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a b s t r a c t

Aerodynamic shape optimisation is widely used in several applications, such as road vehicles, aircraft
and trains. This paper investigates the performance of two surrogate-based optimisation methods;
a Proper Orthogonal Decomposition-based method and a force-based surrogate model. The generic
passenger vehicle DrivAer is used as a test case where the predictive capability of the surrogate in
terms of aerodynamic drag is presented. The Proper Orthogonal Decomposition-based method uses
simulation results from topologically different meshes by interpolating all solutions to a common
mesh for which the decomposition is calculated. Both the Proper Orthogonal Decomposition- and
force-based approaches make use of Radial Basis Function interpolation. The Radial Basis Function
hyperparameters are optimised using differential evolution. Additionally, the axis scaling is treated as a
hyperparameter, which reduces the interpolation error by more than 50% for the investigated test case.
It is shown that the force-based approach performs better than the Proper Orthogonal Decomposition
method, especially at low sample counts, both with and without adaptive scaling. The sample points,
from which the surrogate model is built, are determined using an optimised Latin Hypercube sampling
plan. The Latin Hypercube sampling plan is extended to include both continuous and categorical values,
which further improve the surrogate’s predictive capability when categorical design parameters, such
as on/off parameters, are included in the design space. The performance of the force-based surrogate
model is compared with four other gradient-free optimisation techniques: Random Sample, Differential
Evolution, Nelder–Mead and Bayesian Optimisation. The surrogate model performed as good as, or
better than these algorithms, for 17 out of the 18 investigated benchmark problems.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Optimisation is an ongoing field of research and aims to find
the best solution to a specific problem while obeying some con-
straints. Given that resources and time are a limitation, it is
often not feasible to try all possible design combinations. As a
consequence, it is practically not possible to determine if a given
solution is the global optimum.

The field of optimisation is often split into two categories,
gradient-based and gradient-free techniques. Gradient-based op-
timisation relies on the gradient information to determine in
which direction to search for a better design. Gradient-based
methods perform well for unimodal problems; however, they
risk converging to a local optimum if the problem exhibits sev-
eral minima [1]. Gradient-based methods require gradient infor-
mation to be available, something which is not possible when
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dealing with categorical, or discrete, values. When working with
gradient-based optimisation of numerical aerodynamic simula-
tions, it is essential to use robust mesh-deforming strategies so
that each simulation produces meaningful results. Without such
strategies, the optimisation method may exploit mesh discretisa-
tion errors leading to significant discrepancies between simulated
and actual performance [2].

Gradient-free optimisation can be adopted with ease into ex-
isting practices; however, a major limitation is the often high
number of objective function evaluations needed. The cost of
one objective function evaluation, for example, a Computational
Fluid Dynamics (CFD) simulation, can be expensive. Joly et al.
[3] used low-cost Reynolds-averaged Navier–Stokes (RANS) CFD
simulations to reduce the computational effort when optimising
the vane–rotor shock interaction with the Evolutionary Algorithm
(EA) Differential Evolution (DE). Massaro and Benini [4] used an
Artificial Neural Network as a global surrogate in a surrogate-
assisted evolutionary framework for optimisation to improve the
convergence speed of the optimisation problem.

In this work, the expensive cost of running a multitude of
CFD simulations is mitigated by the use of a surrogate model
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Nomenclature

Abbreviations

BO Bayesian Optimisation
CFD Computational Fluid Dynamics
DE Differential Evolution
DOE Design Of Experiments
EA Evolutionary Algorithm
LHC Latin Hypercube
MAE Mean Absolute Error
NM Nelder–Mead
PCA Principle Component Analysis
POD Proper Orthogonal Decomposition
RANS Reynolds Averaged Navier Stokes
RBF Radial Basis Function
RS Random Sample
SM Surrogate Model

Symbols

λ Ridge regression factor
X Space and design-dependent flow field

matrix
φi(r) ith POD mode
f̃i ith surrogate model prediction
ε RBF width
ξi ith RBF weight
ai(d) ith design-dependent mode coefficient
CDA Drag area
CLA Lift area
ei Interpolation error at the ith sample
ERMS,LOO Root Mean Squared Leave One Out Error
L2 Euclidean norm
wi ith Radial Basis Function
xi,scaled Scaled design variable
cj Dimension scaling factor

(SM) when searching for new designs. The surrogate model is
comparatively cheap to evaluate and create; however, the new
designs found by exploring the surrogate model is subject to
the accuracy of the model. Strategies need to be employed that
increase the accuracy of the surrogate while exploring promising
regions of the design space. These strategies typically involve
balancing exploration and exploitation. Exploration involves sam-
pling locations that improve the surrogate model’s accuracy by
exploring the design space, for example, by sampling sparse
areas, while pure exploitation is achieved by sampling the best-
predicted design location. When new designs are validated, they
are added to the initial set and the surrogate model is built again.
One such strategy was developed by Goel et al. [5], who used an
ensemble of surrogates to determine regions where the standard
deviation between the surrogates was large to find regions of high
uncertainty to explore the design space. However, they noted
that regions of low standard deviation do not necessarily corre-
late with low uncertainty. Another approach developed by Sun
et al. [6] uses a combination of two metaheuristic optimisation
algorithms, one focusing on exploration and the other on local
refinement of the solution. The combined approach yielded high
performance for problems of large dimensionality, in this case, up
to 200 dimensions.

Two surrogate models are compared in this work, a Proper
Orthogonal Decomposition (POD)-based surrogate and a force-
based surrogate. Several authors have investigated POD-based
optimisation [7–11]. As an example, Miretti et al. [9] found that
the use of a POD-based surrogate model reduced the number
of computations needed by 30% to 40% compared with other
gradient-free methods when optimising the drag of a road ve-
hicle. In the POD-based approach, the entire flow field is used for
each input sample and an entire flow field is given as the output.
The input to the force-based surrogate model is a scalar and the
output is an estimate of the same scalar in a new design point.
Note that the scalar of interest can be any quantity, not only a
force.

The focus of this paper is on the accuracy and performance of
the surrogate model. The accuracy of the method is evaluated us-
ing CFD simulations of the generic vehicle DrivAer, developed by
the Technical University of Munich [12]. The surrogate accuracy
is investigated using three design variables; roof angle, diffuser
height and front-wheel deflector on/off. The surrogate model’s
performance, when used in optimisation, is benchmarked with
nine test functions with and without added noise.

The main contributions of this work are:

(1) A new axis scaling parameter has been implemented in the
Radial Basis Function (RBF) based surrogate model which
improved the surrogate model fit. The improvement is pro-
nounced when there is a significant difference in sensitivity
between the different input dimensions in regards to the
function output.

(2) A new method of creating optimised Latin Hypercube sam-
pling plans, including categorical design spaces, was devel-
oped which halved the interpolation error when combined
with adaptively scaling RBFs.

(3) It was shown that the inclusions of a POD-based method
did not improve the interpolation accuracy over a force-
based surrogate model for the investigated aerodynamic
test cases.

2. Methodology

2.1. Proper orthogonal decomposition

Proper Orthogonal Decomposition is a modal decomposition
technique that extracts orthogonal modes from the field of in-
terest by optimising the mean square field variable captured by
each mode. If the field variable of interest is velocity, this is
analogous to capturing the most amount of kinetic energy using
the least amount of modes. POD is also known as the Karhunen–
Loève procedure or Principle Component Analysis (PCA) and has
been used in many applications such as statistics, turbulent flows,
reduced-order modelling and optimisation. POD was first intro-
duced as a data processing technique in fluid flows by Lumley
[13]. A brief introduction to the POD technique is given below.
More information can be found in the works by Taira et al. [14]
and Muld et al. [15].

It is assumed that the flow can be decomposed as

X(r, d) =
m∑
i=1

ai(d)φi(r) (1)

where φi(r) is the ith POD mode and ai(d) are the design-
dependent mode coefficients containing the design information.
X are the space and design-dependent flow variables arranged as

X =

⎡⎢⎢⎣
x1,d1 x1,d2 . . . x1,dm
x2,d1 x2,d2 . . . x2,dm
...

...
. . .

...

xn,d1 xn,d2 . . . xn,dm

⎤⎥⎥⎦
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with n data points and m snapshots, where one snapshot corre-
sponds to one CFD simulation. The variable matrix X is built from
the pressure and velocity fields in the entire computational do-
main. As mentioned, the POD method seeks to find the orthogonal
basis vectors that optimally represent the data in a mean squared,
or L2 sense. It is possible to find these basis vectors by solving the
eigenvalue problem

Yψi = λiψi, Y = XXT (2)

where the modes are calculated as

φi = Xψi
1
√
λi

(3)

which is often referred to as classical POD. Since XXT
∈ Rn×n,

this can become prohibitively expensive when n is large, as is the
case for flow fields. In fluid mechanics, where n is often much
larger than m, the method of snapshots is used which solves the
eigenvalue problem

XTXψi = λiψi (4)

which is of size m× m. This formulation assumes the data to be
sampled on an equidistant mesh, which is seldom true for CFD
simulations. The cell volume is included in order to use POD on
a non-equidistant mesh by replacing XTX with XTWX, where W
is a diagonal matrix containing the cell volumes [15]. The design
coefficients ai(d) are constructed as

ai(t) =
√
λiψ

T
i (5)

In practice, this can also be solved using a Singular Value Decom-
position (SVD)

X = ΦΣΨT (6)

with the modes Φ = φi(r) = [φ1, φ2, . . . φm] ∈ Rn×m and the
coefficients ΣΨT

= Ai(d) = [a1, a2, . . . am] ∈ Rm×m.
The size of the problem can be significantly reduced by trun-

cating the number of POD-modes if a large portion of the total
energy is contained in a few modes. This was done in the work
by Iuliano and Quagliarella [11], where the modes were truncated
to contain 95% of the total energy. In this work, all modes are
used to remove any decency on the truncation level.

2.2. Latin Hypercube sampling

The surrogate model was created from an initial number of
CFD simulations in a Design Of Experiments (DOE) sampling plan.
There exist several DOE techniques and, in this work, the Latin
Hypercube (LHC) sampling plan was used. The LHC plan divides
each design parameter into N equally sized intervals where the
same value of a parameter can only occur once. An example of a
randomly generated LHC plan can be seen in Fig. 1.

Randomised LHC sampling plans can suffer from clustering,
leaving areas of the design space less explored. The separation
between designs was increased by optimising the LHC plan using
the Audze–Eglais objective function

min U = min
P∑

p=1

P∑
q=p+1

1
L2pq

(7)

where L2pq is the distance between two sample points. The opti-
misation of the LHC sampling plan is based on the work by Bates
et al. [16], where the sampling plan is improved by minimis-
ing Eq. (7) using a permutation genetic algorithm. Fig. 2 shows
the optimised sampling plan with 101 sample points that were
used in this work for the two-dimensional test case. Throughout
this work, an optimised LHC plan was used except for the one-
dimensional case, where the samples were spaced equidistantly.

Fig. 1. Random Latin Hypercube sampling plan in two dimensions.

Fig. 2. Optimised Latin Hypercube sampling plan in two dimensions.

2.2.1. Categorical Latin Hypercube sampling
LHC sampling plans require an equal number of points in each

dimension; this typically means that each dimension needs to be
continuously variable. It can be of interest to include dimensions
which are not continuously variable in the design plan. For exam-
ple, the choice of vehicle tyre is not continuously variable; rather,
there exists a pre-determined number of tyre options from the
tyre manufacturers. To be able to mix continuous and categorical,
or discrete, design parameters, a categorical dimension is added
to the LHC plan where the same value is allowed to appear
multiple times to fill up the categorical dimension. Note that this
is no longer a strict LHC since the same design parameter appears
multiple times in the categorical dimensions.

When optimising the categorical LHC, the objective function
is altered to promote separation of the design points within each
categorical plane. This is done by calculating the Audze–Eglais
function within each category, in addition to calculating it be-
tween all points. Both objectives are then summed together using
weights for each objective, where the weights are specified by the
user. Promoting separation within each categorical plane ensures
that the points within a categorical dimension are not clustered
in one area. The effect of different weightings can be seen in Figs.
3a and 3b. Note that putting a large emphasis on the categorical
separation is similar to creating two separate sampling plans. In
this work, the categorical LHC uses the weights 0.9975 between
all points and 0.0025 for the categorical separation.
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Fig. 3. Categorical LHC sampling plans with varying weights. The two categories
are represented by grey and black dots respectively.

2.3. Radial basis function interpolation

New flow fields are created by finding new design coefficients
in Eq. (5). These are found through interpolation between exist-
ing coefficients to new, untested design locations. In this work,
Radial Basis Function interpolation is used to estimate the design
coefficients. The RBF interpolation is calculated as

u(x) =
N∑
i=1

wiξi(∥x− xi∥2) (8)

where wi are the weights and ξi is the Radial Basis Function, and
∥x− xi∥2 denotes the Euclidean distance between the new point
x and a sample point xi. The RBFs, ξi, used in this work is the
gaussian

ξ (r) = e−(εr)
2
, (9)

inverse quadratic

ξ (r) =
1

1+ (εr)2
, (10)

Fig. 4. Gaussian RBF with different width factors, ε.

and inverse multiquadratic

ξ (r) =
1√

1+ (εr)2
(11)

basis functions where ε is the width factor determining the size
of the RBF. An example of the influence of the width factor can
be seen in Fig. 4.

The weights wi are found by solving the linear system

Aw = u (12)

where A = Aij = ξi(∥xi − xj∥2) and u = u(xi) are the known
function values at the sample points. The chosen RBFs will result
in a positive-definite matrix A, thereby guaranteeing a unique
solution to Eq. (12) [17].

2.3.1. Radial basis function hyperparameter optimisation
The tuning of the hyperparameters ξi and εi is done with

the Differential Evolution algorithm de/rand/1/bin/radiuslimited
with a population size of 50, crossover probability of 0.7 and
differential weighting factor of 0.6. More information on Differ-
ential Evolution can be found in the book by Price et al. [18]. The
objective function used to improve the interpolant is the Leave-
One-Out (LOO) cross-validation error. The interpolant is created
from n− 1 points where the prediction error, ei, for the removed
point is stored. This process is repeated for all n points, and the
LOO RMS error

ERMS,LOO =

√
e2 (13)

is used to quantify the performance of the interpolant. The LOO
error for all n points is expensive to calculate, but thanks to
Rippas algorithm [19], the LOO error can be estimated without
computing the solution to Eq. (12) n times. The total compu-
tational cost for Eqs. (12) and (13) is on the order of O(n4)
without Rippas algorithm and on the order of O(n3) with Rippas
algorithm.

2.3.2. Dimension scaling
The design parameters used to construct the surrogate model

are in the form of engineering quantities. These are typically
used directly as input to the surrogate model or scaled non-
dimensionless, for example from 0 to 1 as

xi,scaled =
xi −min(x)

max(x)−min(x)
. (14)

This can pose a problem since RBFs are radial. To illustrate this,
the three-hump camel function

f (x, y) = 2x2 − 1.05x4 +
x6

6
+ xy+ y2 (15)

is used in the interval [−5, 5] for both dimensions. The function is
shown in Fig. 5. When optimising the interpolant, all dimensions
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Fig. 5. Three camel hump function.

are considered equally important. This leads to a compromise
when selecting the RBFs, ξi, and the widths, εi. An example of
this compromise can be seen in Fig. 6a.

The resulting interpolation is not representative of the overall
shape of the original function. The sharp peaks in Fig. 6b occur
due to the interpolants inability to fit a surface which minimises
the LOO-error for all points. When it is not possible to fit a smooth
surface through all points, the RBF width factor, εi, becomes large
for some points to reduce their influence on the total LOO-error.
To reduce the flexibility of the interpolants which can be fitted
to a set of observations, it is possible to constrain the problem.
The interpolant is constrained to use the same width and RBF
for all points in Fig. 6b. While the smoothness of the function
is improved, the overall fit is still poor compared to the ground
truth, Fig. 5. The cause of the poor fit is the large differences in
scale of each dimension when mapping from function input to
output. The inputs for each design dimension need to be scaled
independently to solve this. In the work by Giannakoglou [20],
the design parameters are scaled based on gradient information
from the response surface. In this work, the design parameters are
scaled by using an additional scaling factor cj, which is introduced
to Eq. (14) as

xi,scaled = cj
xi −min(x)

max(x)−min(x)
(16)

where cj = [c1, c2, . . . , cd] and d is the number of design dimen-
sions. Note that the resulting RBFs are radial in the scaled space
which, when translated back to the design space, results in the
RBFs being ellipsoidal. The benefits of using adaptive scaling Ra-
dial Basis Functions on the same three camel hump function are
evident when considering Fig. 6c, where a much better prediction
of the global shape is obtained.

Adaptively scaling the design dimensions allows the designer
to use engineering quantities for each design dimension without
considering the appropriate scaling of each quantity. Further-
more, adaptively scaling each dimension reduces the penalty of
including design parameters which have little or no influence on
the output, i.e. constant response.

2.3.3. Kriging interpolation
Another commonly used interpolation technique, which was

considered in this work, is Kriging. The authors compared the
performance between Kriging and RBF for 5, 10 and 40 sample
points using the one-dimensional data presented in Section 4.1.1.
The RBF based interpolant outperformed Kriging over ten runs
for 10 and 40 points while both methods performed similarly
for 5 points. Chandrashekarappa and Duvigneau [21] compared
the accuracy of Kriging- and Radial Basis Function-interpolation
and found that the methods performed comparably. As concluded

Fig. 6. Interpolation of the three camel hump function.

in the literature review by Goel et al. [5], no single surrogate
performed best for all problems. It should be noted that Kriging
offers the benefit of providing error estimates which can be used
to explore the design space efficiently.

Adaptive scaling can be used with Kriging interpolation; how-
ever, the computational complexity of Kriging is O(n4) while for
RBF interpolation, it is O(n3). For larger n, Kriging can become
limited by the number of affordable iterations compared to RBF
interpolation when optimising the scaling factor, cj.

2.3.4. Practical considerations
The condition number of the matrix A in Eq. (12) can become

large when optimising the RBFs and width factors. Due to finite
numerical precision when solving the linear system, the condition
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Fig. 7. Forrester function and interpolant created from five points. The standard
deviation and average based on 1000 runs.

number of matrix A needs to be considered to keep the desired
number of significant digits. Similarly, the numerical precision
of the dimension scaling needs to be considered when scaling
between small and large numbers.

When dealing with data containing noise, the RBF interpo-
lation exhibits high-frequency oscillations when the number of
interpolation points increases. Which is due to the interpolant
creating a fit containing the noise as well as the global function
shape. Fasshauer [22] suggests using ridge regression when deal-
ing with data containing noise. A regression term, λ, is added to
the diagonal of A, Eq. (12). This term relaxes the requirements of
the surrogate model being directly interpolating, which reduces
high-frequency oscillations in the surrogate model when mod-
elling a problem with noise. The ridge regression term is treated
as an additional hyperparameter and is optimised together with
the other RBF hyperparameters.

The presented methodology is stochastic, and therefore, does
not yield the same solution each time. To illustrate this, an
interpolant based on the Forrester function

f (x) = (6x− 2)2 sin(12x− 4), (17)

is recreated 1000 times based on five equidistantly spaced sample
points.

As mentioned, the interpolants hyperparameters are opti-
mised using DE where the LOO-error is used as the objective
function to tune the RBFs, ξi, and the widths, εi. In this exam-
ple, the optimisation of the interpolant is stopped after 1× 104

function calls. The average interpolant, along with the standard
deviation based on the 1000 interpolants, can be seen in Fig. 7.
Optimising the width factor and RBF for each point allows for
flexibility when fitting the interpolant to the sample points.
However, this flexibility might lead to overfitting, where the
number of free parameters is large compared to the problem [23].
A demonstration of the possible effects of a large number of free
parameters is given by Mayer et al. [24]. Reducing the degrees
of freedom by using the same width and RBF for all points can
alleviate the problem of overfitting; however, it is not clear which
degree of freedom is suitable when constructing the interpolant.
The impact of the degrees of freedom on the resulting surrogate
model will be investigated in the results.

In the work by Abedinia and Amjady [25], the trade-off be-
tween under- and over-fitting was improved by optimising the
number of RBF centres and their placement. Srivastava et al.
[26] proposed a method where the neurons of a neural net
are randomly turned off at training time. This helps regularise

the resulting network to act like an average of an ensemble of
networks.

2.4. Surrogate model

As mentioned, new flow fields are created by interpolating the
coefficients in Eq. (5). The prediction accuracy of each new design
is evaluated using the integration planes in Fig. 11. The entire
procedure is outlined in Algorithm 1.

Algorithm 1: POD-based optimisation.
Result: Optimised geometry

1 Create optimised Latin Hypercube Sampling plan;
2 Simulate all the designs in the plan;
3 Interpolate X(r, d) to common mesh;
4 while within computational budget do
5 Φn×m, Am×m = POD(X);
6 foreach row in A do
7 RBFinterp = optimiseRBFinterp(row);
8 end
9 while Evolutionary Algorithm ̸= Converged do

10 for i← 1 to m do
11 ai,new = RBFinterpi(dnew)
12 end
13 Xnew(r, dnew) =

∑m
i=1 ai(dnew)φi(r);

14 objective = integrationPlanes(Xnew(r, dnew));
15 end
16 Add design(s) found by EA to sampling plan;
17 Simulate the new designs in the sampling plan;
18 Interpolate X(r, d) to common mesh;
19 end

The POD-based approach is compared to the force-based
method, where the objective value is used directly to create
the surrogate. Using the objective value to create the surrogate
model is often termed Response Surface Modelling (RSM) while
the POD-based method is commonly termed reduced-order Mod-
elling (ROM). The asymptotic cost for the POD-based method
is O(n4), while being O(n3) for the force-based method. The
complexity for creating one surrogate model is dominated by
the cost of solving the linear equation system, equation (12),
which is an O(n3) operation. The POD-based cost of O(n4) is
due to the number of interpolants needed for the POD-based
method is equal to the number of modes which is equal to the
number of samples. For the force-based method, the number of
interpolants needed is equal to the number of objectives. The
computational cost of the POD-based method can be reduced by
using a truncated set of modes so that the cost final cost scales
with O(n3); however, in this work, all POD modes are retained. In
practice, the POD-based method will be the number of modes, m,
times more expensive than the force-based method. The storage
cost is another factor to consider when using the POD-based
method as the flow field needs to be saved for each design,
whereas for the force-based method, the storage is negligible.

2.5. Software

The CFD simulations were performed in the commercial flow
solver Star-CCM+. All the surrogate modelling and design plan
construction was performed in the Julia programming language
[27] using the packages LatinHypercubeSampling.jl [28] for the
sampling plans and ProperOrthogonalDecomposition.jl [29] for
the POD construction. The RBF interpolation was done with Scat-
teredInterpolation.jl [30] and the Differential Evolution algorithm
was provided by BlackBoxOptim.jl [31].

The packages to perform the optimisation are bundled into
one package, SurrogateModelOptim.jl [32], with functionality to
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Fig. 8. DrivAer in the original estate configuration. 5.5◦ roof angle and 87.5mm
diffuser height.

Fig. 9. Roof angle and diffuser height design parameters.

Fig. 10. Front-wheel deflector size.

perform the entire optimisation routine for convenience. All
benchmark results for the surrogate model benchmark can be
found in [32] as well as the script used to run the benchmark.

3. Test cases

3.1. Aerodynamic surrogate accuracy test

The surrogate model accuracy was tested on the generic ve-
hicle model DrivAer [12], developed by the Technical University
of Munich, in the estate configuration. The variant, shown in
Fig. 8, features a smooth underbody, closed rims and no cooling
flow. The method performance is investigated using three design
parameters, for one dimension, roof angle; two dimensions, roof
and diffuser angle; and three dimensions, roof angle, diffuser
height and front-wheel deflector on/off. The roof angle and dif-
fuser height extreme points can be seen in Fig. 9. The front-wheel
deflector is 175mm wide and 40mm tall and is located 100mm
inboard of the front-wheels outer face and 85mm upstream of
the front-wheels most forward point, see Fig. 10. Each simulation
was run steady-state for half the vehicle model and a symmetry
plane boundary condition was used to account for the other half
of the vehicle. The meshes consisted of approximately 22× 106

cells and the realisable k − ε RANS turbulence model was used.

Fig. 11. Planes used to evaluate lift and drag. Wake plane S extends to the
domain edges. O, R and G are the domains outlet, roof and ground respectively.

Each simulation was run for at least 2000 iterations or until
the drag coefficient varied less than ±0.001CD for the last 500
iterations to ensure the solution was stable.

Ridge regression was not used for the aerodynamic accuracy
comparison to retain an exactly interpolating surrogate model.

3.1.1. Mesh
Proper Orthogonal Decomposition requires the dataset to be

ordered consistently between snapshots. This is typically achieved
through volume mesh deformation [10]. In this work, each CFD
simulation is run on topologically different, unstructured, meshes
and is later interpolated to a common mesh. The common mesh
does not include the vehicle body since it changes between each
design; however, the wheel geometry is constant and kept in the
common mesh. The results are interpolated to the common mesh
using a weighted nearest neighbour interpolation where the
distances to the nearest neighbour and its immediate neighbours
in the original mesh are used to compute the weights.

Since each simulation is interpolated to a mesh without a
vehicle body, it is no longer possible to use the pressure and shear
forces acting on the vehicle surface to compute the drag and lift.
To solve this, the drag and lift area, CDA and CLA respectively, are
evaluated in the far-field as

CDA =
∫
S
−CP − 2

(
V 2
x

V 2
∞

−
Vx

V∞

)
dS (18)

CLA = −
∫
O

2VxVz

V 2
∞

dO−
∫
R
CPdR+

∫
G
CPdG (19)

where the integration planes, S,O, R and G, are defined in Fig. 11.
The mesh interpolation and subsequent evaluation of forces

in the wake introduce errors in the force calculation. Based on
101 simulations of the DrivAer with varying roof angle, the errors
were (0.005± 0.002) CD and (0.000± 0.004) CL. The constant off-
set of 0.005CD is due to the vehicle and ground interaction. This
can be accounted for by including the drag on the ground plane
located between the inlet and plane S. Due to the offset being
near-constant, the ground plane drag was not considered in this
work.

3.2. Benchmark test cases

The surrogate model performance, when used for optimisa-
tion, was tested with nine benchmarking functions both with and
without noise resulting in a total of 18 cases. Each benchmark was
started from five sample points in an optimised LHC and run for
95 iterations where the surrogate model was recreated between
each iteration. The small initial sample size was chosen to verify
the methods convergence capability when starting with a sparse
sampling plan.

When performing aerodynamic vehicle optimisation in a wind
tunnel or using numerical simulations, the results from each test
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Table 1
Benchmark test functions.
Problem Definition

f1 Styblinski–Tang 2D 1
2

2∑
i=2

(
x4i − 16x2i + 5xi

)
f2 Rastrigin 2D 20+

2∑
i=1

[
x2i − 10 cos(2πxi)

]
f3 Rosenbrock 2D

2∑
i=1

[
100(xi+1 − x2i )

2
+ (xi − 1)2

]
f4 Beale 2D (1.5− x1 + x1x2)2 + (2.25− x1 + x1x22)

2

+ (2.625− x1 + x1x32)
2

f5 Sphere 2D
2∑

i=1
x2i

f6 Perm d, β 2D
2∑

i=1

(
2∑

j=1
(ji + β)

((
xj
j

)i

− 1

))2

f7 Goldstein–Price 2D

[1+ (x1 + x2 + 1)2(1914x1

+ 3x2114x2 + 6x1x2 + 3x22)]

∗ [30+ (2x13x2)2(1832x1 + 12x21
+ 4x236x1x2 + 27x22)]

f8 Hartmann 6D −

4∑
i=1
αi exp

(
−

6∑
i=1

Aij(xj − Pij)2
)

α =
(
1.0 1.2 3.0 3.2

)
A =

⎛⎜⎝ 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎞⎟⎠

P = 10−4

⎛⎜⎝1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎞⎟⎠
f9 Rosenbrock 12D

12∑
i=1

[
100(xi+1 − x2i )

2
+ (xi − 1)2

]

contain some level of noise. The repeatability, when performing
wind tunnel tests, without removing the vehicle, is on the order
of ±0.001CD [33] and typical changes to the vehicle drag vary
from 0.010CD to 0.050CD depending on the development stage.
Interpreting the repeatability as noise, this translates to a noise
level of 2% to 10%. The optimisation methods are benchmarked
with 10% noise to cover noise levels seen in aerodynamic vehicle
optimisation. The noise level is determined by the maximum and
minimum function value and the noise is uniformly distributed
pseudorandomwhite noise. The ridge regression coefficient λwas
treated as a hyperparameter for both the smooth and noisy test
cases as to not make any underlying assumption of the noise
level to verify the methods ability to interpret the noise level
automatically.

The nine benchmark functions are available in Table 1. Both
multimodal and unimodal benchmark problems were selected as
well as multidimensional problems to verify the surrogate models
ability to handle cases similar to those seen in aerodynamic opti-
misation. Note that the output of these functions is a single scalar,
and it is only the force-based method which is benchmarked.

Each function was evaluated in the search space presented
in Table 2. The function values for each benchmark problem are
scaled from 0 to 1 based on the global maximum and minimum
function value.

The results of each benchmark problem are presented in com-
parison with four other gradient-free optimisation algorithms,
Random Sample (RS), Differential Evolution (DE), Nelder–Mead
(NM) and Bayesian Optimisation (BO). Random Sample is the
conceptually simplest of the methods and works by randomly
sampling the search space and returning the solution with the

Table 2
Benchmark test function search space.
Problem Search space

f1 Styblinski–Tang 2D xi ∈ (−5.0, 5.0) for all i
f2 Rastrigin 2D xi ∈ (−5.12, 5.12) for all i
f3 Rosenbrock 2D xi ∈ (−5.0, 5.0) for all i
f4 Beale 2D xi ∈ (−4.5, 4.5) for all i
f5 Sphere 2D xi ∈ (−5.12, 5.12) for all i
f6 Perm d, β 2D xi ∈ (−2.0, 2.0) for all i
f7 Goldstein–Price 2D xi ∈ (−2.0, 2.0) for all i
f8 Hartmann 6D xi ∈ (0.0, 1.0) for all i
f9 Rosenbrock 12D xi ∈ (−5.0, 5.0) for all i

currently found best fitness after each iteration. The Nelder–
Mead, or simplex search, algorithm constructs a simplex from
d+1 function calls, the simplex is then either reflected, expanded,
contracted, or shrunk. The Nelder–Mead optimisation algorithm
was supplied by Optim.jl [34]. More information about the sim-
plex algorithm can be found in the works by Nelder and Mead
[35] and Gao and Han [36]. The parameters used in the NM
algorithm are those suggested by Gao and Han [36]

α = 1, β = 1+ 2/d, γ = 0.75+ 1/2d, δ = 1− 1/d.

Bayesian Optimisation is suited for expensive functions and con-
structs a surrogate model of the problem and quantifies the
underlying uncertainty using Gaussian process regression. The
Bayesian optimisation algorithm, called Dragonfly, was supplied
by Kandasamy et al. [37]. More information on Bayesian Optimi-
sation can be found in the work by Frazier [38].

The parameters used in the DE algorithm are the same as
used for optimising the RBF hyperparameters except for the pop-
ulation size, which was reduced to 10, to balance the trade-off
between population size and function evaluations. Note that this
population size is small; however, the total number of function
evaluations in this comparison was also small. Populations sizes
of 5 and 50 were also tested; however, both performed worse
compared to a population size of 10.

The surrogate model hyperparameters were optimised for
5000 iterations where the first 2500 iterations were optimised
with an additional constraint of using the same RBF and width.
Optimising the hyperparameters with the constraint improved
the accuracy of the surrogate model as suitable dimension scaling,
and ridge regression factors are found faster. This is especially
true when the number of samples is large. The LHC sampling plan
was optimised for 1000 iterations.

3.2.1. Infill
The surrogate model was used to determine the next sample

location after each function evaluation. Infill strategies which
explore the design space help the optimisation process to stay
on target, finding the global optimum, without getting stuck in
local minima. Exploitive strategies pick the minimum location
predicted by the surrogate model. There also exist variations
which try to take advantage of both, such as Expected Improve-
ment which is commonly used with Bayesian optimisation. In
this work, an ensemble of 10 surrogates was created and used
to determine new infill locations, inspired by Goel et al. [5]. The
surrogate prediction was calculated from the median of the 10
surrogate models.

A mix of two infill criteria was used to determine new sam-
pling locations in the surrogate model, minimum prediction and
maximum standard deviation of the surrogate models. An exam-
ple of optimising the Forrester function, Eq. (17), can be seen
in Fig. 12. The first surrogate model estimate is a poor repre-
sentation of the overall function due to the small number of
sample points. Notice that the first surrogate model prediction



M. Urquhart, E. Ljungskog and S. Sebben / Applied Soft Computing Journal 88 (2020) 106050 9

Fig. 12. Forrester function optimisation.

is not interpolating, i.e. it is not able to fit a good RBF interpolant
without increasing the ridge regression factor. As the number of
sample points increases, the function is correctly identified as
noise-free.

It is believed that the algorithm will converge to the global
optimum as the number of points tend to infinity due to the
sampling of the standard deviation. The standard deviation is low
close to sampled areas which will increase the coverage in space
as samples are added. However, the intent is to use the surrogate
model with expensive functions where the rate of improvement
is the most important aspect of the optimisation algorithm.

Table 3
Surrogate performance configurations.
Case RBF, ξi & Width, εi Scaling cj
A Constrained None
B Variable None
C Constrained Adaptive
D Variable Adaptive

In the example, the criteria were alternated between pure
exploitation, using the median prediction, and pure exploration,
using the standard deviation of the surrogate ensemble. For the
benchmark tests, every odd sample was selected based on pure
exploitation and every even sample by a weighted sum of the
surrogates median and standard deviation as

min w ·median(x)+ (1− w) · −1 · std(x).

A weight of 0.0 results in an explorative search, while a weight of
1.0 is purely exploitative. For every even sample, the weight was
cycled through 0.0, 0.3, 0.6, 0.9. The performance was increased
by using the weighted formulation compared to using pure explo-
ration for every even sample. This is due to more samples being
spent in regions of predicted low function value, particularly
when the number of samples increase and the standard deviation
in the ensemble reduces.

The infill objective is optimised each iteration using the previ-
ously presented DE algorithm for 25 000 iterations. The package
bundle SurrogateModelOptim.jl [32] includes convenience func-
tions to create an optimised surrogate model. This is useful if
the user wants to try other metaheuristic optimisation algorithms
such as ant colony- or particle swarm-optimisation for example,
to find promising new infill locations.

4. Results & discussion

4.1. Aerodynamic surrogate accuracy-test

The accuracy of the interpolants is investigated in four cases,
listed in Table 3. The constrained RBF and width refers to the
use of the same RBF and width factor for all points, while for
the variable RBF and width, is optimised per RBF centre, which
in this case is per sample point. Note that the interpolant is opti-
mised in each case. For cases A and B, the engineering quantity,
such as measured distance or angle, is used directly as input to
the surrogate while for cases C and D, the engineering quantity
is adaptively scaled. This is done for both the POD-based and
force-based surrogate model.

The results are presented for drag only since lift follows a
similar trend. The results are presented successively for one di-
mension, two dimensions and three dimensions. Each dimension
investigation is performed by running a DOE of 101 CFD simu-
lations, where a subset of the simulations are used to create the
surrogate model, and the remaining points are used as a valida-
tion set. The performance indicator used is the Mean Absolute
Error (MAE)

MAE =
∑n

i=1 |fi − f̃i|
n

(20)

ith CFD result, or ground truth, and f̃i is the ith surrogate pre-
diction. The MAE performance indicator was used as it does
not bias the analysis toward outliers like other indicators such
as Root Mean Squared Error does. This indicator was chosen
since the surrogate model is recreated several times when used
for optimisation and it is thus more important to have good
performance on average. In the case of the two- and three-
dimensional test cases, the sample points are chosen as a subset
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Fig. 13. Optimised subset LHC plan in two dimensions for a subset of 20 points,
also seen are the points used to evaluate the surrogate performance.

of an LHC plan containing all 101 simulations. The subset is
chosen by optimising the Audze–Eglais error as a subset from
the original plan. Note that extracting a subset from an existing
plan will result in an Audze–Eglais objective which is worse
than creating an entirely new plan; however, this significantly
reduces the computational expense since one dataset can be used
to investigate the performance for several subsets. Creating the
surrogate from an optimal subset of the entire optimised LHC plan
ensures separation between the evaluation points and the points
from which the surrogate is created, which can be seen in Fig. 13.
The performance of the surrogates is investigated in subsets of 10,
20 and 40 points for each case and for one, two and three design
dimensions.

Due to the method being stochastic, each interpolant is created
25 times. The presented performance data indicates the median
performance with ±95% confidence interval for the median un-
less stated otherwise. The median confidence interval for the
lower interval is calculated as⌊
1
2

(
n− 1.96

√
n
)⌉

(21)

and for the upper interval is calculated as⌊
1
2

(
2+ n+ 1.96

√
n
)⌉

(22)

where ⌊x⌉ denotes rounding to the nearest integer. The samples
from which the median is created are shown; however, for il-
lustration purposes, the y-axis is limited with some outliers not
visible. An example can be seen in Fig. 14a.

4.1.1. One dimension
The roof angle is used to investigate the surrogate model

performance for one dimension. In one dimension no relative
scaling is used, i.e. it is only cases A and B which are investigated.
The design parameter is varied from 0◦ to 22◦ in steps of 0.22◦,
resulting in 101 simulations. The maximum/minimum drag and
lift coefficient varied from 0.231CD to 0.272CD and −0.208CL
to 0.128CL for the investigated samples. It should be noted that
the investigated range for the design parameter is larger than
what is typically considered when working with external vehicle
aerodynamics.

The method performance for the POD-based and force-based
surrogate can be seen in Figs. 14a and 14b. Both surrogate models
perform similarly for 20 and 40 samples while the POD-method
performs worse for 10 sample points.

Fig. 14. 1D, surrogate performance. Bar of the median performance, the error
bars indicate the ±95% confidence interval for the median. The samples are
shown as circles.

Fig. 15. Performance of the median force-based surrogate for 10 sample points,
case C.

It is interesting to note that the spread between samples is
larger for the POD-based surrogate. Case B, being a surrogate
model created using different RBFs and widths, has a larger
spread between values compared to case A, particularly for 10
sample points. This can be explained by the degrees of freedom
being too large for the number of sample points, leading to
overfitting.

The surrogate performance increases as the number of points
increase; however, the improvement is gradual. The prediction
error for each sample is investigated further for the surrogate
with median performance, Fig. 15. The performance is largely
within 0.005CD absolute error except for around 16◦ roof angle,
where the error is large. Fig. 16 shows all 101 CFD simulations as
well as the sample locations for the 10 samples. At around 16◦,
the simulation results are discontinuous. This is due to the flow
separating from the roof, causing a sudden increase in drag. It is
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Fig. 16. Simulated drag values of all 101 simulations for varying roof angle.

Fig. 17. Convergence history of first 10 POD modes.

believed that the limited increase in surrogate performance, as
the number of samples increase, is due to the discontinuity in
drag. It is a known fact that the performance of RBF interpolation
suffers in the neighbourhood of discontinuity or strong gradi-
ents [17,39]. Jakobsson et al. [17] developed the rational Radial
Basis Function interpolation, which better approximates steep
gradients; however, rational RBFs were not tested in this work.
The samples after separation are in a design region which is not
desirable, removing these samples and containing the problem
could improve the surrogate performance. Additionally, weight-
ing the LOO-error to favour the surrogate performance of points
with low drag could improve the interpolant near the minimum.

The POD-based method’s relatively poor performance at 10
sample points is investigated further by looking at the conver-
gence of POD modes. The mode convergence can be used to
determine if additional entries to the snapshot matrix X would
increase the information gained. Muld et al. [15] used two metrics
to determine if the POD modes were converged, the orthogonality
between modes and the L2-norm. It was concluded that both
methods give good results, here the L2-norm is used, defined as

L2 = min
(
∥φi,d − φi,end∥, ∥φi,d − (−φi,end)∥

)
(23)

for the ith modes. Each mode is normalised to length 1 be-
fore the comparison. The mode φi,end is the ith mode used for
comparison, containing the snapshots for all 101 designs. The
minimum is used since the sign of each mode is not known. If
the L2-norm approaches 0 before the last snapshot it is considered
converged, that is, adding additional snapshots will not add more
information. The snapshot convergence for the first 10 modes is
presented in Fig. 17. The first POD mode shows signs of conver-
gence; however, the remaining 9 modes do not. This is thought
to be the reason why the POD-based surrogate performance is
particularly poor if the number of samples is small.

The energy contained in each mode indicates how many
modes are needed to capture the variance in the dataset. Fig. 18
shows the energy contained in each POD mode based on all 101
simulations. The first mode contains a large portion of the overall
energy (83%); however, 77 modes are needed until 99% of the
energy is captured. Since a large number of snapshots are needed,

Fig. 18. Normalised energy per POD mode.

Fig. 19. 2D, surrogate performance. Bar of the median performance, error bars
indicate the ±95% confidence interval for the median. The samples are shown
as circles.

it indicates that there is not much underlying generality in the
dataset which can be extracted using POD. It is a known fact
that POD is not capable of decomposing travelling wave problems
which might explain the slow convergence and the large number
of POD modes needed to reconstruct the dataset [14].

4.1.2. Two dimensions
The two-dimensional design parameters are the roof angle

and the diffuser height. The roof angle is varied from 0◦ to 22◦
and the diffuser height from 0mm to 350mm, with 0mm being
defined as a flat floor, Fig. 9. Based on the LHC plan with 101
simulations, the drag varied from 0.227CD to 0.284CD and the
lift from −0.214CL to 0.211CL.

The performance for cases A through D can be seen in Fig. 19.
The performance difference between the POD- and force-based
methods is larger for the two-dimensional case compared to the
one-dimensional test, with the force-based method being the
more accurate surrogate model.
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Fig. 20. Performance of the median force-based surrogate for 20 sample points,
case C.

Fig. 21. Simulated drag values for all 101 simulations. Sample points of the
median force-based surrogate for 20 sample points, case C.

It should be noted that the confidence interval for the median
is generally larger for the POD-based method due to the larger
spread. Even though the confidence interval of the median is
large, the force-based surrogate consistently outperformed the
POD-based surrogate.

The best performing interpolant is case C, i.e. using the same
RBF and width factor with adaptive scaling. The adaptive scaling
results in better performance overall for both surrogate models.
The surrogate performance for cases A and C, which use the same
RBF and width factor, generally results in less spread between
the surrogates’ performance, compared to B and D. The median
performing force-based surrogate is investigated to increase the
understanding of the surrogate model’s shortcomings. The abso-
lute error for the median surrogate and the associated training
locations can be seen in Fig. 20 with the associated drag values
in Fig. 21. At around 16◦ roof angle the flow separates in the two-
dimensional case, similar to the one-dimensional case; however,
there is an interaction between the diffuser height and angle at
which the roof flow separates since the diffuser angle influences
the separation point. In the region of large differences in drag, the
predictive performance of the surrogates tends to decrease.

Due to the stochastic nature of the surrogate model construc-
tion, the Mean Absolute Error for the 25 surrogates is investigated
in Fig. 22a. Note that the error for all points is shown since the
subset is stochastic, resulting in different subsets being used for
the surrogate construction.

The region of largest MAE is located close to the point of
separation, at around 16◦ roof angle, which is an expected result.

As mentioned in the introduction, Goel et al. [5] used an
ensemble of surrogates as an indicator of the local error. This

Fig. 22. Mean absolute error and standard deviation of 25 surrogates created
from 20 sample points, case C.

indicator can be used to add infill points to the surrogate to
increase its accuracy. The use of the standard deviation as an
error indicator is also investigated here. The standard deviation
for predicted drag for the 25 surrogates can be seen in Fig. 22b.

Comparing Figs. 22a and 22b, the areas of high standard de-
viation are located close to regions where the MAE is larger,
around 16deg roof angle. Note that the standard deviation for
the surrogate is only shown at the sample locations since this
is the only locations which can be used to verify the local error.
It is, of course, possible to determine the standard deviation of
surrogates at any location in the design space. This is a promising
result for the use of the standard deviation of several surrogates
as an indicator of potential infill locations.

4.1.3. Three dimensions
The third design parameter added to the test case is the front-

wheel deflector on/off. The influence of the front-wheel deflector
was tested for one of the sample points. The tested configuration
has a roof angle of 4.6deg and a diffuser height of 74mm. The
front-wheel deflector reduced drag by 0.009CD and reduced lift
by 0.007CL for this configuration.

The performance for each case, number of sample points, and
the comparison between the POD-based and force-based surro-
gate are similar to the two-dimensional test case and therefore
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Fig. 23. Separate LHC plans compared with one categorical plan for cases A and
C using 20 sample points in total.

are not shown here. The results for three design parameters show
an overall larger error, as expected.

In this work, the Latin Hypercube Sampling plan was ex-
tended to include categorical, or discrete, design parameters. The
performance difference between using separate LHC plans per
category or using one categorical LHC is presented here. In this
comparison, a subset of 20 sample points is used. Out of these 20
points, half is used to create a surrogate for front-wheel deflector
on, while to other half is used to create a surrogate for front-
wheel deflector off. These two separate surrogates are compared
with a surrogate using all 20 points. This process is repeated 25
times for cases A and C to gather statistics due to the stochastic
nature of the surrogate creation.

The results can be seen in Fig. 23, where the performance
for the unscaled surrogate model, case A, shows a small benefit
of using the categorical LHC plan. The performance when using
adaptive scaling improves for the separate LHC plans as seen
previously; however, when building the surrogate from the cate-
gorical LHC plan, the overall predictive capability of the surrogate
model is greatly improved. Note that the error bars for the median
are small and not visible in Fig. 23. The negligible performance
gain for case A when using the categorical LHC is thought to
be limited by the compromise of choosing RBF and width factor
when included design parameters are of largely differing scales.
This is similar to the interpolation performance of the three camel
hump function presented in Section 2.3.

4.2. Benchmark test cases

Based on the accuracy of the aerodynamic test case, the sur-
rogate models C and D, which both use adaptive dimensional
scaling, are selected for further benchmarking. Surrogate models
C and D are compared with test functions f3 and f8, Rosenbrock
2D and Hartmann 6D, in Fig. 24. The increased flexibility of the
surrogate model D in the two-dimensional case increases the con-
vergence speed after approximately 20 function evaluations. The
six-dimensional test function indicates slower convergence when
using surrogate model D; this is thought to be due to overfitting
when the number of free parameters is too large compared to
the problem being solved. It is not clear when there are enough
samples for surrogate model D to outperform C. The benchmark
results are only presented for surrogate model D from here on.

Each benchmark function was run 100 times for the surro-
gate model to gather statistics where the confidence intervals
are calculated using bootstrapping. The Bayesian Optimisation
algorithm was run 20 times for each function due to the high
computational cost. The other optimisation algorithms are run
a minimum of 100 times; however, sometimes more runs were
required to reduce the confidence intervals and give meaningful
comparisons of the mean performance.

Fig. 24. Surrogate model optimisation performance on two test functions using
surrogate model versions C and D.

Fig. 25 shows the performance history for all nine benchmark
functions without noise for a maximum of 500 function calls. The
surrogate model outperforms the other methods in eight out of
the nine tested functions.

The surrogate model shows good initial convergence speed
which is important when optimising with a fixed time budget.
It is important to note that the results are presented on a loga-
rithmic scale and that the change in the objective function value
for the lower levels of convergence can be small relative to the
problem being solved.

The Bayesian Optimisation algorithm has overall good per-
formance and tends to perform better for multimodal functions
such as the Rastrigin or Styblinski Tang function. The Bayesian
Optimisation featured here, called Dragonfly [37], uses several
acquisition functions and initially picks any acquisition function
with equal probability. As the optimisation continues, acquisition
functions that perform well are picked with a larger probability.

The benchmark results for 10% noise are presented in Fig. 26.
Overall the convergence speed of all algorithms is reduced when
noise is introduced to the problem. The surrogate model performs
better or as good as the other methods, in all nine benchmark
functions. The NM algorithm, which showed good performance
for some of the noise-free benchmark problems, tends to con-
verge prematurely due to the added noise and even performs
worse than the RS algorithm for all tested problems.

The Bayesian method tends to perform well for noisy func-
tions, and it is theorised that this is in part due to the stochastic
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Fig. 25. Optimisation benchmark performance, functions f1−9 . Results are normalised by the test function maximum and minimum value.

acquisition function selection. The surrogate model performance
might be able to be improved on noisy and multimodal functions
by using a similar approach or even a hybrid of the two methods
while keeping the current performance for smooth functions.

It should be noted that the Bayesian Optimisation algorithm
is the most expensive optimisation algorithm used in the bench-
mark. The Bayesian algorithm is approximately an order of mag-
nitude more expensive to compute compared to the surrogate
model for the investigated test cases. To create the surrogate
model, containing 100, 200 and 400 samples, required approxi-
mately 3, 12 and 66 s respectively on an Intel(R) Xeon(R) E5-2640

v4 CPU utilising 10 cores. The break-even point between the
cost of function calls and the surrogate model creation is quickly
outweighed by the reduced number of function calls for expen-
sive function. Considering aerodynamic optimisation, where the
function call is a wind tunnel test or a numerical simulation,
the wall clock time is large enough to outweigh the surrogate
creation cost.

The surrogate model tended to perform particularly well com-
pared to the other methods for functions where the difference
between the design dimension is large, such as the Rosenbrock
problems.
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Fig. 26. Optimisation benchmark performance, functions f1−9 with 10% white noise. Results are normalised by the test function maximum and minimum value.

Remaining questions of interest for RBF based optimisation is
increasing the performance for non-smooth functions such as the
Rastrigin function. Kandasamy et al. [37] used an approach where
successful objective functions evaluations were selected out of
a set of objective functions with a higher probability. Another
weakness of the RBF based surrogate model is poor performance
around discontinuities in the objective function, which requires
further attention. The computational cost of creating the sur-
rogate model is negligible for most aerodynamic optimisation.
However, to increase the application range to cheaper objective

functions, the computational cost needs to be reduced. Anitescu
et al. [40] used a coarse grid to train their neural network initially
and stated that the approach increased the robustness as well as
significantly reducing the computational effort. It is possible that
a similar approach could be adapted to the RBF based technique
to reduce the cost of the method without sacrificing accuracy.

The results indicate that the SM optimisation algorithm is
robust, high performing, capable of handling a low number of
initial samples and can optimise functions with noise.



16 M. Urquhart, E. Ljungskog and S. Sebben / Applied Soft Computing Journal 88 (2020) 106050

5. Concluding remarks

The accuracy of a Proper Orthogonal Decomposition-based
surrogate model was compared to a force-based surrogate on
the generic vehicle DrivAer. The surrogate model performance
was compared to Random Sample, Differential Evolution, Nelder–
Mead and Bayesian Optimisation on nine test functions with and
without added noise. The main outcomes of this study are:

• The force-based surrogate outperformed the POD-based sur-
rogate, although the difference decreased as the number of
samples increased.
• The computational cost and storage requirements are larger

for the POD-based surrogate compared with the force-based
method. The need for generating a vector- or scalar-field can
be a decisive factor when deciding between a force- or a
POD-based method.
• Adaptive scaling of each design parameter dimension im-

proves the interpolants predictive performance, particularly
when the difference in scale between the design inputs and
function output is large.
• Adaptive scaling can reduce the surrogate performance

penalty associated with increasing the number of design
parameters.
• Optimised Latin Hypercube Sampling plans with categorical

design parameters improved the overall surrogate model
performance, compared to using separate LHC plans for each
category.
• The optimisation performance of the surrogate model

proved robust when starting from a sparse sampling plan.
• The surrogate-based optimisation algorithm performed bet-

ter than, or as good as the other algorithms, for 17 out of
the 18 investigated benchmark problems.
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