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Abstract: Data pre-processing of the LC-MS data is a critical step in untargeted metabolomics
studies in order to achieve correct biological interpretations. Several tools have been developed
for pre-processing, and these can be classified into either commercial or open source software.
This case report aims to compare two specific methodologies, Agilent Profinder vs. R pipeline,
for a metabolomic study with a large number of samples. Specifically, 369 plasma samples were
analyzed by HPLC-ESI-QTOF-MS. The collected data were pre-processed by both methodologies
and later evaluated by several parameters (number of peaks, degree of missingness, quality of
the peaks, degree of misalignments, and robustness in multivariate models). The vendor software
was characterized by ease of use, friendly interface and good quality of the graphs. The open
source methodology could more effectively correct the drifts due to between and within batch
effects. In addition, the evaluated statistical methods achieved better classification results with
higher parsimony for the open source methodology, indicating higher data quality. Although both
methodologies have strengths and weaknesses, the open source methodology seems to be more
appropriate for studies with a large number of samples mainly due to its higher capacity and versatility
that allows combining different packages, functions, and methods in a single environment.

Keywords: metabolomics; data pre-processing; mass spectrometry; liquid chromatography;
R packages; vendor software

1. Introduction

Metabolomics is defined as the complete characterization of low molecular weight molecules
(metabolites) present in a biological system, such as cells, tissues, biofluids, or organisms [1]. Untargeted
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metabolomics are frequently used to compare metabolic profiles between subjects to identify differences
associated with the underlying study question (e.g., disease, diet, etc.) [2].

Untargeted metabolomics studies are carried out through a series of the following steps:
(i) study design and sample recruitment, (ii) sample preparation, (iii) instrumental analysis,
(iv) data pre-processing and statistical analysis, (v) compound identification, and (vi) biological
interpretation [3,4]. These steps must be carried out with high precision and accuracy to maintain
data quality throughout the pipeline that allows interpreting the results and to address the underlying
biological issue of the study [5]. The analytical techniques most frequently used in this type of
studies are proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR) and Mass Spectrometry (MS).
The main advantages of NMR are the high reproducibility/repeatability and accurate quantification,
as well as capacity of structure elucidation. MS, on the other hand, is able to detect a much higher
number of metabolites due to its higher sensitivity [6]. In addition, MS is usually coupled to various
separation techniques at the front end, such as Liquid Chromatography (LC-MS). This hyphenation
is able to separate the analytes prior to MS detection in order to achieve better MS performance.
In metabolomics, LC-MS is the most employed analytical technique [7]. Among the different steps
involved in untargeted metabolomic workflows using LC-MS, this research is primarily focused on
data pre-processing.

Data pre-processing of the LC-MS data is a critical step which involves reducing the complexity
of the raw data, extracting the main features, and transforming them in order to subsequently
perform adequate statistical tests [8]. This process encompasses a series of steps, such as baseline
correction, noise filtering, peak detection, peak alignment, normalization, missing data imputation,
and annotation [8–10]. Different vendor and open source software have been developed to perform
these functions [11,12]. In this sense, the main commercial platforms at present correspond to
the major instrument vendors: Mass Profinder/Profiler from Agilent Technologies (La Jolla, CA,
USA) [13,14], Progenesis QI from Waters Corporation, Compound Discover from Thermo Scientific,
MetaboScape from Brucker, and SIEVE from Thermo Scientific. On the other hand, open source
software has gained in popularity in recent years [7]. Some highly popular software are MZmine [15],
Workflow4Metabolomics [16], MetAlign [17], OpenMS [18], and XCMS [19]. Several, if not most,
software modules are based on the programming language R [7], with a recent survey showing that
the most used tool to pre-process LC-MS data is XCMS [20].

Ideally, the perfect platform to data processing in metabolomics should be intuitive with a
user-friendly interface, open-source, and offer a comprehensive coverage of all steps (or at least with
easy integration to other steps) of the pipeline [7]. While commercial software stands out for being
intuitive and user-friendly, open source solutions are free to use and provide more versatility to the
needs of the users. However, in general they are also less intuitive and have steeper learning curves [7].
Moreover, it is also quite common that different tools show great effectiveness in some of the data
processing steps but not in others. Users therefore have to stitch together different tools to carry
out the entire pre-processing pipeline which often demands more advanced bioinformatics and/or
programming skills [8]. As there are a lot of tools for metabolomics data processing, there is a need to
compare these methodologies and to examine their pros or cons [7,21].

In the present research, two specific methodologies, Mass Profinder/Profiler from Agilent
Technologies vs. a pipeline based on four R packages (IPO [22], XCMS [19], batchCorr [23],
and RAMClustR [24]) for data pre-processing in untargeted metabolomics studies were compared.
We highlighted differences in these two pipelines using 369 plasma samples analyzed by LC-MS,
from a dataset aimed to investigate the metabolism of Systemic Autoimmune Diseases within the
PRECISESADS project (http://www.precisesads.eu/). The software from Agilent Company was selected
as model of vendor software for comparison since the LC-MS equipment used was acquired from that
commercial company. Our aim was to provide insights into benefits and disadvantages of using these
two methodologies, thereby aiding metabolomics researchers in their choice of data pre-processing
strategies as well as proposing tools for switching from vendor-based to open source pipelines for these
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types of studies. Although tutorials may exist for individual pre-processing modules, tutorials on how
to stitch together modules into entire pipelines are lacking. In this way, a detailed tutorial on how to
start using an R-based methodology is provided to offer users with outlines from which to build their
own custom pre-processing pipelines.

2. Results and Discussion

Starting from the idea that data pre-processing is a critical step to decrease the risk of chance
findings and misinterpretation and achieve correct biological interpretations, we have compared two
specific pre-processing pipelines, Agilent software and a methodology based on R packages.

Due to the large number of samples, the methodology based on Profinder software was not able
to perform the data processing of all samples in a single step due to the capacity of the computer.
Consequently, batch recursive feature extraction had to be performed separately for five different
subsets of the entire data set. In contrast, the R-based methodology allowed pre-processing of all
samples at once, and depending on the number of available computer cores, the pre-processing would
be more or less fast.

In the next subsections, we present and discuss several results obtained from the two methodologies,
i.e., number of peaks, degree of missingness, quality of the peaks, degree of misalignments,
and robustness in multivariate models.

2.1. Peak Picking

After grouping of features likely arising from the same metabolite (merging of isotopes, adducts,
and fragments) both methodologies obtained a similar number of molecular features (Agilent
methodology: 548, R-based methodology: 531) and degrees of missing data (Agilent methodology:
8.91%; R-based methodology: 9.59%). The molecular features were cross-checked by retention time
(RT) and m/z, and, in total, 445 were picked by both methodologies. Nevertheless, when using LC-MS
techniques, several thousand features are detected in the biospecimen analyzed. However, in the
present case, only 531/548 molecular features were detected. This happened because the noise level was
set high (1000 counts) in order to ensure that all molecular features detected correspond to biological
molecules. In previous tests with a lower noise level, we were able to detect a higher number of features
(≈1000) but the signals with low intensity presented difficulties for biological identification. Therefore,
the noise level was increased up to 1000 counts for better comparison of the two methodologies.

Regarding the molecular features that were not extracted by any of the mentioned methodologies,
these were explored in raw data. Some examples of these peaks are shown in Figure S1 (Supplementary
Material). Most of these features were characterized by the absence of a clear Gaussian peak shape or
the presence of double peaks very close in retention times, mainly due to isomeric structures. As the
peak search algorithms are different between both methodologies, these molecular features were not
extracted by any of them for the mentioned reasons. In addition, another difference between both
methodologies corresponds to the variable filtering step according to RSD. Filtering was performed
after or during the normalization step, in the vendor and R-based methodologies, respectively. These
differences in the filtering step could produce that some features would just be filtered by only one of
the two methodologies.

RT drift was well aligned by XCMS, which modifies the RT for the samples to achieve
superpositioning of the chromatograms (Figure S2, Supplementary Material). In contrast, the Mass
Hunter Profinder software does not modify the RT of the chromatograms, but instead, it tries to find
the features in the samples within a RT range. With the high number of injections, RT drifts were
pronounced, resulting in poor peak matching for several features. Those failures need to be corrected
by the operator one by one, being a very time-consuming step. An example of this type of failure
is shown in Figure S3 (Supplementary Material). Since manual supervision and correction of the
results is highly time consuming, an advantage of the Profinder software is the ease of visualizing
the molecular features. Manual inspections and corrections, are, however, much more tedious in the
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R-based approach. XCMS integrations were therefore indirectly assessed by Pearson correlation with
peak areas obtained from the Agilent workflow after manual inspection and correction, (Figure S4,
Supplementary Material), which showed overall a very high accordance. Interestingly, peak area
correlations decreased somewhat when comparing XCMS peaks to those obtained from the Agilent
software prior to manual correction (Figure S5, Supplementary Material), suggesting better results
obtained by using R-based pipeline in tremens of alignment and integration. We hypothesize that
this could be highly related to the greater number of parameters that can be modified and optimized.
In contrast, the used vendor software does not allow adjusting so many parameters and there is no
automatic optimization process.

2.2. Normalization Results

The metabolomic data from the three batches was collected in different months and each
batch lasted for about a week. These facts produced large between-batch and within-batch effects.
The magnitude of these drifts was detected by the distribution of the QC samples in the PCA score
plots [4] from raw data obtained with both Agilent MassHunter Profinder software (Figure 1a) and
R-based (Figure 2a) methodologies. These effects are quite common in large-scale LC-MS studies due
to different reasons, such as matrix effects, variations in chromatographic conditions, loss of mass
ionization efficiency, or variability in MS sensibility [25]. Consequently, normalization is one of the
most critical steps in any pre-processing pipelines, to ensure that the data is comparable, without losing
valuable biological information [26]. The number of normalization methods in vendor software is in
general limited. Specifically, in Agilent Mass Profiler Professional software (MPP), the offered methods
are by internal standards, quantile and percentile shift. Normalization by internal standards is widely
considered to be not fit for purpose in untargeted metabolomics [27]. The other techniques did not
provide satisfactory normalization and showed that study samples were visibly separated by the batch
(Figure 1). These normalization methods are based on the signal intensity distributions [28] and do not
consider possible feature drift patterns [23]. In order to improve the obtained results by vendor software,
data was also normalized by the open access platform MetaboAnalyst 4.0, which showed improved
efficacy (Figure S6, Supplementary Material). Furthermore, MetaboAnalyst has the advantages that it
is both free to use and has a friendly, intuitive web-based interface (https://www.metaboanalyst.ca/).
However, it is also important to note that this tool is mainly oriented to statistical analysis and
not pre-processing.
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way, the open source package (bathCorr) applied to our data showed good results getting a 
well-behaved grouping of the QC samples and allowed the batch effects to correct in a higher degree 

Figure 1. PCA scores plot from data obtained by Agilent MassHunter Profinder software. (a) Raw data;
(b) data normalized by the quantile method (Mass Profiler Professional, MPP); (c) data normalized
by the percentile shift (75.0) method (MPP); batch 1 in red, batch 2 in blue, batch 3 in gray, and QCs
in brown.

Unlike Agilent MPP software, there are several open source programs based on R to carry out
the normalization step in large untargeted LC-MS metabolomics studies, such as MetNormalizer [27],
BatchCorr [23], MixNorm [29], Normalyzer [30], or NormalizeMets [31], among others. Most of them
are based on QC samples taking into consideration the possible feature drift patterns. In this way,
the open source package (bathCorr) applied to our data showed good results getting a well-behaved
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grouping of the QC samples and allowed the batch effects to correct in a higher degree (Figure 2).
The main advantage of batchCorr is that it takes into account different possible drift trends along the
sequence [23], and examples of some of these different patterns are shown in Figure S7 (Supplementary
Material). Therefore, different correction functions are used depending on the detected drifts. However,
as an example of the less thought through user experience in most R packages, the native PCA plots
provided by the batchCorr package were very rudimentary (Figure S8, Supplementary Material).
Nevertheless, it is important to clarify that the low resolution of the graphics obtained by batchCorr
is not generalizable to all developed packages based on R. The data were therefore imported in
MetaboAnalyst to obtain more visually pleasing figures (Figure 2).
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2.3. Multivariate Models

A subset of samples (systemic sclerosis patients and healthy controls) was selected for multivariate
modeling. The same statistical tests were performed for the data using both methodologies. First,
PLS-DA models performed by MetaboAnalyst 4.0 showed slightly higher classification accuracy and
predictive power using data obtained from the R pipeline (Figure 3). More detailed information on the
top-ranked metabolite features (Figure 3g,h) are available in the Supplementary Material (Tables S1
and S2). Six metabolites (L-kynurenine, PS(18:0), Pipecolic acid, Theophylline, and two unknowns)
were found among the 15 most important in both PLS-DA models. Although only these six compounds
were common in both PLS-DA models, several of the other signals appeared between positions 15
and 30 of the VIP ranking of the opposite model (Table S1). Another factor is related to the different
number of molecular features used for the PLS-DA models (548 vs. 531). Therefore, some of the
metabolites were not statistically significant in both PLS-DA models since they were only extracted by
one methodology. In this way, the PLS-DA models were also performed using only the 445 common
molecular features. In these models, 11 molecular features were common among the 15 variables
with higher VIP values. The results of these PLS-DA models are shown in Figure S9 (Supplementary
material). According to the previous models, better classification results were also obtained by making
use of the data pre-processed by the R-based methodology.

PLS models were also performed in R using the MUVR package, which employs a more prudent
cross-validation scheme (repeated double cross-validation) and also performs unbiased variable
selection [32]. Analogously to the PLS analyses performed using MetaboAnalyst, slightly better
classifying results were found with the data obtained in R (Table 1). Overall, better modeling results
were obtained for the R data, including parsimony, represented by a lower number of selected variables.
Misclassifications and the confusion matrices are shown in Figure 4, and complete lists with annotated
metabolites are provided in the Supplemental Tables S3 and S4. The higher number of components
and variables in the model with data from Profinder software may make the biological interpretation
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of the results more difficult [33]. In addition, the ideal model would be the one that achieves better
classifying results with a smaller number of variables. Therefore, the better results obtained with R
data indicate higher data quality compared to the commercial pre-processing pipeline.Metabolites 2020, 10, x FOR PEER REVIEW 6 of 13 
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Figure 3. A supervised Partial Least Squares Discriminant Analysis (PLS-DA) performed in the
MetaboAnalyst 4.0 software. PLS-DA scores plot (a), Agilent Profinder Software Data (V), (b), open
source data (O), ROC curve for PLS-DA model validation (c), V; (d), O, permutation test result (e), V;
(f), O, 15 most significant features (g), V; (h), O.
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Table 1. Main results (number of variables (nVar), classification rate (class, %), Area Under the Curve
(AUC), number of components (nComp), and p-value of permutations test) obtained for the PLS models
using MUVR package.

PLS-MUVR Models nVar Class (%) AUC nComp p-Value

R Data 15 86.8 0.931 2 1.38 × 10−6

Profinder software Data 67 81.7 0.893 3 2.80 × 10−5
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In view of the annotated metabolites, L-kynurenine and phosphatidylserine (PS) were found
among the most significant variables in all four multivariate models. The kynurenine pathway has
shown a large impact in recent years due to its relation with the immune system, inflammation and
neurological processes [34].

Furthermore, the dysregulation of the kynurenine pathway is in agreement with results from
other autoimmune diseases, such as systemic lupus erythematosus (SLE) [35].

Other differential metabolites in the majority of the models were acylcarnitines, unsaturated
fatty acids (UFAs), and phospholipids. The dyregulation of these metabolites, mainly acylcarnitines
and UFAs, are in line with previous research on a smaller number of volunteers [36], which gives
consistency to the data obtained by both methodologies in this subset of samples.

2.4. Global Comparison of Both Methodologies

Based on the results obtained in the previous sections, the main advantages and disadvantages of
each methodology are highlighted in Table 2.

The Agilent software methodology is characterized by its ease of use, a high level of dedicated
support, and good integration with annotation modules. In view of the results obtained, commercial
software seems to be appropriate for studies of metabolomics with a smaller number of samples,
where there is little drift in m/z, RT, or signal intensity over time. However, for metabolomics studies
with a larger number of samples, as in the case of the example shown, the commercial software used
have limitations mainly in the capacity to process a high number of samples as well as in correcting for
signal drifts. In addition, the high occurrence of incorrect peak integration requires extensive efforts by
researchers for manual correction. Fortunately, these disadvantages can be addressed using open source
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methodology, e.g., in R, although this environment is not as user friendly or intuitive as commercial
software. Furthermore, if the user has never worked with R-based methodologies, the initial learning
curve is very steep. To compensate for this difficulty and to aid R beginners in setting up a data
pre-processing and analytical pipeline, a tutorial is provided in the online Supplementary materials.

Table 2. Main advantages and disadvantages of the use of Profinder software and R packages
(IPO, XCMS, batchCorr, and RamClustR) for pre-processing of metabolomics data obtained
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Candidate biomarkers discovery should ideally be independent on the methodology used for
data processing [11]. However, we have shown differences in the selection of candidate metabolites
obtained by the two different methodologies in the presented example related to Systemic Sclerosis.
In fact, multivariate models had a higher classification rate and were more parsimonious using data
obtained by the open source R methodology. These observed differences are likely related to the
quality of the data used to create such models. In view of the results, the differences in data quality can
be highly influenced predominantly by the normalization step, which has been revealed as e main
weakness of the vendor software methodology.

3. Materials and Methods

3.1. Dataset

Metabolomic data were obtained from samples of the PRECISESADS project (www.precisesads.eu).
The aim of this project is to find clinically useful biomarkers in order to obtain a new reclassification of
7 systemic autoimmune diseases (systemic lupus erythematous, rheumatoid arthritis, systemic sclerosis,
mixed connective tissue disease, antiphospholipid syndrome, Sjögren’s syndrome, and undifferentiated
connective tissue disease). This metabolomic analysis is ancillary to the written informed consent
obtained from each participant of the study, which was registered on clinicaltrials.gov with the
code NCT02890121.

Plasma samples from 247 patients with the above diseases and 59 healthy volunteers were
analyzed. Subjects were recruited from different study centers across Europe. Biological samples were
obtained and stored at −80 ◦C until analysis. A Quality Control (QC) sample was obtained by mixing
20 µl of each study sample including both controls and case samples. After thawing on ice, a protein
precipitation step was carried out with a mix of methanol-ethanol (1:1; v/v). Samples were analyzed
using an Agilent 1260 HPLC instrument coupled to an Agilent 6540 Ultra High Definition (UHD)
Accurate Mass Q-TOF equipped with a Jet Stream dual ESI interface. Metabolites were separated
using a reversed-phase C18 analytical column (Agilent Zorbax Eclipse Plus, 3.5 µm, 2.1 × 150 mm)
and detected in positive-ion mode over a range from 50 to 1700 m/z. The analytical methodology is
described in detail elsewhere [36].

www.precisesads.eu
clinicaltrials.gov
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The QC sample was injected five times at the beginning of each sequence in order to stabilize
the equipment and also continuously throughout the analytical sequence (each five study samples) to
monitor system performance and perform feature intensity drift correction. Due to the large number
of samples, instrumental analysis was performed in three batches. In addition, MS/MS analysis of
the QC sample was performed in order to obtain a representative fragmentation pattern of the main
metabolites present in the majority of the samples. This analysis was carried out using nitrogen as the
collision gas with 10 eV, 20 eV, and 40 eV as collision energies.

3.2. Data Pre-Processing

Figure 5 schematically shows a summary of both methodologies carried out for pre-processing of
the data. Both methodologies are described in detail in the following subsections.
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the comparative study.

3.2.1. Agilent MassHunter Profinder Software Approach

Data was processed using the Agilent MassHunter Profinder B.06.00 software using Automatic peak
finding by the two-step method. This software was installed on a Windows 7 computer with 3.20 GHz
Intel Core i7 and 32 GB of RAM memory.

First, a batch recursive feature extraction was performed using data from QC samples as a
representative sample in which all endogenous metabolites should be present. Due to the large number
of sample files and their size, molecular feature extraction of the QC files was performed in the first
place. Second, the molecular features found in the QC samples were then used to guide feature selection
in the case and control study samples. In this step, peaks with intensity lower than 1000 counts were
filtered out. Isotopes and adducts were grouped into a molecular feature with a maximum charge of 2.
Feature alignment was performed with 20 ppm ± 2 mDa mass and 0.25 min retention time windows.
Molecular features were manually inspected and corrected before integration. Both percentile shift and
quantile normalization methods were tested using the Mass Profiler Professional software (Agilent
Technologies). Due to the large between-batch and within-batch effects, the data were normalized using
two methods consecutively. Firstly, the Bayes method from MetaboAnalyst 4.0 [37–39], and secondly,
the Mass Total Useful Signal (MSTUS) method. Finally, the molecular features with high variability in
QC samples (relative standard deviation, RSD, higher than 30%) were removed.
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3.2.2. R-Based Approach

First, Agilent .d files were converted to .mzML file format using the MSConvertGUI software [40]
to be able to import them into the R open source environment (version 3.5.1). The R scripts, packages,
and commands were applied in RStudio environment (version 1.1.456) to facilitate use and visualization
of the results.

The XCMS package was used for peak picking retention time alignment, grouping, and filling of
missing features [19]. XCMS parameters were optimized using a combination of the IPO package [22]
and manual optimization. For IPO optimization, 6 QC files spanning the multi-batch injections
sequence were selected. The final optimized parameters for peak picking using the “centwave” method
were the following: peakwidth = c (12.45, 35), mzdiff = 0.00175, prefilter = c (3, 1000). Retention
time adjustment was performed with the “obiwarp” method using the following optimized values:
profStep = 0.3, response = 13.84, gapInit = 0.352, gapExtend = 2.436. Finally, feature correspondence
was achieved with the “density” method using the following optimized parameters: bw = 5.0 and
mzwid = 0.047.

Imputation of values still missing after XCMS peak filling was performed using an in-house
script based on RandomForest (https://gitlab.com/CarlBrunius/StatTools; mvImpWrap function).
The obtained data was corrected for within- and between-batch intensity drift using the batchCorr
package [23]. Moreover, the features with high variability after normalization (RSD > 30%) were
filtered out.

Finally, grouping of features (isotopes, adducts, and fragments) corresponding to the same
metabolites was achieved using the RAMClustR package [24]. RAMClust grouping is based on
similarity between features in retention time and intensity correlations between samples. The similarity
parameters (σt, σr) were optimized using an in-house procedure and were set at values of 1.33 and
0.3, respectively.

All R scripts used in this research are available in full detail with comments as a tutorial in the
Supplementary materials.

3.3. Statistics and Metabolite Annotation

In order to compare both methodologies, different statistical tests were performed. The Pearson
correlation test was used to study the similarity of metabolite features obtained with both methodologies.
Moreover, a subset of samples (53 healthy control and 45 patients with systemic sclerosis) was chosen
for multivariate data analysis. PLS-DA models were performed using MetaboAnalyst 4.0 [41] and the
R MUVR package [32]. Permutation tests were performed in both models for validation [42].

To provide biological meaning to the results, metabolites of interest were annotated according to
Metabolomics Standard Initiative (MSI) guidelines [43]. Annotation was performed by comparing
MS and MS/MS spectra with information from metabolomics databases (LipidMaps, KEGG Human
Metabolome Database and METLIN) as well as MS/MS fragmentation resources, such as MetFrag and
Sirius [44,45].

4. Conclusions and Future Research

Both vendor and open source methodologies have strength and weaknesses. However, we have
shown that the open source methodology is the most suitable option for metabolomic studies with
a larger number of samples in multiple batches. First, this methodology is to a much higher degree
able to correct the large between- and within-batch effects. In addition, it stands out for being free and
open source, having a greater capacity and versatility to use a large number of packages, functions,
and methods in a single environment. Nevertheless, this environment is also less intuitive, frequently
with lower quality graphical output, and with a distinctly steeper learning curve. We provide a detailed
tutorial to help users of commercial software to start processing data through R-based methodology.
Nevertheless, our study has some limitations related to the possibility of generalizing the results to

https://gitlab.com/CarlBrunius/StatTools
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the rest of commercial software. It is important to recognize that each of the vendor software has
its own advantages and disadvantages that may differ from the commercial software used, Agilent
MassHunter Profinder. Future research should therefore focus on comparing other vendor software
with the proposed R-based pipeline.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/1/28/s1.
(Supplementary material 1) and (Supplementary material 2-A brief Tutorial on R-based approach).
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