
RadChat: Spectrum Sharing for Automotive Radar Interference Mitigation

Downloaded from: https://research.chalmers.se, 2024-03-13 10:27 UTC

Citation for the original published paper (version of record):
Aydogdu, C., Keskin, F., Garcia, N. et al (2021). RadChat: Spectrum Sharing for Automotive Radar
Interference Mitigation. IEEE Transactions on Intelligent Transportation Systems, 22(1): 416-429.
http://dx.doi.org/10.1109/TITS.2019.2959881

N.B. When citing this work, cite the original published paper.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



1

RadChat: Spectrum Sharing for Automotive Radar
Interference Mitigation

Canan Aydogdu, Musa Furkan Keskin, Nil Garcia, Henk Wymeersch and Daniel W. Bliss, Fellow, IEEE

Abstract—In the automotive sector, both radars and wireless
communication are susceptible to interference. However, combin-
ing the radar and communication systems, i.e., radio frequency
(RF) communications and sensing convergence, has the potential
to mitigate interference in both systems. This article analyses the
mutual interference of spectrally coexistent frequency modulated
continuous wave (FMCW) radar and communication systems
in terms of occurrence probability and impact, and introduces
RadChat, a distributed networking protocol for mitigation of
interference among FMCW based automotive radars, including
self-interference, using radar and communication cooperation.
The results show that RadChat can significantly reduce radar
mutual interference in single-hop vehicular networks in less than
80 ms.

I. INTRODUCTION

Among the main goals of intelligent transportation systems
(ITS) are (i) safety: reduce safety threats encountered due
to human impact, and (ii) efficiency: provide transportation
opportunities in a way that is ecologically and economically
sustainable. Two important technological components are au-
tomotive radar and vehicular communication, especially for
advanced driver assistant systems and self-driving cars [1],
[2], serving complementary purposes.

Automotive radar provides local situational awareness, giv-
ing the vehicle timely and reliable information of the surround-
ings in the form of radar detections with distance, velocity,
angle information. The high localization sensitivity (e.g., up
to 3 cm for 76–81 GHz operating radars) and robustness
against a variety of conditions (snow/fog/rain [3] or optical
effects) of radar, is unfortunately threatened by mutual radar-
to-radar (R2R) interference [4]. Such interference is expected
to be exacerbated with tens of radars deployed on autonomous
vehicles in the next decade. Mutual interference results in in-
creased effective noise floor, reduced detection capability and
non-existing so-called ghost detections [4]–[8]. Techniques for
mitigating R2R interference include removing polluted radar
waveforms, radar sniffing and avoiding transmission, using fre-
quency diversity and digital beamforming [9]. However, none
of these methods guarantees interference-free radar sensing in
a cost-efficient and implementable way.

Vehicular communication provides remote situational
awareness by receiving wireless data packets from other

Canan Aydogdu, Musa Furkan Keskin, Nil Garcia, Henk Wymeersch
are with the Department of Electrical Engineering, Chalmers University of
Technology, Sweden. e-mail: canan@chalmers.se. Daniel W. Bliss is with the
Department of Electrical, Computer and Energy Engineering, Arizona State
University, USA. This work is supported, in part, by Marie Curie Individual
Fellowships (H2020-MSCA-IF-2016) Grant 745706 (GreenLoc) and a SEED
grant from Electrical Engineering Department of Chalmers University of
Technology. H. Wymeersch is supported by Vinnova grant 2018-01929.

vehicles, even outside the immediate range of local sensors.
The communication capabilities built into cars can be divided
in cellular, e.g., 4G Long-Term Evolution (LTE); and short
range systems, e.g., WiFi-based 802.11p used in Dedicated
Short-Range Communications (DSRC) [10] in the USA and
ITS-G5 in Europe. While LTE cellular services are suitable
for long-term traffic information (e.g., route suggestions),
DSRC is specifically dedicated to provide very low latency
transmission, critical in communications-based active safety
applications, including future collision warning, blind spot
warning, braking ahead warning [11]. However, DSRC suffers
from communication-to-communication (C2C) interference,
especially when many vehicles emit warning messages, in turn
affecting system-wide safety.

Finally, some bands allow for dual purpose use: the unli-
censed 60 GHz or so-called mmWave band (57–66 GHz) is
used for IEEE 802.11ad WiGig communication under restric-
tions in terms of power emissions, but also for radar [12],
[13]. The convergence of radar and wireless communications
in mmWave bands can provide benefits for both applications.
However, a dual use system must account for four types of in-
terference: not only R2R and C2C, but also communication-to-
radar (C2R) and radar-to-communication (R2C) interference.

In this paper, we propose RadChat, a radar and communi-
cation cooperation system [14] operating in the 77 GHz radar
band, whose sole purpose is to control and coordinate automo-
tive radar sensors among vehicles via wireless communications
in order to mitigate radar interference. RadChat is an integrated
system with both radar and communication functionality (i.e.,
using different waveforms on the same hardware), built with
minimal modification from standard frequency modulated
continuous-wave (FMCW) based automotive radar, which is
the most common, cheap and robust radar format used in the
automotive sector today [1]. Our main contributions are as
follows:
• An R2R, C2R, and R2C interference analysis of an

FMCW radar and narrowband communication system,
which indicates that: (i) R2C and C2R interference im-
pedes reliable communication and radar sensing con-
currently. Hence, radar and communication signals with
similar powers must not share the same time-frequency
resources. (ii) It is possible to ensure negligible R2R
interference among different automotive radars if the
FMCW radar chirp sequences start sweeping the fre-
quency band at different time slots.

• A protocol for the physical (PHY) and medium access
(MAC) layers, which is able to essentially reduce R2R
radar interference while meeting automotive radar sensing
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requirements (i) among both radars on different vehicles
and radars mounted on the same vehicle, (ii) in a fairly
short time (80 ms).

• An in-depth analysis of the performance of RadChat,
compared to standard FMCW in a single-hop dense
vehicular ad-hoc network (VANET).

The additional capabilities of RadChat to enable inter-vehicle
communication is outside the scope of this article and therefore
left as a future work.

The remainder of this paper is organized as follows. After
a brief literature review in Section II, an FMCW-based radar
and communication cooperation system model is introduced
in Section III, which is followed by a detailed analysis of
R2R, C2R and R2C interference in Section IV. The RadChat
framework is described in Section V including MAC and PHY
layers. The R2R interference mitigation and networking per-
formance of RadChat is investigated and results are presented
in Section VI.

II. RELATED WORK

A. Classification of Joint Radar and Communications Systems

Joint radar and communication systems can be grouped
in three categories: coexistence, cooperation and co-design.
Coexistence aims to mitigate inter-system interference without
information exchange. In cooperation, information is explicitly
shared among both systems to mitigate interference [14].
Finally, co-design methods require both systems to be designed
jointly from the ground up, not necessarily using the same
hardware [14], but generally using the same waveform [15].

1) Coexistence: Radar communication coexistence was
shown to increase the efficiency of the underutilized radar
spectrum and solve the spectrum scarcity of communication
systems [16], [17], and was therefore used in many differ-
ent ways [14], [18]–[20] with the aim of sharing the same
frequency band without radar and communication interfering
each other. Different from these studies, our primary goal is
not the spectral efficiency but mitigation of R2R interference,
which turns out to be a problem in VANETs. We target to
achieve this goal by help of communications, using the same
hardware but different waveforms, which falls into the scope
of radar and communication cooperation, described next.

2) Cooperation: For vehicular applications, the combina-
tion of communication and radar has been considered in
various forms [21]–[23]. Estimation and information theoretic
approaches were conducted on pulsed radars [24] and FMCW
radars [25] in the joint multiple-access channels. Radar and
communication cooperation, using the same hardware but
different waveforms for radar and communications, was used
in the 79 GHz band with the goal of improving individ-
ual pulsed radar sensing accuracy through communications,
where the radar and communications use the channel in a
time-division-medium-access (TDMA) manner controlled by
a central unit [26].

3) Co-design: There are several radar communication co-
design methods proposed in the literature. IEEE 802.11ad
preamble is used as a radar signal for a vehicular environment
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Fig. 1: Illustration of the hardware of a RadChat unit. The unit reuses most
of the hardware for communication (blue) and radar (green) functionalities.

in the 60 GHz band [13], a monopulse radar with frequency-
shift-keying is used to incorporate communication data in
a time-division-multiplexed (TDM) manner [27] and mini-
mum shift keyed linear frequency modulated spread spectrum
signals (MSK-LFM/SS) are used [22]. Orthogonal frequency
division multiplexing (OFDM) has been the most extensively
investigated option for radar communications co-design [13],
[23], [28]–[31] due to its high degree of flexibility and high
performance under different propagation conditions [32]–[35].
However, due to the cost-efficient, low-rate analog-to-digital
convertors (ADC) preferred in automotive radars today, OFDM
cannot fully occupy the radar band (77–81 GHz), limiting its
distance resolution capability.

B. Medium Access Control for Cooperation

Most studies on cooperation between radar and communi-
cation have focuses on the physical layer [18]. In our prior
work [36], [37], we have shown the potential of higher-layer
coordination of automotive radars through communications
for decreased R2R interference. There are few other studies
including the higher layers in radar and communication co-
operation [38], [39]. A separate dedicated radio is used for
communication control in addition to a radar communications
unit employing OFDM for communications in [38] with an
emphasis on data communications rather than interference
mitigation. Another MAC approach employing time division
multiplexing among radar and communications is introduced
in [39], where a preamble is added just prior to the radar.
As a result, the radar is treated as a packet in CSMA-
based communications and radar sensing has no priority over
communications, which might end up with low radar sensing
duty cycle in case of radar congestion.

III. SYSTEM MODEL

A. RadChat Unit

A RadChat unit is a modified automotive FMCW radar
hardware, where the input to the conventional FMCW radar
transmitter is switched between radar and communication and
likewise the receiver antenna output is switched between the
radar and communication receiver module as illustrated in
Fig. 1. We assume a homogeneous VANET with identical Rad-
Chat units, where all vehicles have the same radar and commu-
nication parameters (radar frame time, radar slope, radar band-
width/carrier frequency, communication bandwidth/carrier fre-
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Fig. 2: FMCW sawtooth radar waveform occupying Br bandwidth with
simultaneous communication occupying Bc bandwidth. The transmitted radar
chirp sequence (blue lines) are received (red lines) with a Doppler frequency
shift of fD . The radar receiver is tuned to process radar reflections arriving
inside the green band, which corresponds to the bandwidth of interest Bmax.

quency/modulation scheme, etc). RadChat units transmit and
receive either radar or communication signals, but not both
radar and communication signals simultaneously. The commu-
nication input/output and radar output of the RadChat unit is
connected to the MAC layer of RadChat, introduced in Sec. V
where spectrum sharing among radar and communications as
well as among different RadChat units is presented. We now
describe the operation of the RadChat unit.

B. RadChat Transmitter

The transmitter of the RadChat unit either transmits radar
signals or communication signals, but not both at the same
time as illustrated in Fig.1.

1) Radar Transmitter: We consider a sequence of fre-
quency modulated continuous waves, i.e., chirps, transmitted
by an FMCW radar,

sr(t) =
√
Pr

N−1∑
k=0

c(t− kT ) (1)

where c(t) is a chirp of the form [1], [40]

c(t) =

{
ejφ(t) , 0 ≤ t ≤ T
0 , otherwise

(2)

with φ(t) = 2π
(
fr + Br

2T t
)
t, where Pr is the radar transmit

power, Br denotes the radar bandwidth (typically 1–4 GHz),
fr is the carrier frequency (around 77 GHz), T is the chirp
duration, and N is the number of chirps per frame. The
frame time Tf = NT + Tidle comprises NT plus the idle
and processing time. The instantaneous frequency of c(t) is
given by f(t) = 1

2π
dφ(t)
dt = fr + Br

T t. Fig. 2 illustrates a typ-
ical FMCW sawtooth radar waveform with a chirp sequence
starting at (t = 0, f = fr) in time-frequency domain. The
reflected chirp sequences are received starting at (t′, fr + fD),
due to a round trip delay of t′ and a Doppler frequency
shift of fD. The green band corresponds to the bandwidth
Bmax, which is defined as the bandwidth of interest at the
radar receiver. Note that Bmax ≤ fs, where fs is the ADC
bandwidth, assuming a complex baseband radar architecture
[41]. The radar receiver filters out the radar reflections arriving
with frequencies outside (fr + Br

T t
)

+ [−Bmax, 0]. Bmax is
proportional to the maximum delay of radar reflections taken
into account (Tmax) and the maximum detectable range (dmax).

Remark 1. The FMCW radar waveform parameters, such as
Br, T , Tf and N , are set to meet requirements on the maxi-
mum detectable range (dmax) and maximum detectable relative
velocity (vmax), as well as range and velocity resolution.

2) Communication Transmitter: During communication
mode, the transmitted bandpass signal is [42]

sc(t) =
√
Pcx(t)ej2πfct (3)

where x(t) represents the complex baseband signal with a
bandwidth of Bc after pulse shaping1 and fc is the communi-
cation carrier frequency. We consider a communication signal

x(t) =

Nc−1∑
k=0

akp(t− k(1 + α)/Bc), (4)

where p(t) is a unit-energy pulse of bandwidth Bc with roll-off
α ≥ 0, ak are unit-energy transmit data symbol.

C. RadChat Receiver

The receiver of the RadChat unit either receives radar
signals or communication signals, not both at the same time.

1) Radar Receiver: Considering a single target at distance
d, the received back-scattered bandpass radar signal (at the
co-located receiver) is

rr(t) = γr

N−1∑
k=0

c (t− 2d/c− kT ) + w(t) (5)

where a Doppler shift will be observed due to a time-varying
distance d = d0− vt with relative radial velocity v and initial
distance d0,

γr =
√
PrGtxGrxσλ2r /((4π)3d4) (6)

for target radar cross section2 (RCS) σ, transmitter and re-
ceiver antenna gains Gtx and Grx, w(t) is additive white
Gaussian noise (AWGN) with power spectral density N0, c
denotes the speed of light and λr is the wavelength of the
radar carrier. The received signal is processed by the following
blocks [43]: a mixer, an ADC, and a digital processor (Fig. 1).
Then, after processing the bandpass signal in (5) through
the receive chain, the sampled baseband ADC output is as
following for the chirp k, t = n/fs, n = 0, . . . , bTfsc

r̃r(t, kT ) = γre
j2πt(− 2d0

c
Br
T +2 v

c fr−2
v
c

Br
T t)

× ej2πkT(2 v
c fr−2

v
c

Br
T t)− 2d0

c fr + w(t, kT ) (7)

where 0 ≤ t ≤ T denotes the time from the beginning of
the kth chirp. Assume that we have a narrowband signal, i.e.,
Br � fr, and that target displacement during a chirp is much
smaller than the wavelength, i.e., vT � λr. Based on these
assumptions, the signal in (7) can be approximated as [1]

r̃r(t, kT ) = γre
j2π[− 2d0

c
Br
T t+2fDkT− 2d0

c fr] + w(t, kT ) (8)

1The sampling rate satisfies Bc ≤ fs, which is generally on the order of
10− 50 MHz for automotive radars.

2Throughout the paper, RCS is assumed to be non-fluctuating over the
frame time Tf .



4

Vehicle 1

Vehicle 2

𝑣𝑣2

𝑣𝑣1

(a)

Communication DATA

Communication ACK

Vehicle 1

Vehicle 2Vehicle 3

𝑣𝑣2𝑣𝑣3

𝑣𝑣1

(b)

Fig. 3: Scenarios for investigation of a) R2R interference, b) C2R interference
experienced at Vehicle 1 and R2C interference at Vehicle 2.

where fD = vfr/c is the Doppler shift. A common approach
for range-Doppler retrieval in FMCW radar is to compute the
fast Fourier transform (FFT) of the signal in (8) over both
fast time t and slow time k (with windowing functions [44,
Ch. 5.3.1]), yielding peaks at frequencies corresponding to d0
and fD, respectively, and detect the peaks in the range-Doppler
domain.

2) Communication Receiver: During communication mode,
the complex baseband received signal is [42]

r̃c(t) = γcx(t− d/c)ej2π(fD,ct−fcd0/c) + w(t) (9)

where

γc =
√
PcGtxGrxλ2c/(4πd)2 (10)

under the assumption of free-space propagation environment
[42], [45], fD,c = vfc/c and λc is the wavelength of the
communications carrier.

IV. INTERFERENCE ANALYSIS

To gain understanding in the three types of interference
(R2R, C2R and R2C), we consider two simple scenarios
given in Fig. 3(a)–3(b). For the R2R interference, the scenario
given in Fig. 3(a) demonstrates a case where two front-end
radars of two vehicles illuminate each other’s field of view
(FoV). For the C2R and R2C case, we consider the three-
vehicle scenario given in Fig. 3(b), where the rear-end radar
of Vehicle 3 sends communication data to Vehicle 2 and

Type SIR Probability
R2R O(σ/d2) 4UBmax/Br
C2R O(Prσ/(Pcd2)) U min{Bmax +Bc, Br}/Br
R2C O(Pc/Pr) U min{Bc, Br}/Br

TABLE I: Signal-to-interference ratio and probability of interference values
for the different interference cases, where radar target and interference sources
are located at the same distance d, and U is the radar duty cycle.

receives acknowledgements3 (ACK), while the front-end radar
of Vehicle 1 is simultaneously performing radar sensing. This
ends up with C2R interference at Vehicle 1, where the ACKs
of communication disturb the radar signal of Vehicle 1. R2C
interference is analyzed for the same scenario at Vehicle 2,
where the communication data is affected by the radar of
Vehicle 1.

We assume that all FMCW waveform parameters (frame
time, chirp duration, slope, bandwidth, number of chirps per
frame, duty cycle, etc.) are the same for all radars for the sake
of simplicity. In all analyses, signals are assumed to be in the
main beam of the respective antennas so that the antenna gains
are taken equal. Table I provides a concise comparison of the
different types of interference, which will be derived in the
subsequent sections.

A. R2R Interference Analysis

R2R interference might occur in two different ways, both
of which are considered in this article: (i) direct line-of-
sight (LoS) interference, (ii) bistatic radar returns or reflected
interference, when either a victim vehicle receives a reflected
interfering radar signal from another vehicle or one RadChat
unit at the victim vehicle receives a reflected radar return of
another RadChat unit on the same victim vehicle.

1) Impact and Power of R2R Interference: R2R interfer-
ence affects radar performance in a number of ways: it leads
to an increase of the effective noise floor or false alarms (ghost
targets), which are apparent targets with high intensity that are
not actually present. In our system where all radars have the
same parameters, ghost targets will be the dominant effect,
while effective noise floor increase occurs when radars have
different chirp parameters [46].

Example: The range-Doppler plot illustrating the R2R inter-
ference for two vehicles approaching with v = 30 m/s relative
speed at d = 100 m is given in Fig. 4. A ghost target with a
high intensity is observed at half-speed and half distance, i.e.
v = 15 m/s and d = 50 m.

If the interference comes from a LOS transmission, noting
that the desired radar signal is always a backscattered signal,
the signal to interference ratio (SIR) is

SIRR2R =
γ2r

PrGtxGrxλ2r/(4πdI)
2

=
σd2I
4πd4

(11)

where d is the target distance and dI is the distance to
the interferer. Since dI and d are of the same order, the
interference is much stronger than the desired signal.

3Other data packets may follow the ACK from Vehicle 2 to Vehicle 3, which
cause C2R interference at Vehicle 1. We assume that the communication signal
occupies the channel during the whole FMCW chirp sequence independent
of the packet type.
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Fig. 4: Radar range-Doppler map in the presence of R2R interference, where
d = 100m, v = 30m/s and Pr = 5mW.

2) Probability of R2R Interference: Let us assume that
starting times of FMCW chirps are uniformly distributed for
all vehicles. Vehicle 1 in Fig. 3(a) transmits the radar signal
sr(t) in (1) and Vehicle 2, which is d apart from Vehicle 1,
transmits its FMCW signal with a delay τ with respect to
Vehicle 1. The probability of R2R interference (P int

R2R) is the
probability that the received signal at the victim radar lies
in the band fr + BrT/t + [−Bmax, 0] given that the victim
radar starts its transmission at time t. Hence, R2R interference
occurs when at least one chirp of the victim radar is affected
and P int

R2R is the same as the fraction of the vulnerable time
over the frame time, which is explained below.

Definition 1 (Vulnerable period V [36]). Given a victim
vehicle radar that starts an FMCW transmission at time t = 0
and a facing vehicle radar with overlapping field-of-view that
starts a transmission at time t = τ , the vulnerable period
V is the set of τ values within a chirp duration, for which
interference to the victim vehicle radar occurs.

To quantify the interference, we can thus determine the vul-
nerable period and then compute the probability of interference
occurring within the vulnerable period.

Proposition 2. Considering an interferer (either direct or
reflected) at any distance up to αd2dmax and at any relative ve-
locity up to ±vmax, the vulnerable period for R2R interference
is given by

V ≈ [−αdTmax, Tmax] (12)

where Tmax = TBmax/Br = 2dmax/c, is the maximum delay of
(intended) radar reflections and αd is a constant determined
by the longest interference path.

Proof: See Appendix A.
We note that the vulnerable period depends on the distance

of the longest interference path. This implies that in sparse
VANETS (where αd � 1), we have a long vulnerable period,
but few interferers, while in dense VANETS (where αd ≤ 1
due to signal blockage), we have a short vulnerable period,
but many potential interferers.

An FMCW radar transmits N successive chirps and R2R
interference occurs if any two chirps of two different vehicles
overlap in the vulnerable period of at least a single chirp.
Hence, any radar chirp sequence starting (N − 1)T prior
up to the end of the radar transmission may result in R2R

interference due to one or more chirps overlapping. The
vulnerable period taking a whole radar frame into account is

V (f) = ∪N−1k=−(N−1) [kT − αdTmax, kT + Tmax] , (13)

and the vulnerable duration is |V (f)| = (2N − 1)(1 +
αd)Tmax ≈ 2(1 + αd)NTmax, since generally N � 1.

The probability of R2R interference among two vehicles is
easily found as

P int
R2R =

|V (f)|
Tf

=
(1 + αd)(2N − 1)UBmax

NBr
≈ 2(1 + αd)UBmax

Br
(14)

where U = NT/Tf ∈ (0, 1] is the radar duty cycle, indi-
cating that R2R interference is minimized with reduced radar
bandwidth of interest Bmax (or longer chirps).

3) Example: The R2R interference probability in (14) is
verified in Fig. 5 with simulations for two radars within 2dmax
distance (i.e., αd = 1)) for varying Bmax and U . 106 Monte
Carlo simulations are performed using the parameters in Table
II by assuming uniform distribution of radar starting times.
For each simulation, we check if the interference is present
within the bandwidth of the radar for at least one chirp within
the frame. The number of occurrences of interference over
the total number of simulations is the simulated interference
probability. The simulations are observed to exactly match
analysis in (14). A verification of the vulnerable period for
various victim-interferer distances is also presented in [36].

10 15 20 25 30 35 40 45 50

10
-2

Fig. 5: Verification of R2R interference probability with simulations for Br =
1GHz and N = 99 for two radars.

B. C2R Interference Analysis

To provide a theoretical analysis of C2R interference, we
focus on a vehicular communication and sensing environment
as depicted in Fig. 3(b), where Vehicle 1 receives simultane-
ously the communications interference and the desired radar
return from Vehicle 2.

1) Impact and Power of C2R Interference: The interference
will be spread over the entire bandwidth and lead to an
increase of the effective noise floor. As the desired radar signal
is always a backscattered signal while the interference can
emanate from a direct transmission, the signal to interference
ratio is

SIRC2R =
PrGtxGrxσλ

2/((4π)3d4)

PcGtxGrxλ2c/(4πdI)
2
≈ Prσd

2
I

Pc4πd4
(15)

When dI and d are of the same order (which is typically the
case if the communication transmitter of the vehicle to be
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detected interferes with the victim radar), the SIR expression
in (15) can be rewritten as

SIRC2R ≈
Prσ

Pc4πd2
. (16)

This means that when communication and radar use similar
transmission power, the interference will be much stronger
than the desired signal since 4πd2 � σ for typical RCS
values at 77 GHz [43]. On the other hand, the effect of C2R
interference on radar performance becomes less severe when
(i) communication operates at a much smaller power than radar
(i.e., Pc � Prσ/(4πd

2) � Pr), and/or (ii) the interferer gets
closer to the victim radar (i.e., for small d).

2) C2R Interference Time Ratio: We investigate the per-
centage of time an FMCW radar receiver is disrupted by in-
terference from a spectrally coexistent communications trans-
mitter (i.e., C2R interference time ratio). Let x(t) denote the
transmitted baseband communications signal from Vehicle 2,
as defined in (4). Assume that Vehicle 2 continuously transmits
data. Then, the received bandpass signal at Vehicle 1 radar in
the presence of communications interference from Vehicle 2
can be written as [24], [47]

r(t) = rr(t) + γcx(t)ej2π[(fc+fD,c)t−fcd0/c] (17)

where rr(t) is the received FMCW waveform of the form
(5). After mixing as defined in Sec. III-C1, the baseband
communications signal during chirp k at the radar receiver
is given by

xc(t, kT ) = γcx(kT + t)ejθkej2π(fc+fD,c−fr+kBr−Brt
2T )t (18)

where θk is a phase that is irrelevant to the subsequent analysis.
The instantaneous frequency of the baseband communications
interference in (18) during chirp k is thus

f(kT, t) = fc + fD,c − fr + kBr −Brt/T (19)

with the bandwidth Bc as defined in (4). Hence, the radar
signal is subjected to communication interference when
f(kT, t)−Bc/2 ≤ 0 and f(kT, t) +Bc/2 ≥ −Bmax. In turn,
this implies non-zero interference for chirp k when

t ∈ Vk,C2R ,
{
t | t̃k,C2R ≤ t ≤ t̃k,C2R + ∆tC2R

}
(20)

over the interval [kT, (k + 1)T ], where

t̃k,C2R =

(
k +

fc + fD,c − fr −Bc/2

Br

)
T (21)

∆tC2R =

(
min{Bmax +Bc, Br}

Br

)
T. (22)

Hence, (20) defines a communications vulnerable period of
∆tC2R seconds over a chirp duration of T seconds. Different
from Definition 1 in Sec. IV-A, the radar receiver periodically
suffers from this interference irrespective of the delay between
radar and communication transmission times4. Using (22), the
C2R interference time ratio is given by

P int
C2R =

min{Bmax +Bc, Br}
Br

U. (23)

4This is the reason why C2R (and, R2C) interference effect can be
characterized through time percentage instead of probability as in the case
of R2R interference.
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Fig. 6: Radar receiver operating characteristic curves for various values of
distance d in the absence and presence of communications interference with
dI = d, where Pr = 5mW, Pc = 5mW, fr = 77GHz, fc = 77.5GHz,
Br = 1GHz and Bc = 40MHz. Solid (dashed) lines correspond to
interference-free (interference) cases.

The time percentage of C2R interference can be minimized by
choosing a small communication bandwidth Bc or small radar
bandwidth of interest Bmax or a high radar (sweep) bandwidth
Br.

3) Example: We demonstrate the effect of interferer dis-
tance on probability of detection, Pd, and probability of
false alarm, Pfa, in Fig. 6, where Pd is calculated from [44,
Eq. (6.36)]

Pd =
1

2
erfc

(
erfc−1 (2Pfa)−

√
SINR

)
(24)

with SINR representing the signal-to-interference-plus-noise-
ratio of the range-Doppler cell containing the desired target
echo for a given power and distance of interference. Due to
d2 and d4 scaling laws, respectively, for communication and
radar power attenuation, an interfering car (i.e., Vehicle 2 in
Fig. 3(b)) at a larger distance induces more severe degradation
in radar detection performance. Hence, in agreement with
(16), spectral coexistence of FMCW radar and communication
systems without significant performance reduction in radar
receiver is possible only for close interferers (e.g., less than
50 m) in a scenario with Pr = Pc = 5 mW, Br = 1 GHz and
Bc = 40 MHz.5

C. R2C Interference Analysis

In this section, we investigate R2C interference effects on
communication receivers. First, we provide a received signal
model in the presence of FMCW radar interference. Then, we
analyze the symbol error probability of a 16-QAM system
under different parameter settings.

1) Impact and Power of R2C Interference: The FMCW
radar signal will temporarily interfere with the communication
signal. The SIR is now

SIRR2C =
PcGtxGrxλ

2
c/(4πd)2

PrGtxGrxλ2/(4πdI)2
≈ Pcd

2
I

Prd2
. (25)

Since dI and d are of the same order and Pr is generally
larger than Pc, the interference will be strong and cause loss
of a fraction of the data.

5We note that the target and the interferer are co-located in this example
(dI = d), corresponding to the worst-case scenario in terms of radar detection.
For interferers located further than the target of interest (dI > d), radar
performance will be less affected by C2R interference, as implied by (15).
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Fig. 7: Symbol error probability with respect to communication power for
a 16-QAM scenario with and without radar interference for different values
of communication bandwidth, where dI = d = 100m, Pr = 5mW, fr =
77GHz, fc = 77.8 GHz and Br = 1GHz.

2) R2C Interference Time Ratio: Consider the R2C in-
terference scenario in Fig. 3(b), where Vehicle 2 receives
communications signal from Vehicle 3 while simultaneously
being corrupted by radar interference from Vehicle 1. The
relative velocity of Vehicle 1 and Vehicle 2 is denoted by vI so
that dI = dI,0−vIt for an initial distance dI,0. Using a similar
type of analysis as for the C2R interference, the baseband
radar interference signal due to the kth chirp of Vehicle 1 at
the communications receiver of Vehicle 2 can be written as

xr(t, kT ) = γ̃re
jθ̃ke

j2π
[
(fr+fD,I−fc)t+ Br

2T (t−kT−
dI,0

c )2
]

(26)

where γ̃r and θ̃k are quantities irrelevant to our analysis,
and fD,I = vIfr/c. The signal in (26) is filtered out at
the communications receiver when its instantaneous frequency
is outside the interval [−Bc/2, Bc/2]. Therefore, the k-th
chirp of the radar interferes with the communication signal
during a time, Vk,R2C, the radar vulnerable period at the
communications receiver, which can be expressed as

Vk,R2C ,
{
t | t̃k,R2C ≤ t ≤ t̃k,R2C + ∆tR2C

}
(27)

where t̃k,R2C and ∆tR2C are defined as

t̃k,R2C =

(
k +

fc − fr − fD,I −Bc/2

Br

)
T , (28)

∆tR2C =
min{Bc, Br}

Br
T . (29)

The R2C interference time ratio is then given by

P int
R2C =

min{Bc, Br}
Br

U (30)

which can be minimized by choosing small communication
bandwidths or large radar bandwidths.

3) Example: Based on the scenario in Fig. 3(b), we in-
vestigate the symbol error rate (SER) of the communications
receiver at Vehicle 2 versus the transmit power of Vehicle 3
in Fig. 7 for two different communication bandwidths6. The
figure shows Monte Carlo simulation results of a 16-QAM
system with and without radar interference along with the

6In the SER performance analysis, we do not take into account any type of
error correction coding. If such a coding scheme is utilized, the SER values
in Fig. 7 can be obtained with lower communication powers, depending on
coding gains achieved at different SNRs [42, Ch. 8.1].
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Fig. 8: Interference-related degradation in symbol error probability with
respect to communication power for a 16-QAM scenario for different values
of communication bandwidth, where dI = d = 100m, Pr = 5mW,
fr = 77GHz, fc = 77.8 GHz and Br = 1GHz.

(semi-)analytically derived Ps and Ps,int values, where Ps,int

constitutes an upper bound on the theoretical SER value in the
presence of radar interference, computed as7

Ps,int = αint + Ps (1− αint) (31)

with Ps and αint denoting, respectively, the SER of 16-
QAM without radar interference [42, Eq. (6.23)] and the
ratio of symbols that are subjected to interference8. We also
show Ps,int − Ps, i.e., SER performance degradation due to
interference, in Fig. 8. From the figures, it is observed that
larger communication bandwidths lead to higher interference-
related degradation in SER performance due to an increase in
the R2C interference time ratio, as stated in (30). In addition,
the effect of radar interference becomes more severe as the
SINR increases, in the sense that additional communication
power in the interference case that is required to attain the
same SER value as the interference-free case gets larger. At
very high SINR values, αint would become zero, implying
that the SER performance of the interference case converges
to that of the interference-free case. We conclude from Fig. 7
that in a scenario where radar and communication transmitters
operate at the same power (i.e., Pr = Pc = 5 mW), R2C
interference from an FMCW radar with Br = 1 GHz leads
to unacceptably high SER levels at a communication receiver
with Bc = 20 MHz and Bc = 40 MHz.

D. Interference Analysis Outcome
The communication SER performance loss due to radar

interference (R2C) is non-negligible for Pc/Pr ≈ 1 with
Bc = 20 MHz and Bc = 40 MHz (Fig. 7). The SER perfor-
mance can be enhanced by increasing the Pc/Pr ratio, which,
in turn, leads to degradation of SIRC2R (Table I) and thus radar
detection performance (Fig. 6). This suggests that FMCW
radar sensing and communication with similar powers should
not occupy the same time-frequency resources. Additionally,
R2R interference can be avoided if FMCW chirp sequences
start transmission during non-overlapping vulnerable periods.

7This is similar to compound rate in [47].
8More specifically, αint is defined as the percentage of time the magnitude

of the received FMCW waveform is large enough to cause symbol error. In
the low signal-to-interference-plus-noise ratio (SINR) regime, αint can be
approximated as αint ≈ Bc/Br (as suggested by (30)), while it converges to
zero asymptotically at high SINR.
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Fig. 9: Summary of the layered architecture of RadChat.

V. RADCHAT: PROTOCOL DESCRIPTION

RadChat is proposed as a distributed radar and commu-
nication cooperation protocol, which avoids R2R interfer-
ence by scheduling radar sensing to non-overlapping vulner-
able periods and avoids R2C/C2R interferences by using a
separate communication control channel in order to ensure
non-conflicting time-frequency blocks for communication and
radar. The layered architecture of RadChat is summarized in
Fig. 9. A RadChat unit is responsible of data link control
(DLC), MAC sublayer and PHY layer functions. Upper layer
functions are assumed to be processed at a central unit at each
vehicle, which combines data of all RadChat units, which are
co-located on a vehicle looking toward different directions.
The main service provided by the DLC layer is scheduling
of radars, i.e. assigning non-overlapping vulnerable periods
to radars, and is an unacknowledged connectionless service.
Broadcast control packets are used to schedule radar packets9

at non-overlapping time slots. In addition to scheduling radars,
the DLC can provide basic communication services, but these
are outside the scope of the current work.

Given that the PHY layer operates as described in the
previous sections, the MAC layer of RadChat operates by
FDM/rTDMA/cCSMA, which is a scheme based on frequency
division multiplexing (FDM) between radar and communi-
cation, time division multiple access for radar transmissions
(rTDMA), and carrier sense multiple access for commu-
nications (cCSMA). Fig. 10 illustrates the division of the
frequency-time domain for the proposed DLC service w.r.t.
two specific RadChat units ri and rj . Radars are scheduled by
assigning each a different rTDMA slot, where rTDMA slots
are defined as radar slots with disjoint vulnerable periods.

A. Terminology and Assumptions

1) Network: For a general but fixed VANET topology,
RadChat unit ri is connected to/facing the RadChat unit rj if
ri is able to receive/transmit communication signals from/to
rj , assuming symmetric communication links. Links may be
established through LOS or reflected paths. Let SX denote
the set of RadChat units mounted on vehicle X , which
are connected to one central processing unit at vehicle X .
Each ri ∈ SX uses a different rTDMA slot to handle R2R

9A RadChat unit is built upon a packet-switched architecture, where an
FMCW radar chirp sequence is regarded as a radar packet.
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Fig. 10: RadChat Scheduling Radars scheme: FDM / rTDMA / cCSMA

self-interference, which is the R2R interference among radars
mounted on the same vehicle. All vehicles use a common radar
band Br and a common communication band Bc < Bmax, in
order to be able to reuse the radar ADC. We assume equal
radar and communication transmit powers (Pc = Pr) for
simplicity and to ensure that RadChat provides long enough
communication range to communication with all interferers
within distance αd2dmax. Extensions to dynamically changing
topologies, as well as power control, which adapts these
powers independently for all RadChat units, are left for future
work.

2) Timing: We introduce time slots Tk (Fig. 10) of duration
(N+1)T ≤ Tf , which corresponds to the duration of N chirps
plus one idle chirp time accounting for the overflow of time
shifted rTDMA slots. Let U ′ = (N + 1)T/Tf be defined as
the modified radar duty cycle, then a radar frame is divided
into 1/U ′ time slots. This slotted time is set to provide non-
overlapping chirp sequences within a radar frame and thereby
maximize the number of vehicles with no mutual interference,
denoted by Mmax ≤ b1/U ′c bBr/((1 + αd)Bmax)c. Each time
slot Tk is further divided to slots called SlotTimes of duration
δ, which are large enough to detect channel activity by the
carrier-sensing function of the CSMA mechanism. Vehicles
are assumed to synchronize their clocks using GPS.

3) Data Structure: Each RadChat unit ri on vehicle X
has several MAC state variables that are broadcast to other
vehicles:
• ri.ID: an identifier of the time reference, initialized to the

vehicle index X .
• ri.SI: an rTDMA slot index in the local time reference,

initialized to 0. During operation, ri.SI ∈ {1, . . . ,Mmax}.
• ri.trs: a radar start time, initialized uniformly in [0, Tf ]

incremented by Tf every frame.
• ri.strength: a priority indicator, coupled to ri.ID, initial-

ized to 0.
All RadChat units mounted on the same vehicle use the same
ID and strength values, whereas SI and trs are specific to each
RadChat unit assigned by the central processor at vehicle X .
We will denote the set of all of the rTDMA slot indices used
by RadChat units mounted on the vehicle X by SX.SI, whereas
the set of all of the radar start times are denoted by SX.trs.

Due to the distributed nature of the algorithm, each vehicle
X will assign rTDMA slots according to its own time frame
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initially. The couple (ri.ID, ri.SI) specifies a unique rTDMA
slot index for all radars that have the same time reference
ri.ID. The variable ri.strength is used to give priority to the
time reference which is shared the most in the network, in
order to avoid fluctuations among different time references.

Communication functions are common to all ri ∈ SX.
Hence, a base RadChat unit r∗i ∈ SX on vehicle X is selected
according to which timing of communication functions are
conducted. Each vehicle also keeps track of these MAC state
variables of the base RadChat unit r∗i during operation, which
are not broadcast:
• r∗i .counter: a binary exponential backoff (BEB) counter,

initialized by a random integer rand([0, 2bW0−1]), where
b is the backoff stage and W0 is the maximum contention
window size; b is incremented upon each busy carrier
sense until b ≤ B, where B is the maximum backoff
stage. b is reset at the end of Tk−1.

• r∗i .tcs: a communication starting time, initialized to
r∗i .tcs = r∗i .trs − (N + 1)T − Tpkt + δr∗i .counter, where
Tpkt is the duration of a control packet. r∗i .tcs is updated
whenever the radar start time of the base RadChat unit
on vehicle X , is changed.

B. MAC Operation

In order to assign non-overlapping rTDMA slots among
facing RadChat units, non-persistent CSMA with BEB is
employed. rTDMA slots in Tk are generally determined by
communication contention during slot Tk−1 (Fig. 10)10. Con-
trol packets are transmitted if the channel is sensed idle for
one SlotTime δ or random BEB is employed if channel is
sensed busy. Each vehicle X may prefer to allocate all radar
transmissions of its mounted RadChat units in the same time
slot Tk, SX.trs ∈ Tk (if the number of RadChat units on a
single vehicle is ≤ bBr/((1 + αd)Bmax)c). It is not necessary
to squeeze all radars of a vehicle to a single time slot Tk,
however at least one time slot Tk−1 should be empty with no
radars, so that it can be used for communication jointly by all
ri ∈ SX.

Each vehicle X , which has a set of random radar start times
SX.trs, selects a contention period, preferably the prior time
slot Tk−1 where most of the radar start times reside in Tk
and selects a base RadChat unit r∗i , r∗i .trs ∈ Tk according to
which communication start time r∗i .tcs is calculated. ∀ri ∈ SX
transmit a single communication control packet during Tk−1.
This control packet is broadcast to all RadChat units connected
to the Vehicle X (as if omni-directional communication)
and contains the following information: identity of the trans-
mitter (ri), time reference frame (ri.ID) and the set of all
rTDMA slot indices of RadChat units mounted on vehicle X
(SX.SI), strength of this time reference frame (ri.strength),
the base RadChat unit’s radar starting time and its slot index
(r∗i .trs, r

∗
i .SI). MAC functions of RadChat are presented next.

• RadChat Carrier Sensing: A RadChat unit ri intends to
start radar transmission at ri.trs ∈ Tk in Fig. 10. This

10Note that the contention time during slot Tk−1 is shifted to the left by
Tpkt in Fig. 10, since any control packet transmitted at least Tpkt prior to radar
mode can be received.

RadChat unit carrier-senses the communication channel
Bc during the entire radar frame except during Tk (as
it is transmitting radar), and receives incoming control
packets.

• RadChat Transmission at Tk−1: If a control packet trans-
mission is scheduled at r∗i .tcs ∈ Tk−1, carrier sensing
is employed during Tk−1. The control packet is sent if
channel is sensed as idle, or backoff is employed if chan-
nel is sensed as busy (and r∗i .tcs ← r∗i .tcs + δr∗i .tcounter).
Upon completion of transmission of a control packet by
the RadChat unit ri, if ri.SI = 0, ri updates ri.SI to the
assigned value by the central processor.

• RadChat Reception at Tk−1: Upon reception of a control
packet from ri by rj (which was not transmitting radar at
that time), rj updates its state as described in Algorithm
1. Throughout the operation of RadChat, each RadChat
units stores the received ID, SI and strength information
in a local database Dj . This is used to keep track of
unused rTDMA slots for a time reference, and the priority
of the time reference. In lines 5, 10, and 15 the SI should
be selected within Tk if available, otherwise from the set
of unused rTDMA slots in Tf . This algorithm ensures
that rj .SI is assigned so that rj .SI 6= SX.SI ∪ Dj . rj .trs
and rj .tcs in Line 16 are set according to,

rj .trs ←ri.trs + (N + 1)T{Kj −Ki}+ |V |{κj − κi)}
rj .tcs ←r∗j .trs − (N + 1)T − Tpkt + δr∗j .counter,

with κj = mod(rj .SI, U ′Mmax), Kj =
drj .SI/(U ′Mmax)e, where r∗j is the a base RadChat unit
of the receiving vehicle.

Algorithm 1 Process control packet at unit rj

1: Store (ri.ID, ri.SI, ri.strength) in Dj
2: if rj .SI = 0 then
3: rj .ID← ri.ID
4: rj .strength← ri.strength + 1
5: rj .SI← SI ∈ Tk ∪ Tf \ {SX.SI}
6: else
7: if rj .ID = ri.ID then . same time reference
8: rj .strength← max(rj .strength, ri.strength) + 1
9: if rj .SI ∈ SX.SI then

10: rj .SI← SI ∈ Tk ∪ Tf \ {ri.SI|i ∈ Dj}
11: else . different time reference
12: if ri.strength > rj .strength then
13: rj .ID← ri.ID
14: rj .strength← ri.strength + 1
15: rj .SI← SI ∈ Tk ∪ Tf \ {SX.SI}
16: Calculate rj .trs and rj .tcs if (rj .ID, rj .SI) has changed
17: Update state of all other RadChat units on same vehicle

C. Properties of RadChat

For a fixed connected network topology and with less
than Mmax active radars, RadChat is guaranteed to eventually
converge to a solution where each vehicle uses a distinct
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rTDMA slot and thus R2R interference is eliminated, when
the following conditions are met:
• The radar duty cycle of RadChat must satisfy U ′ ≤ 1/3.

Since RadChat units cannot receive control packets when
radar is active, a higher radar duty cycle may end up
with two disjoint interfering networks. Higher duty cycle
necessitates the use of a separate communication module
for mitigation of FMCW radar interference with RadChat.

• RadChat allows synchronization errors of at most |V |/2
across vehicles, since it places each radar transmission in
the middle of a vulnerable period leaving a guard time.
Under perfect synchronization, RadChat can allocate up
to 2Mmax non-interfering RadChat units by a time spacing
of |V |/2 (so that non-overlapping green-indicated radar
bandwidths of Bmax fill the whole time-frequency domain
in Fig. 2).

• Bandwidth reserved for communication Bc should allow
for at least one data packet during Tk = (N + 1)T :

(N + 1)T > Tpkt =
8Npkt/ log2(|Ω|)
Bc/(1 + α)

(32)

Bc >
8Npkt(1 + α)

(N + 1)T log2(|Ω|)
(33)

where |Ω| is the constellation size.
Some properties of RadChat protocol are as follows:
• RadChat takes care of both R2R interference among

vehicles and among radars mounted on the same vehicle,
i.e., self-interference.

• RadChat eliminates any potential R2R interference within
a distance 2αddmax, provided Pc = Pr is sufficient to
ensure communication with these interferers. Interferers
beyond 2αddmax or beyond the maximum communication
range cannot be eliminated by RadChat.

• RadChat ensures that R2R mitigation is completed in a
short time and starts as soon as a potential interferer
enters the communication range if radar interference and
communication signals are subject to the same minimum
signal to noise ratio at the RadChat receiver and Pr = Pc.

VI. RADCHAT PERFORMANCE EVALUATION AND RESULTS

The performance of the proposed FMCW-based distributed
RadChat protocol is evaluated through Matlab R2017b simula-
tions using the phased array toolbox for a network of vehicles,
where a single RadChat unit is mounted on each vehicle
with the same FMCW sawtooth waveform parameters in a
scenario with a large number of uncoordinated radars. Several
performance metrics are considered in different dimensions:
(i) the probability of R2R interference, (ii) the time it takes
for RadChat to minimize interference, (iii) the effect of syn-
chronization errors to RadChat; (iv) the radar jitter; (v) impact
of RadChat penetration rate; (vi) effect of the communication
parameters.

A. Simulation Parameters

The main simulation parameters are summarized in Table II.
The chirp sequence is designed so as to meet the maximum

TABLE II: Simulation parameters.

Parameter Value

R
ad

ar

Chirp duration (T ) 20 µs
Frame duration (Tf ) 20 ms
Modified duty cycle (U ′) 0.1
Radar bandwidth (Br) 0.96 GHz–1 GHz
Bandwidth of interest (Bmax) 50 MHz
dmax for Bc = 0 150 m
vmax 140 km/h
Pr, Pc 11 dB
SNR 10 dB
Number of chirps per frame (N ) 99
Carrier frequency (fr) 77 GHz
Ts 0.01 µs
Chebyshev low-pass filter order 13
Thermal noise temperature T0 290 K
Receiver’s noise figure 4.5 dB

C
om

m
.

Communication bandwidth Bc 40 MHz
Packet size (Npkt) 4800 Bits
Modulation 16-QAM
MAC non-persistent CSMA
SlotTime δ 10 µs
Maximum contention window size (W0) 6
Maximum backoff stage (B) 3

detectable relative velocity vmax = 140 km/h, the maximum
detectable range dmax = 150 m when Bc = 0 (since it
increases for RadChat), velocity resolution smaller than 1 m/s
and range resolution of 15 cm. Radar front-end-hardware com-
ponent parameters are taken as in [43]. The mean value for
the radar cross section of a car is taken as 20 dBsm [43],
[48]. Finally, greatest of cell averaging constant false alarm
rate (GoCA-CFAR) thresholding with 50 training cells with
2 guard cells is used for radar detection. We will focus
dense networks, so we set αd = 1, leading to a vulnerable
duration for Bc = 40 MHz of |V | = 2.08 µs (13), leading to
maximum 7 concurrent radar transmissions per Tk, resulting
with Mmax = 70 vehicles supported maximum by RadChat.
A total of 10,000 Monte Carlo simulations are run to obtain
interference probability results. The interference probability
was calculated as follows: for each realization and each frame,
we declare an occurrence of interference if there was at least
1 interferer present in the vulnerable period in at least 1 chirp
within that frame. The interference probability is the number
of such occurrences divided by 10,000 and can be visualized
as a function of the frame index to show the convergence
behavior.

B. Results and Discussion

1) Time to minimize interference: Since radars employing
RadChat exchange radar starting times, the R2R interference
probability vanishes in the steady-state when all facing radars
exchange information and select non-overlapping rTDMA
slots. The time to reach negligible R2R interference (no
interference among 10,000 simulations) is denoted as tfinal and
its maximum, mean and minimum value in a network of M
vehicles is shown in Fig. 11. RadChat is observed to eliminate
interference in less than Tf/2 = 10 ms on the average, whereas
the maximum time to mitigate the interference over 10,000
simulations is less than 13Tf , being less than 260 ms for
W0 = 6. However, selection of a larger W0 is observed
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Fig. 11: The mean, maximum and minimum time to reach negligible R2R
interference (no interference among 10,000 simulations) for varying number
of vehicles M .
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Fig. 12: Comparison of R2R interference over time for varying M facing
radars with RadChat and regular radar.

to decrease this maximum time to reach negligible R2R
interference to 100 ms (Fig. 17).

Fig. 12 shows how the R2R interference decreases over
time with RadChat. It is observed that the R2R interference
decreases sharply after one frame duration (by more than a
factor of 25) and below 10−3 within less than 10 frames (200
ms) for the case with 70 interfering radars.

2) Effect of synchronization error εsync: The R2R interfer-
ence over time in a network of M=70 vehicles is compared
with various synchronization errors in Fig. 13. A uniformly
distributed synchronization error with maximum values εsync =
±{0.6, 1.2, 1.3, 1.6, 2, 20} µs is assumed, where each node
is assumed to retain the same synchronization error during
the simulation. Our simulations are based on a discrete time
resolution of 0.2 µs, which led to V = 2.4 µs after rounding.
Hence, the impact of synchronization errors for εsync ≤ V/2 =
1.2 µs is expected to be minor for RadChat, performing almost
the same as with perfect synchronization. For ε > 1.2 µs, the
possibility of overlap of radar chirp sequences leads to a high
floor of the interference probability.

3) Radar Jitter: The periodicity of radar is observed to be
distorted at most by one Tf during the initialization stage and
the radar experiences no jitter afterwards (result not shown).

4) RadChat Deployment: We investigate the R2R interfer-
ence probability in heterogeneous network setting where not
all nodes are equipped with RadChat. The R2R interference
experienced by a vehicle is compared for a network of M = 70
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Fig. 13: Comparison of the R2R interference probability for the regular radar
with RadChat with zero and varying synchronization error, for M = 70.
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Fig. 14: R2R interference probability versus percentage of RadChat deploy-
ment for a network of M = 70 facing radars.

vehicles with changing percentages of RadChat equipped
vehicles in Fig. 14, where Br = 1 GHz for radar only case
and Br = 0.96 GHz for RadChat. The results show that 100%
deployment of RadChat results with almost total elimination of
R2R interference, though these benefits diminish very quickly
with reduced deployment. When no vehicles are equipped with
RadChat, the reduction of the available radar bandwidth Br

increases R2R interference due to (14).
5) Effect of Communication Parameters: The effect of Bc

on R2R interference is investigated for W0 = {6, 64} in
Fig. 15. In order for RadChat to converge, a large enough
bandwidth must be assigned to the control channel. With a
larger bandwidth, convergence is slightly faster, while with
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Fig. 15: R2R interference probability versus time for changing Bc and W0

for M = 70.
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Fig. 16: R2R interference probability versus time for varyingW0 forM = 70.
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Fig. 17: The maximum time to reach negligible R2R interference (no
interference among 10,000 simulations) for varying M and W0.

a small bandwidth, there is a floor in the interference prob-
ability. Note that allocation of a portion of bandwidth to
communication comes with a cost of degradation in the radar
range estimation performance. However, the radar perfor-
mance degradation is negligible for automotive applications
for the considered communication bandwidths (0.63 cm radar
range resolution reduction and 1.64 cm range estimation
error increase [36]). In Fig. 16, the maximum value of tfinal
is observed to be highly affected by maximum contention
window size W0 for M = 70. Maximum value of tfinal is
observed to decrease from 10Tf to 4Tf with a change of
maximum contention window size from 6 to 64. Both the
communication bandwidth and the contention window size
affect the convergence time considerably due to the CSMA-
based contention scheme.

The maximum value of tfinal for varying M and W0 is given
in Fig.17. It is observed that there is an optimum W0 for
reaching the steady-state as quickly as possible in the worst
case, which depends on M . RadChat converges in at most
tfinal = 1Tf for M ≤ 10 with W0 = {48, 64}, whereas tfinal =
5Tf for M = 70 with W0 ≥ 48. This indicates that the best
choice for the maximum contention window size for the given
parameters in Table II is W0 = 64, which ensures that RadChat
is able to reduce R2R interference below 10−3 in 80 ms and a
reduction of an order of magnitude is achieved almost in one
radar frame time (not shown in results) for a newly formed
70-vehicle VANET. This duration is expected to be shorter
when multiple radars are mounted per vehicle and VANET
connectivity changes slowly.

VII. CONCLUSION

Based on interference analyses for spectrum sharing of
automotive radar and vehicular communications, we propose
guidelines for mitigation of interference and designed the
radar and communication cooperation system RadChat for
FMCW-based automotive radar interference mitigation. Rad-
Chat builds upon the same hardware for radar and communi-
cations and a MAC, which is a combination of FDM, TDMA
for radar, and CSMA for communication. RadChat exploits
the low utilization of time and frequency of a typical radar
with the limited impact of a small bandwidth loss on the
radar performance. Extensive network simulations show that
automotive radar interference probability is reduced signifi-
cantly, by about one order of magnitude every radar frame
time in dense VANETs. RadChat is expected to mitigate
R2R interference even in sparse networks by adaptation of
the vulnerable period in combination with fewer interfering
vehicles. With our proposed approach, we are able to mitigate
interference by shifting radar transmissions in time with higher
penetration rate. Future work will consider larger-scale scenar-
ios for heterogeneous FMCW radars with different bandwidths
and chirp parameters, as well as the additional use of RadChat
for inter-vehicle data communication.

APPENDIX A
VULNERABLE PERIOD FOR R2R INTERFERENCE

The transmission by Vehicle 2, which starts at time τ is
received by Vehicle 1 in Fig.3(a) at time t′ and is equivalent
to a chirp reception starting at t′ − τD without any Doppler
shift. τD is the perceived Doppler time delay and is obtained
as follows after applying the triangle proportionality theorem
to one FMCW chirp in Fig. 2

τD = TfD/Br = Tvfr/(Brc) (34)
∈ [−T |v|fr/(Brc),+T |v|fr/(Brc)] (35)
⊂ [−T |vmax|fr/(Brc),+T |vmax|fr/(Brc)] (36)
≈ [−1/(4Br),+1/(4Br)] (37)

where we have made use of the fact that the maximum radar
detectable relative velocity is given by vmax = c/(4frT ) [49],
and that vehicles may approach or recede.

R2R interference at the first chirp occurs when t′ − τD ∈
[0, Tmax], i.e.. when the first red chirps falls inside the green-
coloured region in Fig. 2, where Tmax = TBmax/Br corre-
sponds to the maximum delay for detectable radar targets.
Considering all possible distances, d/c ∈ [0, αdTmax], then
vulnerable period is given by

V = [−αdTmax − 1/(4Br), Tmax + 1/(4Br)] (38)

In practice, Br � 1/Tmax so this term may be ignored. Hence,
the vulnerable period is approximately V = [−αdTmax, Tmax],
assuming a radar that can sample in-phase and quadrature
samples and has perfect low-pass filtering.
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