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Abstract
Process-level detection of cyberattacks on industrial control
systems pertain to observing the physical process to detect
implausible behavior. State-of-the-art techniques identify a
baseline of the normal process behavior from historical mea-
surements and then monitor the system operation in real time
to detect deviations from the baseline. Evidently, these tech-
niques are intended to be connected to the control flow to be
able to acquire and analyze the necessary measurement data,
which makes them susceptible to compromise by the attacker.
In this paper, we approach process-level attack detection from
a side-channel perspective, where we investigate the feasibil-
ity and efficacy of monitoring industrial machines through
external sensors. The sensors measure physical properties
of the process that are bound to change during a cyberat-
tack. We demonstrate the viability of our approach through
simulations and experiments on real industrial machines.
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1 Introduction
The benefits of connecting Industrial Control Systems (ICS)
that control physical, and often safety-critical, processes to
the Internet and the satisfaction it offers to industrial stake-
holders suggest that the trend of digitalization and connec-
tivity in this domain will continue to expand. Inevitably,
the reality to be foreseen is one where malicious actors with
various motives leverage this crossover from the cyber world
to the mechanical world to launch sophisticated cyberattacks
that have potential to cause unsustainable losses to criti-
cal infrastructure. Conventional IT-based security, such as
encryption, firewalls, access control and so forth may, with
proper adjustments, be applicable to parts of these systems.
However, in light of the increasingly reported successful cyber-
attacks on vital infrastructure, the need for more advanced
and tailored solutions that can guard the physical-level oper-
ation has been pressing over the recent years. In this context,
techniques that directly monitor industrial processes through
process data have been one of the driving efforts for achiev-
ing an additional layer of security in ICS [3–5, 7, 9–11]. In
particular, model-free techniques, which stem from different
disciplines including statistics, machine learning, and time-
series analysis, do not require a specification of the physical
process. They share the common purpose of establishing a
baseline for the benign behavior of the system from histor-
ical measurements, and then detecting deviations from the
baseline in real time.

In this work, we explore the viability of using the mentioned
techniques for side-channel based monitoring of industrial
machinery. The principal idea is that industrial machines
are poised to exhibit changes in physical properties, such
as vibration and sound, when an attack is undergoing. As
these properties can be measured with sensors, process-level
attack-detection mechanisms may be used to detect such
changes in behavior.

Our side-channel based approach has the following merits:
i) the detection system is relatively cheap and practical to
deploy; ii) it is completely isolated, hence unreachable by
the attacker; iii) and it makes fewer assumptions about data
collection since it generates its own data.
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Aoudi et al. [3] and Almgren et al. [2] have demonstrated
that process-level intrusion detection systems can accurately
detect stealthy attacks and run reliably in real industrial
settings. However, the way their proposed system is deployed
shows high dependence on the monitored process. This work,
on the other hand, shows that it is not only feasible, but also
practical and cost-efficient, to deploy a duplicate system for
more robust monitoring. Other related works in the literature
have focused on fingerprinting to authenticate sensors and on
performing side-channel analysis to detect changes in software
behavior. For instance, Ahmed et al. [1] use noise patterns
in sensor measurements, which appear due to manufacturing
imperfections, to detect data integrity attacks. Van Aubel
et al. [12] propose to use electromagnetic measurements to
detect behavioral changes in ICS software. Our proposed
detection approach differs from similar hardware-based anal-
ysis techniques in that it works directly at the machine level.
We tested our technique on an industrial metal lathe and a
drilling machine and managed to successfully detect realistic
attacks on them.

We present our methodology in Section 2, and lay down
principles of signal processing in Section 3. We state the
design choices we made in Section 4 and how these choices
are realized in Section 5. Finally, we evaluate our approach
in Section 6 and conclude this work in Section 7.

2 Methodology
Three main components make up our system: the sensors,
the attack-detection algorithm, and the embedded system
on which the detection algorithm runs. The sensors mea-
sure the desired physical properties of the machines. The
generated measurements are then preprocessed and fed into
the detection algorithm, which computes a score for every
measurement to determine if the process behavior is drifting
from the baseline behavior.

We chose PASAD, a process-aware stealthy-attack detec-
tion mechanism recently proposed by Aoudi et al. [3], as the
detection algorithm running on the embedded system. The
choice of this algorithm as well as the choices for the sensors
and the embedded system are motivated in Section 4.

Initially, PASAD learns the normal behavior from historical
sensor measurements in an offline training phase. The learning
is achieved by embedding the time series of measurements in
a vector space and then performing a spectral decomposition
of a matrix made up of the training vectors to identify a
signal subspace, where the deviation from normal behavior
is more detectable. More specifically, when mapped to the
signal subspace, the sensor measurements form a cluster
during normal system operation, and depart from the said
cluster when the system is experiencing changes in behavior.

The parameters from the the training phase are then used
in an online detection phase, which is the part of the algorithm
that we implement on the embedded system to detect attacks
in real time. The detection works by computing a so-called
departure score for every incoming sensor measurement to
determine whether the physical process is under attack. The

elements of the detection phase are explained in more detail
in Section 5.

3 Background
The detection algorithm runs in the digital domain, whereas
the measured signals fed into the algorithm are analog in
nature; this necessitates a kind of conversion of input signals
from analog to digital. This section lays down concepts related
to analogue-signal handling and well-established techniques
in electrical engineering that helped us build the desired pro-
totype and achieve our design goals, such as cheap hardware
and independence of the actual process sensors.

The conversion from the analog domain to the digital do-
main is achieved using an Analog-to-Digital Converter (ADC).
The input signal to an ADC consists of a voltage that needs to
be within a voltage range defined by the ADC’s specification.
The ADC converts the voltage at the input to a digital value
where the range of this value is determined by the ADC’s
number of bits 𝑁 such that 𝑁 bits allow 2𝑁 −1 quantization
levels to be represented. For example, a 12-bit ADC with a
full scale voltage range of 3.3 V has a voltage resolution of
approximately 806 µV. This translates into one of the 4096
steps available for a 12-bit ADC, equivalent to 806 µV. In
order to take advantage of all quantization levels provided
by the ADC, it is recommended to make the analog input
signal span the entire full scale voltage range. However, it is
common for analog signals from sensors to have amplitudes
many times smaller than the ADC’s full scale voltage range.
This can be rectified by amplifying signals with small ampli-
tudes using an operational amplifier circuit in a non-inverting
configuration with two resistors as shown in Fig. 1a.

The output of an analog sensor often spans both posi-
tive and negative voltages. Since most ADCs use unipolar
voltages, it is necessary to convert the negative voltages to
positive voltages by introducing an offset. Restricting a volt-
age range to only positive voltages can be performed by using
an operational amplifier summing circuit, shown in Fig. 1b.
This type of circuit allows a direct voltage offset (bias) to be
added on top of the input signal, resulting in the addition
of the two. Knowledge of the maximum expected negative
value on the input can be used to derive a sufficient DC bias
to ensure that the output signal will not, in theory, become
negative.

If the expected frequency content of the measured signal
is known, it is sensible to suppress signals with frequencies
outside of the chosen spectrum to minimize the out-of-band
noise. One way to suppress the unwanted high-frequency
components is to pass the signal through a low-pass filter
with a cut-off frequency determining where the attenuation
of the filter starts to have a significant impact on the signal.
Usually, the cut-off frequency is defined as the frequency
where the attenuation of the signal is −3.01 dB. A simple
way to construct a low-pass filter is using a resistor and a
capacitor as shown in Fig. 1c, which depicts a first-order filter,
meaning that it only consists of one frequency-dependent
element. As a consequence, the attenuation roll-off rate in
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the stop band is limited to −20 dB/decade. Higher-order
filters provide steeper roll-off at the expense of needing more
components. In a similar fashion, one could construct a high-
pass filter by switching the places of the resistor and the
capacitor.

Some sensors have a significant capacitance associated with
them, which needs to be factored in during implementation.
Essentially, depending on the capacitance of the sensor being
used, as well as how low frequencies are to be measured,
significantly high resistance values may be needed in order to
reduce the filtering effects of the sensor’s capacitance. If such
high resistance values are not available when building the
measurement circuit, one can use a bootstrap circuit, such as
the one depicted in Fig. 1d, to emulate the needed resistance
using resistance values that are orders of magnitude lower. It
is recommended, however, to use a high resistance value since
it decreases the complexity of the design and is most likely
cheaper to construct in addition to a lower power draw. The
capacitor 𝐶1 will prevent any direct current to impact the
positive feedback of the circuit, meaning it will only feed back
signals that vary in time, such as sine waves. The resistors
𝑅3 and 𝑅2 form a voltage divider from the output of the
circuit, which results in a voltage potential at point A.

Finally, it is worth noting that any system that converts
analog signals to a discrete representation through sampling
needs to fulfill the Nyquist–Shannon sampling theorem, which
states that the minimum sampling rate of the system needs
to be higher than twice the bandwidth of the sampled signal
in order to avoid aliasing.

4 System Design
One of our main goals in this work is to build a detection
prototype that is cheap, practical to deploy, and independent
of the system being monitored. The system consists of sensors
that measure relevant physical properties of the industrial
machines, an STM32F767ZI microcontroller as an embedded
system running the attack detection algorithm, and a PC.
This section states and motivates the design choices we made
pertaining to the types of sensors employed, the anomaly-
detection algorithm, and the embedded system. An overview
of the system can be seen in Fig. 2.

4.1 Choice of Sensors
Three types of off-the-shelf sensors were decided to be used:
a microphone sensor, a load sensor, and a vibration sensor.

The microphone sensor allows for controlled tests even in
presence of some background noise. By placing the micro-
phone in a quiet setting, strict control of noise or disturbances
can be achieved. Furthermore, complex test cases can be emu-
lated by playing multiple sound sources to the microphone at
the same time. As a result, the microphone sensor allows easy
testing of a variety of wave forms with different frequencies
and shapes. The output of the microphone sensor circuit can
either be a sine wave from the microphone or a DC voltage
corresponding to the frequency of the sine wave’s output

using a frequency-to-voltage converter. Using both micro-
phone sensor and frequency sensor circuits widens the input
frequency range of the signal without violating the Nyquist-
Shannon sampling theorem. Moreover, this sensor property
enables two types of testing scenarios with the voltage type
requiring less resources due to the fact that the minimum
required sampling rate of the ADC does not depend on the
actual frequency of the microphone’s sine wave since the
latter is transformed to a DC voltage. However, the trade-off
is that we lose all information about the waves’ amplitudes.

The load sensor provides a simple case as it produces a
constant output provided that the load on the sensor remains
constant. While the microphone sensor produces constantly
changing output values, the load sensor is more stable and
only changes its output when the load changes. This makes
the load sensor suitable as a reference case, where barely any
other factors than what it is loaded with come into play. In
particular, background noise can influence measurements in
the case of the microphone sensor and slightly distort the
output, and vibrations from adjacent machinery could also
affect the measurements of the vibration sensor. The load
sensor uses a strain gauge load cell with a capacity of 10 kg.
Choosing a relatively low maximum load value allows for
easy prototyping and testing. The resistance of strain gauge
load cell changes roughly linearly with the load. This change
in resistance can be detected and translated into a voltage
that the ADC on the microcontroller can interpret.

The vibration sensor is inherently robust against various
noise sources when mounted on machinery in realistic en-
vironments. Similar to the microphone sensor, the output
of the vibration sensor is a sine wave, which is subject to
sampling rate requirements. However, the vibration sensor
used in our work is designed for low frequencies bounded
below 40 Hz, which severely reduces the sampling require-
ments compared to sound waves in the audible range. The
vibrations generated from machines, such as lathes or fans,
often vary in intensity and are more difficult to control than,
for example, the volume of a speaker. Consequently, to allow
measuring different vibration scenarios with this sensor, it is
sensible to have a variable gain in the vibration sensor circuit
in order to match the signal’s output amplitude of the sensor
circuit to the full-scale voltage range of the ADC.

4.2 Choice of Detection Algorithm
As stated in Section 2, the anomaly-detection algorithm of
choice in this work is PASAD. For the detection algorithm to
fit our approach, it is required to be model-free and capable
of detecting changes in the process behavior by solely pro-
cessing time series of sensor measurements. There exist other
candidates in the literature, such as autoregressive models
and neural network-based methods, but they lack important
features that make PASAD better suited for our purposes.

Compared to PASAD and neural networks, the main oper-
ation of the autoregression method in the detection phase is
simple and lightweight as it mainly consists of a prediction
step based on a relatively simple linear combination of a
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Figure 1: Circuitry used for handling the analogue sensor signals.
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Figure 2: System overview where the STM32F767ZI is within
the dotted lines.

number of recent values. However, this simplicity comes at
the expense of low detection accuracy in presence of noise [3].

The neural network-based method proposed in [9], where
the network architecture is determined by a genetic algorithm,
is claimed to have potential to become quite efficient at
detecting anomalies in a time series of data. However, this
hinges upon the algorithm being given extensive time for
training in addition to having formidable hardware resources
available. Even with access to powerful hardware, the time it
takes to come up with the optimal architecture still takes a
long time.

PASAD exhibits better detection rates and is capable
of detecting more types of attacks than the autoregressive
model [3]. One of the reasons for the better performance
is that the algorithm is highly insensitive to noise, which

makes it better at detecting attacks that are stealthy in
nature, wherein attackers try to hide the attacks within the
noise level. However, PASAD does use more resources than
the autoregression method for its detection phase, especially
when it comes to memory usage. The additional memory used
is due to the higher storage size of the algorithm’s output
from the training phase. However, the memory requirement
does not seem to be absurdly high in comparison to what is
available on many commercial microcontrollers. The scenario
with the highest memory usage presented in [3] uses around
1.7 MB of data which is a reasonable size of the flash memory
available on a microcontroller.

4.3 Choice of Embedded System
The choice of the STM32F767ZI microcontroller as an em-
bedded system (see Fig. 2) for running PASAD was made
after a comparison with two other potential candidates:
Raspberry Pi 1 Model A+ and Arduino Due. The metrics
used in the comparison were computational performance,
amount of memory, the availability of analog-to-digital con-
version, and double-precision floating-point support.

When it comes to performance, the Raspberry Pi is consid-
erably faster with its 700 MHz clock frequency compared to
the Arduino Due’s 84 MHz and the STM32F767ZI’s 216 MHz.
However, the Raspberry PI’s RAM is of SDRAM type that
has a slower access time than the SRAM, which the other
microcontrollers feature. On the other hand, the other mi-
crocontrollers do not have enough RAM to store all the
training vectors, which necessitates real-time transfer of data
between the RAM and the flash memory.

The Arduino Due does not have hardware support for
floating-point calculations, which forces the system to perform
these operations in software instead of hardware, thereby
significantly reducing the performance of its floating-point
operations.

In terms of memory, the Raspberry Pi outperforms the
other microcontrollers because of its large RAM, which makes
it possible to store all the training vectors without having to
load parts of them from any non-volatile memory in real time.
The STM32F767ZI’s RAM can hold all of the training vectors
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in most of the experimental cases. In the other cases, the
microcontroller’s clock frequency and transfer speed from
the flash memory makes it feasible to temporarily transfer
the necessary vectors from the flash memory to the RAM in
real time. Implementing a real-time memory transfer for the
Arduino Due would be complex due to its limited RAM size,
which is further complicated by the lack of enough non-
volatile memory to store training vectors for the more de-
manding experiments.

The Arduino Due and the STM32F767ZI have built-in
ADCs, all of them supporting a resolution of 12 bits. These
ADCs are considered to be adequate when it comes to the
sampling rate and resolution requirements of commonly used
sensors. However, the Raspberry PI does not feature any built-
in ADC and therefore needs an external ADC connected to it,
which would add to the complexity of the embedded system.

Since the task was to find an adequate resource-constrained
embedded system, the optimal choice was decided to be the
STM32F767ZI microcontroller due to its reasonably fast CPU,
hardware support for double-precision floating-point format,
fast and sufficient memory, built-in ADC, and low power con-
sumption.

5 Implementation
Several challenges arise when attempting to execute the top-
level design decisions described in Section 4 in terms of both
hardware and software implementation. One of the major
challenges is to implement PASAD on such a severely limited
hardware as a microcontroller. This section details such an im-
plementation, where the supporting sensor circuitry needed to
enable the measurement of analog signals and preparing these
for the microcontroller is presented, followed by a descrip-
tion of the software implementation of the anomaly-detection
system on the microcontroller.

5.1 Interfacing the Microcontroller and the PC
The STM32F767ZI microcontroller features a debug USB
by default that can be used to flash the code of the pro-
gram. However, since it is a debug USB, it cannot be used
to transfer any non-debug data and commands between the
microcontroller and the PC in real time. To work around
this, we chose to use the UART interface, which is supported
by many systems and can be used to control the microcon-
troller from a machine with a simpler interface, such as a
PC. The asynchronous serial communication between the mi-
crocontroller and the PC was set to have a speed of 115 200
baud per seconds since this was thought to be the highest sta-
ble speed that could be used. This speed corresponds to a
data rate of 11 520 bytes per second.

In addition to the hardware interfacing, we developed a
program that runs on the PC to meet the needs of the mi-
crocontroller. The program was programmed to have four
functionalities: i) Send a command to the microcontroller to
start collecting values that can be used in the training phase;
ii) Create a .csv file from the binary file extracted from
the flash memory that contains the collected values to be

used in the training phase; iii) Create a binary file from
training vectors that can be used when flashing the microcon-
troller’s flash memory; and iv) Send a command instructing
the microcontroller to start running the PASAD algorithm.

5.2 Interfacing the Microphone
The microphone sensor is an electret FC-109 MAX9812 Mi-
crophone Amplifier Module that outputs both positive and
negative voltages approximately in the range ±35 mV at
sound pressure levels of ≈ 60 dB. Since the ADC is designed
to accurately convert voltages within 0 V and 3.3 V, the in-
terfacing circuit should raise the negative voltages above
0 V, which is achieved using a unipolar-to-bipolar conversion.
Since it is recommended to use the entire available range of
the ADC in order to use as many bits as possible for the
quantized signal, the interfacing circuit should also amplify
the signal level to span the entire available voltage range
0 V to 3.3 V. Both of the operations can be performed using
operational amplifiers in combination with a few resistors.
Raising the voltage can be done using a summing circuit and
amplifying the signal can be performed using a non-inverting
operational amplifier, where the values of the supporting re-
sistors connected to the operational amplifier determine the
gain (see Section 3). Next, the signal is filtered by a simple
resistor-capacitor circuit to keep the signal of interest, which
is in the human hearing range (< 20 kHz).

In order for the signal to be ready for the ADC, the input
voltages need to remain within the 0 V to 3.3 V range. Since
the output of the microphone depends on the input sound
level, sounds that are well above the conversation sound level
will result in signals with higher amplitudes than what the
system is designed for. To avoid this situation, a pair of
Schottky diodes are placed after the filter connected to the
3.3 V source and ground respectively.

With a working microphone circuit, the output of this cir-
cuit is ready to be sent to the ADC. However, the microphone
circuit has also been extended by introducing another circuit
that converts the frequency of the output signal to a constant
voltage, i.e., a DC signal that can be fed to the ADC. This
allows the microphone circuit to work in two modes, either by
sending varying signals to the ADC that takes into account
both its amplitude and frequency, or by sending a DC signal
to the ADC where the amplitude is omitted.

5.3 Interfacing the Load Sensor
The second sensor consists of a load cell fastened between two
plates that function as the surface on which weights can be
placed. A load cell is a weight measurement device consisting
of a metal beam that bends when force is applied to it. The
cell has a strain gauge that is connected to the metal beam
of the load cell, which bends along with the metal beam
when force is applied to it. When the strain gauge is bent,
the change in its resistance can be measured to derive how
much force has been applied to the load cell. However, the
change in resistance is oftentimes extremely small, which
makes it difficult to measure. To allow such small changes in
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resistance, the strain gauge is connected to one of the legs
in a Wheatstone bridge circuit, which allows exceptionally
precise measurement of the strain gauge’s resistance [6].

Even though the Wheatstone bridge allows the detection
of small changes in resistance, the resulting voltage from the
Wheatstone bridge will still be extremely small and needs to
be amplified [8]. An instrumentation amplifier can be used for
this task since it has a high input impedance, thus limiting
the effect it has on the input circuit. The instrumentation
amplifier used to interface the output of the load cell is
INA217, which has an input impedance of 60 MΩ. The gain
of the INA217 is determined by the size of the resistor placed
between the instrumentation amplifier’s inputs.

5.4 Interfacing the Vibration Sensor
The vibration sensor is the capacitive piezoelectric sensor
MiniSense 100, which can detect vibrations up to 40 Hz with a
sensitivity of 1.1 Vg, where g is the gravitational acceleration.
The output of the sensor ranges between ±90 V depending
on how powerful the vibrations are. However, providing vi-
brations that actually produce this high voltage requires an
immense acceleration of over 80 g in either direction. As such,
the output is usually rather small and needs amplification.
However, the amplification could result in the voltage exceed-
ing the intended range. To alleviate this effect, additional
over-voltage protection diodes are placed at the sensor out-
put. Moreover, the capacitive sensor creates a high-pass filter
with the resistance of the circuit between the sensor and the
ADC. Since the capacitance of the MiniSense 100 is 244 pF,
the external resistance needs to be sufficiently large to avoid
attenuating the low-frequency signals.

When taking measurements with the vibration sensor it
is often a practical necessity to use wires to extend the
physical range of the sensor. The wires will introduce some
capacitance, and as a result slightly change the characteristics
of the high-pass filter formed from the sensor capacitance
and the bootstrap circuit. This can give rise to peaks in
amplitude at the lowest frequencies below 1 Hz. To remedy
this, a high-pass filter is placed after the bootstrap circuit
with a cut-off frequency of approximately 0.72 Hz. Following
the high-pass filter is an amplification stage, a bipolar-to-
unipolar conversion circuit, a low-pass filter and over-voltage
protection for the ADC similar to the microphone circuit.
The low-pass filter is designed to have a cut-off frequency
of approximately 34 Hz, which is within the specified upper
limit of 40 Hz according to the vibration sensor specification.

5.5 Implementation
This section describes how the implementation of PASAD on
the STM32F767ZI was performed. First, we explain how the
ADC was set up in order to have a more accurate sampling
rate. Then, the training phase and the detection phase of the
algorithm are described, which both use the ADC to collect
values. The collection of values by the ADC is performed
using interrupts, i.e., running concurrently together with
other software.

5.5.1 Timer-based Analog-to-Digital Conversion. The ADC
on the chosen STM32F767ZI microcontroller is rather limited
when it comes to setting the desired sampling rate. Not only
are there many parameters that can be changed, but it would
also be difficult to achieve a sampling rate close to the desired
sampling rate. In order to have a more accurate sampling rate
that also is easier to adjust, a timer peripheral that decides
when the ADC should sample is used. The timer peripheral
runs at 54 MHz, and the adjustment of the sampling rate
works by setting the timer period to a specific value. The
timer works by counting up at each clock tick until it reaches
the specified timer period, at which time, it sends a signal
that instructs the ADC to sample one value.

5.5.2 PASAD’s Training Phase. PASAD learns the deter-
ministic behavior of the signal underlying the time series of
measurements during a training phase. As mentioned in Sec-
tion 2, training of the algorithm is an offline procedure, which
was performed on a PC using a MATLAB script. The training
parameters are a number 𝑁 of initial sensor measurements
for training, a lag parameter 𝐿 as a sliding-window length,
and a so-called statistical dimension 𝑟 indicating the number
of eigenvectors that sufficiently describe the deterministic
signal. The output of this phase is a set of training vectors
and a centroid 𝑐.

After various mathematical operations have been run on
the subseries of 𝑁 sensor measurements, an 𝐿-by-𝐿 matrix
consisting of 𝐿 eigenvectors is produced. Also, the result of
taking the 𝑟 leading eigenvectors from the 𝐿-by-𝐿 matrix
produces an 𝐿-by-𝑟 matrix denoted as 𝑈 . The 𝑈 matrix is
then transposed into an 𝑟-by-𝐿 matrix 𝑈T, which is subse-
quently used in the detection phase to project vectors onto
the 𝑟-dimensional linear subspace ℒ𝑟 spanned by the 𝑟 lead-
ing eigenvectors.

In addition to the matrix 𝑈T, the 𝑐 vector is transformed
into a 𝑐 vector of 𝑟 elements representing the centroid of
the cluster of training vectors in the signal subspace ℒ𝑟.
Finally, an additional 𝑤 vector of 𝑟 elements is initialized to
contain the weight distribution of the 𝑟 leading eigenvalues for
computing the weigthed Euclidean distance in the detection
phase.

5.5.3 PASAD’s Detection Phase. In the detection phase, we
initialize a lagged vector 𝑥 to contain the 𝐿 latest sensor mea-
surements. The detection phase is built around projecting
the 𝑥 vector onto the signal subspace ℒ𝑟 and then computing
its distance from the centroid 𝑐. This is mathematically done
by calculating the squared Euclidean distance between the
projected 𝑈T𝑥 vector and the centroid 𝑐 as

𝐷 = ||𝑤 ∘ 𝑐− 𝑈T𝑥||2, (1)

where ∘ denotes the Hadamard (element-wise) product. To
simplify Equation 1, we break it down into three steps. First,
the 𝑥 vector is projected onto the signal subspace ℒ𝑟 by
computing 𝑝 = 𝑈T𝑥
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⎡⎢⎢⎣
𝑝1
𝑝2
...

𝑝𝑟

⎤⎥⎥⎦ =
⎡⎢⎢⎣

𝑈1,1 𝑈2,1 · · · 𝑈𝐿,1
𝑈1,2 𝑈2,2 · · · 𝑈𝐿,2

...
...

. . .
...

𝑈1,𝑟 𝑈2,𝑟 · · · 𝑈𝐿,𝑟

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

𝑥1
𝑥2
...

𝑥𝐿

⎤⎥⎥⎦ . (2)

In the second step, the projected vector is compared to
the centroid 𝑐, which produces a temporary vector denoted
as 𝑦 such that ⎡⎢⎢⎣

𝑦1
𝑦2
...

𝑦𝑟

⎤⎥⎥⎦ =
⎡⎢⎢⎣

𝑐1
𝑐2
...

𝑐𝑟

⎤⎥⎥⎦−
⎡⎢⎢⎣

𝑝1
𝑝2
...

𝑝𝑟

⎤⎥⎥⎦ . (3)

Algorithm 1 Initialization of the PASAD algorithm.
1: 𝑟 ← MemBaseaddr
2: 𝐿← MemBaseaddr + 4
3:
4: 𝑐addr ← Baseaddr + 16
5: 𝑤addr ← 𝑐addr + 𝑟 · 8
6: 𝑈T

addr ← 𝑤addr + 𝑟 · 8
7:
8: for 𝑖 = 0 to 𝑟 − 1 do
9: 𝑐𝑖 ← Mem𝑐addr + 𝑖 · 8

10: end for
11:
12: for 𝑖 = 0 to 𝑟 − 1 do
13: 𝑤𝑖 ← Mem𝑤addr + 𝑖 · 8
14: 𝑤𝑖 ← 𝑤𝑖 · 𝑤𝑖

15: end for

In the third step, only ||𝑤 ∘ 𝑦||2 is left to compute ac-
cording to Equation 4, where the 𝑦 vector from Equation 3
is element-wise multiplied by the 𝑤 vector. This results in
a vector which then has its norm squared, expressed as a
scalar product, resulting in a scalar value corresponding to
the departure score

𝐷 =
[︀
𝑤1𝑦1 𝑤2𝑦2 · · · 𝑤𝑟𝑦𝑟

]︀
·

⎡⎢⎢⎣
𝑤1𝑦1
𝑤2𝑦2

...
𝑤𝑟𝑦𝑟

⎤⎥⎥⎦
= 𝑤2

1𝑦2
1 + 𝑤2

2𝑦2
2 + · · · + 𝑤2

𝑟𝑦2
𝑟 .

(4)

The detection phase of the PASAD algorithm has been
divided into two parts. In the first part, the algorithm is
initialized once by fetching data from the flash memory to the
RAM memory and precomputing addresses. The second part
is where the departure score calculation of the algorithm is
performed.

Initialization of the PASAD Algorithm. The pseudocode for the
initialization phase of the PASAD is presented in Algorithm 1.
During the initialization phase, the 𝑟 and 𝐿 parameters are
loaded into the RAM memory from the flash memory and

Algorithm 2 PASAD’s departure score calculation algorithm
1: 𝑗 ← Buffercurrent
2:
3: for 𝑖 = 0 to 𝐿− 1 do
4: 𝑥𝑖 ← Buffer𝑗
5: 𝑗 ← 𝑗 + 1 mod 𝐿
6: end for
7:
8: for 𝑖 = 0 to 𝑟 − 1 do
9: 𝑝𝑖 ← 0

10: end for
11:
12: DepartureScore ← 0
13: Row𝑎𝑑𝑑𝑟 ← 𝑈T

addr
14:
15: for 𝑖 = 0 to 𝑟 − 1 do
16: for 𝑗 = 0 to 𝐿− 1 do
17: 𝑝𝑖 ← 𝑝𝑖 +MemRowaddr · 𝑥𝑗

18: Rowaddr ← Rowaddr + 8
19: end for
20:
21: 𝑦 ← 𝑐𝑖 − 𝑝𝑖

22: DepartureScore ← DepartureScore + 𝑤𝑖 · 𝑦 · 𝑦
23: end for
24:
25: return <DepartureScore>

the calculations of the addresses of the training vectors are
performed. Afterwards, the 𝑐 vector and the 𝑤 vector are
loaded to the RAM memory from the flash memory by using
the previously calculated addresses. Additionally, the 𝑤 vector
is element-wise multiplied by itself in order to precompute
as much as possible.

Departure Score Calculation of the PASAD Algorithm. The
pseudocode for the departure score calculation is presented
in Algorithm 2. This part of the algorithm begins by storing
the current to-be-written position of the ADC buffer in a
variable 𝑗. Since this variable contains the to-be-written po-
sition, we know that it holds the currently oldest sampled
value, which then is put first in the 𝑥 buffer. Next, the rest of
the ADC buffer is copied to the 𝑥 buffer in sorted order (see
lines 1 to 6). After the copying of the ADC buffer is done,
the 𝑝 vector, which will hold the projection of 𝑥 onto the sig-
nal subspace ℒ𝑟, is cleared. This is performed at lines 8 to 10.
Then, the departure score is cleared and the base address
of the 𝑈𝑇 matrix is stored as shown at lines 12 and 13 re-
spectively. Subsequently, the departure score is computed at
lines 15 to 23. The outer loop is based on the 𝑟 parameter,
and the reason for this is that it can perform the necessary
calculations for each row in Equations 2 and 3. There is also
an inner loop, based on the 𝐿 parameter, which calculates
the 𝑝 vector holding the projected vector. At line 21, the
projected vector is compared to the centroid vector and the
result of this comparison is squared and multiplied by the
corresponding element from the weight distribution vector,

7
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Figure 3: Detection of several attacks (arrows on x-axis) using (a) microphone sensor (b) frequency sensor (c) load sensor without
noise and (d) load sensor with noise.

and finally added to the departure score. This is performed
at line 22 and corresponds to the operations in Equation 4.
Finally, at line 25, the departure score is returned.

6 Evaluation
This section presents the detection results of emulated attacks
on sensors in a test environment as well as on real industrial
machines.

6.1 Experiments in a Test Environment
[Exp 1] In the microphone experiments, the algorithm was
trained to capture the normal behavior of a 200 Hz tone
played with a specific amplitude. The three-stage attack
consisted of adding a 300 Hz tone with the same amplitude,
followed by only using a 300 Hz tone and, finally, by playing
no sound at all. As shown in Fig. 3a, all three attacks (marked
in red and whose starting point is indicated by the red arrows
on the x-axis) are detectable but ill-represented, since the
departure score decreased instead of increasing during the
attacks.
[Exp 2] After evaluating fast-varying signals with the mi-
crophone, the frequency sensor was tested using the same
attack scenarios. Since the output of the frequency sensor
consists of a DC value, sampling requirements are much lower

as explained in Section 4. As depicted in Fig. 3b, the fre-
quency sensor, as opposed to the microphone sensor, was able
to accurately detect all attacks, even when using different
sampling rates for the training and detection phases.
[Exp 3] In contrast to the microphone sensor, there is not as
much noise that can affect the load sensor. This is due to
the static behavior of the load sensor, which only changes
its output when loaded with weights, and is thus not subject
to interference from background sounds. The attack in this
scenario consisted of adding a small weight, which was barely
visible when measuring the output of the load sensor on an
oscilloscope. The load sensor was evaluated both in presence
and in absence of noise. To simulate noise, a spinning fan was
placed on top of the sensor. The results in Fig. 3c and Fig. 3d
show that all attacks in both experiments were detected.

6.2 Experiments on Industrial Machines
[Exp 4] Testing of the vibration sensor was performed on two
types of industrial machinery: a lathe and a CNC drilling ma-
chine. The vibration sensor was fastened close to the rotating
parts of the machine being tested. Then, the algorithm was
trained on a specific Revolutions Per Minute (RPM). In both
cases, the signal amplitudes recorded during testing were
incredibly small, just above what is physically possible to
detect with a 12-bit ADC. Yet, as evident in Fig. 4, even very

8



small changes result in a large departure score. In the lathe
case, the algorithm was trained at 800 RPM, and then the
lathe was attacked by stopping it, in addition to changing
the RPM to 395 RPM. The results (Fig. 4a) show that the
stopping of the lathe was detected, but not the change of
RPM. However, it is worth mentioning that the vibrations
generated from the lathe were extremely small, in addition
to different frequencies interfering from various gears in the
lathe’s gearbox.
[Exp 5] The CNC drilling machine was running at around
500 RPM during the training phase of the algorithm. An
attack was introduced by increasing the RPM to roughly
1000 RPM and then lowered to approximately 0 RPM. The
results show that the algorithm was able to detect the increase
of RPM, and to a lesser extent, the decrease to 0 RPM.
Similarly to the lathe, the CNC drilling machine had a lot of
interfering noise, even when running at 0 RPM. Also, it was
difficult to adjust the RPM of the CNC drilling machine to
exact RPM values.
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(a) One lathe attack detected and one missed with vibration sensor
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(b) Detecting two different attacks on a CNC drilling machine

Figure 4: Detection results for experiments on real machines.

7 Conclusion
Industrial control systems, which typically monitor and con-
trol critical processes, are increasingly vulnerable to cyberat-
tacks that can cause serious damage to vital infrastructure.

Process-level attack detection is a recent research trend offer-
ing techniques for detecting attacks on the physical process
by monitoring low-level process data. In this work, we scru-
tinized the alternative side-channel based strategy of using
external sensors to measure relevant physical properties of
industrial machines and then monitor these measurements
using existing techniques to detect malicious behavior. We
designed a practical detection system that can run indepen-
dently of the process flow. Moreover, we built a prototype and
explained the challenges involved and possible work-arounds.
Finally, we performed tests on real industrial machines, and
demonstrated the viability of our approach through successful
detection results.
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