are key components in AA metabolism as they are used in 
the transamination reactions required in the synthesis of each AA.  
There are five families of amino acids. These are the glutamate family (glutamate, glutamine, 
arginine, proline, and lysine), the aspartate family (aspartate, asparagine, threonine, and the 
sulfur-containing amino acids cysteine and methionine generated from the TCA cycle via α-
ketoglutarate or OA), the aromatic family (phenylalanine, tyrosine, and tryptophan and 
histidine generated from the PPP), the serine family (serine, glycine, cysteine and methionine) 
and finally the pyruvate family (alanine and the branched amino acids valine, leucine, and 
isoleucine generated from glycolysis) (Ljungdahl and Daignan-Fornier 2012).  

The transcriptional activator Gcn4 is a key activator of amino acid metabolism. Gcn4 binds to 
promoters of genes possessing the consensus UASGCRE sequence motif GAGTCA (Hinnebusch 
1988). Leu3 is another transcription factor involved in amino acid metabolism and as the name 
suggests, it is mostly involved in leucine metabolism (Zhou et al. 1990).  

 

3.2 LIPID METABOLISM     
The lipid group is vast and contains many different molecules. The major groups are fatty acids, 
sphingolipids, phospholipids, triacylglycerol, sterol esters and sterols (Figure 12). Fatty acids 
are the major component of most of the lipid classes, where the only exception are the sterols.  

 

3.2.1 FATTY ACIDS 
Acetyl-CoA is the building block of fatty acid synthesis (Figure 12), where it is converted to 
Malonyl-CoA via the enzyme Acc1. Malonyl-CoA and acetyl-CoA is merged, via the fatty 
acid synthase complex (Fas1 and Fas2), to form the base of fatty acids, where a new Malonyl-
CoA is added in each cycle. The reaction is typically terminated when the acyl chain reaches 
16-18 carbons. Elongation to 18 carbons is mediated through Elo1, and further elongation is 
mediated via Elo2, or Elo3, plus the accessory enzymes Ifa38, Phs1 and Tsc13 in the ER 
membrane. This reaction uses 2 NADPH. C16 and C18 fatty acids are the desaturated via Ole1 
that introduces a double-bond in the Δ9-position and is oxygen requiring (Oh et al. 1997; Page 
et al. 1994; Stukey et al. 1990; Toke and Martin 1996).  
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3.2.2 PHOSPHOLIPIDS 
Phospholipids are the main constituents of the membrane together with sterols, where the 
phospholipids are formed from the fatty-acyl-CoA chains that are merged with and glycerol-3-
phosphate and then inositol, ethanolamine or choline, which are formed through the CDP-DAG 
and the Kennedy pathway (Figure 12). A common feature is a short regulatory sequence named 
the UASINO (GCATGTGAA) found in the promotor region of genes involved in the fatty acid 
and phospholipid synthesis (Chen et al. 2007; Chirala et al. 1994; Lopes and Henry 1991). This 
sequence is related to the two transcription factors Ino2 and Ino4. The regulation of Ino2 and 
Ino4 has a third component, Opi1, which binds to Ino2 and represses it. Opi1 is bound to the 
ER when levels of phosphatidic acid (PA), which is an important intermediate in phospholipid 
synthesis, are high, allowing Ino2 and Ino4 to activate their gene targets, but when PA levels 
drop, Opi1 is released from the ER and can interact with and repress Ino2 in the nucleus.  

 

3.2.3 ERGOSTEROL 
Synthesis of the sterols uses acetyl-CoA as precursor, which is converted through the many 
Erg enzymes in the ergosterol (sterol) pathway (Figure 12). Ergosterol and DAG can then be 

Figure 12 Genes involved in lipid metabolism. Fatty acid synthesis generates the acyl-CoA 
chain used in phospholipid, sterol ester and triacylglycerol synthesis. Free fatty acids can be
used as a carbon source in the b-oxidation. PA: Phosphatidic acid, PI: phosphatidyl inositol,
PS phosphatidyl serine, PE: phosphatidyl ethanolamine, PC: phosphatidyl choline, DAG:
Diacyl glycerol, SE: Sterol ester, TAG: Triacyl glycerol, FFA: Free fatty acid  
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converted into storage lipids such as triacylglycerols (TAG) and sterol esters (SE), which form 
the reservoir of cellular energy and building blocks for membrane lipids. The TAG is made 
from fatty acyl-CoA (or an acyl-chain derived from a phospholipid) and DAG, while the sterol 
esters are made from sterols and fatty acyl-CoA. The ergosterol pathway is oxygen consuming 
and are thus regulated by the heme and oxygen responsive transcription factor Hap1 (Hickman 
and Winston 2007). Sut1 is another transcription factor that is regulating the sterol biosynthesis 
(Bourot and Karst 1995; Ness et al. 2001). Upc2 and Ecm22 are other transcription factors 
involved in sterol biosynthesis (Vik and Rine 2001). 

 

3.2.4 Β-OXIDATION   
-oxidation is the process where fatty acids are broken down to generate energy. First, storage 
lipids such as TAGs and SEs are broken down to free fatty acids (FFA) by enzymes in the 
triacylglycerol lipase (TGL) family. The FFAs are then imported to the peroxisomes where the 
β -oxidation occurs. FFAs are metabolized in a multistep reaction cascade from acyl-CoA to 

trans-2enoyl-CoA to 3-ketoacyl-CoA, and finally to acetyl-CoA. This is done by the enzymes 
Fox1(Pox1), Fox2(Mfe2) and Fox3(Pot1) (Figure 12). The transcription factors Oaf1 and Pip2 
were shown to be the most prominent regulators of the β-oxidation together with Adr1 

Figure 13 Metabolic pathways included in this thesis. Overview of the major metabolic 
pathways and their interrelationships.  
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(Hiltunen et al. 2003; Karpichev et al. 2008). Acetyl-CoA is transported out of the peroxisomes 
as malate, which can be used to generate OA, and further be used in gluconeogenesis. 
 
In the overview Figure 13, we can see how all the mentioned pathways are connected. 
Pathways funneling into a small number of central metabolites in the glycolysis and TCA cycle 
then branch out into a wide range of anabolic pathways. Glycolysis, PPP and TCA generate 
energy and amino acids. Glycolysis and fatty acid synthesis generate the membrane lipids; 
sterols and phospholipids. Excessive energy can be stored as storage lipids which are broken 
down in the event of carbons source limitation through β-oxidation and gluconeogenesis to 
generate all the central metabolites and thus completing the circle of metabolism.    
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4 SYSTEMS BIOLOGY 

4.1 A HOLISTIC VIEW ON BIOLOGY 
To study complex systems such as living organisms in a holistic manner we need a toolbox 
able to store and connect vast amounts of information of different types. The field of systems 
biology aims to build and understand the networks that form the whole of a living organism. 
This is done through the use of mathematical models. This is a cross-functional field where 
biology, engineering, mathematics and computational modelling are required to advance our 
understanding of very complex systems such as humans and organs all the way down to protein 
and molecule levels. There are in principal two viewpoints of systems biology. Bottom-up 
approaches encompass manual reconstruction of the networks through mathematical methods 
where reactions and relationships are built based on our current understanding of the system. 
These models may have varying complexity and detail and are often validated using literature 
and/or own data used to fit the models. Top-down approaches encompasses metabolic network 
reconstructions using ‘omics’ data (e.g., transcriptomics, proteomics) generated through DNA 
microarrays, RNA-Seq or other modern high-throughput genomic techniques using appropriate 
statistical and bioinformatics methodologies (Shahzad and Loor 2012). Models developed 
using top-down approaches are thus data-driven rather than knowledge-driven. These models 
are unbiased by previous knowledge, and therefore useful to confirm hypothesized or identify 
previously unknown relationships and handle big data sets and systems where bottom-up 
approaches simply become too complex. This is the strength of systems biology as the two 
approaches are complementary. On one hand we can map cellular functions at the genome 
scale, and on the other hand we can get in detailed timescale resolution of the impact of 
individual components on overall system properties.   

I used a top-down approach to study the transcriptional regulatory networks at a genome-scale 
level through mainly two high-throughput techniques: transcriptomics and what we sometimes 
refer to as regulomics. Transcriptome analysis is commonly used to identify genes that are 
involved in the response to different perturbations (i.e deletions or environmental conditions) 
and to find mechanisms that are likely to occur in the cell. To characterize biologically 
meaningful groups of genes with similar changes in expression, i.e. co-regulation, one can use 
clustering techniques (Eisen et al. 1998). Regulomics, or regulatory genomics, is the study of 
un-transcribed noncoding regions that contain genomic features, for example that attract 
transcription factors, and how these features regulate gene expression. Both transcriptomics 
and regulomics rely on genomics that reveals the full genetic material of the cell. Without the 
prior knowledge about the genetic material and their function we would not be able to integrate 
our findings.  
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4.2 NETWORKS ARE ALL AROUND US 

Atomic, chemical, biological, physical, social, cosmic networks; networks are truly all around 
us and they all share a common feature: interactions. Interactions occur at all scales, from 
cosmic scale to sub-atomic. Metabolism in yeast is a complicated network of chemical 
reactions catalyzed by enzymes. This network can be analyzed through computational models 
called genome scale metabolic models (GEMs), which can be used to calculate experimentally 
verifiable phenotypic predictions (Duarte et al. 2004). One step deeper into the network is the 
transcriptional regulatory networks (TRNs). Transcriptional regulatory networks are maps of 
the network of regulator-gene interactions that describe potential pathways the yeast cells can 
use to regulate global gene expression, much like how maps of metabolic networks describe 
the potential pathways that may be used by a cell to accomplish metabolic processes (Lee et al. 
2002). Pioneering work in this field was done by the Young lab, where nearly all transcription 
factors were mapped in rich media and some in other media using ChIP-chip (Harbison et al. 
2004; Lee et al. 2002), and the transcription factor resources developed since: YeTFaSCo (de 
Boer and Hughes 2011), Yeastract (Teixeira et al. 2017) and SGD (Cherry et al. 1998). Thanks 
to this, the underlying mechanisms started to be revealed. However, it also became apparent 
that a more complete picture of the yeast TRNs can be generated by studying the transcription 
factors in multiple conditions. Figure 14 shows the network of the transcription factor-gene 
interactions identified and used in our studies. Clearly, the network exhibits so many 
interconnections that we require computational modelling to analyze such systems. In fact, 
computational models are an essential component of TRN research (He and Tan 2016).  

  

Figure 14 A subsection of the yeast transcriptional regulatory network analyzed in this 
study. Each dark blue node is a TF and each light blue node is a gene. Many TFs have 
individual gene targets (the genes at the edge) but many genes are also shared between TFs 
(genes at the center). The layout of the network is not static but rather highly dynamic and 
changes as a response to environmental changes.   
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5 EXPERIMENTAL SETUP 
In this chapter I will briefly describe the methodology I have used for transcription factor 
analysis in the work described in this thesis. These are cultivations in a chemostat, RNA-seq 
and ChIP-exo and bioinformatics methods.  
 

During batch fermentation on glucose, S. cerevisiae typically undergoes a predictable series of 
growth stages (Figure 15 A). Initially, the cells are in a lag phase during which they are 
adapting to the new environment, e.g. rewiring the metabolism to current conditions, such as 
glucose and oxygen levels in the medium. Once the cells have adapted, the exponential respire-
fermentative phase begins. In this phase the cells grow at maximum growth rate, consuming 
glucose and oxygen and producing ethanol in the process. When glucose is depleted, the cells 
must adapt again to their new environment and rewire the metabolism to be able to consume 
ethanol. This is called the diauxic shift and can be seen as a small peak in oxygen levels and as 
a boulder in optical density (OD), representing growth. When the cells have adapted to the 
ethanol, they consume large amounts of oxygen to be able to ferment ethanol. This phase is 
therefore called the exponential respiration phase. Once the last carbon source, ethanol, is 
depleted, the cells stop growing and oxygen is no longer consumed. This is the stationary phase. 
As demonstrated, the cell undergoes many different transformations with varying growth rates 
during batch fermentation. This is not ideal for studying transcription factors as these are 
integral parts of the machinery that rewires the cells. Thus, we need a more robust system to 
study the transcription factors where the cells are in a controlled steady-state during the whole 
experiment. For this reason, we turn our focus to the chemostat.           
The chemostat is a bioreactor that uses pumps to control the growth rate of the yeast cells 
(Novick and Szilard 1950). After all carbon sources are consumed, and the cells have reached 
the stationary phase, the pumps are started feeding controlled amounts of the selected carbon 
source to allow the cells to continue to grow at a fixed rate. In a chemostat, there are two 
important parameters: the growth limiting factor and the media outlet. Without these, the 
biomass would increase, resulting in a fed batch instead of a chemostat. The limiting factor is 
commonly the carbon or nitrogen source and is quickly consumed by the cells. Media must be 
removed at the same rate as media is fed in to ensure a constant volume. From this, we get the 
important equation µ 𝐷   where the growth rate, µ, is equal to the dilution rate, D, which 
is the same as the media inflow, f, over the volume, V, of the reactor. As the volume remains 
constant, the growth rate is directly proportional to the inflow. Thanks to this fine control of 
the growth rate through adjusting the rate of inflow, we can control the environment to ensure 
that it remains constant throughout the cultivation (Figure 15 B). 
We have mainly used four different metabolic conditions in our chemostat experiments: 
nitrogen-, glucose-, ethanol- and glucose (anaerobic)-limitations (N-lim, Glu-lim, Eth-lim and 
Ox,Glu-lim). A nitrogen-limited condition keeps the production of amino acids and therefore 
proteins at a limited level. The medium is rich in glucose and the cells mostly ferment but some 
degree of respiration does occur. This state allows the cells to store excessive amounts of 
energy as lipids in lipid bodies. In glucose-limited condition, respiration is fully active as an 
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additional energy source to glycolysis. In ethanol-limited conditions, gluconeogenesis and 
respiration takes place. This is for the same reason as for the glucose-limited condition, but 
here the cells need to use gluconeogenesis as ethanol is a non-fermentable carbon source. 
Glucose anaerobic limited is a true fermentative state as there is no oxygen supplied to the 
cells. The conditions have been studied more extensively in (Jewett et al. 2013).  These 
conditions were selected to ensure a wide range of metabolic states of the cells to capture much 
of the span a transcription factor can have in its regulation.  
 

Transcriptomics, or RNA-seq, is used to measure the transcripts of all genes, the mRNA 
expression level, in a single cell or in a population of cells. This is an indirect measurement of 
the activity of the transcription factors. Transcriptomics only captures a snapshot of the 
dynamic regulation. Therefore, the chemostat is of high importance to ensure a stable and 
controlled environment and reproducibility of our results. 
 

Chromatin immunoprecipitation using exonuclease treatment, ChIP-exo. This method lies at 
the center of my studies and is the method for studying the interaction between a transcription 
factor and DNA. It is built upon the method of chromatin immunoprecipitation, which 
covalently locks any bound protein to the DNA (Solomon and Varshavsky 1985), thus enabling 
a genome-scale view of DNA-protein interactions. The bound DNA is then enriched and 
sequenced. Enrichment is enabled by adding a tag (TAP or Myc) at the C- or N- terminus of 
the protein of interest. An antibody that binds to the tag allows to selectively enrich for proteins 
containing the tag. The protein is removed from the DNA, followed by DNA sequencing. To 
ensure that the protein of interest is accurately tagged and not perturbed, we use quantitative 

Figure 15 Batch and chemostat cultivation. During a batch cultivation the yeast cells 
undergo many transformations to adapt to their new environment. In a chemostat cultivation, 
the growth rate and environment are to remained constant allowing for robust measurements 
of a highly dynamic system that is the transcriptional regulatory network. LP: Lag Phase, ERF: 
Exponential Respiro-Fermentation, DS: Diauxic Shift, ER: Exponential Respiration, SP: 
Stationary Phase, BP: Batch Phase, SS: Steady State, OD: Optical density, DO: dissolved 
oxygen, glucose and ethanol.  
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real-time PCR (qPCR). We use a cutoff between a reference gene and a gene reported to be a 
target of the transcription factor to validate that the tag can be used to accurately enrich for 
DNA bound to the transcription factor.  
Predecessors to ChIP-exo are ChIP-chip and ChIP-seq, where ChIP-chip was first version and 
used microarrays to detect binding events. The next generation was ChIP-seq, which utilizes 
deep sequencing techniques instead of microarrays. ChIP-seq is the dominant tool for studying 
gene regulation and epigenetic mechanisms. ChIP-exo uses an extra step of lambda 
exonuclease treatment (Rhee and Pugh 2011). The exonuclease digests the DNA into single 
stranded DNA. However, at locations where proteins are bound the DNA is protected. This 
treatment increases the resolution of the binding down to single bp and removes contaminating 
DNA, thus reducing the background noise. Importantly, the covalent binding (formaldehyde 
treatment) occurs during 10 min for all ChIP-techniques. This means that any interaction that 
occurs between the DNA and the protein during these 10 min will be captured. For chemostat 
experiments, the cells are in steady state, therefore these 10 min are a representation of the 
general condition. The -exo protocol is also very labor intensive and requires many enzymatic 
steps which reduces the DNA concentration to low levels. Binding eventsthat occur at low 
frequency may therefore not be captured with this method. A third problem with all ChIP 
methods is encountered if the protein of interest does not contain any DBD but instead a protein 
binding domain. To be able to capture the binding of such protein requires that the binding 

Figure 16 Experimental setup. The yeast cells express a transcription factor of interest with 
a tag and are cultivated in a chemostat. When steady-state is achieved the cells are harvested 
and the mRNA levels are measured (transcriptomics). The genomic DNA is crosslinked 
(CH2O) with the transcription factor. The crosslinked DNA fragments are extracted and 
treated with exonuclease and other enzymes leaving only the protected DNA intact. The DNA 
is then sequenced, aligned and then we can identify the binding (peaks) location of the 
transcription factor.  
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between the protein of interest and its associated protein is intact and that the associated protein 
is still bound to the DNA after all method treatments.   
Fortunately, a new version of the ChIP-exo protocol is now available (Rossi et al. 2018b) where 
the number of enzymatic reactions has been greatly reduced. This method is therefore improved 
both in terms of low affinity binding proteins and protein-protein interactions.  
 

Bioinformatics 

To identify the genomic locations, we use next generation sequencing (NGS) to sequence the 
extracted DNA. The reads (sequenced DNA fragments) are aligned to a reference genome 
using analytical tools such as Bowtie (Langmead et al. 2009), and then a peak identification 
software is used to map all the binding events. These binding events are then assigned to genes 
which we group to identify underlying mechanisms. One way to group genes is to use Gene 
Ontology (GO) terms. This vocabulary of gene products is applicable across organisms and is 
therefore widely used for analysis of omics data (Ashburner et al. 2000). These can also be 
linked to metabolic pathway reactions together with gene set enrichment analysis (GSA) that 
focuses on gene sets, groups of genes that share common biological function, chromosomal 
location, or regulation (Subramanian et al. 2005). Another way of grouping identified genes is 
based on their expression patterns, where either linear models or clustering methods could be 
used. The advantage of using such methods is the ability to identify genes that are co-regulated 
but do not belong to the same GO-term (Wu 2008).  
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6 DEVELOPMENT OF A FRAMWORK FOR TRN 
ANALYSIS 

I applied for a PhD project focusing on transcription factors and their regulation networks in 
yeast with little understanding of the magnitude of the task. As the realization came, the shear 
amount of experiments required made my head explode: 200 TFs*2 duplicates*4 
conditions=1600 experiments! I also realized that to use the chemostats at the time available in 
the lab I would need to duplicate also myself. The current chemostat setup included 8 1L 
reactors, meaning 1600/8= 200 experiments, where each experiment runs for about 5 days. 
With 1000 days of experiments I would need very long time to complete my PhD. The first 
thing that struck me was the need for more reactors, and the second was the volume as the 
experiments only require a fraction of the volume, 40 ml of culture. Based on these two criteria 
we set out to build our own system. This resulted in Paper I: the mini-chemostat.  

The ChIP-exo protocol was still in its infancy and few labs were using it, and there are still 
very few who are using it today. Through our affiliation with the Center for Biosustainability 
(CFB) at DTU we have connections with many groups. One group is the Bernhard Palsson lab, 
where they had recently started using ChIP-exo in E. coli. From them we got some tips and 
tricks on how to set up the method and soon we were on our way on testing it out. This resulted 
in Paper II: Cst6, where we analyzed this largely unknown transcription factor, previously 
indicated to be involved in gene regulation in response to growth on nonfermentable carbon 
sources and stress.    

Since the ChIP-exo protocol is (or at least was) rather new, there was no proper unified way of 
treating the data, to address this we started working on a pipeline. This resulted in Paper III: 
Bioinformatics pipeline for analyzing ChIP-exo data, where we take advantage of existing 
programs together with our own scripts.  
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6.1 THE MINI-CHEMOSTAT 
As mentioned in the introduction of this chapter, we wanted to establish a large‐scale, high‐
throughput work flow for systems biology research of microorganisms. To do this we needed 
reliable data from robust cultivation systems. Chemostats have become our favorite cultivation 
system for this purpose, as it ensures reproducibility and high quality by providing a stable, 
well‐controlled environment for the cells. However, many of the available chemostat systems 
require large amounts of media and are complex to set up and expensive to purchase and 
maintain. To address these concerns, we developed a mini‐chemostat (MC) system with 16 
reactors, each at a working volume of 40 ml. 

 

6.1.1 PHYSIOLOGICAL PARAMETERS 
This chapter describes in more detail the different parameters that are important to study the 
physiology of the yeast cell. For our studies, where a stable metabolic state is required in order 
to ensure reproducible results, the parameters that need to be kept constant are the dilution rate, 
the pH, the dissolved oxygen level and the temperature (Furukawa et al. 1983; Lahtvee et al. 
2016; Larsson et al. 1993; Regenberg et al. 2006; Verduyn et al. 1990). All chemostats allow 
control of the dilution rate and thus the growth rate. Another important parameter to observe is 
the pH as yeast cells produce compounds that lower the pH. This can have as much effect on 
the state of the cell as the carbon source. Dissolved oxygen is another parameter that is of high 
importance. Without sufficient oxygen the cells are unable to respire, S. cerevisiae can use the 
(fermentable) carbon source in a fermentative state. However, this would also lead to a 
complete rewiring of the metabolism. The forth parameter is the temperature, as changing the 
temperature also causes the cell to change its metabolism.  

Moreover, chemostats can be used to study the effect of changing the above described 
parameters as well as other conditions. By testing multiple conditions, the effects of changing 
a specific parameter can be studied in detail on a system-wide scale. By systematic changes of 
the parameters, keeping all parameters but one constant, the importance of each parameter can 
also be evaluated. As an example, it is possible to identify the transcription factors that controls 
growth rate dependent genes by altering the dilution rate (Fazio et al. 2008). Chemostats can 
also be used for selecting clones that have adapted to certain conditions using the concept of 
adaptive laboratory evolution. This gives new insight into how the cell can evolve to regulate 
the growth under selective pressure. Omics analyses such as transcriptomics and proteomics 
benefits especially from this tight control as the whole system is at steady state, and thus the 
gene expression, regulatory network, and the metabolism remain the same throughout the 
experiment. This is also important for generating the transcriptional regulatory networks. In 
addition to the above described parameters, CO2 can be measured, which provides an indirect 
way of observing cell growth and an indication of the metabolic state. The CO2 levels can also 
be used to make calculations for flux balance analysis (Nissen et al. 1997) that are being used 
in genome scale metabolic models (GEMs) (Duarte et al. 2004).  
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6.1.2 THE DESIGN 
The initial setup was simple: 16 glass vessel of 50 ml each, a single pump head (but with 
individual tubing) for each reactor, gas and media inlets and gas and media outlet. The 
temperature was controlled through a heat block while OD and pH were measured in the 
outflow. However, this setup turned out to be too simple. The selected pumps did not allow 
sufficient precision at the low flow rates that were required resulting in unexpected differences 
in flow rates depending on the content of the media. The gas resulted in evaporation from the 
media resulting in loss of water and decreased volume. We also chose not to include a DO 
sensor as this seemed troublesome to fit into our small system. However, this proved 
completely vital when running the chemostat in respiratory conditions such as the glucose and 
ethanol limited.  

So, we redesigned the system. The pumps were swapped for individual pumps of higher 
quality, a humidifier was included (gas was led through water before entering the vessel) and 
a DO sensor. We also built a pH-CO2 sensor array capable of continuous measurements to 
allow real-time data to be collected while experiments are running (Figure 17 A). 

 

Figure 17 The mini-chemostat setup and its performance. A) The setup including the 50 
ml reactors, heatblock, pumps, gas in, humidifier ph-CO2 sensor array and controller. The DO 
sensor cannot be seen as it is inside the reactors. B) The system was tested against the standard 
in our lab, a 1L Dasgip bioreactor. The PCA analysis shows the clustering of the replicates in 
either system and how the two systems cluster compared to each other.  
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6.1.3 A SYSTEM COMPARABLE WITH COMMERCIAL SYSTEMS 
The system was validated against a high-quality commercial system, evaluating both the 
stability of the physiological parameters and the ability to replicate expression data using four 
different conditions. The four conditions were N-lim, Glu-lim, Eth-lim and Ox,Glu-lim (see 
section 5). Transcriptomics data as well as DO, OD, pH and CO2 measurements were taken 
from the 1L chemostats and from the mini-chemostats at the four different conditions and 
compared. Differential expression of genes was assessed using Deseq 2 (Anders and Huber 
2010) and visualized with PCA analysis. The triplicates from both the Dasgip and mini-
chemostat clustered together indicating that the systems are comparable (Figure 17 B). Most 
genes showed similar expression pattern, although we identified some genes that were 
differently expressed. To analyze the data further we used gene set enrichment analysis (GSA) 
on GO-terms to assess groups of genes in known pathways simultaneously (Varemo et al. 
2013). At a p-value < 0.01 there were no GO-terms enriched for any of the conditions, showing 
that the systems were comparable. We increased the p-value threshold to 0.05 and found 
significant GO-terms. Interestingly, there were no GO-terms that overlapped between the 
conditions which showed that there was no systematic difference between the two systems.  

At this stage, potential improvements to the system were identified, such as automatic 
measurement of DO and OD as manual measurements are quite labor intensive. Also, the gas 
is not run through any mass flow control making the oxygen uptake rate (OUR) difficult to 
estimate. To address this, the development of this device was transferred to a company, 
D2Biotech. The system has since then been redesigned and now includes automatic reading of 
OD and DO, magnetic stirring and a mass flow controller (data not published but available at 
d2biotech.com).        

 

6.2 CST6: A STRESS-INDUCED TRANSCRIPTION FACTOR 
While I was working on developing the mini-chemostat system, Guodong Liu was setting up 
the ChIP-exo protocol. We selected Cst6 as a first target to evaluate the protocol and start the 
journey into yeast transcription factor regulation. Cst6 had previously been mapped in a large-
scale ChIP-chip study (Harbison et al. 2004). However, in this study, no consensus motif could 
be identified nor could the later identified target NCE103 be found (Cottier et al. 2012). It was 
known that deletion of Cst6 leads to poor growth on respiratory carbon sources like ethanol 
(Garcia-Gimeno and Struhl 2000). Another study indicated that Cst6 expression is dependent 
on the type of carbon source (Osterlund et al. 2015). We used the ChIP-exo protocol to identify 
binding sites for the transcription factor Cst6 in S. cerevisiae. Our aims were both to confirm 
the previous findings and also identify new targets for Cst6. This experiment was conducted 
using batch cultivation as the mini-chemostats were still under development. We evaluated 
Cst6 using both glucose and ethanol as the carbon source. 
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6.2.1 BINDING TARGETS 
Interestingly, the identified binding targets were very different between the two media. In total, 
we identified 40 binding sites when the cells were grown in media with ethanol as the carbon 
source. We could identify the binding site motif GTGACGT from the bound region sequences. 
This motif was slightly different from the previously in vitro identified motif TGACGT. In 
contrast, only 6 binding events were detected when the medium containing glucose was used, 
of which 4 were also found during growth on ethanol. This indicated that Cst6 hardly binds to 
its targets in a glucose-rich environment. 16 targets were identified to belong to genes encoding 
mitochondrial proteins. Together with the previous knock-out studies this indicated that the 
transcription factor is involved in respiratory functionality. Another interesting finding was that 
Cst6 binds to the promoter of ten different DNA-binding or transcriptional regulatory proteins, 
of which many are stress regulators.  

 

6.2.2 NCE103 AND THE BICARBONATE PATHWAY 
The next step was to link the transcription factor binding events to the effect this has on gene 
expression levels. To do this, we generated a CST6 deletion strain (cst6Δ) strain. One of the 
major targets of Cst6 is NCE103, which encodes a carbonic anhydrase converting CO2 to 
HCO3-. In the conversion of sugar to energy, CO2 is produced. Nce103 converts this CO2 to 
bicarbonate HCO3-. There are several processes that then use this bicarbonate. Pyruvate 
carboxylase, Pyc1, converts pyruvate to oxaloacetate while using HCO3-. Acetyl-CoA 
carboxylase, Acc1, catalyzes carboxylation of cytosolic acetyl-CoA to form malonyl-CoA 
using HCO3-. When glutamine is converted to glutamate by carbamoyl-phosphate synthase 
subunit Cpa1, HCO3- is used. In the TCA, a carbon is released as CO2, and NADH is generated 
when isocitrate is converted to α-ketoglutarate by Idh1 and Idh2. All of the above-mentioned 
enzymes share a common feature, their promoter is bound by Cst6. The pathways are illustrated 
in Figure 18 A). Expression of NCE103 was severely impaired in the cst6Δ strain. Several 
other identified targets also had an impaired expression, indicating that Cst6 does in fact 
regulate the expression of its targets mainly by activation. 

 

6.2.3 CST6 IMPACTS CELL GROWTH 

The cell growth, evaluated by OD, was reduced for cst6Δ compared to the control using 
ethanol-rich medium (Figure 18 C) but similar between the two strains when using glucose- 
rich medium (Figure 18 B). On ethanol, an extended lag phase was seen, and the final biomass 
concentration was slightly lower compared to control. NCE103 is likely the key player here. 
On glucose, the difference in expression of NCE103 between the two strains was negligible 
and the rapid CO2 production during fermentation may ensure sufficient supply of HCO3-. 
When ethanol is used as the sole carbon source, the decreased NCE103 and the slower CO2 
production by respiration may not be able to provide enough HCO3- for the key biosynthetic 
reactions required for cell growth.   
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Since the expression of NCE103 was decreased to a greater extent than the expression of the 
other target genes during growth on ethanol, we evaluated whether the low expression of this 
gene was contributing to the slower growth of the cst6Δ strain. We expressed NCE103 under 
control of the constitutive TEF1 promoter in the cst6Δ strain. This could partially restore the 
growth on ethanol at the lag phase. This implies that the carbonic anhydrase activity or the 
resulting HCO3- concentration in the cst6Δ strain is the limiting factor for the initial growth of 
the cst6Δ strain on ethanol (Figure 18 C black lines). 

6.2.4 STRESS RESPONSE 
In S. cerevisiae, Cst6 is an ATF/CREB family transcription factor with a basic leucine zipper 
(bZIP) domain. All three members in this family, namely Sko1, Aca1, and Cst6 (alias Aca2), 

Figure 18 Cst6 role in stress response. A) Major pathways for CO2 and HCO3- metabolism. 
The reactions producing or consuming HCO3- are shown by thick arrows. Pathways active on
glucose are sown by dotted arrows. OAA, oxaloacetate; TCA cycle, tricarboxylic acid cycle;
GYC, glyoxylate cycle; CoA, coenzyme A; CP, carbamoyl phosphate. B) Growth on 2% 
(wt/vol) glucose with or without supplementation of H2O2. C) Growth on 1% (vol/vol) ethanol
(EtOH) with or without supplementation of 0.5 mM H2O2. A strain containing NCE103 under 
control of the TEF1 promoter could partially restore growth on ethanol. D) Heat map showing 
coregulation of Cst6 targets. Targets with known functions in the stress response are marked 
by dots. Filled squares indicate TF-target binding relationships. 
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bind to the TGACGTCA sequence in vitro (Garcia-Gimeno and Struhl 2000). The function of 
Sko1 in osmotic and oxidative stress responses and its genome-wide regulatory network have 
been well documented (Proft et al. 2005; Proft and Struhl 2002). That also Cst6 is active in 
stress response might therefore not seem too farfetched. Contradictory to our results, previous 
studies based on phenotypic and gene expression analysis have indicated that Cst6 is not 
involved in the stress response (Garcia-Gimeno and Struhl 2000). The fact that Cst6 in our 
study was bound to many stress response genes indicated otherwise. We evaluated the WT and 
cst6Δ response to the stress factor H2O2 with glucose or ethanol as carbon source. Growth tests 
on ethanol showed that the cst6Δ strain was more sensitive than the wild type to H2O2. On 
glucose, the cst6Δ strain showed sensitivity to H2O2 similar to that of the wild type (Figure 18 
B) and C) blue lines).  

With the stress test and the binding to stress-related genes, we could establish that Cst6 acts as 
a stress-responsive transcription factor. Integrating our findings with other published data on 
stress-related transcription factors showed the complexity of the stress response regulatory 
network in yeast. Interestingly, we found a hierarchical role of Cst6 in the stress response. Cst6 
binds to the promoter of YAP6, YAP1, PHD1, SOK2, GAT2, HAP4, and ROX1, which are all 
transcription factors. Yap1 and Yap6 are involved in stress response while Phd1 and Sok2 are 
involved in pseudohyphal growth (Figure 18 D). Overlay of five transcription factors that had 
high similarities in their set of target genes, all involved in stress response, and Cst6 shows 
how complex this regulation is. This analysis reveals extensive combinatorial regulation and a 
transcription factor cascade that is active only in certain conditions. 

 

6.3 PIPELINE FOR ANALYZING CHIP-EXO DATA 
When we started analyzing the ChIP-exo data, we soon realized that in order to ensure correct 
and reproducible interpretation of our data, we needed to develop a pipeline for the data 
handling. For example, we needed to define what is a peak and what is noise, and exactly how 
to treat the raw data. In section 5, Figure 16 I gave an overview of the whole process from 
tagging the protein to viewing the binding profile. Here, I will describe how this consensus 
pipeline was constructed.  

 

6.3.1 CHIP-TECHNIQUES 
The earliest protocol of ChIP methodology was the ChIP-chip protocol, which uses a 
microarray with predefined sequences to identify binding events. Typically, this results in a 
binding spectrum with broader peaks with low resolution to separate binding sites of close 
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proximity. This protocol also results in high noise, which makes it difficult to identify weak 
binding events (small peaks) and also requires a good control. The next generation was ChIP-
seq, where the main difference is the analyzing technology. ChIP-chip does not use sequencing 
technologies while ChIP-seq does, which allows for higher resolution. However, the noise level 
is high also for this protocol due to contaminating DNA sequences and controls are therefore 
needed. In ChIP-exo, the sequencing technology is the same as in ChIP-seq, but the 
pretreatment of the DNA is different. This pretreatment removes the contaminating DNA, 
reducing noise and making the control redundant. The resolution is increased as the flanking 
regions of the DNA surrounding the transcription factor are degraded (Figure 19). An 
advantage of this method is the potential to identify multiple binding sites at close proximity. 
In ChIP-seq, this could only be inferred if several motifs were identified within the region of 
interest but does not necessarily mean that the transcription factor binds there. The only option 
to identify multiple binding in ChIP-seq is by using mutated promoters and assess changes to 
the signal. In ChIP-exo, these multiple bindings can instead be observed directly thanks to the 
nucleotide resolution. With ChIP-exo, there is a flanking region at the 3’ end of up to 300 bp 
that the exonuclease does not degrade. This is due to shearing of the DNA. However, it always 
occurs at the 3’ end while the 5’ end always point to the transcription factor-DNA crosslinking. 
Also, the reduced amount of DNA in the sample requires the use of PCR to amplify and 
increase the DNA concentration. 

 

6.3.2 DATA TREATMENT       
The sequenced DNA data are in the form of reads with a predefined length based on the 
sequencing specifications, where we usually use 75 bp. These reads need to be aligned to the 

Figure 19 ChIP techniques. ChIP-chip and ChIP-seq are derived from the binding of TFs
that are then analyzed using microarrays or NGS. ChIP-exo uses an exonuclease (pacman) that
digests contaminating DNA and the flanking regions surrounding the TF binding. This results
in superior resolution and binding detection. 
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genome for identification, and for this we use Bowtie and map it to the CEN.PK113-7D 
genome sequence (Salazar et al. 2017). CEN.PK113-7D (or its derivatives) is the laboratory 
strain of S. cerevisiae that we use in our experiments. The PCR amplification can result in 
duplicates that need to be filtered out. The 5’ end of the read may be identical to another 5’end 
of another read, which identifies them as reads for the same transcription factor-DNA crosslink. 
However, the shearing causes the 3’end to be at different locations. Therefore, any two reads 
that have identical 3’ and 5’ ends are considered duplicates and are removed using the software 
samtools (Li et al. 2009).  

As mentioned, the length of the reads is 75 bp due to the sequencing technique. To increase 
resolution, the length of the reads must be adjusted, trimmed, to be able to detect binding sites. 
Transcription factors vary in size and so will the stretch of DNA that transcription factors bind 
to. We developed a mathematical formula to address this, which we refer to as the TFfootprint 
formula. This formula assumes that the transcription factor has a spherical shape (adapted from 
(Erickson 2009)) and also that the transcription factors bind as dimers and thereby overlap with 
half their size. Trimming is done using the software bamUtils (Wing 2010) applying the 
TFfootprint formula according to   

𝑇𝐹𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑛𝑢𝑐 ∗  
1 𝐴𝐴
3 𝑛𝑢𝑐

∗ 110
𝑑𝑎𝑙𝑡𝑜𝑛𝑠

𝐴𝐴
 

 

𝑇𝐹𝑟𝑎𝑑𝑖𝑢𝑠 0.066
𝑛𝑚

𝑑𝑎𝑙𝑡𝑜𝑛𝑠
 ∗ 𝑇𝐹𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑎𝑙𝑡𝑜𝑛𝑠 /    

 

𝑇𝐹𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝑏𝑝 3 ∗ 𝑇𝐹𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 3.03
𝑏𝑝
𝑛𝑚

 

 

When the trim length is determined, we identify regions that have overlapping reads from both 
forward and reverse 5’ ends. Overlapping reads indicate that we have identified the two borders 
of transcription factor-DNA crosslinking. Then the two strands are combined and only regions 
present in both directions (e.g. complimentary regions in both strands) are stored while the 
remaining DNA is removed. The stored DNA is then reported as the transcription factor 
binding profile using the software Bedtools (Quinlan and Hall 2010).     

For peak identification we use the software GEM (Guo et al. 2012), which uses an iterative 
learning process to identify peaks. Peaks with a normalized binding strength below 2 times the 
noise level (signal to noise ration SNR≤ 2) will be filtered out. Peaks are linked to a specific 
gene if they are closer than 1000 bp to the TSS.  

The whole workflow is visualized in Figure 20. 
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6.3.3 PIPELINE OUTPUTS 
The pipeline generates seven different outputs (Figure 21): Strand overlapping reads, Sample 
correlation, Read profiles, Average Read distribution, List of TF peaks, List of gene targets 
and Peak centered read distribution.  

“Strand overlapping reads” are the resulting data used to analyze and visualize our findings 
(Figure 21 A). For this we use browsers like IGV. The graphical output “Sample correlation” 
shows how well our data correlate e.g. between replicates, which can be used as a data quality 
control (Figure 21 B). “Read profiles” mapped to genes are the next output that can be used 
for visualizing and analysis of the reads, i.e. in our software T-rEx. From the read profile, 
average “Read distributions” are created including all reads ±1000 bp of the TSS for all genes 
in the genome (Figure 21 C).This plot can also be used as a quality control as most binding 
events occur upstream of the TSS in yeast, and therefore we should see read enrichments in 
this region if the experiment was successful. “List of TF peaks” is a file containing all peaks 
identified throughout the genome. This list can be filtered by assigning a “List of gene targets”. 
Then each peak is assigned to a gene and peaks with SNR≤ 2 are filtered out. “Peak centered 
read distributions” uses the list of peaks and a similar file to the “Strand overlapping reads”, 
but where the strands are still separated. The plots generated show how the reads are distributed 
around the identified peaks (Figure 21 D & E).  

 

Figure 20 Visualization of the data treatment. Reads are aligned (forward or reverse) to the 
genome and duplicates are removed. A TFfootprint is calculated that trims the reads to match 
the size of the TF. Only overlapping reads are kept. Peaks with a SNR≤2 will be filtered out. 
Peaks are assigned to genes if they are closer than 1000 bp to the TSS.  
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This concludes this chapter, where I have demonstrated our framework for analyzing 
transcription factors. In summary, this framework consists of three parts: First, we developed 
a miniaturized high-throughput fermentation system capable at running several different 
conditions and with high reproducibility. Second, we demonstrated that the ChIP-exo 
technique is useful for studying transcription factor-DNA interactions and that the use of 
different conditions is in many cases vital for the identification of transcription factor targets. 
Finally, we generated a pipeline that unifies how to treat ChIP-exo data and reports back quality 
controls as well as data that can be used for further analysis.

Figure 21 The graphical outputs of the pipeline for Cbf1. A) The strand overlapped reads
which can be viewed in IGV browser. B) Sample correlation plot can be used as a quality
control that the samples has similar binding. C) Read distribution around TSS shows if and
where the TF has more binding than the average noise. D-E) Read distribution around Peaks
shows the TF-DNA crosslinking borders.  
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7 IMPLICATIONS OF TRNS 
This chapter includes the major work of this thesis: transcriptional regulatory networks. It 
covers Papers IV-VI, focusing on the generation and analysis of high throughput data that can 
be used for reconstructing TRNs. Paper IV covers five transcription factors, namely Ino2, 
Ino4, Oaf1, Pip2 and Hap1. These transcription factors are primarily involved in lipid 
metabolism, although we show that their TRNs also span beyond this process. Paper V 
comprises a more in-depth investigation of the transcription factor Stb5 regulating the pentose 
phosphate pathway. In this paper, we reconstruct the TRNs, investigate the biological 
implications (NADPH levels) and use GEMs to fit the flux distribution of the proposed TRN. 
Finally, Paper VI explores the use of models to predict expression levels of genes based on 
transcription factor binding and the biological role of transcription factors.   

 

7.1 REGULATORY NETWORK OF LIPID METABOLISM 
Lipid metabolism is an important process for the cell, both for generating structural 
components of the cell and for energy storage (see section 3.2, Figure 11). The five 
transcription factors Ino2, Ino4, Hap1, Oaf1 and Pip2 have all been implicated in the lipid 
metabolic processes and were therefore selected for our analysis. Our primary aim was to 
identify binding sites for each transcription factor with the goal to link them to potential target 
genes. The experiments were carried out in four different conditions in chemostats, either in a 
Dasgip bioreactor or in the mini-chemostat system. 

 

7.1.1 HIGH RESOLUTION, NEW TARGETS AND MULTIPLE BINDING 
The high resolution of ChIP-exo, where the binding site of a transcription factor can be 
determined at nucleotide resolution, provided high precision in our data. We could for example 
without trouble determine multiple bindings on a given promoter (Figure 22 A), something 
that would not have been possible with the predecessors ChIP-seq or ChIP-chip. Overall, we 
found that Ino2 and Ino4 had a high degree of overlap in their targets, but they were not entirely 
identical. Interestingly, both had a very high number of targets (804 and 652, respectively) and 
were found to be bound at multiple positions on many promoters (Figure 22 B). Ino4 had 
previously been hypothesized to be a global regulator of gene expression (Santiago and 
Mamoun 2003) and Ino4 had been shown to have an overall regulatory function in DNA 
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damage, targeting 1078 genes when methyl-methanesulfonate was added to the media 
(Workman et al. 2006). Ino4 belongs to the pioneering transcription factors (see section 1.3.1) 
that uses multiple bindings to outcompete the nucleosome (Yan et al. 2018), which is well in 
agreement with the high number of binding sites identified in this study. But are these multiple 
bindings true, or are they artifacts of the method or even noise? Although some may be noise, 
much speaks for most peaks reflecting true binding events. As an example, in our data, the 
ENO1 promoter shows what could be 5 (possibly even 6) Ino2 peaks or, alternatively, 1 peak 
and the rest is noise (see Figure 9). Looking at the binding sites and including a motif 
CWCnTG (closely resembling the E-box motif mentioned in section 2.1), all 5 (6) sites contain 
this sequence indicating that the peaks are true. For Hap1, we found a good overlap with 
previously reported targets, but we also expanded the list with 320 new potential targets where 
we see a core set of genes for all conditions but that many targets are condition dependent 
(Figure 22 C). For Oaf1 and Pip2, a computational approach to find oleate responsive elements 
(OREs) identified 85 sites in total (Trzcinska-Danielewicz et al. 2008). It had previously been 
shown that 22 of these were bound by Oaf1-Pip2 (Karpichev and Small 1998), while we 

Figure 22 High-resolution, multiple and condition dependent binding. A) Ino2 interaction 
with the CHO2 promotor showing three bindings with three different, but highly similar
motifs. B) The distribution of bindings of Ino4 in four different conditions indicating that most
promotors have one binding site but that are plenty of promoters with multiple binding sites.
C) Venn diagram of Hap1 targets showing the four different conditions. 34 genes are shared
between the conditions but overall many targets are condition specific. D) Comparison of
detected UASORE from two previous studies and the binding of Oaf1-Pip2 in this study.  
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showed that 42 of these sites were bound in any of the 4 conditions (Figure 22 D). This not 
only raises the importance of using different conditions, but it also speaks for that binding sites 
identified from computational approaches can be correctly predicted given the right conditions. 
Identifying what causes the changes in chromatin structure allowing the transcription factor to 
bind could lead to phenotypic predictive models.  

 

7.1.2 CONDITION-DEPENDENT BINDING 
All studied transcription factors had a core set of target genes, but they also had plenty of target 
genes that are condition-dependent thus indicating their response to environmental changes. 
Hap1 for instance binds to both ERG2 and HMG1 in Glu-, Nit-, and Ox,Glu-lim but these 
binding events were not present in Eth-lim. We also found that the binding is related to the 
chromatin state (Figure 23). For the low affinity hexose transporter gene HXT3, nucleosomes 
are depleted in N-lim (high glucose condition), allowing Ino4 to bind. In Glu-lim condition the 
nucleosomes are present and Ino4 cannot bind. This is in line with the Rgt1 binding seen for 
the HXT1 gene (see section 1.3.2) where Rgt1 binds in Glu-lim but not in N-lim conditions. 
However, the opposite was observed for the high affinity glucose transporter genes HXT6 and 
HXT7, where nucleosomes were present in N-lim but not Glu-lim conditions. For HXT6, Rgt1 
is almost depleted, allowing Ino4 to bind. For HXT7, Rgt1 binding is more abundant and lower 
binding of Ino4 is observed (Figure 23). However, the fact that more nucleosomes are present 
in the N-lim condition suggests that there is a third component that can block the expression of 
the high affinity transporters. This third component is mediated through the glucose sensor 

Figure 23 Binding of Ino4 and Rgt1 on the promoters of three hexose transporter genes.
For HXT3 a strong binding of Ino4 can be seen in N-lim while no binding occurs in Glu-lim. 
Overlaying nucleosome data shows that there are nucleosomes present when Ino4 cannot bind. 
However, Rgt1 is present, which attracts nucleosomes in Glu-lim condition. For HXT6 and 
HXT7 the opposite behavior can be seen suggesting a third component, Mig1 and Mig2, to the
hexose transport machinery.  
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Snf3, which inhibits the repressive effect of the protein Mth1 resulting in Rgt1 phosphorylation 
and inactivation (Liang and Gaber 1996). This releases the repression on the promoters of 
MIG1 and MIG2, which encode two transcriptional repressors that also work by binding to 
Ssn6-Tup1, which in turn assembles nucleosomes thus repressing HXT6 (Westholm et al. 
2008). This example shows the usefulness of this data set, where previous data and hypotheses 
can be strengthened and further built on. 

 

7.1.3 REGULATORY NETWORK 
To be honest the data are rather beautiful, but one should take care not to get lost in its 
complexity. I have stared myself blind looking at the different nucleotide compositions in and 
around the binding sites of each transcription factor. But it is worth it as elegant patterns do 
emerge. Fortunately, we can apply computational tools to do the hard work of network 
identification instead of ruining our sight. We used GSA from the Piano R package (Varemo 

Figure 24 The lipid TRN. The biological processes reported to have statistical significance 
(P value < 0.01) in gene set analysis of target genes with binding ratio log2(S/N) of >1 are 
shown. For a TF significantly associated with a certain process, the number of bound genes is 
shown. A minus symbol indicates that the process is not significantly reported for the TF under 
the corresponding condition. Abbreviations of growth conditions: N, N-lim; E, Et-lim; OG, 
Ox,Glu-lim; G, Glu-lim. 
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et al. 2013), applying a cutoff of p value < 0.01 for enriched GO-terms. We found that for Ino2 
and Ino4, lipid metabolic processes were enriched as well as amino acid synthesis, cell wall 
biogenesis, gluconeogenesis and respiration. For Oaf1-Pip2, lipid metabolic processes were 
enriched as well as β-oxidation and malate metabolism. Oaf1 also had independent enrichments 
in sterol synthesis and respiration. Hap1 showed enrichments in lipid metabolic processes, 
sterol synthesis and respiration. Returning to the overall picture in section 3, Figure 13, it all 
makes sense. Ino2 and Ino4 have the majority of their targets in phospholipid synthesis, and 
fatty acids are required to synthesize phospholipids. The precursors for fatty acids are products 
of the glycolysis and gluconeogenesis, and so we have traced the network for Ino2 and Ino4. 
Oaf1-Pip2 is bound to the promoters of genes that are involved in the break-down of fatty acids 
and sterols. To further generate new precursors in gluconeogenesis, an important key 
intermediate metabolite is malate, Oaf1-Pip2 targets are enriched for malate metabolism genes. 
This connection is illustrated in Figure 24, where also the different conditions are represented.  

 

7.1.4 GENE DELETIONS AND CHIP-EXO 
We used available data on deletions for the five transcription factors to see how well the binding 
of a transcription factor corresponds to the transcriptional output. For all deletions, we found 
direct targets, indirect targets and nonresponsive targets. Direct targets have a significant 
binding (log2(S/N) and a significant down- (or up-) regulation |log2(FC)| >1 in a deletion 
strain. Indirect targets have a significant FC but no binding, and the nonresponsive targets have 
binding but no significant FC (Figure 25 A). We used t-tests including all genes, both one-

Figure 25 Data integration for elucidating the regulatory effect of TFs on their targets. 
A) Gene expression changes in deletion strains of INO2, INO4, HAP1, OAF1 and PIP2 were 
correlated with the binding strength (S/N) of the respective TF. Direct significant targets are 
named. B) P values from the t test of the five TFs under different conditions showed that in a 
one-sided t test, all TFs had significant (P<0.01) down- or upregulation of genes that were 
bound compared to non-bound genes. 
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sided and two-sided, to identify significant up- and/or down-regulations caused by the TFs. 
The one-sided tests showed most interesting results (Figure 25 B), as almost all transcription 
factors showed a significant down-regulation of bound genes in the deletion strains indicating 
direct targets. Ino2 and Hap1 also showed upregulation of target genes in the deletion strains 
in a one-sided t-test. For Hap1, this is in line with previous observations that this TF is a 
repressor in anaerobic conditions (Ox,Glu-lim) (Hickman and Winston 2007). However, this 
analysis suggests that it also has an activating effect on many other targets. Interestingly, we 
found that some of the genes that showed upregulation by Ino2 binding had a slightly different 
motif compared to the consensus. Therefore, we postulate that the upregulation of genes due 
to deletion of INO2is not as much of a repressive effect of Ino2 as it is an enhancing effect of 
another transcription factor that can take its place. This infers that there is competition between 
activating transcription factors, and that the transcription factors have different levels of 
activation (described in section 2.1).    

 

7.2 STB5 A MODULAR NADPH-REGULATOR  
For lipid synthesis to function, NADPH is needed. NADPH is mostly generated in the pentose 
phosphate pathway (PPP, section 3.1.2, Figure 11). Stb5 has previously been reported to be a 
regulator of the PPP and found through ChIP experiments to be bound to many of the genes 
(i.e. ZWF1, GND1, GND2, TAL1,TKL1) of this pathway (Larochelle et al. 2006). The PPP is 
the most prominent route to generate NADPH when cells are grown on glucose. Alternative 
routes for generating NADPH include Ald6 encoding aldehyde dehydrogenase for conversion 
of acetaldehyde to acetate using NADP+ as cofactor, and Idp2 encoding a cytosolic NADP-
specific isocitrate dehydrogenase. NADPH is also important for reductive biosynthesis such as 
fatty acid synthesis and oxidative defense mechanisms (Juhnke et al. 1996).  

 

7.2.1 STB5 TARGETS 
The experimental procedure to investigate Stb5 was the same as for the lipid metabolic 
transcription factors and included four different limited chemostat conditions. We found 50 
targets that were shared between all conditions, but the two respiratory conditions had an 
increased number of targets. GO-term analysis showed that PPP, NADPH regeneration and 
oxidation reduction processes were enriched. Interestingly, for Glu-lim conditions, lipid 
biosynthesis and ergosterol biosynthesis was also enriched, highlighting the strong connection 
between PPP, NADPH and lipid metabolism (Figure 26 A). We conclude from the changes in 
binding between the different metabolic states of the cell that Stb5 consistently binds a set of 
NADPH-associated genes (ZWF1, SOL3, GND1, GND2, TKL1 and ALD6) (Figure 26 B), 
independent of the metabolic condition. Stb5 also shows increased recruitment to distinct 
groups of additional genes in ethanol and aerobic glucose limited conditions.  
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7.2.2 NADPH AND GENE EXPRESSION LEVELS IN WT AND STB5Δ STRAINS 
Measuring NADPH levels in all conditions showed that NADPH levels were decreased in N-
lim and Glu-lim conditions but increased in both Eth-lim and Ox,Glu-lim (not significant for 
Ox,Glu-lim). The reduction of NADPH in the stb5Δ strain for N-lim and Glu-lim indicates a 
functional role of Stb5 in NADPH generation. In Ox,Glu-lim, there is a lower demand of 
NADPH as oxidative stress is reduced due to oxygen limitation and thereby reduced 
respiration. Growth on ethanol is an interesting condition as glucose is not the carbon source 
and gluconeogenesis are the main route for generating precursor metabolites. The higher 
NADPH levels indicate that an alternative route of NADPH generation is active, which might 
be inhibited by Stb5 (Figure 26 C). Research on overexpression of STB5 supports this theory. 
In the glucose phase of a batch culture (similar to Glu-lim as tested by transcriptome 
comparison) when Stb5 can use glucose to generate NADPH, free fatty acids were increased, 
while after 72 h (similar to Eth-lim as tested by transcriptome comparison) fatty acid levels 

Figure 26 Stb5 targets and the effect of stb5Δ. A) The GO-terms connected to the Stb5
targets in the four different conditions. B) Highlighting the strongest bound targets of Stb5
where main targets are in involved in the PPP and/or NADPH generation. C) NADPH levels
are reduced in the respiratory glucose limited chemostat condition in stb5Δ, whereas in ethanol 
condition NADPH levels are increased. D) The reduced NADPH levels have a severe effect
on the growth rate in Glu-lim media while growth rate was not affected in ethanol media.  



Implications of TRNs 

___________________________________________________________________________ 

47 
 

were decreased (Bergman et al. 2019). The decrease of fatty acid production during growth on 
ethanol indicates that the alternative route(s) for generating NADPH from ethanol cannot 
function properly when STB5 is overexpressed.  
When the deletion strains were grown in batch cultures, it was clear that the low nitrogen and 
low glucose grown strains where under stress. We measured the growth rate using medium 
similar to the chemostats. The growth rate in a batch culture at High Nitrogen/Low Glucose 
was reduced from µ=0.45 to µ=0.1 and in batch culture Low Nitrogen/High glucose from 
µ=0.22 to µ=0.09. It was fortunate that the growth rates were not considerably lower than 
µ=0.1, as this was the chosen dilution rate for the chemostats. In batch ethanol media the 
deletion did not affect growth rate (Figure 26 D). Transcriptomic analysis of the deletion strain 
in chemostat showed that only four genes were consistently downregulated in all four 
conditions: TAL1, GND1, KNH1 and a gene of unknown function, namely YBR085C-A. In Glu-
lim, N-lim, Ox,Glu-lim and Eth-lim there were 230, 500, 480 and 27 genes with significantly 
changed expression levels, respectively. We found that these genes were enriched for 
transcription factor genes and GO-terms connected to rRNA biogenesis and processing genes. 
rRNA biogenesis and processing is a strong GO-term connected to growth rate (Regenberg et 
al. 2006). Other GO-terms were also connected to stress and chemical resistance. However, 
only few of the differentially expressed genes were direct targets of Stb5. Connecting this to 
what we observed before indicates that the cells undergo high stress due to NADPH limitations. 
The NADPH limitation has an impact on growth rate and when the cells are grown in chemostat 
close to their µmax, this stress has profound impact on the transcriptome. The overweight of 
transcription factor genes in the up-regulated targets (not target by Stb5) indicates that this is a 
stress adaptation by the strain to cope with the deletion of STB5. PPP and NADPH regeneration 
were also enriched GO-terms.  

 

7.2.3 GEM SIMULATIONS     
We used genome scale metabolic model (GEM) simulations to obtain information about how 
fluxes were changed in the deletion strain. We focused on the respiratory glucose limited 
condition (Glu-lim), as most of the Stb5 targets were identified in this condition. We used the 
metabolite concentrations from HPLC analysis to constrain the exchange fluxes. The model 
was optimized for biomass formation and we found that the predicted growth rate was nearly 
identical to the measured value. Since NADPH is mostly affected in the stb5Δ strain, we 
focused on changes in fluxes of reactions involving NADPH. Interestingly, only five enzymes 
were predicted to be generating NADPH: Zwf1, Gnd1, Gnd2, Idp1 and Ade3. All these five 
enzymes have a reduced flux in the model. 63 gene reactions were identified to consume 
NADPH, which could be grouped to 13 pathways, where the fluxes of these reactions were 
also reduced (Figure 27 A). We conclude that the loss of Stb5 function leads to reduced 
NADPH generation and use in biosynthesis pathways. Which changes in reaction fluxes are 
then most likely to be caused by transcriptional changes in the stb5Δ strain? We used random 
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sampling to assess this, where reactions with consistent changes in flux values and gene 
expression values are most likely to be our targets. We found that of the top nine reactions, 
four were connected to the PPP. Of these four reactions, three are reactions involving Tal1, 

Figure 27 GEM simulations and Stb5 regulation. A) NADPH generating and consuming 
reactions and pathways where all fluxes are negative indicating reduction of fluxes in all of 
these reactions due to the STB5 deletion. B) Stb5 regulation of the main PPP genes and their 
reactions. N: N-lim, E: Eth-lim, A: Ox,Glu-lim, G: Glu-lim 
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Sol3, Sol4, Gnd1 and Gnd2, for which we previously had identified strong evidence of control 
by Stb5 (Figure 27 B).  

 

7.2.4 ADDITIONAL FINDINGS  
An interesting observation was that ZWF1, one of the major drivers of the PPP, is bound by 
Stb5, but does not show any signs of being regulated by Stb5 as its gene expression does not 
change upon STB5 deletion. However, our previous study on lipid metabolism transcription 
factors shows that Oaf1-Pip2 are also strongly bound to ZWF1, indicating that these may have 
a stronger regulatory role over ZWF1 compared to Stb5. In addition, the two alternative routes 
for producing cytosolic NADPH encoded by Idp2 and Ald6, were slightly down-regulated in 
the stb5Δ strain (ALD6 only significantly in Glu-lim). Both the IDP2 and the ALD6 promoter 
are bound by Stb5 and by Oaf1. This is in line with that NADPH is needed in the cytosol for 
the regeneration of thioredoxin/glutathione that are in turn needed for the detoxification of 
H2O2 generated in the peroxisomal β-oxidation (Minard and McAlister-Henn 1999) which is 
controlled by Oaf1-Pip2 (unpublished results). 

   

7.3 PREDICTIVE MODELS OF TRANSCRIPTIONAL 
REGULATION 

Next, we set out to develop predictive computational models of transcriptional regulation using 
data from a large-scale experiment including the previous 6 and 15 new transcription factors, 
requiring roughly 70 days wet lab experimental time. We were interested in how well we can 
predict the functionality of binding of a transcription factor, and by doing so identify the TRN. 
It is clear from deletion studies by both us and others that the resulting gene expression change 
upon TF gene deletion correlates poorly with the targets of the studied transcription factor, with 
on average 3% of targets overlapping with differentially expressed genes (Gitter et al. 2009). 
To deal with this we used several different models, including linear regression models and 
adaptive regression splines. We aimed to keep it as simple as possible to reduce risk of 
overfitting.  
Linear regression models are defined by Yi = β0 +β1 X1i +εi, where i is the gene, Y is the gene 
expression (FPKM), β0 is the intercept, β1 is the coefficient that is selected to fit the level of 
transcription factor binding, X1i, to the intercept and εi is the predicted error. The direction 
(positive or negative) value of β has a biological implication. A negative value indicates that 
the transcription factor has a negative effect on transcription and thus works as a repressor and 
a positive value indicates that the transcription factor acts as an activator. As it is highly 
unlikely that only one transcription factor is the sole contributor to the gene expression, we use 
multiple linear regression models where several predictors are added together. This model is 
defined by Yi = β0 +β1 X1i +…+ βkXki + εi, where k indicates the index of a transcription factor. 
For this analysis, we included data from several previous publications (Paper I, IV and V) as 
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the data were generated in the same conditions. Multivariate adaptive regression splines, 
MARS, is advantageous for prediction performance for example when the transcription factor 
effect on gene expression is only present at certain transcription factor binding levels. This 
algorithm allows a type of peak definition where the peak threshold (spline) is introduced to 
create a linear relationship between transcription factor binding and transcript levels only for a 
certain range of transcription factor binding strength. Variable selection in MARS will select 
only the best combination of transcription factors to predict as much as possible while 
penalizing increasing the complexity of the model. The targets of the selected transcription 
factors were all enriched in genes involved in central carbon metabolism in the large scale 
ChIP-chip experiment (Harbison et al. 2004) and the 849 selected target genes are present in 
the metabolic GEM model v7.6 (Sanchez 2016). 
As expected from our previous analyses, the different chemostat conditions, and therefore also 
the metabolic state of the cells, had profound effects on the binding targets of each of the 21 
transcription factors according to our computational analyses. We could both identify new roles 
and functions and confirm most of the literature-reported GO-terms for all investigated 
transcription factors, e.g. amino acids for Gcn4, branched chain amino acids for Leu3, glucose 
transport for Rgt1 and glycolysis for Gcr1.  

 

7.3.1 PREDICTING GENE EXPRESSION WITH MARS 
We used MARS to predict the gene expression levels of the 849 genes using 21 transcription 
factors in all 4 conditions. The MARS model managed to predict 34-43% of the variation of 
the expression levels between the conditions (Figure 28 A-B). It also identified transcription 
factors that benefit from splines over linear models (Figure 28 A-B). Some of these splines 
have a threshold before which there is a linear correlation between binding and transcript levels, 
while others have a saturation effect where more binding does not lead to higher expression. 
Transcription factors often work in pairs or in bigger complexes. Sometimes these pairs do not 
give any extra predictive power to the model. MARS can filter these pairs out and only keep 
the transcription factor that has the highest predictive power (Figure 28 C-D). To find cases of 
collinearity in the MARS models where a transcription factor is not included because there is 
a slightly better predictor selected, we tested if all included transcription factors could be 
substituted by other transcription factors with significantly correlated binding. Such cases are 
shown with black borders. However, sometimes these pairs are multiplicative (synergistic) and 
have a far higher impact on the predictive power if they are defined as a pair in the model 
(Figure 28 E-F). All the collinear transcription factor pairs were tested for synergy in this way, 
and we found that Ino2-Ino4 was multiplicative in all conditions. Ino4 also had more 
combinations where it could increase the predicative power, in line with what was mentioned 
in section 2.1. Other known synergistic interactions such as Cat8-Sip4, Gcr1-Gcr2, Rtg1-Rtg3 
were also identified.  
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Figure 28 Predicting metabolic gene transcript levels of the different conditions using
MARS. (A-B) Predicted vs observed transcript levels, where the boxes below the prediction
plots represent the significant TFs and their respective splines. (C-D) Correlation plots 
between TF binding in promoters of metabolic genes. Significance for TF pairs indicated by
asterisk(s). Pairs of significantly collinear TFs that are interchangeable in the MARS TF
selection are indicated by a stronger border. (E-F) Linear regressions of collinear TF pairs
were tested with and without allowing a multiplication of TF signals of the two TFs. TF pairs 
indicated in red and with larger fonts have an R2 of the additive regression >0.1 and increased 
performance. 
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7.3.2 IMPROVING PREDICTIVE POWER THROUGH METABOLIC CLUSTERING 
From the MARS analysis we could identify transcription factors that give an overall predictive 
power to the expression levels of all the metabolic genes. However, if a transcription factor 
only regulates a small set of genes, it could potentially be filtered out in this process. This 
method instead focuses on genes with similar trends that can be clustered together between 
conditions. Using k-means clustering, we found that 16 clusters were optimal (defined by 
Bayesian information criterion) for the metabolic genes. These clusters are represented by 
several GO-terms, but the strongest GO-term is indicated with a p.adj-value. From this analysis, 
we selected 4 clusters that were all strongly coupled to central carbon metabolic processes and 
had a large transcriptional change between the conditions (Figure 29). A good indication that 
this analysis is accurate is that cluster 9, “cellular response to nitrogen starvation”, has higher 
transcript levels in the nitrogen-limited condition. For analyzing the identified clusters, we used 
the MARS algorithm again, but this time we decided to use it without the splines to increase 
stability and reduce the risk of overfitting. The predictive power of the model increased 
significantly when analyzing the clusters compared to analyzing all the genes. To assess the 
relative influence and predictivity of each transcription factor in a cluster we calculated a “TF 

importance” variable, defined as the product of the linear regression R2 value, the relative 

Figure 29 Clustering genes by their relative change in transcription level in between 
conditions. For clusters that have one or several significantly (FDR-adj P < 0.01) enriched 
GO terms, the top GO term is indicated with p.adj-value. Clusters containing central 
metabolic processes selected for further analysis with linear regressions are indicated by a 
black frame 
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contribution of the transcription factor (0-1) and the coefficient for activation or repression (-
1,1).  

Cluster 4, including ergosterol, steroid, sterol and lipid metabolic processes, showed a 
relatively high number of changes to the calculated “TF importance” values when comparing 
the different conditions. Hap1 was the only transcription factor that was identified in all 
conditions, while Gcn4 was identified in three and Oaf1 in two conditions (Figure 30 A). All 
transcription factors showed positive importance, indicating an activating effect. The predictive 
score of this cluster in fermentative glucose metabolism (Ox,Glu-lim) using the model selected 
important transcription factors Ert1, Cat8, Gcn4 and Hap1 (Oaf1 is not selected by MARS as 
it is interchangeable with Hap1) showing an R2 = 0.68 (Figure 30 C). This strongly indicates 
that the model explains much of the variability of the gene expression for these processes in 
his cluster. Contribution from each transcription factor can be displayed in a heatmap, showing 
the measured transcript levels as well as the binding signal of each transcription factor 
normalized column-wise (Z-score) (Figure 30 E). Cluster 15 is enriched for glycolytic 
processes, and as expected, the glycolytic regulators Gcr1, Gcr2 and Tye7 are major 
contributors to the model’s predictive power (Figure 30 B). Also, Ert1 is an interesting 
predictor with negative TF importance value, indicating a repressor role in this cluster. In the 
linear regression, Gcr2 and Tye7 can be replaced by only Gcr1, resulting in Gcr1, Hap1, Ert1 
and Rtg1 being identified as predictors in Glu-lim conditions. The model has an R2 = 0.66, 
again a strong indicator of high explanatory power (Figure 30 E, F). In Cluster 7, we found an 
enrichment of genes involved in mitochondrial ATP biosynthesis, and these genes were 
upregulated in the two respiratory conditions (Glu-, and Eth-lim). Hap4 and Oaf1 were 
identified in both these conditions. Interestingly, Rgt1, previously identified as a repressor in 
glucose-limited conditions (reported in section 1.3, Figure 6 as well as 7.1.2, Figure 23), was 
reported to have a repressive role also in both cluster 7 and cluster 16, providing some 
validation to the models.  
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Figure 30 Clustering genes by relative expression. (A-B) All significant (P.adj < 0.05) GO 
terms for the clustered genes and the relative importance of the TFs selected. (C-D) Prediction 
plots showing the predicted transcript levels compared to the measured transcript levels from 
using the selected TFs. (E-F) Heatmaps demonstrate the measured transcript levels as well as 
binding signal of each TF normalized column-wise (Z-score). TFs linked by a red line under 
the heatmap have significant collinearity over the cluster genes and were demonstrated to be 
able replace the other. 
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In summary, I have demonstrated that we can build TRNs that not only confirm previously 
reported functions of the transcription factors, but also expand the target lists and in turn the 
TRNs. Varying the conditions is vital in the discovery of novel functions, and in combination 
with perturbation systems (e.g. deletions), this method allows studying the overall effect of a 
transcription factor and its direct targets. The functions of the transcription factor are often 
hidden in the perturbation systems, and what we see is the cells’ adaptation to the environment. 
Computational models can help in our endeavor to understand how the transcription factors 
affect the transcript levels. These models can accurately identify transcription factors that 
interact with other transcription factors and what their regulatory role is (activator or repressor).   
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8 UTILIZATION OF TRNS 
This chapter describes the incorporation of all our generated data into a combined database and 
toolbox, T-rEx. T-rEx is a user-friendly web application that can be used for finding regulatory 
modules or to perform in depth promotor studies. It can be used to investigate any of the already 
included transcription factors or to upload own data (generated according to our pipeline, 
described in section 6.3). It includes statistical modelling functionality, and I will exemplify 
how it may be used to identify and improve the engineering of cell factories. Paper VII 
describes the development and utility of T-rEx. Paper VIII is about the utility of our high-
resolution database (included in T-rEx). This paper exemplifies how the toolbox and database 
can be used to fine-tune the expression of genes and how it can help improve the design of 
gRNAs in CRISPRi/a systems.  

 

8.1 T-REX: A TOOLBOX FOR ANALYZING TRANSCRIPTION 
FACTORS 

Along the way it became clear that we needed a toolbox to simplify and speed up visualizations 
of and interactions with the beautiful data we were generating. As most researchers in 
fundamental research are neither computational experts nor statisticians, we constructed the 
transcription factor explorer T-rEx to bridge this gap. T-rEx is an R Shiny web-application 
capable of visualization, summarizing statistics and analysis of transcription factor data. 

T-rEx consist of four separate web pages with different functionality, where the data are 
visualized, analyzed or new data can be integrated. All presented data are generated from the 
ChIP-exo pipeline, although the derived data may have been treated differently between 
different analyses.  

The first page contains a summary of the selected transcription factor, including a table of 
targets, the consensus motif and the identified sequences that generate the consensus motif. 
The read distribution around peaks (Peak distribution profile) and the read distribution around 
the TSS (read distribution profile) are also presented. The user can download the data for 
further analysis. 

The second page contains a visualization tool for the Read profiles, mapped to genes in the 
ChIP-exo pipeline, and some additional features. Some of these features include data overlay 
of for example multiple transcription factors, the TATA/-like box, motif search, transcript 
levels and binding sites.  

The third page contains the analysis page, including standard statistical tools that can be used 
for data interpretation. The analysis starts with the selection of a growth condition, GO-terms 
of interest and which dataset to use. The data are automatically treated correctly for use in any 
of the different statistical tools:  
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 Fisher’s exact test uses a hypergeometric distribution to assess if two transcription 
factors are co-localized.  

 Heatmap displays all the selected genes for each condition and the bound transcription 
factors.  

 Network plot is generated as a visual overview of the selected GO-terms. The number 
of edges (gene connections) for each TF is used as weight for the node size of the TF.  

 Cluster test uses the Partitioning Around Medoids (PAM) method, which is a form of 
k-means clustering. The two most prominent dimensions are displayed, and their 
individual separation is presented. The medoid coefficient indicates the contribution of 
the TF to the cluster, where a positive value indicates presence and negative value 
indicates absence.  

 Linear model fits a model to describe gene expression using the TF binding data. This 
model does not take any TF-TF interactions into account. The linear model uses the 
number of bindings of each TF on each gene to allow for dynamics in the system.  

 Shared Targets compares the targets of a single selected transcription factor to either 
one or several transcription factors. 

The fourth page allows the user to include new data. The new data are integrated into the current 
data set and can be analyzed as previously described. The following chapters demonstrate the 
utility of T-rEx. 

 

8.1.1 UTILITY OF T-REX: NETWORK IDENTIFICATION 
T-rEx can be used to identify interesting TF networks. As an example, let’s say that we are 
interested in ergosterol biosynthesis, phospholipid synthesis, pentose-phosphate shunt and fatty 
acid β-oxidation. To look closer at these pathways we select these GO-terms as search terms. 
We also select the Glu-lim condition and limit our gene set to Yeast8 genes (Lu et al. 2019). 
64 genes are selected based on these criteria. First, we test the co-localization of transcription 
factors using Fisher’s exact test. We find that Cbf1-Tye7, Gcr1-Tye7, Oaf1-Pip2 and Ino2-
Ino4 are co-localized, and that the transcription factors Stb5, Sut1, Hap1, Gcr2, Gcn4, Ert1 and 
Cat8 are also enriched in these GO-terms. We visualize the GO-terms in a network plot to get 
an overview of the connections between the genes and the transcription factors (Figure 31). In 
the network, we observe similar trends as identified in the Fisher’s test, e.g. many overlapping 
edges (genes) are observed between Ino2-Ino4, Oaf1-Pip2 and Cbf1-Tye7. However, in this 
plot also Hap1 and Gcn4 have overlapping targets. In the center of the plot, there is a group of 
genes with high numbers of bound transcription factors. Using the heatmap, we identify these 
transcription factors as Cbf1, Gcn4, Hap1, Oaf1, Pip2, Ino2, Ino4, Tye7 and Stb5. Using the 
Shared Targets function and the previously mentioned transcription factors, we find 7 genes 
bound by all TFs. Of these, we choose ROX1 to take a closer look at the binding profile. 
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8.1.2 UTILITY OF T-REX: PROMOTER STUDY  
To look closer at the ROX1 promoter and its bound transcription factors, we use the second page 
“Transcription Factor Binding Data”. On the ROX1 promoter, 9 different transcription factors are 
bound. Hap1 and Oaf1 show the strongest binding on the promoter followed by Stb5 (Figure 32). 
These three zinc-fingers share the motif CSGnnWW (S=G/C, N=any, W=A/T), which we observe at 
multiple locations within the strongest binding region. Hap1 prefers CCGnnAW, observed at three 
locations at the center of each Hap1 peak. Oaf1, Pip2 and Stb5 have almost identical motifs, and the 
binding of Oaf1-Pip2 but not Stb5 overlaps with the Hap1 binding. Stb5 has 4 peaks in the region, 
where we also observe the motif CGGnnWT. Tye7, Cbf1, Ino2 and Ino4 are all bHLH transcription 
factors that bind to the E-box motif CAnnTG. All four are bound at the same location, and we can find 
two E-box motifs there. Cbf1 and Tye7 have one additional peak, and we can find two E-box motifs 
within this peak. Gcn4 shows one binding site in the region and at the same location we can find the 
motif ATGACT, which is in agreement with the consensus motif of Gcn4.  

Figure 31 A network plot of the selected GO-terms in Glu-lim. The nodes are weighted by 
the number of gene connections. Several TFs group closely together, such as Ino2-Ino4, Oaf1-
Pip2 and Tye7-Cbf1. Genes in the center are connected to many TFs. One of these genes is 
ROX1. 
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8.1.3 UTILITY OF T-REX: IDENTIFICATION OF REGULATORY MODELS 
Now we are interested how well we can explain the transcript levels of this set of genes 
applying the linear model. In this case, the model explains the transcript levels well with an R2 
of 0.65. We download the output from the model and see that the significant predictors are 
Ino2, Gcn4, Gcr2 and Hap1 (Figure 33 A). Using the cluster function, we first test 5 clusters. 
However, one cluster is removed as it only contains one gene. For the 4 remaining clusters, we 
use a cutoff of 0.5 for the medoid coefficient to remove transcription factors with less predictive 
power. Cluster 1 is primarily regulated by Ino2 and Ino4 and includes genes involved in 
phospholipid and ergosterol metabolism. Cluster 2 contains 4 genes implicated in carbohydrate 
metabolic processes, and is primarily regulated by Ino2, Ino4, Cbf1, Gcr1, Gcr2 and Tye7. 
Cluster 3 comprises ergosterol and a small number of PPP genes, and is primarily regulated 

Figure 32 Binding of 9 TFs on the ROX1 promoter. Hap1 and Oaf1-Pip2 show the strongest 
binding on this promoter and three distinct peaks can be seen, the motif of Hap1 can be found 
at all these locations. Stb5 has a lower binding strength but with at least 4 distinct peaks and 
we can find the motif at all these sites as well. The 4 bHLH Ino2, Ino4, Cbf1 and Tye7 are 
bound at the same location where we can find the E-box motif. Gcn4 is also bound to the 
promoter and a motif is identified at the center of the peak.  
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only by Hap1. Cluster 4 contains β-oxidation genes and some PPP genes, and Oaf1-Pip2 are 
the major transcription factors for this cluster (Figure 33 B).        

 

Figure 33 Transcript levels prediction and regulatory modules. A) Using a linear model, 
we can predict the transcript levels where the major contributors to the prediction are Ino2,
Gcn4, Gcr2 and Hap1. B) Using clustering we can identify regulatory modules of genes
clustered based on their identified peaks. 4 clusters are identified and based on the medoid 
coefficient we can determine which TFs have most important regulatory role over which
cluster. 



Utilization of TRNs 

___________________________________________________________________________ 

61 
 

8.2 DESIGNING GRNAS BASED ON TRANSCRIPTION 
FACTOR BINDING 

This study focuses on using CRISPRi/a to understand the interplay between transcription factor 
binding and binding of dCas9. CRISPRi/a uses a catalytically inactive Cas9, often referred to 
as dCas9 (endonuclease-deficient Cas9) (Perez-Pinera et al. 2013b; Qi et al. 2013). The gRNA 
consists of two regions a scaffold and a spacer. The scaffold interacts with the Cas9 while the 
spacer is complementary to the target DNA sequence. CRISPR interference or activation 
(CRISPRi/a) is a programmable tool for gene regulation. Such regulation enables both 
repression of the target gene when fused to a repressor domain, such as the mammalian 
transcriptional repressor domain Mxi (Bernards 1995), or activation when fused to an activator 
domain, such as the tripartite activator VPR (Chavez et al. 2015). This results in a CRISPR-
based transcription factor (crisprTF) system. Achieving predictive and precise gene regulation 
is, however, challenging, and this is mainly due to the complexity of the regulatory processes 
and our limited understanding of it (Deaner et al. 2017; Jensen 2018). Can our large-scale 
studies of transcription factor binding sites aid in this predictive and precise gene regulation? 

We used T-rEx to identify interesting clusters of genes and observed that many genes involved 
in central carbon metabolism were connected to the transcription factors Gcr1-Gcr2 and Tye7. 
There are 18 genes that are direct targets of these three transcription factors, and 10 were 
selected for further analysis (Figure 34 A). On each of the 10 promoters, there are between 3 
and 5 binding sites for the three transcription factors (Figure 34 B). The promoters of each of 
these genes were cloned together with a GFP gene, which acted as reporter for analyzing the 
transcription factor-dCas9 interaction. dCas9-VPR is often used for gene activation and was 
used in this study. gRNAs were designed to bind either on or next to the identified TF motif, 
and expression of dCas9-VPR without a gRNA was used as control (Figure 34 C). An example 
of how the gRNA targets sites are located is shown for the ENO1 promoter (Figure 34 B) 
where one gRNA target (ENO1-11) is located on top of a Gcr1-Gcr2 binding site, two gRNAs 
(ENO1-02 and ENO1-03) are targeted outside of any TF binding site, one gRNA target (ENO1-
04) is located on top of a Tye7 (and Ino2-Ino4) binding site and one gRNA (ENO1-01) is 
targeted close to the TATA box. Cells were grown in batch cultivations for 35 h and their 
fluorescence was analyzed over time and normalized to the OD. A typical GFP profile of 6 
different strains, 5 of which were expressing gRNAs, can be seen (Figure 34 D). While some 
gRNAs had no effect (ENO1-21), others resulted in upregulation (ENO1-31) or in 
downregulation (ENO1-11 and ENO1-41) of the reporter.  
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8.2.1 EFFECT ON DCAS9-VPR AND TRANSCRIPTION FACTOR POSITIONING ON 
GENE EXPRESSION.  

To investigate the overall gRNA effect, GFP fluorescence data of the strains expressing gRNAs 
targeted to one of the motifs and strains expressing the non-motif targeted gRNAs were 
separately pooled. Results from glucose phase and ethanol phase was separated, here we 
demonstrate the results from ethanol phase. Figure 35 A shows the fluorescence fold-change 
(FC) of the strains expressing gRNAs binding motifs and non-motif regions, respectively. A 
student’s t-test was used on the log2FC of the GFP expression. When a gRNA was targeted to 
one of the motifs, the GFP expression level was either unchanged or decreased, while if bound 
to a non-motif region, the GFP expression was increased (Figure 35 A). Since there seemed to 

Figure 34 Design of the study. A) The 18 genes bound by Gcr1-Gcr2 and Tye7 where 10 
genes were selected for experiments. B) The ENO1 promoter with binding sites and binding
profiles of several transcription factor, motifs marked with dotted line. gRNA sites are color
coded to fit the GFP expression in D). C) How the gRNA sites are selected: either on top of a
motif or next to a motif. D) The GFP expression of the gRNA expressing strains and the
control.  
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be different levels of both increased and decreased expression, we wondered if the strength of 
transcription factor binding was a determinant of the GFP expression.  

 

8.2.2 EFFECT OF ADJACENT TRANSCRIPTION FACTOR BINDING STRENGTH IS A 
DETERMINANT OF GFP EXPRESSION 

The transcription factor binding strength is the measure of probability that a TF will occupy a 
specific site during the ChIP-exo experiment and is measured as read count (i.e. peak height).  
We analyzed the two groups (motif bound gRNA and non-motif bound gRNA) separately and 
found a striking correlation. When a gRNA was bound on top of a motif with low transcription 
factor binding, the GFP expression was unchanged or only decreased slightly compared to 
control, and as the peak strength increases so does the decrease in GFP expression (Figure 35 
B). The opposite is true for no motif bound gRNA, where we connected the gRNA to the 
nearest peak. A low peak strength results in no change in GFP expression, as the peak strength 
increases so does the GFP expression (Figure 35 C).     

 

8.2.3 COMPETITION AND COOPERATIVITY 
The results indicate that there is a direct connection between the binding strength of a 
transcription factor and the expression change resulting from the CRISPRi/a. As we see two 
different states of the CRISPRa system, both repression and activation, we looked into 
competition and cooperativity. dCas9 can stay bound to DNA up to 3 h in eukaryotic cells (Ma 
et al. 2016), thus having a slow dissociation, whereas transcription factors stay bound for 
milliseconds to seconds, thus having a fast dissociation (Swift and Coruzzi 2017). dCas9 acts 
as a competitor to the transcription factor that through steric hindrance blocks the transcription 
factor from binding. This means that the dCas9-VPR acts as a de facto repressor the stronger 

Figure 35 The log2 fold change (log2FC) of the GFP expression, is designated to either
the motif or the non-motif group. A) A T-test was used to compare if the groups were either
up- or downregulated compared to no change in GFP expression (dotted line). p designates
the log2FC p-value of the students t-test. B) Correlation of the peak strength of the
transcription factors and the fluorescence output in each case with binding of the gRNA to a 
motif or non-motif.  
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the occupancy of the TF binding is, and it drives out the endogenous transcriptional activator 
and cannot compensate for this loss if the transcription factor is a strong activator.  

However, in the case of activation the effect seems to be due to cooperativity. Transcription 
factors can act together in a cooperative manner (see section 1.3) and dCas9 has shown to act 
similarly (Perez-Pinera et al. 2013a). It is then possible that the transcription factors have a 
profound impact on the surrounding and thereby impact the dCas9 binding in a positive 
cooperative manner. These results indicate the importance of choosing the gRNA site in 
relation to other binding sites, as dCas9-VPR targeting activator binding sites has a higher 
probability to decrease expression levels while dCas9 binding outside transcription factor 
binding sites has a higher probability in activating transcription levels (Figure 36).  

 

 

 

 

In summary, T-rEx is a versatile toolbox that can be used for both in detail promoter study, co-
localization studies, identification of common targets, computational modelling as a prediction 

Figure 36 Cooperativity and competition between dCas9 and activating transcription 
factors. Binding of dCas9 close to a TF results in increased expression where also the binding 
strength influences the resulting increase. Binding of dCas9 on top of a TF motif results in 
competition as the dissociation of dCas9 is much weaker than that of the TF, the TF is 
outcompeted, and the expression decreases.   
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tool for gene expression and to identify regulatory modules using clustering functions. The 
high-resolution binding that we can display in T-rEx can aid us in the design of gRNAs. We 
have shown that expression levels of a target gene are in direct connection with the chosen 
gRNA site and the transcription factor binding both in terms of overlap and in binding strength.  
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9 INTO THE FUTURE 
Here I will summarize the work presented in this thesis and provide an outlook into what might 
be next in the endeavor of unravelling the transcriptional regulatory network. 

 

9.1 CONCLUSIONS 
This thesis contributes to the scientific field by providing a holistic view on a subset of the 
transcriptional regulatory networks in S. cerevisiae. We developed a small bioreactor system 
for high-throughput strain characterization. The bioreactor system proved to be comparable to 
a commercially available system. The multiplexing and miniaturizing increased the throughput 
and at the same time reduced the need for materials (such as media) and the complexity for 
setup (Paper I). Setting up a new method, ChIP-exo, for studying protein-DNA interactions 
proved to be a laborious but worthwhile task. The generated data were both of high quality and 
high resolution, and therefore we could identify stress response as a novel functionality for the 
transcription factor Cst6 (Paper II). Working with this high-quality data also required a robust 
system for the analysis. We developed a bioinformatics pipeline with high emphasis on quality 
control that is applicable to any ChIP-exo data set (Paper III). Next, we expanded the set of 
transcription factors to some of the major contributors to lipid metabolism, namely Ino2, Ino4, 
Oaf1, Pip2 and Hap1. By using gene set enrichment analysis, we could identify novel pathways 
for the studied transcription factors and expand their TRNs (Paper IV). We focused on an 
important key regulator of the pentose phosphate pathway, Stb5, to identify its regulatory role. 
Here, the different growth conditions played an important role in the regulation in different 
metabolic states. We found that NADPH became a limiting factor only when glycolysis was 
active, and not in gluconeogenesis (Paper V). We employed statistical methods and regression 
models to understand and predict regulatory pathways. For this analysis, we needed more 
transcription factors and therefore we included the following transcription factors that had been 
implicated in central carbon metabolism: Cat8, Cbf1, Ert1, Gcn4, Gcr1, Gcr2, Hap4, Lue3, 
Rds2, Rgt1, Rtg1, Rtg3, Sip4, Sut1 and Tye7. Linear models allowed good predictive power 
to relevant subsets of the central carbon metabolism. This modelling approach could also 
accurately describe some previously known biological functions which provides strength to the 
overall model (Paper VI). The vast amounts of generated data and the many implications and 
utilizations they can have on the research field encouraged us to create a toolbox for 
transcription factor visualization and analysis. The toolbox can be used for in-depth promoter 
studies or to identify subsets of regulatory pathways (Paper VII). The newest technique for 
engineered gene regulation (CRISPRa/i) has shown promise in metabolic engineering. It is 
however problematic to generate gRNAs with the desired effect. To address this, we used our 
high-resolution transcription factor data to design gRNAs that bind either on or adjacent to 
motifs. We found that the strength of transcription factor binding has a profound effect on the 
gene expression levels and that the transcription factor and the dCas9-VPR either compete or 
cooperate with each other (Paper VIII).           
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9.2 WHERE DO WE GO FROM HERE? 
I started out pondering about life itself, so let’s continue there. A yet largely unanswered 
question is: Can we understand life well enough to design it to our purpose? My firm belief is 
yes. Earth has existed for 4.5 billion years, humans only for 200 000. But in these years, we 
have accomplished so much! And now, 7 billion people live on the planet, and each year offers 
7 billion human-years of ingenuity and advances. Humans and human-built AIs will most 
probably get us there. We have the question, but can we see the full extent of it? Probably not, 
our brains are not made for containing all that information. At the same time, an AI cannot ask 
the questions, yet, and therefore both are required to find the answer. Today we are still far, far 
away, and on our journey life as we have defined it is changing. How do we define life, when 
the border of what we can design and what nature designed is fading? Robots that work 
autonomously and that can reproduce by building new robots, are they alive? When we build 
bio-robots that use biological fragments to function, are they alive? When will biology become 
“just another” technology?  

A question I often get is “why do you want to do this? Why not just use the mRNA 
(transcriptomics data) from different chemostat conditions, then you know what the promoter 
does and how it responds”. Yes, in part this is true. But what we want to do is to map all 
interactions on the promoter. From the mapping we would obtain a vocabulary, telling us which 
interactions occur on the promoter. From this we can build models that can translate this 
vocabulary and finally we will have models powerful enough to tell us how a promoter 
responds in different conditions.  

What we have discovered is something that I think no one else has seen. By combining the 
information from the different chemostat conditions that we have studied, one conclusion 
becomes evident: If a motif exists on a promoter, at some point and in a certain environment, 
the transcription factor that recognizes that motif will bind. The environmental condition for 
this might be highly specific, such as in the Cst6 case, but nevertheless it will be there. This is 
something we also showed in Paper XIV, where we engineered promoters for higher 
expression in acidic environments. We did so by introducing more binding sites of a specific 
transcription factor on the promoter. By using ChIP-qPCR we could show that the introduced 
binding sites were in fact bound by the transcription factor of interest.  
    However, to identify all these conditions and to study all transcription factors is just not 
feasible. Still, this work clearly shows that careful selection of a small number of different 
conditions can greatly enhance our ability to understand transcription factor regulation, and the 
variation in binding a certain transcription factor can have.  
   One thought on how to move the field forward is demonstrated in Figure 37. It starts by 
using ATAC-seq (but maybe upgraded to ATAC-exo) (Buenrostro et al. 2013). This method 
allows to find all transcription factor bindings that occur throughout the genome and at the 
same time identifies all the nucleosome binding events. In the data, we can then remove the 
nucleosome binding and thereby provide a profile of all binding events due to DNA binding 



 

68 
 

proteins  (Li et al. 2019). Unfortunately, as with any method there are drawbacks. We cannot 
identify proteins that bind to other proteins nor if they are bound to nucleosomes, neither can 
we identify which protein that is bound. We therefore do not know the identity of the proteins 
or even if they are transcription factors. One solution to this problem could be DNA-binding 
domain motif models, which through statistical and thermodynamical modelling predict all the 
binding sites of a DNA-binding protein based on the protein structure. So far, the models 
improve based on the available data, such as ChIP-seq (Zamanighomi et al. 2017). This will 
however not allow us to find new binding sites when studying new conditions, but progress 
has been made towards predictive models without preexisting data (Farrel and Guo 2017). 
Identifying the DNA binding protein in ATAC-seq data could be possible by generating a 
transcription factor binding score based on ChIP-exo data and DNA binding domain motif. 
    In this work we have used GO-terms to group genes within metabolic processes in order to 
investigate effects of transcription factors in a more specific manner compared to looking at 
the whole genome. Although this clearly provided advantages for example to identify which 
general processes a transcription factor regulates, there are clearly limitations. For instance, 
Oaf1-Pip2 regulates genes within β-oxidation, but also regulates surrounding processes such 
as fatty acid metabolism and malate metabolism. In fact, this transcription factor pair also 
regulates individual genes, such as ZWF1 whose gene product produces a metabolite (NADPH) 
that is required for regeneration of thioredoxin/glutathione that are in turn needed for the 
detoxification of H2O2 generated in the peroxisomal β-oxidation. This indicates that GO-terms 
are not sufficient for identifying TRNs. Integration of all TRNs into GEMs, which in recent 
years have improved in predictive power (Cardoso et al. 2018; Sanchez et al. 2017), will 
hopefully in time allow us to predict outcomes on a cellular level.  
   This was an initial goal when I started my PhD. However, the TRNs turned out to be more 
complex than anticipated, and there was not enough time to reach to this desirable goal. 
Currently, only the metabolic enzymes are included, GEMs therefore need additional levels of 
integration. The yeast GEM model contains roughly 800 genes, but over 2000 genes were 
found to be bound by any of the 21 transcription factors that we have studied. Gcn4 has in itself 
over 1000 gene targets, where over 100 genes are connected to transcription, and many encode 
themselves transcription factors i.e. CST6, HAP4, INO2, LEU3 and PIP2 (to mention a few). 
Also, Ino2 and Ino4 have around 1000 gene targets. The role of transcription factors with these 
many targets is likely to maintain a basal level of expression, and they only constitute one of 
many transcription factors regulating each target gene. Cbf1 is another transcription factor with 
over a 1000 gene targets. However, in a similar ChIP-exo study using YPD as growth media, 
only 102 targets were identified for Cbf1 (Rossi et al. 2018a), again proving that multiple 
conditions are needed for identifying the true nature of a transcription factors regulatory 
network.            



Into the future 
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In human cells, transcription factors have shown to have a dominant role in the control of 
specific cell states and that they are capable of reprogramming cell states when expressed in 
various cell types (Lee and Young 2013). For instance, reprogramming of somatic cells to 
embryonic stem cells is done by expression of four transcription factors, namely Oct4, Sox2, 
Klf4, and c-Myc (Orkin and Hochedlinger 2011). The human bHLH transcription factor TAL1 
is an oncogenic transcription factor that is overexpressed in 40-60% of the cells in leukemia 
(Sanda et al. 2012). The human transcription factor c-Myc is overexpressed in many tumor 
cells where it accumulates in the promoter regions of most active genes, recruiting the 
transcription elongation factor P-TEFb, and causes transcriptional amplification (Lin et al. 

Figure 37 Illustration of TRN identification in newly studied conditions. Integration of 
ChIP-exo data that reveals the many binding sites in studied conditions with DNA binding
domain motif models allows for the identification of all the possible binding sites a
transcription factor can have. ATAC-seq allows for the identification of all DNA-binding 
events throughout the genome. By detecting the DNA binding protein regions, we can identify
motifs. Combining the TF Motif Score with the identified motif we can rank which 
transcription factor is the most probably bound. Thereafter we use GEM/ME models to predict
the new TRN.   
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2012). Loss of function of the human transcription factor AIRE can lead to autoimmune 
diseases where only a fraction of the tissue antigens are expressed (Akirav et al. 2011). In the 
ageing cell, the Forkhead transcription factor FOXO (in yeast Fkh1 and Fkh2), plays a key role 
in stress response and autophagy. FOXO is shown to regulate lifespan in many species such as 
H. vulgaris, C. elegans and D. melanogaster (Martins et al. 2016) as well as in S. cerevisiae 
(Postnikoff et al. 2012). Translating what we have learnt from yeast to humans will in time 
help us treat diseases in a way that previously was not possible. Understanding how the 
transcription factors act on the promoters and how groups of transcription factors work together 
might give a new level to disease treatment by controlling the regulatory function that is 
underlying the problem. 

When it comes to understanding the life of cells, transcription factors play an essential role and 
is a central part of how life is defined for that cell. So far, we are getting glimpses, snapshots, 
of how life works at specific conditions and time points. But the picture becomes clearer for 
each transcription factor we study. Once the network evolves, it will no longer be a picture, we 
will have a movie, with life in action right before our eyes. And it is our job to decode this 
movie so that everyone can watch it.  

I see a bright future ahead, where advancements in biology, mathematics, computer technology 
and AI will join forces to solve our biggest questions in designing and changing life.     
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