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1 Introduction

Translations Pa in the global Poincaré space-time symmetry algebra commute among them-

selves: [Pa, Pb] = 0. This is no longer true when one considers translations in the presence

of a constant electro-magnetic background field [1–3] and the study of such deformations

of the abelian algebra of translations has led to the investigation of so-called Maxwell

algebras [3–6]. The most general deformation one can allow for (based on Lie algebra

cohomology) is

[Pa, Pb] = Zab , (1.1)

where the anti-symmetric generator Zab = Z[ab] is associated with the constant electro-

magnetic background field and transforms as a tensor under Lorentz transformations. In
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a next step one can analyse the commutator of Zab with Pa and iterate the procedure [6].

It was shown in [7] that the most general structure one obtains in this way is the infinite-

dimensional free Lie algebra, called Maxwell∞ there, generated by the translations Pa. Any

free Lie algebra admits many Lie algebra ideals and associated quotient Lie algebras, some

of which were studied for Maxwell∞ in [7]. In particular [7] identified quotients that could

be used in a particle model to describe motion in a general, non-constant, electro-magnetic

field in an ‘unfolded’ treatment of the electro-magnetic field strength. This was achieved by

introducing additional coordinates for the additional generators contained in the quotient

of Maxwell∞. Associating the translations Pa with a coordinate xa one in this way has

an extended space with coordinates θab for Zab and so on. The dynamical model based

on the Maxwell∞ algebra describes the dynamical object together with the background

it moves in.

In the present article, we shall extend the picture of the free Lie algebra generalisation

of the Poincaré algebra to a free Lie superalgebra generalisation of the Poincaré superal-

gebra. The basic building blocks in this construction are the (global) odd supersymmetry

generators Qα (with α an appropriate spinor index). The infinite-dimensional free Lie

superalgebra generated by the Qα has the most general generators in {Qα, Qβ} and subse-

quent multi-(anti-)commutators. Again, it admits many non-trivial quotients that we shall

discuss. Of particular interest to us will be quotients related to the eleven-dimensional

supersymmetry algebra. As has been proved for example in [8, 9], the anti-commutator

{Qα, Qβ} should yield not only the translation generators Pa but also additional non-central

terms that serve as sources for branes. These additional terms arise naturally in the free Lie

superalgebra as we will show explicitly. Further extensions of the eleven-dimensional su-

persymmetry algebra were also studied in [10] (called ‘M-algebra’ there) where non-trivial

multi-commutators arise. As we shall describe in more detail below, these again have a

natural home in the free Lie superalgebra. The interpretation given in [10] of some of these

generators as superpartners of the bosonic brane charges might give some idea of how to

interpret the infinitely many new generators in the free Lie superalgebra. We will also dis-

cuss other possible connections to proposals of infinite-dimensional M-theory symmetries

and extended space-times.

Studying the free Lie superalgebra in four space-time dimensions we are also able to

make contact with the supersymmetric extension of the Maxwell algebra that was studied

in [11] as it arises as a particular finite-dimensional quotient. In [11], a dynamical realisation

of the supersymmetric Maxwell algebra was found in terms of a massless superparticle

where again additional coordinates are introduced for the new generators and these have

interpretations in terms of a Maxwell superfield background. Similar generalisations of the

Maxwell algebra for extended supersymmetry have also been investigated [12] and we shall

also exhibit how these N -extended versions can be obtained from a free Lie superalgebra.

Our paper focusses almost exclusively on the algebraic aspects unifying the various

algebras in terms of free Lie superalgebras. We shall not consider particle or string models

realising these symmetries but it should be possible to construct these along the lines of [13].

An interesting observation, that also opens up connections to other algebraic structures

investigated in the literature in connection with potential symmetries of M-theory, is that
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many quotients of the free Lie superalgebra embed in Kac-Moody [14–16], Borcherds [17–19]

or tensor hierarchy algebras [20–23]. This is due to the definition of these algebras as being

constructed as quotients of free algebras. A noteworthy difference is, however, that many

of these conjectured algebraic structures in M-theory also have ‘negative level’ symmetry

generators that are not present in our free Lie superalgebra constructions. This connection

is discussed in detail in section 4.

The paper is structured as follows. We first review and motivate the free Lie algebra

construction in relation to the bosonic Maxwell algebra and then introduce the free Lie

superalgebra that is the main object of study in this paper. In section 3, we then discuss in

detail various examples that are related to simple and extended supersymmetry in D = 4

and simple supersymmetry in D = 11. We also explain how our construction relates to

various algebras in the literature and, potentially, to exotic branes. Section 4 contains a

discussion of cases where quotients of the free Lie superalgebra can be re-expressed through

Borcherds superalgebras and how this in turn can be recast in terms of Kac-Moody algebras.

Section 5 contains some concluding remarks and speculations.

2 Review of Maxwell and free Lie (super)algebras

In this section, we review some basic aspects of the conventional bosonic Maxwell algebra

in order to motivate our generalisations first to free Lie algebras [7] and then to free Lie

superalgebras.

2.1 Maxwell algebra and free Lie algebras

The starting point for all bosonic constructions here is the Poincaré algebra in D space-time

dimensions,1

[Mab,Mcd] = 2ηc[bMa]d − 2ηd[bMa]c , (2.1a)

[Mab, Pc] = 2ηc[bPa] , (2.1b)

[Pa, Pb] = 0 . (2.1c)

The first line is just the Lorentz algebra so(1, D − 1) of the anti-symmetric Mab and the

second line expresses that the translation generators Pa form a vector representation of the

Lorentz algebra. The third line (2.1c) is the standard property of the Poincaré algebra that

the translations commute. This is the relation that is deformed in the Maxwell algebra

and its free Lie algebra generalisation.

As shown in [6] based on Lie algebra cohomology, the most general deformation

of (2.1c) is

[Pa, Pb] = Zab (2.2)

1Our anti-symmetrisation convention is of strength one: M[ab] = 1
2
(Mab − Mba). The fundamental

Lorentz indices lie in the range a, b ∈ {0, . . . , D − 1}. We use the mostly plus convention for the flat

Minkowski metric.
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with a new generator Zab = Z[ab]. This is also the commutator in the free Lie algebra based

on the Pa by giving a name to [Pa, Pb]. The algebra spanned by {Mab, Pa, Zab} with trivial

commutators [Pa, Zbc] = [Zab, Zcd] = 0 is the Maxwell algebra introduced in [3–6].

From the Lie algebra cohomology perspective, it is possible to deform also these trivial

commutation relations. The next most general commutator is [6, 7]

[[Pa, Pb] , Pc] = [Zab, Pc] =: Yab,c . (2.3)

For this to form a consistent Lie algebra, the Jacobi identity has to be obeyed. This

implies that the Lorentz tensor Yab,c has the property Y[ab,c] = 0. The comma notation for

the indices reflects that the tensor also satisfies Y[ab],c = Yab,c = −Yba,c. As a representation

of the symmetric group it has the Young tableau .2

This construction can be iterated to obtain all possible multiple commutators of the

Pa up to the Jacobi identity (and anti-symmetry). This is by definition the free Lie algebra

generated by the translation generators Pa and we denote it by f(P ). It has a natural graded

structure given by how many times Pa appears in a multi-commutator. In this grading,

we refer to the translation generators Pa as positive level ` = 1, to their commutator

Zab = [Pa, Pb] as positive level ` = 2 and so on.

The basic generators Pa on level ` = 1 transform under the Lorentz algebra (as vectors)

and consequently, we can make the generators at any level ` also transform under the

Lorentz algebra. Thus, every level ` > 0 of the free Lie algebra f(P ) consists of Lorentz

tensors and we can form the semi-direct sum

Maxwell∞ = so(1, D − 1)⊕ f(P ) (2.4)

with the so(1, D− 1) Lorentz generators Mab. This semi-direct sum is the infinite general-

isation Maxwell∞ of the Poincaré and Maxwell algebra introduced in [7]. We will refer to

the algebra so(1, D − 1) as level ` = 0.

At this point it is important to remark that the construction of a free Lie algebra f(P )

only requires a set of D generators Pa, but that the transformation property of the Pa
under level ` = 0 is not something that is fixed by the free Lie algebra construction. In

fact, we could also view the generators Pa as transforming in the fundamental of gl(D) or

any other Lie algebra g0 with a D-dimensional representation. This representation need

not even be irreducible. This level ` = 0 algebra g0 will then act on all the positive levels as

well and we could arrange the higher levels in irreducible representations of g0. Choosing

for instance g0 = gl(D), one obtains tensors of gl(D) at higher levels. As gl(D) does not

have an invariant trace, the generator Yab,c at ` = 3 then is irreducible while it is reducible

under so(1, D − 1), see footnote 2. For yet different choices of g0 acting on Pa each level

` arranges differently into irreducible representations of g0; the total number of generators

on each level of course does not change as this is determined by f(P ) which is defined

independently of the choice of g0.3

2We note that this is not an irreducible representation of the Lorentz algebra as one can define the

non-trivial trace ηbcYab,c.
3Other interesting choices of g0 relate to non-relativistic systems with a Galiliean symmetry or very

special relativity [24] where only the Sim(D−2) algebra with generators M+−, M+i and Mij in a light-cone

basis {x±, xi} is kept [25].
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The structure of a free Lie algebra f(P ) can be computed from a generating function [26]

or explicitly using the Witt formula [27] that was reviewed in [7]. The generating function

identity governing the free Lie algebra is

∞⊗
`=1

[ ∞⊕
k=0

(−1)ktk`∧kT`

]
= 1− tT1 . (2.5)

In this formula, t is a formal parameter and T` denotes the vector space of generators at

level `, such that T1 = 〈Pa | a = 0, . . . , D − 1〉 and T1 plays a special role since it fully

determines f(P ). The identity (2.5) can be derived from the denominator formula for a

Borcherds algebra. Expanding out the generating identity yields the following recursive

identities at the first few powers of t:

T1 = 〈Pa〉 , (2.6a)

T2 = ∧2T1 , (2.6b)

T3 = T2 ⊗ T1 	 ∧3T1 , (2.6c)

T4 = (T3 ⊗ T1 ⊕ ∧2T2)	 T2 ⊗ ∧2T1 ⊕ ∧4T1 , (2.6d)

T5 = (T4 ⊗ T1 ⊕ T3 ⊗ T2)	 (T3 ⊗ ∧2T1 ⊕ ∧2T2 ⊗ T1)⊕ T2 ⊗ ∧3T1 	 ∧5T1 , (2.6e)

· · ·

The notation here is such that ∧kR denotes the k-th anti-symmetric tensor power of a

representation. With 	 we denote the removal of representations from the module. The

lowest levels are simple to understand as representing the anti-symmetry of the Lie bracket

and the Jacobi identity of the free Lie algebra: T2 consists of all commutators of the Pa
in T1 and therefore is the anti-symmetric product. The vector space T3 is spanned by all

commutators of Pa in T1 with the elements in T2, as in (2.3), leading to the tensor product.

The totally anti-symmetric Jacobi identity has to be satisfied by the triple commutators

at ` = 3 and so one has to remove ∧3T1 from the tensor product.

The tensor products here can be thought of as either just vector space operations or

–and this will be more useful to us– as tensor products of representations of g0 which is the

level ` = 0 algebra under which the Pa transform. The choice in (2.4) is g0 = so(1, D − 1)

and the tensor products would be those of Lorentz algebra representations.

Free Lie algebras admit many ideals and associated quotient Lie algebras. Several

examples were discussed in [7] related to particle models in electro-magnetic backgrounds

and previous examples in the literature. Any set of elements X in f(P ) generates an ideal,

spanned by all multi-commutators obtained by acting on the elements X with the basic

generators Pa, that is, the ideal is spanned by [P, [P, . . . , [P,X]]]. If the set X consists of

only one element, then this is called a principal ideal. One can also consider ideals that

are generated by a set which is a subspace of f(P ). In fact, any ideal generated by a set

of elements X is the same as the ideal generated by the subspace 〈X〉 spanned by these

elements.

The subspace 〈X〉 of f(P ) may be equal to Tk+1 for some fixed finite level k. Then the

ideal consists of all elements in f(P ) with more than k factors of Pa in the multi-commutator

– 5 –
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T` representation generator

T1 [2] Pa

T2 [2] Zab = εabcZ
c

T3 [2]⊕ [4] Yab,c = εabdỸ
d
c

T4

[2]⊕ [4]⊕ [6] S1
ab,c,d

[2] S2
a

...
...

...

Table 1. The free Lie algebra f(P ) in D = 3 space-time dimensions. Representations are labelled

by the complexified Lorentz algebra of type A1 while the generators represent the associated so(1, 2)

tensors. For mixed symmetry, these are reducible in the way described in footnote 2.

or, equivalently, the direct sum of all T` with ` > k, and the quotient is a finite-dimensional

truncation of f(P ) including only generators up to level k. For example, the truncation

to k = 1 recovers the standard Poincaré algebra while the truncation to k = 2 gives the

Maxwell algebra with Pa and Zab in the quotient.

More generally, the vector space 〈X〉 may be a subspace of Tk+1, and then the quotient

may be infinite-dimensional. The Serre ideals appearing in the construction of Borcherds or

Kac-Moody algebras discussed in section 4 are generated in this way. Even more generally,

the vector space 〈X〉 may be decomposed into a direct sum X = s1 ⊕ . . . ⊕ sn of finitely

or infinitely many subspaces, or representations of g0. These representations si need not

all be on the same level. Again, the quotient may be infinite-dimensional. An example of

such an infinite-dimensional quotient was discussed in [7] where a realisation in terms of

particles in general ‘unfolded’ electro-magnetic backgrounds was achieved.

As an example of a free Lie algebra that has not appeared in the literature before to

the best of our knowledge, we consider the case of D = 3 translations Pa transforming

under the Lorentz algebra g0 = so(1, 2) whose complexification is of Cartan type A1. The

corresponding lowest levels are listed in table 1. Using standard mathematical Dynkin

labels, the translation generators are denoted by [2].

The generators listed in table 1 can also be obtained by dimensional reduction from

the general result in [7]. The three-dimensional case is of particular interest since one can

find quotients of the Maxwell∞ algebra that admit an invariant and non-degenerate bilinear

form that then can be used to construct three-dimensional Chern-Simons theory [28]. Since

three-dimensional Chern-Simons theory is related to gravity, this leads to a Maxwell version

of gravity [28–31] with a supersymmetric version studied in [32] and also the non-relativistic

limit has been studied in this case [33]. A four-dimensional gravity system with Maxwell

symmetry has been investigated in [34].

2.2 Free Lie superalgebras

The bosonic free Lie algebra f(P ) serves as a very universal object to construct kinematical

algebras relevant in various contexts. It is natural to consider the corresponding Lie su-

– 6 –
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peralgebra and in this section we give some general properties of its construction. Explicit

examples will be discussed in the next section.

We shall consider the free Lie superalgebra generated by odd supertranslations Qα
where α labels the supersymmetry generators and we here think of them as spinorial

generators. The exact range depends on the number of space-time dimensions and on

whether one consider simple or extended supersymmetry. The general discussion of this

section is independent of these details.

The free Lie superalgebra f(Q) is given by all possible graded multi-commutators of

the basic Qα and subjected to the graded Jacobi identity

[{Qα, Qβ} , Qγ ] + [{Qβ , Qγ} , Qα] + [{Qγ , Qα} , Qβ ] = 0 . (2.7)

‘Graded’ here refers to the Z2-grading of superalgebras; the Qα are by definition odd while

their graded commutator {Qα, Qβ} is even. One can again define a level ` on f(Q) by

counting the number of Qα that occur in a general graded multi-commutator. For odd

` one obtains generators that are also odd in the Z2 sense while even ` gives Z2 even

generators such that the two gradings are consistent.

Similar to the bosonic case one can describe the structure of the free Lie superalgebra

in terms of a generating function. The generalisation of (2.5) is given by

⊗
` odd

[ ∞⊕
k=0

(−1)ktk`∨kR`

]
⊗
⊗
` even

[ ∞⊕
k=0

(−1)ktk`∧kR`

]
= 1− tR1 . (2.8)

Here, t is again a formal parameter and the Z2 nature of the generators introduces some

signs. R1 = 〈Qα〉 denotes the generators on level ` = 1 and we denote the generators on

level ` by R`. Expanding out the generating identity one obtains for the first few levels

R1 = 〈Qα〉 , (2.9a)

R2 = ∨2R1 , (2.9b)

R3 = R2 ⊗R1 	 ∨3R1 , (2.9c)

R4 = (R3 ⊗R1 ⊕ ∧2R2)	R2 ⊗ ∨2R1 ⊕ ∨4R1 , (2.9d)

R5 = (R4 ⊗R1 ⊕R3 ⊗R2)	 (R3 ⊗ ∨2R1 ⊕ ∧2R2 ⊗R1)⊕R2 ⊗ ∨3R1 	 ∨5R1 , (2.9e)

· · ·

Compared to (2.6), the anti-symmetric tensor powers ∧k are interchanged for symmetric

ones, denoted ∨k, in a few places. For instance R2 is given by all symmetric products

{Qα, Qβ} of the Qα and the Jacobi identity relevant for R3 is totally symmetric as well.

We can again consider the case when the Qα transform under some level ` = 0 algebra

g0. This could be the Lorentz algebra so(1, D − 1) in D dimensions or could also contain

possible R-symmetries. We shall consider many examples below. Given a g0, the generators

R` can be arranged into representations of g0 by treating the tensor products as products

of g0 modules.

Just as free Lie algebras, free Lie superalgebras admit many quotients and one can again

distinguish the case of finite-dimensional and infinite-dimensional quotients. Examples of

– 7 –
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extensions of the standard supersymmetry algebra that have been discussed in the literature

are finite-dimensional quotients and we shall illustrate this in examples below. Moreover,

there are cases where these quotients can be described conveniently in terms of Borcherds

superalgebras and Dynkin diagrams as we discuss in section 4.

3 Instances of free Lie superalgebras

In this section, we apply the algorithm (2.9) and construct the free Lie superalgebra gen-

erated by Qα in various cases where g0 is either the Lorentz algebra in D dimensions, or

the direct sum of the Lorentz algebra and an R-symmetry algebra su(N ).

3.1 D = 4 and N = 1 supersymmetry

We begin with the free Lie superalgebra generated by supersymmetry generators Qα and

then compare the results to various extensions of the Poincaré superalgebras that have

appeared in the literature.

3.1.1 Free Lie superalgebra

Following the philosophy outlined in the previous section, we now construct the free Lie

superalgebra f(Q) generated by the Qα in D = 4. The spinor index α = 1, . . . , 4 here

labels the four independent components of a Majorana spinor. Taking g0 = so(1, 3), the

transformation of R1 = 〈Qα〉 is given by

[Mab, Qα] =
1

2
Qβ(Γab)

β
α . (3.1)

The real gamma matrices here satisfy {Γa,Γb} = 2ηab. Gamma matrices with multiple

indices are defined by Γab = Γ[aΓb] etc. The gamma matrices that we use are given

explicitly in appendix A. We use the signature η = (− + + +) and below we shall also

encounter the symmetric combinations (CΓa)T = CΓa and (CΓab)T = CΓab involving the

charge conjugation matrix C.

The free Lie superalgebra f(Q) is obtained by taking all possible (graded) commutators

of the Qα obeying only graded anti-symmetry and the Jacobi identity. Following the

algorithm (2.9) this leads to table 2. In this table we have labelled the representations of

the Lorentz algebra g0 = so(1, 3) in terms of Dynkin labels of the corresponding complex

Lie algebra A1 ⊕ A1, such that a Majorana spinor decomposes as Qα ↔ [1, 0] ⊕ [0, 1], the

familiar decomposition into a left-handed and right-handed spinor in D = 4. Keeping this

in mind, we can use the LiE software [35] to compute the tensor product decompositions

of A1 ⊕ A1. Generally, a complex representation of A1 ⊕ A1 gives a real representation of

so(1, 3) if the representations of the two A1 are balanced, i.e., either of the symmetric form

[p1, p2]⊕ [p2, p1] of directly [p, p].

Let us also give the commutation relations for the free Lie superalgebra f(Q) at lowest

levels, using the names for the generators introduced in table 2. The first non-trivial

commutator is that of the supercharges Qα that we define to be

{Qα, Qβ} = (CΓa)αβPa +
1

2
(CΓab)αβPab , (3.2)

– 8 –
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R` representation generator

R1 [1, 0]⊕ [0, 1] Qα

R2

[1, 1] Pa

[2, 0]⊕ [0, 2] Pab = P[ab]

R3

[1, 0]⊕ [0, 1] Σα

[1, 0]⊕ [0, 1] Σ̃α

[1, 2]⊕ [2, 1] Σaα

R4

[2, 0]⊕ [0, 2] Zab = Z[ab]

[0, 0] B

3× [1, 1] vectorial

[3, 1]⊕ [1, 3]⊕ [1, 1]

[2, 2]⊕ [0, 2]⊕ [2, 0]

[2, 0]⊕ [0, 2] two-form
...

...
...

Table 2. The free Lie superalgebra f(Q) in D = 4 space-time dimensions for a single four-

component spinor generator Qα. We have grouped representations together that form a nice rep-

resentation of so(1, 3). All tensor-spinors are gamma traceless, but we retain the tensor traces,

meaning that for example the first non-trivial Young tableau in R4 represents a tensor structure

Yab,c where one can still take the Lorentz trace as discussed in footnote 2; this corresponds to the

[1, 1] representation listed there. Some representations occur with a non-trivial multiplicity and we

have not given names to generators that do not appear elsewhere in this article.

where the term Pab = P[ab] has already appeared in [36–38]. It does not appear in the

standard N = 1 supersymmetry algebra and it is not central as it does transform non-

trivially under the Lorentz algebra. It can be interpreted as a source for the supersymmetric

membrane in D = 4 [36] in a way similar to the complete {Q,Q} commutators in eleven

dimensions [9]. We shall come back to this interpretation below. We also note that (3.2)

implies

Pa =
1

4
(ΓaC

−1)αβ {Qα, Qβ} , Pab = −1

4
(ΓabC

−1)αβ {Qα, Qβ} . (3.3)

In the free Lie superalgebra, one can then form the triple commutators [{Qα, Qβ} , Qγ ]

at level ` = 3 that have to be subjected to the Jacobi identity (2.7). The resulting most

general expression can be split up into the commutators of Qα with Pa and Pab as

[Qα, Pa] = Σβ(Γa)
β
α + Σaα , (3.4a)

[Qα, Pab] = Σ̃β(Γab)
β
α +

4

3
Σ[a β(Γb])

β
α . (3.4b)

The anti-symmetrisation only refers to the vector indices a, b. As mentioned in the caption
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of table 2, the tensor spinors we use are gamma traceless which means that

Σaα(Γa)αβ = 0 , (3.5)

and accordingly they span a subspace of dimension 4 × 4− 4 = 12. We also note that the

Jacobi identities can imply that a naive counting of generators in commutation relations

does not always work. For instance, in (3.4) the left-hand sides have superficially 4 ×
4 + 4 × 6 = 40 elements while the right-hand side has 4 + 12 + 4 = 20 elements and the

discrepancy is due to the Jacobi identity, meaning that there are 20 linear combinations

of the 40 possible commutators that vanish due to the Jacobi identity. The consistency

of the free Lie superalgebra commutation relations with the Jacobi identity requires the

non-trivial gamma matrix identities (A.4). We shall see below how a quotient relates to

the Maxwell superalgebra introduced in [11].

Continuing to level ` = 4 we have to commute the level ` = 3 generators with the

basic Qα on level ` = 1. We shall not give the full commutations at this level but restrict

ourselves to defining a part that is relevant to the comparison below,

{Qα,Σβ} =
1

4
(CΓab)αβZab + (CΓ5)αβB + . . . (3.6)

such that

[Pa, Pb] = Zab + . . . , (3.7)

showing the relation between the free Lie superalgebra and the bosonic free Lie algebra.

In the two equations above the dots denote additional generators that are present and

crucial in the free Lie superalgebra. Their tensor type has been listed in table 2. For the

comparison in the next section we do not require the precise form of these terms.

3.1.2 Comparison to Maxwell superalgebra in the literature

Let us now leave the free Lie superalgebra f(Q) for the moment and go back to the Poincaré

superalgebra in D = 4 (with N = 1 supersymmetry):

[Mab, Pc] = 2ηc[bPa] , (3.8a)

[Mab, Qα] =
1

2
Qβ(Γab)

β
α . (3.8b)

{Qα, Qβ} = (CΓa)αβPa , (3.8c)

[Pa, Qα] = 0 , (3.8d)

[Pa, Pb] = 0 . (3.8e)

The Poincaré superalgebra has non-trivial cohomology and it can be extended as was

studied in [11].4 It was shown there that one can in particular deform the commuta-

tors (3.8d) and (3.8e) through the introduction of a new (non-central) Majorana spinor

4We note that compared to [11] we have slightly changed conventions by removing some factors of i and

rescaling some generators.
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generator Σα by letting5

[Qα, Pa] = Σβ(Γa)
β
α . (3.9)

In order to obtain a minimal N = 1 supersymmetric extension of the Maxwell algebra that

includes the generators {Mab, Pa, Zab} where according to (2.2)

[Pa, Pb] = Zab (3.10)

one also has to impose by the Jacobi identity that

{Qα,Σβ} =
1

4
(CΓab)αβZab + (CΓ5)αβB . (3.11)

In the relation above we have also included a generator B that was introduced in [11] to pair

with the bosonic Lorentz scalar chirality operator B5 satisfying [B5, Qα] = Qβ(Γ5)βα. From

the commutation relations above one then deduces [B5, Pa] = 0 and [B5,Σα] = −Σβ(Γ5)βα.

The total algebra considered in [11] then consists of

Mab, B5︸ ︷︷ ︸
g0

, Qα︸︷︷︸
`=1

, Pa︸︷︷︸
`=2

, Σα︸︷︷︸
`=3

, Zab, B︸ ︷︷ ︸
`=4

(3.12)

We thus see that the generators of [11] form a subset of g0 together with the free Lie

superalgebra f(Q) defined above and is consistent with the commutation relations. It is in

fact a quotient of the free Lie superalgebra and the quotient can, moreover, be described

in terms of a Borcherds superalgebra as we shall explain in more detail in section 4. We

also note that the algebra (3.12) admits an invariant Casimir of the form

C2 =
1

2
PaP

a +QαC
αβΣβ −

1

2
MabZ

ab +B5B . (3.13)

The quadratic Casimir (3.13) pairs generators on levels ` and 4− `; extending this beyond

the generators in (3.12) would require generators on negative levels that pair with gener-

ators on level ` > 4. Such a structure is provided by a tensor hierarchy algebra [20–23],

yet another algebra that can be defined from the Poincaré superalgebra. In such an ex-

tension, the Casimir would also be made more manifestly graded symmetric by letting

B5B → 1
2(B5B+BB5), QαC

αβΣβ → 1
2(QαC

αβΣβ + ΣαC
αβQβ), etc.; in the algebra (3.12)

this is not necessary as these generators commute up to central terms.

3.2 D = 4 and extended supersymmetry

The construction of a free Lie superalgebra f(Q) described in section 2.2 allows for the Q to

be odd generators transforming under some level ` = 0 algebra g0. In the previous section,

we considered the D = 4 Lorentz algebra g0 = so(1, 3) (possibly extended by a chirality

operator). In this section, we shall consider the case of extended supersymmetry where

there is a non-trivial R-symmetry acting on the supersymmetry generators. That is, we

consider the case g0 = so(1, 3)⊕su(N ) for N -extended supersymmetry. The corresponding

basic generators will be denoted by QIα where α = 1, . . . , 4 is the Lorentz spinor index while

I = 1, . . . ,N is the R-symmetry index.

5A similar extension of the supersymmetry algebra in D = 10 dimensions had been introduced previously

in order to write the Wess-Zumino term of the Green-Schwarz string as an invariant term [13]. The algebra

of [13] has also been extended to study supersymmetric p-brane models and their κ-symmetry [39, 40].

– 11 –



J
H
E
P
0
3
(
2
0
1
9
)
1
6
0

R` representation generator

R1 [1, 0; 1]⊕ [0, 1; 1] QIα

R2

[1, 1; 0] Pa

2× [0, 0; 0] P , P5

[1, 1; 2] P IJa = P
(IJ)
a

[2, 0; 2]⊕ [0, 2; 2] P IJab = P
(IJ)
ab = P IJ[ab]

...
...

...

Table 3. The free Lie superalgebra f(Q) in D = 4 space-time dimensions for extended N = 2

supersymmetry. The su(2) R-symmetry representation is given by the last Dynkin label while the

first two specify the A1 ⊕A1 representation. The fundamental R-symmetry index is I = 1, 2.

3.2.1 D = 4 and N = 2 supersymmetry

Complexifying the algebra as before we are therefore considering A1⊕A1⊕A1 where each

A1 denotes a complexified su(2). Then the level ` = 1 generators QIα have representation

labels

R1 = [1, 0; 1]⊕ [0, 1; 1] , (3.14)

so that the last label is the R-symmetry label, separated with a semicolon. The case N = 2

is special as the R-symmetry representation [1] can be treated as a real representation using

εIJ as a complex structure. This is no longer the case for N > 2 and we treat this case

on its own below. Applying the algorithm (2.9) to the N = 2 generator (3.14) leads to

table 3, where we do not give the result for R` with ` > 2 due to a proliferation of terms.

The commutation relation in the free Lie superalgebra representing the first two levels is{
QIα, Q

J
β

}
= εIJ(CΓ5Γa)αβPa + εIJCαβP + εIJ(CΓ5)αβP5

+ (CΓa)αβP
IJ
a +

1

2
(CΓ5Γab)αβP

IJ
ab . (3.15)

The first line corresponds to the central extension of the N = 2 Poincaré superalgebra by an

electric and magnetic charge. The second line introduces additional string and membrane

charges [9, 37].

The calculation can be carried out to higher levels and will contain the hallmark

relation [Pa, Pb] = Zab of Maxwell algebras. An N -extended supersymmetric version of the

Maxwell algebra in D = 4 was introduced in [12] from a contraction of a superconformal

algebra. Their algebra has an R-symmetry of so-type rather than the su(N ) that we have

assumed here and therefore the resulting commutation relations are quite different, allowing

in particular a raising and lowering of R-symmetry indices.

3.2.2 D = 4 and N > 2 supersymmetry

One can similarly consider N -extended supersymmetry in D = 4 dimension for N > 2 by

letting the generating elements of the free Lie superalgebra be QIα with I a fundamental
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index of su(N ). In order to write an anti-commutator of the elementary QIα that yields

standard translation generators Pa it is necessary to use 2-component Weyl spinors that

we denote by QIA and Q̄Ȧ I (with A = 1, 2 and Ȧ = 1̇, 2̇). The important point here is

that the two Weyl spinors transform in conjugate (fundamental) representations of su(N ).

For N = 2 we could use the invariant εIJ to relate the two representations, but for N > 2

there is no corresponding invariant tensor to achieve this. The complexification of g0 =

so(1, 3)⊕su(N ) is of type A1⊕A1⊕AN−1 and the corresponding complex representation is

R1 = [1, 0; 1, 0, . . . , 0]⊕ [0, 1; 0, . . . , 0, 1] , (3.16)

illustrating the that the two Weyl spinors transform in conjugate representations under

AN−1. This space has complex dimension dimC(R1) = 4N which is twice the number of

real supertranslations of N -extended supersymmetry. A real slice through the complex

representation is picked by a reality condition of the form

Q̄Ȧ I = (QIA)∗ . (3.17)

We note that the conjugation affects the R-symmetry index and spinor index at the same

and the R-symmetry transformations in a real basis will therefore also affect the spinor

index. This happens for instance for N = 8 supergravity [41, 42]. Writing the su(N )

in terms of its real so(N ) subalgebra one can make the transition between the complex

Weyl and a real Majorana basis manifest, but at the sake of giving up manifest su(N )

invariance. We shall not carry out this rewriting here but instead work with the (complex)

Weyl spinors.

In terms of the Pauli matrices σa
AȦ

one then obtains the (anti-)commutation relations{
QIA, Q̄Ȧ J

}
= 2δIJ(σa)AȦPa + (σa)AȦP̃

I
a J (3.18a){

QIA, Q
J
B

}
= P IJAB + εABP

IJ (3.18b){
Q̄Ȧ I , Q̄Ḃ J

}
= P̄ȦḂ IJ + εȦḂP̄IJ , (3.18c)

where

P̃ Ia I = 0 , P IJAB = P IJ(AB) = P
(IJ)
AB , P IJ = P [IJ ] , (3.19)

with similar relations for the conjugate generators. The generators P IJAB and P̄ȦḂ IJ

with symmetric pairs of spinor indices combine into an antisymmetric two-form under the

Lorentz group so(1, 3) but this obscures their su(N ) properties in a way similar to (3.17).

3.3 D = 11 and N = 1 supersymmetry

The last example we discuss in some detail is given by minimal supersymmetry in D = 11

space-time dimensions as this is the case relevant to M-theory.

3.3.1 Free Lie superalgebra

In this case the Qα are real 32-component Majorana spinors that are irreducible under the

Lorentz algebra so(1, 10) and form the representation R1 = [0, 0, 0, 0, 1] of the complexified
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R` representation generator

R1 [0, 0, 0, 0, 1] Qα

R2

[1, 0, 0, 0, 0] Pa

[0, 1, 0, 0, 0] Pab = P[ab]

[0, 0, 0, 0, 2] Pa1...a5 = P[a1...a5]

R3

2× [0, 0, 0, 0, 1] spinors

2× [1, 0, 0, 0, 1] vector-spinors

[0, 1, 0, 0, 1] two-form spinor

[0, 0, 1, 0, 1] three-form spinor

[0, 0, 0, 1, 1] four-form spinor

R4 6× [0, 0, 0, 0, 2] . . .

4× [0, 0, 0, 1, 0]

[0, 0, 0, 1, 2]

4× [0, 0, 1, 0, 0]

2× [0, 0, 1, 0, 2]

[0, 0, 1, 1, 0]

5× [0, 1, 0, 0, 0]

2× [0, 1, 0, 0, 2]

3× [0, 1, 0, 1, 0]

2× [0, 1, 1, 0, 0]

3× [1, 0, 0, 0, 0]

3× [1, 0, 0, 0, 2]

4× [1, 0, 0, 1, 0]

4× [1, 0, 1, 0, 0]

2× [1, 1, 0, 0, 0]
...

...
...

Table 4. The free Lie superalgebra f(Q) in D = 11 space-time dimensions for a single 32-

component spinor generator Qα. All so(1, 10) representations are labelled by their B5 Dynkin

labels in Bourbaki numbering. Tensor-spinors are gamma traceless but we retain tensor traces.

Some representations occur with multiplicity as shown.

Lie algebra B5. The last label refers to the spinor node of the B5 Dynkin diagram. Carrying

out the algorithm (2.9) leads to table 4.

The commutation relations leading to level ` = 2 in the free Lie superalgebra f(Q) are

{Qα, Qβ} = (CΓa)αβPa +
1

2
(CΓab)αβPab +

1

5!
(CΓa1···a5)αβPa1...a5 . (3.20)
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The right-hand side contains the most general combination that can be written for two

supersymmetry transformations in D = 11. This extension of the Poincaré superalgebra

was first considered in [8], and is nowadays called the M-algebra (but should not be confused

with the generalisation thereof constructed in [10]). In [9, 43, 44] it has been argued that the

(non-central under Lorentz) terms Pab and Pa1···a5 beyond the usual translation generator

Pa are the ones that correspond to the M2-brane and M5-brane of eleven-dimensional

supergravity. The even more general algebra constructed in [10] contained more brane

sources and even fermionic ones that were obtained by treating the Pa, Pab and Pa1...a5 as

forms in superspace. The immediate interpretation of all these charges was not clear but

some were used for studying the Wess-Zumino term of the M5-brane [10].

One possible quotient of the free Lie superalgebra f(Q) is the standard Poincaré su-

peralgebra in D = 11 (without Pab and Pa1...a5) and another one is the truncation to ` = 2

which then reproduces the M-algebra of [9]. Including also generators from higher levels

one may construct quotients that agree with the algebra considered in [10].

We also note that very recently a supersymmetric extension of the D = 11 Maxwell

algebra was proposed in [45, 46]. This algebra is a quotient of the free Lie superalgebra by

retaining the following generators besides the Poincaré superalgebra: on ` = 2 additionally

Pab but not Pa1...a5 ; on ` = 3 only a single spinor Σα (similar to (3.9)) and on level ` = 4

only a single two-form Zab. Other extensions of the D = 11 Poincaré superalgebra were

studied in the context of free differential algebras in [47, 48].

3.3.2 Relation to E11 and `1 representation?

It is tempting to speculate on a relation between the free Lie superalgebra and exotic

supersymmetric objects as they appear in supergravity and M-theory and are captured

by approaches based on the Kac-Moody algebra E11 [15, 49]. Exotic branes in the sense

of [50, 51] are extended objects of co-dimension at most two and they tend to be very non-

perturbative when analysed in string theory, meaning their mass scales with the inverse

string coupling to a power that is larger than 1. These exotic branes have been discovered

originally using U-duality in low dimensions (see for instance [52, 53]). From the point

of view of an electric space-time coupling they typically couple to mixed symmetry space-

time potentials, meaning potentials that are not necessarily p-forms but represented by

Young tableaux of more complicated type than a single column. Using this language

all such supersymmetric branes have been classified and their relation to non-geometric

backgrounds has been studied [54–57].

Even though exotic branes can typically be expressed as supersymmetric solutions of

usual supergravity, meaning that they preserve some of the usual supersymmetries gener-

ated by the Qα at ` = 1 in f(Q), their (electric) coupling to mixed symmetry potentials

suggests to also investigate whether there can be any relation to higher levels ` > 1 in the

free Lie superalgebra. The motivation from this investigation comes from the fact that

the adjoint representation of E11 captures all the relevant mixed symmetry potentials [55]

and that the `1 representation of E11 seems to capture all the corresponding ‘electric’

charges [49, 58]. With electric charges we mean that while the M2-brane of D = 11 su-

pergravity couples naturally to the 3-form potential, the M5-brane couples more naturally
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‘electrically’ to its dual 6-form rather than ‘magnetically’ to the original 3-form. The elec-

tric coupling is always such that the corresponding Wess-Zumino term in the world-volume

action is simply an integral over (the pull-back of) the corresponding potential. Roughly,

for a supersymmetric p-brane the closed p-form dXa1 ∧ · · · ∧ dXap on the world-volume

Σ contributes to the supersymmetry algebra if the brane, embedded via the maps Xa(ξ),

wraps a topologically non-trivial cycle. This is due to the quasi-invariance of the Wess-

Zumino coupling
∫

ΣC(p+1) to a (p+ 1)-form gauge field C(p+1) under supersymmetry [43].

The contribution to the supersymmetry algebra is of the form

{Qα, Qβ}=
1

p!
(CΓa1...ap)αβZ

a1...ap , where Za1...ap∼ Qp
∫
dpξ dXa1 ∧ · · · ∧ dXap , (3.21)

with the integral over the non-trivial (spatial) cycle that the brane wraps and Qp the charge

of the brane. With this logic the 2-form Pab in (3.20) is related to the M2-brane while the

5-form Pa1...a5 is related to the M5-brane [9, 44]. This can be also understood through the

gauge-field that the brane couples to as follows. The brane requires a (p+ 2)-form flux in

space-time F(p+2) = dC(p+1) + . . . and in D space-time dimensions the transverse space has

a sphere SD−p−2 at infinity over which the dual of the flux F(p+2) can be integrated to give

the charge Qp of the extended object. From this we see that the supersymmetry algebra

for p-brane coupling to a form Ca1...ap+1 should contain a (non-central) term Za1...ap , i.e.,

a form with one index less.

As exotic branes couple to mixed symmetry potentials one might therefore by extension

wonder whether there are mixed-symmetry ‘charges’ sitting somewhere in an extended

supersymmetry algebra to which they couple. As there is no room in the standard D = 11

superalgebra (3.20) we look for them in the free Lie superalgebra f(Q). In order to identify

them we use the following tentative connection to E11.

From the point of view of E11, the generators Pa, Pab and Pa1...a5 appear naturally in

the so-called `1 representation when it is decomposed under gl(11) ⊂ E11 [49, 58]. The rela-

tion between space-time potentials in the adjoint of E11 and the `1 representation has also

been discussed in these references. As E11 is conjectured to contain all the mixed symmetry

space-time potentials that (supersymmetric) branes can couple to, it is an important ob-

servation that the `1 representation of E11 contains all the mixed symmetry ‘charges’ that

can be obtained by removing one index from any of the E11 gauge potentials [49, 58, 59].

In order to compare the so(1, 10) representations predicted by E11 and the content of

the free Lie superalgebra f(Q), we reproduce the lowest levels of the `1 representation of

E11 in terms of gl(11) representations in table 5. The table also lists their decomposition

into so(1, 10) representations. This should be compared to the even levels of the free Lie

superalgebras listed in table 4.

The comparison has been carried out at the level of representations up to R4 in the

last column of table 5. As can be seen from that column, most of the mixed symmetry

representations contained in the `1 representation arise already on the first two bosonic

levels R2 and R4 of the free Lie superalgebra; it is possible that the question marks will

be contained in the higher levels. As the charges in the `1 representation cover all branes,

the analysis above includes standard and exotic branes.
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Level gl(11) representation so(1, 10) representation Occurrence in f(Q)

3
2 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0] R2

5
2 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] [0, 1, 0, 0, 0] R2

7
2 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] [0, 0, 0, 0, 2] R2

9
2

[0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
[1, 0, 0, 1, 0] R4

[0, 0, 0, 0, 2] R4

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 1, 0, 0] R4

11
2

[0, 0, 1, 0, 0, 0, 0, 1, 0, 0]

[0, 0, 2, 0, 0] ?

[0, 1, 0, 1, 0] R4

[1, 0, 0, 0, 2] R4

[0, 0, 0, 0, 2] R4

[0, 1, 0, 0, 0, 0, 0, 0, 0, 2]

[0, 1, 0, 0, 0] R4

[1, 0, 1, 0, 0] R4

[2, 1, 0, 0, 0] ?

[0, 1, 0, 0, 0, 0, 0, 0, 1, 0]

[0, 0, 0, 1, 0] R4

[0, 2, 0, 0, 0] R4

[1, 0, 1, 0, 0] R4

2× [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
2× [0, 1, 0, 0, 0] R4

2× [2, 0, 0, 0, 0] ?

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0] ?
...

...
...

...

Table 5. The first few levels of the `1 lowest weight representation of E11. Level here refers to

the natural grading under gl(11) ⊂ E11. The last column lists a possible match with the even levels

of the free Lie algebra in table 4.

We wish to stress that this comparison is speculative and we have only analysed the

representations. The algebraic structure is quite different, however. In the E11 proposal

of [49], all generators in `1 commute: they form a generalised abelian translation algebra of

a generalised space-time in a way similar to the generalised diffeomorphisms of exceptional

geometry [60–63]. One of the hallmarks of the Maxwell algebra and free Lie algebra ap-

proach pursued here is that the translations Pa no longer commute, see (2.2). This can be

achieved in an E11-covariant fashion by allowing non-trivial commutation relations for the

elements of the `1 representation. One possibility would be an embedding in E12 along the

lines of [58], see also [64]. This embedding embeds the semi-direct sum E11⊕ `1 as levels 0

and 1 of a graded decomposition of E12 under its obvious E11 subalgebra. We shall make

more comments on such level decompositions in the next section. Another possibility is

to consider the elements in the `1 representation as odd such that they satisfy non-trivial
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anti-commutation relations rather than commutation relations. This structure can be em-

bedded in the Borcherds superalgebra denoted B11 in [65], or the tensor hierarchy algebra

considered in [23]. We refrain from speculating further in this direction, but we will in the

next section apply the construction of a Borcherds superalgebra to the case considered in

section 3 where the basic objects are the supersymmetry generators Qα.

4 Free Lie superalgebras and Borcherds superalgebras

We have seen that a free Lie (super)algebra decomposes into a direct sum of subspaces at

positive levels, and that we can add a Lie algebra g0 at level zero, such that the positive level

subspaces form representations of it. In order to obtain a simple Lie (super)algebra we need

to continue to negative levels since the subspace spanned by all elements at levels ` > k for a

given k ≥ 1 otherwise constitutes an ideal, as described in the end of section 2.1. Any finite-

dimensional complex semisimple Lie algebra has this structure, with the Cartan subalgebra

at level zero and root vectors corresponding to positive and negative roots at positive and

negative levels. The construction of the algebra from its Cartan matrix or Dynkin diagram

can be generalised in different ways, leading to infinite-dimensional Kac-Moody algebras,

the Borcherds superalgebras that we will describe next, and most generally, to so-called

contragredient Lie (super)algebras [66, 67]. As we will show, when g0 is semisimple one can

extend its Cartan matrix or Dynkin diagram and apply the generalised construction in order

to obtain a corresponding extension of g0 with two subalgebras at positive and negative

levels, respectively, which are quotients of two (isomorphic) free Lie (super)algebras, and

additional Cartan generators at level zero.

A Borcherds superalgebra of rank r is defined from a symmetric Cartan matrix Aij
(i, j = 1, 2, . . . , r) with non-positive off-diagonal entries and a subset S of the index set

{1, 2, . . . , r} labelling the rows and columns. Here we will only consider the case when the

Cartan matrix is non-degenerate, integer-valued and satisfies

i /∈ S ⇔ Aii = 2 , i ∈ S ⇔ Aii = 0 . (4.1)

To the Cartan matrix we associate 3r generators ei, hi, fi among which ei, fi are odd if and

only if i ∈ S, and all hi are even. The Borcherds superalgebra is now defined as the Lie

superalgebra generated by ei, hi, fi modulo the relations

[hi, ej ] = Aijej , [hi, fj ] = −Aijfj , Jei, fjK = δijhi , [hi, hj ] = 0 , (4.2a)

i 6= j and i /∈ S ⇒ (ad ei)
1−Aijej = 0 , (ad fi)

1−Aijfj = 0 , (4.2b)

Aii = 0 ⇒ {ei, ei} = 0 , {fi, fi} = 0 . (4.2c)

We have used the notation J·, ·K to denote the graded commutator since the ei and fi can

be odd or even. The off-diagonal entries of the Cartan matrix Aij determine the Serre

relations of (4.2b). The adjoint action there is also by the graded commutator.

The Dynkin diagram that we associate to the Cartan matrix consists of r nodes, where

node i (i = 1, 2, . . . , r) is white (depicted with ©) if i /∈ S ⇔ Aii = 2 and gray (depicted

with ⊗) if i ∈ S ⇔ Aii = 0, and where two nodes i and j are connected with −Aij lines.
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Figure 1. Dynkin diagram of a Borcherds Lie superalgebra that is related to a quotient of the

free Lie superalgebra of D = 4 supersymmetry.

(We note that the relation between Cartan matrices and Dynkin diagrams is not one-to-one

for superalgebras as their are odd Weyl reflections that can be applied [68].)

As noted above, Borcherds superalgebras have a triangular decomposition: they consist

of the Cartan subalgebra spanned by the hi, a lower-triangular part generated by the fi
through multi-commutation and an upper-triangular part generated by the ei through

multi-commutation. Important for us is the observation that the upper-triangular part is

a free Lie superalgebra modulo the Serre relations (4.2b) and (4.2c). In other words, the

Serre relations define an ideal in a free Lie superalgebra that has to be quotiented out. We

can refine the observation by allowing each generator ei to have an arbitrary non-negative

level vi, and the corresponding fi to have level −vi. If vi = 1 for all i, then we get the

grading described above, with only the Cartan subalgebra at level zero. But we can also

choose to have vi = 1 only for some i, and vi = 0 for the others. By setting vi = 1 if

i ∈ S and vi = 0 if i /∈ S we get a Z-grading consistent with the Z2-grading: odd elements

appear at odd levels, and even elements at even levels. The level ` = 0 subalgebra g0

is then a semisimple Kac-Moody algebra with a Dynkin diagram given by removing the

gray nodes from the Dynkin diagram of the Borcherds superalgebra, centrally extended

with the Cartan generators hi of the removed nodes. In this level decomposition, the Serre

relations (4.2b) determine the level ` = 0 subalgebra g0 and its representations at levels

` = ±1 (which will be dual to each other), whereas the additional Serre relations (4.2c)

define the ideal that is factored out from the free Lie superalgebras at positive and negative

levels generated by the subspaces at level ` = 1 and ` = −1, respectively.

4.1 D = 4 and N = 1 supersymmetry

We will now try to reconstruct an infinite-dimensional extension of the superalgebra con-

sidered in (3.12) as the subalgebra at non-negative levels of a Borcherds superalgebra. In

agreement with the discussion above we should have at level ` = 0 the complexification

A1⊕A1 of the Lorentz algebra so(1, 3) in D = 4 and at level ` = 1 the spinors [0, 1]⊕ [1, 0].

One way to arrange this is by taking the Cartan matrix

A =


2 −1 0 0

−1 0 −2 0

0 −2 0 −1

0 0 −1 2

 . (4.3)

This can also be depicted in terms of a Dynkin diagram as in figure 1.

The two A1 forming the Lorentz algebra in D = 4 correspond to nodes 1 and 4 of

the Dynkin diagram and the gray nodes are fermionic and represent the two fundamental

representations of the two A1 as required by the fundamental spinor Qα ↔ [1, 0] ⊕ [0, 1].
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Thus the subset S of the index set {1, 2, 3, 4} is S = {2, 3} here. The single lines connecting

the gray nodes to nodes 1 and 4 imply that the corresponding Chevalley generators belong

to a two-dimensional fundamental representation of the A1 concerned.

Let us first see how to get the Lorentz algebra by removing the gray nodes. If we set

M02 =
i

2
(−e1 + f1 + e4 − f4) , M01 =

1

2
(−e1 − f1 − e4 − f4) , (4.4a)

M23 =
i

2
(e1 + f1 − e4 − f4) , M31 =

1

2
(−e1 + f1 − e4 + f4) , (4.4b)

M21 =
i

2
(h1 − h4) , M03 =

1

2
(h1 + h4) , (4.4c)

the commutation relations (2.1a) indeed follow from (4.2) in the case where the Cartan

matrix Aij is given by (4.3), or equivalently, by the Dynkin diagram in figure 1. Note that

the imaginary unit i appears in (4.4) although we consider the real Lie algebra so(1, 3) (no

i appears in the commutation relations (2.1a)). This shows that so(1, 3) is a non-split real

from of A1⊕A1. If we instead just took the real span of e1, f1, h1, e4, f4, h4, then we would

get the split real form sl(2) ⊕ sl(2) of A1 ⊕ A1. Note also that e2, f2, h2, e3, f3, h3 do not

appear in (4.4) since we have removed the gray nodes. However, the Cartan generators h2

and h3 do belong to level zero as well and by taking appropriate linear combinations of

them, one can get the dilatation operator d and the chirality operator B5 that also appears

in the algebra (3.12).

We now put back the gray nodes and go from level ` = 0 to ` = 1. Looking for example

at the e2 Chevalley generator, the Serre relation implies

e2 6= 0 , [e1, e2] 6= 0 , but [e1, [e1, e2]] = 0 , (4.5)

so that there are two non-zero elements at level ` = 1 associated with e2. This is the

[1, 0] representation of A1 ⊕A1. One can verify the Dynkin labels [1, 0] by acting with the

Cartan generators h1 and h4 on the highest weight vector [e1, e2]:

[h1, [e1, e2]] = 1 , [h4, [e1, e2]] = 0 . (4.6)

A similar reasoning for nodes 3 and 4 yields the [0, 1] representation. The level ` here is

given by the sum of the number of times e2 or e3 appear in a multi-commutator. Thus

one of the two 2-dimensional Weyl spinors at level ` = 1 is spanned (over the complex

numbers) by e2 and [e1, e2] and the other one by e4 and [e3, e4]. In order to get a Majorana

spinor Qα (α = 1, 2, 3, 4) from them, we have to take the complex linear combinations

Q1 = [e1, e2]− i[e3, e4] , (4.7a)

Q2 = i[e1, e2]− [e3, e4] , (4.7b)

Q3 = e2 + ie3 , (4.7c)

Q4 = −ie2 − e3 . (4.7d)

Indeed, now the commutation relations (3.1), which state that Qα transforms as a Majorana

spinor, follow from (4.2), and the explicit form of the real gamma matrices given in A.
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We proceed to level ` = 2 and set

P0 = i[e1, {e2, [e3, e4]}]− i{e2, e3} , (4.8a)

P1 = i[e1, {e2, e3}]− i{e2, [e3, e4]} , (4.8b)

P2 = −[e1, {e2, e3}]− {e2, [e3, e4]} , (4.8c)

P3 = i[e1, {e2, [e3, e4]}] + i{e2, e3} . (4.8d)

Note that in each multi-commutator, e2 and e3 appear once each. A multi-commutator

with two e2 and no e3 (or two e3 and no e2) would also belong to level ` = 2, but any such

element is zero because of the Serre relations

{e2, e2} = {e3, e3} = 0 . (4.9)

This means that Pab, that appeared in the anti-commutation relation (3.2) of the free Lie

superalgebra is not present in the Borcherds superalgebra we consider here, since {e2, e2}
and {e3, e3} are lowest weight vectors of the representation [2, 0] and [0, 2], respectively,

which together form Pab. Rather we get (3.8c) from (4.2). Also the relation (3.8a), which

states that Pa transforms as vector under the Lorentz algebra, follow from (4.2).6

In drawing diagram 1 we have chosen a double line between nodes 2 and 3, correspond-

ing to A23 = A32 = −2. For understanding the Serre relations drawing a single or multiple

lines between the nodes does not matter, as any negative choice of A23 implies the same

ideal. This is due to the Jacobi identity

[e2, {e2, e3}] = [{e2, e2} , e3]− [e2, {e2, e3}] . (4.10)

The first term on the right-hand side vanishes due to (4.2c) and the sign in front of the

second term follows from the oddness of e2. This Jacobi identity therefore implies

[e2, {e2, e3}] = 0 (4.11)

independent of the value of A23. The value of A23 does, however, lead to inequivalent

Borcherds superalgebras when one considers the action of the lower-triangular Chevalley

generators fi as well. As long as one is only interested in the upper triangular part, A23

does not matter. As we have just shown, (4.11) is a consequence of {e2, e2} = 0. In

the free Lie superalgebra, this relation is not imposed. We thus conclude that the upper-

triangular part of the Borcherds superalgebra defined by (4.3) is a free Lie superalgebra on

the A1⊕A1 representations [1, 0]⊕ [0, 1] modulo the Serre relations (4.9) corresponding to

an ideal generated by [2, 0]⊕ [0, 2] at level ` = 2.

6At this point, we note that there is the possibility of writing down a Borcherds algebra whose positive

levels agrees with the free Lie superalgebra including Pab. In order to arrange for this, one has to consider

more general Cartan matrices than the ones we have introduced in (4.1) by also allowing negative diagonal

entries, e.g. Aii = −2. The defining relations can for instance be found in [69] and the corresponding nodes

are sometimes called ‘black’ nodes. For black nodes, the relation (4.2c) does not apply and therefore there

are no Serre relations at positive levels associated with the black nodes, in other words they form a free Lie

superalgebra.
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B` representation generator

B0

[2, 0]⊕ [0, 2] Mab

[0, 0] B5

[0, 0] d

B1 [1, 0]⊕ [0, 1] Qα

B2 [1, 1] Pa

B3 [1, 0]⊕ [0, 1] Σα

B4

[2, 0]⊕ [0, 2] Zab = Z[ab]

[0, 0] B

B5

[1, 0]⊕ [0, 1] Xα

[1, 2]⊕ [2, 1] Xaα

B6

[2, 0]⊕ [0, 2]

[1, 1]

[1, 1]

[1, 1]

[1, 3]⊕ [3, 1]
...

...
...

Table 6. The non-negative levels of the Borcherds superalgebra defined by the Cartan matrix (4.3).

This is a quotient of the free Lie superalgebra shown in table 2 and the notation is in that table.

We have also included the Cartan generators from level ` = 0. B5 acts as chirality while d is a

scaling operator. Up to level ` = 4 this is the Maxwell superalgebra studied in [11].

The representation content of the positive levels of the Borcherds superalgebra can be

constructed recursively using a similar algorithm as for the free Lie superalgebra. In the

Borcherds superalgebra one has

B1 = 〈Qα〉 , (4.12a)

B2 = ∨2B1 	 S2 , (4.12b)

B3 = B2 ⊗B1 	 ∨3B1 ⊕ S3 , (4.12c)

B4 = (B3 ⊗B1 ⊕ ∧2B2)	 ∨2B1 ⊗B2 ⊕ ∨4B1 	 S4 , (4.12d)

· · ·

where the difference to the free Lie superalgebra (2.9) is the presence of a certain represen-

tation S` at each level that has to be removed. We have already seen that S2 = [2, 0]⊕ [0, 2]

and an analysis similar to the one carried out in [26] for the case of only one gray node

yields that in general S` = [`, 0]⊕ [0, `]. This is displayed in table 6.

Alternatively, the representation content of the Borcherds superalgebra up to an arbi-

trary level k can be derived from the representation content of a corresponding Kac-Moody
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5 6 k + 2 k + 3

Figure 2. Dynkin diagram of the Kac-Moody algebra of rank k+3 corresponding to the Borcherds

superalgebra with the Dynkin diagram in figure 1 by the ‘Borcherds-Kac-Moody correspondence’.

The number of nodes in the lower line is k − 1, forming an Ak−1 subdiagram. For k = 3, this

Kac-Moody algebra is the exceptional Lie algebra E6, for k = 4 its affine extension E6
+, and for

k = 5 its hyperbolic extension E6
++.

algebra. This can for example be more useful than the method above when the representa-

tions S` are not known. This ‘Borcherds-Kac-Moody correspondence’ was first explained

in [18] in the context of E11 (see also [20]) and then generalised to other cases in [19, 70].

Here we will just briefly describe the consequence of the general procedure in the special

case of the Borcherds superalgebra with Cartan matrix (4.3) or with the Dynkin diagram in

figure 1, and it reveals a remarkable connection between the Maxwell superalgebra and the

exceptional Lie algebra E6. The method is only directly applicable if A23 = A32 = −2, and

this is the reason why we have made this choice, although, as we have seen, any negative

value of these entries in the Cartan matrix gives the same representation contents in the

level decomposition.

The Dynkin diagram of the corresponding Kac-Moody algebra is obtained by replacing

the gray nodes with ordinary white ones, removing the double line, and adding another

k − 1 white nodes, each connected to the previous one with a single line, so that they

from the Dynkin diagram of the Lie algebra Ak−1 with split real form sl(k). Furthermore,

the new nodes 2 and 3 replacing the gray ones should be connected to the first node in

this Ak−1 subdiagram. The resulting Dynkin algebra is shown in figure 2. For k = 3, the

corresponding Kac-Moody algebra is the exceptional Lie algebra E6, for k = 4 its affine

extension E6
+, and for k = 5 its hyperbolic extension E6

++. A level decomposition of

this Kac-Moody algebra can be performed with respect to nodes 2 and 3 in the same way

as for the original Borcherds superalgebra, and since we now have a Lie algebra rather

than a Lie superalgebra, the representations can be computed easily using the software

SimpLie [71]. Furthermore, since we now at level ` = 0 have not only A1⊕A1 and the Cartan

generators h2 and h3, but also sl(k), each representation of A1 ⊕ A1 comes together with

a representation of sl(k). It turns out that, at each level ` ≤ k, the A1⊕A1 representation

that comes together with the k-th antisymmetrised tensor power of the fundamental k-

dimensional representation of sl(k) is precisely the representation B` appearing in the

Borcherds superalgebra. This can be verified for k = 5 by comparing tables 6 and 7.

Using either tool we obtain the supersymmetric Maxwell algebra studied in [11] with an

additional scaling operator d that can be chosen to have the level ` as its eigenvalue.
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level ` A1 ⊕A1 ⊕A4 representation generator

0

[2, 0; 0, 0, 0, 0]⊕ [0, 2; 0, 0, 0, 0] Mab

[0, 0; 0, 0, 0, 0] B5

[0, 0; 0, 0, 0, 0] d

[0, 0; 1, 0, 0, 1]

1 [1, 0; 1, 0, 0, 0]⊕ [0, 1; 1, 0, 0, 0] Qα
I

2 [1, 1; 0, 1, 0, 0] Pa
IJ

3 [1, 0; 0, 0, 1, 0]⊕ [0, 1; 0, 0, 1, 0] Σα
IJK

4

[2, 0; 0, 0, 0, 1]⊕ [0, 2; 0, 0, 0, 1] Zab
I1...I4

[0, 0; 0, 0, 0, 1] BI1...I4

[0, 0; 1, 0, 1, 0]

5

[1, 0; 0, 0, 0, 0]⊕ [0, 1; 0, 0, 0, 0] Xα
I1...I5

[1, 2; 0, 0, 0, 0]⊕ [2, 1; 0, 0, 0, 0] Xaα
I1...I5

[1, 0; 1, 0, 0, 1]⊕ [0, 1; 1, 0, 0, 1]
...

...
...

Table 7. The non-negative levels of E6
++ (the hyperbolic extension of E6) with Dynkin diagram

in figure 2 for k = 5, decomposed with respect to the A1⊕A1⊕A4 subalgebra obtained by removing

node 2 and 3. The Dynkin labels of A4 are separated from those of A1 ⊕ A1 with a semicolon.

Restricting to A4 representations where the `-th Dynkin label is equal to one and the others to

zero (all zero for ` = 0 and ` = 5) we obtain the A1 ⊕ A1 representations B` in table 2. We have

illustrated this by putting ` fully antisymmetric indices I, J, . . . = 1, . . . , 5 on the generators in

table 2 up to ` = 5 (which coincide with those of the Maxwell superalgebra up to ` = 4).

4.2 D = 4 and extended supersymmetry

The Borcherds superalgebras considered in the preceding subsection can be extended in a

way corresponding to extended supersymmetry. In order to get an R-symmetry algebra

su(N ) at level ` = 0 (commuting with the Lorentz algebra), and the two Weyl spinors

at level ` = 1 transforming in two N -dimensional representations of su(N ), dual to each

other (‘fundamental’ and ‘anti-fundamental’), we insert N − 1 white nodes between the

two gray nodes in the Dynkin diagram, as shown in figure 3. The generators e2 and e3 are

then still lowest weight vectors of two representations of the subalgebra at level ` = 0, but

since this subalgebra now also contains AN−1 in addition to the (complexified) Lorentz

algebra A1 ⊕ A1, the representations now have 1 + 1 + (N − 1) Dynkin labels. As in

section 3.2 we have put the Dynkin labels corresponding to AN−1 after the two Dynkin

labels corresponding to A1 ⊕ A1, separated by a semicolon. The Dynkin labels of the two

representations at level ` = 1 are then [1, 0; 1, 0, . . . , 0] and [0, 1; 0, . . . , 0, 1], respectively, as

can be verified by acting on e2 and e3 with the Cartan generators.
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1 2 3 4︸ ︷︷ ︸
AN−1

Figure 3. Dynkin diagram of the Borcherds superalgebra for N -extended supersymmetry. The

middle part is the Dynkin diagram of type AN−1 corresponding to the complexified su(N ) R-

symmetry. The outer nodes labelled 1 and 4 correspond to A1 ⊕ A1 as before while the two gray

nodes correspond to the two spinors.

︸ ︷︷ ︸
AN−1

Figure 4. Distinguished Dynkin diagram of the finite-dimensional contragredient Lie superalgebra

A(3,N − 1), which has the superconformal algebra su(2, 2|N ) in D = 4 as a real form.

We also give the Cartan matrix corresponding to the simplest extended case N = 2

for which there are five nodes in figure 3; it is
2 −1 0 0 0
−1 0 0 0 −1
0 0 0 −1 −1
0 0 −1 2 0
0 −1 −1 0 2

 . (4.13)

Row and column 5 correspond to the R-symmetry A1 in the middle of the diagram.

At this point we note a certain similarity to the superconformal algebra su(2, 2|N )

in D = 4. This is a real form of the complex Lie superalgebra A(3,N − 1), which has a

distinguished Dynkin diagram shown in figure 4. The fact that the Dynkin diagram is dis-

tinguished means that there is only one gray node, and this condition makes it unique. By

relaxing this condition and performing so-called odd reflections [68] one can obtain equiva-

lent non-distinguished Dynkin diagrams of the same Lie superalgebra, with more than one

gray node. Following the rules for odd reflections (see for example [72]) it is straightforward

to show that one of the possible diagrams look the same as the one in figure 3 [68, 73].

However, the meaning of gray nodes in this context is slightly different. The corresponding

e and f generators are still odd elements, and the corresponding diagonal entries are still

zero, but on one side of the gray node the corresponding entries in the Cartan matrix have

opposite signs. For figure 4, this means that if the white nodes and lines on the left hand

side of the gray node correspond to diagonal entries 2 and off-diagonal entries −1, respec-

tively, then those on the right hand side have diagonal entries −2 and off-diagonal entries

1, respectively. For figure 3, with N = 2, this gives the corresponding Cartan matrix
2 −1 0 0 0
−1 0 0 0 1
0 0 0 −1 1
0 0 −1 2 0
0 1 1 0 −2

 , (4.14)
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Figure 5. Dynkin diagram of a Borcherds Lie superalgebra that is related to a quotient of the

free Lie superalgebra of D = 11 supersymmetry.

B` B5 representation generator

B0

[0, 1, 0, 0, 0] Mab

[0, 0, 0, 0, 0] d

B1 [0, 0, 0, 0, 1] Qα

B2

[1, 0, 0, 0, 0] Pa

[0, 1, 0, 0, 0] Pab

B3

[0, 0, 0, 0, 1] Σα

[1, 0, 0, 0, 1] Σaα

B4

2× [0, 1, 0, 0, 0] Zab = Z[ab]

[1, 0, 0, 0, 0]

[0, 0, 1, 0, 0]

[1, 1, 0, 0, 0]

[0, 0, 0, 0, 2]

[1, 0, 1, 0, 0]

[1, 0, 0, 0, 0]
...

...
...

Table 8. The non-negative levels of the Borcherds superalgebra defined by the Dynkin diagram

of figure 5. This is a quotient of the free Lie superalgebra shown in table 4 and the notation is as

in that table.

of A(3, 1), where the entries in row or column 5 have opposite sign compared to (4.13).

Accordingly, A(3, 1) is not a Borcherds superalgebra but a contragredient Lie superalge-

bra [67], and this change of signs makes it finite-dimensional.

4.3 D = 11 and N = 1 supersymmetry

We can also apply a Borcherds construction to the eleven-dimensional case. The starting

point for the Dynkin diagram is that of B5 which is the complexification of so(1, 10). To

obtain a spinor representation at level ` = 1 one can attach a gray node to the ‘spinor node’

of the B5 diagram with a single line. This leads to figure 5. The level decomposition of the

Borcherds algebra defined by this diagram can be computed using the methods described

above and this leads to the so(1, 10) representation listed in table 8.

Table 8 should be compared to table 4 from which we see that the Borcherds con-

struction contains considerably fewer generators than the free Lie superalgebra. This is
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of course expected since the positive levels of the Borcherds algebra are a quotient of the

free Lie superalgebra by the Serre ideal. One noteworthy difference between the Borcherds

algebra and the free Lie superalgebra is that the former does not contain the generator

Pa1...a5 on level ` = 2 associated with the M5-brane term in the superalgebra. Thus it

agrees with the algebra given in [46] up to ` = 2, but it extends it beyond that.7

5 Conclusion

In this paper, we have put forward the structure of a free Lie superalgebra for studying

extensions of the Poincaré superalgebra. The various examples that we have presented

comprise generalisations existing in the literature by quotienting and thus the free Lie

superalgebra f(Q) can be viewed as universal structure that encompasses all these proposals.

We have focussed in this paper on the algebraic aspects and have not worked out any

dynamical model realising the symmetry but this can be done for the point particle along

the lines of [7, 11] and we expect a similar universal behaviour of a superparticle moving in a

supersymmetric Maxwell background if a suitable ‘unfolded’ quotient is applied. An aspect

that will deserve detailed study in this context is the κ-symmetry of the particle action.

Extensions to string and brane models moving in backgrounds can also be constructed. A

generalisation of the Polyakov-type term for the string invariant under the superalgebra

can be written as ∫
d2σ
√
−γγij

[
LaiL

b
jηab +

1

2
Labi L

cd
j ηacηbd + . . .

]
, (5.1)

where the Lai = ∂ix
a + . . . and Labi = ∂iθ

ab + . . . denotes the components of the Cartan-

Maurer forms of a string moving on the group manifold of the superalgebra [7, 40].

Let us also point out a few other possible applications or connections to other work.

As was emphasised in section 2 the construction of a free Lie (super-)algebra starts from

a set of basic generators, e.g., the Qα. Demanding that these basic generators transform

in a representation of some level ` = 0 algebra g0 then leads to each level ` of the free

Lie algebra f(Q) transforming under g0. In the discussion of the free Lie superalgebra for

D = 11 in section 3.3.1 we considered the case so(1, 10), the eleven-dimensional Lorentz

algebra. In view of possible relations to E11 it is worth noting that the Lorentz algebra is

generalised to an algebra called K(E11) (or sometimes IC(E11)) in the context of West’s

conjectures. This is an infinite-dimensional Lie algebra that is fixed by an involution acting

on (the split real) E11, and K(E11) contains so(1, 10). The general representation theory

of this algebra has not been classified as it is not of standard type. However, it is known

that K(E11) can be made to act on the same 32 supertranslations Qα that so(1, 10) acts

on [74, 75]. In this way, the whole free Lie superalgebra f(Q) can be seen as a representation

7As in footnote 6, we note that it is in fact possible to get also Pa1...a5 at level ` = 2 in a Borcherds

superalgebra, but then one has to interchange the gray node 6 in figure 5 for a black node such that the

corresponding diagonal entry in the Cartan matrix is not zero but negative. This removes the Serre relation

{e6, e6} = 0 and gives rise to a 5-form since {e6, e6} then is a lowest weight vector of the representation

[0, 0, 0, 0, 2].
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of K(E11) providing an infinite-dimensional realisation of K(E11) albeit still of the same

unfaithful type. Under K(E11) one has for instance that ` = 2 of f(Q) forms an irreducible

528-dimensional representation. This perspective opens up the possibility of constructing

particle or brane models with K(E11) symmetry.

Yet another possibility of applying the free Lie superalgebra is in the context of so-

called vector supersymmetry [76, 77]. In vector supersymmetry, the basic supersymmetry

generators are not spinors Qα but transform in a vector and a scalar representation of the

Lorentz group. A particle realisation of this vector supersymmetry leads after quantisation

to two uncoupled Dirac equations [76, 77].

In the physical realisations of Maxwell symmetries studied to date, the background

field was non-dynamical. The proposals of [15, 78, 79] attempt to also derive the equa-

tions of a gravitational background from an algebraic formulation while [80] discusses the

unfolding of the Maxwell equation for the gauge field itself. These constructions are based

on algebras that are sometimes called Ogievetskii algebras that include translation gener-

ators and higher rank cousins of the type contained in free Lie algebras f(P ), however, the

commutation relations appear to differ from those of the free Lie algebras. It is not clear

to us how to reconcile these two pictures at the moment.
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A Gamma matrices in D = 4

An explicit real representation of the Γa matrices can be written as

Γ0 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 Γ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



Γ2 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 Γ3 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0
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C = Γ0 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 Γ5 = Γ0Γ1Γ2Γ3 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 . (A.1)

The matrix Γ0 is anti-symmetric while the Γi (for i = 1, 2, 3) are symmetric. They satisfy{
Γa,Γb

}
= 2ηab with ηab = diag(−1, 1, 1, 1). One also has CT = −C = C−1 and that

(CΓa)T = CΓa , (CΓab)T = CΓab , (CΓabc)T = −CΓabc , (CΓabcd)T = −CΓabcd , (A.2)

where Γab = Γ[aΓb] = 1
2(ΓaΓb − ΓbΓa) etc. The matrix Γ5 anti-commutes with all the Γa.

It squares to (Γ5)2 = −1 and (CΓ5)T = −CΓ5.

We use the following explicit spinor index notation on the gamma matrices, following

the SW-NE contraction convention,

(Γa)αβ ⇒ (ΓaΓb)αβ = (Γa)αγ(Γb)γβ (A.3)

together with Cαβ for the anti-symmetric charge conjugation matrix and Cαβ for its inverse

satisfying CαγC
γβ = δβα. The spinor index range is α = 1, . . . , 4. The first relation in (A.2)

reads in indices (CΓa)αβ = (CΓa)βα, where (CΓa)αβ = Cαγ(Γa)γβ . We also note the cyclic

identity that is satisfied by the gamma matrices in D = 4 are

(CΓa)(αβ(CΓa)γ)δ = 0 , (A.4a)

(CΓab)(αβ(CΓab)γ)δ = 0 , (A.4b)

(CΓa)(αβCγ)δ + (CΓab)(αβ(CΓb)γ)δ = 0 . (A.4c)

The identity (A.4a) and similar ones in D = 3, 6, 10 are important for the construction of

supersymmetric Yang-Mills theories [81, 82], whereas (A.4b) is crucial for supersymmet-

ric membranes [36]. In the context of free Lie superalgebras they appear in the Jacobi

identity (2.7).
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