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a b s t r a c t 

Buildings are responsible for a large share of the energy demand and greenhouse gas (GHG) emissions in 

Europe and Switzerland. Bottom-up building stock models (BSMs) can be used to assess policy measures 

and strategies based on a quantitative assessment of energy demand and GHG emissions in the building 

stock over time. Recent developments in BSM-related research have focused on modeling the status quo 

of the stock and comparatively little focus has been given to improving the modeling methods in terms 

of stock dynamics. This paper presents a BSM based on an agent-based modeling approach (ABBSM) that 

models stock development in terms of new construction, retrofit and replacement by modeling individual 

decisions on the building level. The model was implemented for the residential building stock of Switzer- 

land and results show that it can effectively reproduce the past development of the stock from 20 0 0 

to 2017 based on the changes in policy, energy prices, and costs. ABBSM improves on current modeling 

practice by accounting for heterogeneity in the building stock and its effect on uptake of retrofit and 

renewable heating systems and by incorporating both regulatory or financial policy measures as well as 

other driving and restricting factors (costs, energy prices). 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In the EU and in Switzerland, residential and commercial build-

ngs together are responsible for about 40 and 30% of the energy

emand and emitted greenhouse gases (GHG), respectively [ 1 , 2 ]. A

arge share of these buildings has been erected before minimum

nergy efficiency standards were implemented and accordingly are

ot very energy efficient and mainly equipped with fossil-based

eating systems. Therefore, buildings offer a large potential for en-

rgy efficiency and a resulting GHG emission reduction compared

o the status quo. 

In order to make use of this potential at a scale, targeted pol-

cy measures and strategies are needed. Such strategies are ideally

ased on a quantitative assessment of the building stock and a re-

pective quantification of effects. Both can be generated through

ottom-up building stock models (BSMs) [ 3 , 4 ]. BSMs forecast en-

rgy demand and GHG emissions of the building stock by model-

ng the changes of the stock through new construction, building

etrofits and demolition of existing buildings as well as through

he change in building technologies. They have the advantage of
ttps://doi.org/10.1016/j.enbuild.2020.109763 

378-7788/© 2020 The Authors. Published by Elsevier B.V. This is an open access article u
eing technology-specific and can consider conflicts and synergies

etween the different implemented measures. 

Bottom-up BSMs typically estimate the energy demand of rep-

esentative archetype buildings in the stock and aggregate the re-

ults to the stock level [3] . They have been applied at a transna-

ional to national scale [5–7] as well as a urban [ 8 , 9 ] or district

cale [ 10 , 11 ], using data from various sources with different levels

f disaggregation. Depending on the model purpose, BSMs can be

sed to study policy scenarios [ 6 , 12 , 13 ], support energy planning

14–16] or evaluate retrofit strategies [10] . 

Recent developments in bottom-up BSM-related research have

ocused on data input, energy modeling techniques, and validation

f results for the status quo of the building stock, typically at the

rban scale [14] . This development has been driven by a wider ac-

ess to building-specific data and increasing computational capa-

ilities. Comparatively little focus has been given to improving the

odeling methods in terms of stock dynamics to forecast changes

n the stock. Most BSMs either focus on the analysis of the status

uo or forecast changes in the stock primarily through assumed

ates of building retrofit, technology diffusion, demolition and new
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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construction [17] . These rates are generally defined exogenously -

typically based on historic rates or expert judgment [17] . Such ap-

proaches do not explicitly consider the effect of economic, envi-

ronmental or policy factors, such as for example energy prices, re-

source availability and labor costs, on building owner ́s decision to

renovate or adopt a certain technology. 

Not considering these important influencing factors limits the

reliability of the results. Moreover, it limits their output, as the in-

teraction between model results and these influencing factors can-

not be described, which limits the applicability of BSMs in terms

of policy advice. Models that do consider these factors are rare. For

example, models such as [18–21] use a combination of turnover

rates or lifetimes in combination with discrete-choice approaches

to model changes in market shares and the subsequent transition

of building archetypes based on the changing technology costs and

policy interventions. These models highlight the usefulness of en-

dogenous modeling of stock dynamics and technology adoption,

but often work on a higher level of aggregation and do not con-

sider the full heterogeneity of the building stock in terms of dif-

ferent building types, sizes and states. One way to address these

shortcomings and advance modeling practices is through evolving

BSM by exchanging the established practices with an agent-based

modeling (ABM) approach to model stock dynamics that allows to

model the interaction between building owner ́s decision making

and relevant influencing factors as well as different building states

based on individual building agents. 

This paper first introduces the theoretical background and con-

text of the agent-based building stock model developed in this pa-

per and the decision model applied therein ( Section 2 ). The pa-

per then describes the operationalization of the developed model

for the residential building stock of Switzerland ( Section 3 ). In

Section 4 the model results are presented and are compared to

and validated against statistical data across different dimensions.

Finally, in Section 5 , we discuss the methodology and results and

their implications as well as present our conclusions in Section 6 . 

2. Theoretical background 

2.1. Agent-based modeling 

Building stock modeling has so far focused on modeling techno-

logical aspects of the development of energy use in the stock and

neglect complex interactions between technology, economics and

policy when modeling the development as outlined in Section 1 .

Agent-based modeling (ABM) has been shown to be an ideal tool

to model such complex interactions bottom-up by representing dif-

ferent actors in a system as autonomous agents, which can have

different attributes, decision processes, the ability to learn, and to

interact with each other and their environment [22] . This makes

ABM especially useful when modeling complex, multilevel prob-

lems with heterogenous populations by describing overarching pat-

terns through micro-level processes [22] . 

ABM has already been widely used to model energy efficiency

technology adoption in different realms [ 23 , 24 ] as well as in the

building sector in specific [25–29] . These studies show, how ABM

can be used to model technology adoption in the building sector

focusing on different aspects such as the importance of decision

processes [ 25 , 26 ], spatial aspects [ 26 , 30 ] and interactions between

actors [ 27 , 31 ] in the diffusion of building technologies. 

As such these studies focus on the heterogeneity of, and inter-

action among decision makers when modeling technology adop-

tion in the building sector. But even though they account for a

heterogeneity in adopters, the large variation of buildings as well

as how the building specific attributes such as size, age, installed

heating systems, etc. might affect the owner ́s decision is so far not

considered. Moreover, these studies only look at adoption behavior
nd do not investigate the effect these technologies have on low-

ring GHG emissions and energy demand of the building stock. 

By linking ABM with a BSM these issues can be addressed.

he BSM is technology explicit and describes the building in de-

ail. Based on the available building level information, the effect

o adopt a certain technology can be evaluated. This can be used

o assess the feasibility and utility to adopt a certain technology

or a given building and, therefore, give the basis on which the

uilding owner ́s choice can be modeled. As technological changes

re tracked on the building level through a BSM, the interaction

f technologies can be assessed both in terms of the overall en-

rgy demand of the building but also how previous technologi-

al choices for a certain building might affect later decisions (e.g.

ow the decision to retrofit the building envelope might affect the

hoice in heating system later on). Moreover, the effect on energy

emand and GHG emissions can also be assessed after the adop-

ion to track the effect of the diffusion of certain technologies on

he overall demand. By doing so, an ABBSM will be able to model

oth the effect of policy on the diffusion of technology in terms of

he rate of adoption as well as to quantify the effect in terms of

nergy or emissions saved. 

.2. Modeling building owner’s adoption decisions 

A key advantage of implementing ABM into BSM is to enable

odeling of building owner decisions to adopt certain technolo-

ies. There are many different approaches to modeling adoption

ecisions in ABMs, ranging from simple decision rules to sophisti-

ated psychological and economic models [ 23 , 24 ]. In the context of

uildings, only a few studies forecast the diffusion of technologies

n the stock through ABM [ 26–28 , 31 ]. These studies mainly focus

n a single technology or technology group and do not model the

verall stock development in terms on new construction, retrofit

nd replacement. Moreover, they mainly focus on single-family

ouse owners [ 27 , 28 , 31 ]. As such these studies give focus on in-

eraction between house owners but only rudimentary model the

uilding ́s effect on the choice. In order to do so, economic ap-

roaches to decision modeling such as a discrete choice approach

eem most appropriate as also showcased by Müller [21] . 

Beyond ABMs, there are numerous other studies, that address

uilding owner ́s energy efficiency technology adoption decisions,

anging from renovation to the choice of heating system, most of

hich focusing on private homeowners in particular [ 27 , 28 , 32–36 ].

any of these studies focus on finding determinates for technol-

gy adoption decisions employing methods such as regression and

iscrete choice models [ 32 , 34 , 36 , 37 ]. A common finding between

hese studies is that building owner ́s choice both in heating sys-

ems as well as renovation decisions is affected by more than just

osts and the technological attributes, but that the choice context

 32 , 37 ], network and interaction effects [ 27 , 28 ] and owner charac-

eristics [ 34 , 37 ] also may have a significant impact on the decision.

his shows, that it is crucial to not just take technological and eco-

omic attributes but also situational and individual aspects in the

ecision process into account when modeling technology adoption

n BSMs using an ABM approach. Taking restrictions on the side

f the decision maker into account is in line with the concept of

ounded rationality [38] . 

.3. Bounded rationality 

The concept bounded rationality addresses the fact that human

ecision making is limited by both access to information and infor-

ation processing ability [38] . Therefore, human decision making

s characterized by heuristics and biases to simplify the choice task.

n the case of building owners, research suggest, that one such
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euristic lies in reducing the number of options that are consid-

red. For example, results from Lehmann et al. [ 35 , 39 ] suggest, that

n the case of heating system substitution decisions, building own-

rs often do not even consider any or only a few alternatives when

eplacing their existing system (i.e.,. they have a strong status-quo

ias [39] ). This is consistent with findings in other studies, suggest-

ng a two-stage decision process when operationalizing this aspect

f bounded rationality in modeling [ 40 , 41 ]. Namely, a first screen-

ng stage in which the alternatives to be considered are collected

ased on simple rules, followed by the actual evaluation of the pre-

elected alternatives. Mueller and de Haan [42] show how such an

pproach can per implemented in ABMs by screening alternatives

ased on their market share in combination with a discrete choice

odel for the detailed evaluation of alternatives. 

. Agent-based building stock model 

The following section describes the agent-based building stock

odel developed for this paper and its application for the residen-

ial building stock of Switzerland. The description partially follows

he structure of the ODD (Overview, Design concepts, and Details)

rotocol for the description of ABM [43] . A more complete descrip-

ion of the model can be found in the supporting information. The

odel was implemented in Python using the libraries Pandas [44] ,

umpy [45] and mesa [46] . 

.1. Model purpose 

The model is designed to support the study of the development

f building stocks in terms of their energy demand and GHG emis-

ions and in particular how building owner ́s decisions to retrofit

he building envelope and replace heating systems under differ-

nt policy interventions affects this development. It is developed

or the residential building stock of Switzerland and calibrated to

odel the past development in the stock from 20 0 0 to 2017. 

.2. Model entities 

Currently, the ABBSM includes two main entities: buildings and

he model environment. Building agents combine general build-

ng properties including the various building components together

ith building owner and location properties. The model envi-

onment holds attributes on the climatic, economic, technologi-

al and policy framework conditions. More agent types (e.g. ten-

nts/households) could be added in future applications. 

.2.1. Building 

Next to general building characteristics such as building type,

ge, etc., each building agent is made up of different building com-

onents (such as roofs, walls, floors and windows), and HVAC sys-

ems (heating system, hot water system, solar system and ventila-

ion system (if applicable) and one to many dwellings (see Fig. 1 ).

uilding agents are initialized based on the method to construct

ynthetic building stocks described in [47] (see Section 3.3.1 ). The

ethod synthetically reconstructs a representative sample build-

ng stock, where each of the generated synthetic buildings is rep-

esentative of a part of the stock and includes all data needed to

un a building energy demand simulation using the calculation en-

ine developed in [47] . The building agents’ properties are built up

ased on the same structure and extended for the purpose of the

BBSM. 

Next to the building properties to run a building energy de-

and simulation, the building definition covers also building

wner and building location specific properties such as the de-

ision parameters of the decision model used as well as build-

ng specific framework conditions such as the availability of which
nergy resources are available for a building (e.g. is it possible

o use a ground-source heat pump). The heating system choice

f a building will be constrained according to this criterion. In

ase of the grid-bound energy sources (gas and district heating),

hese properties might be changed over the model period based

n the shares defined in the model environment that define how

he availability of these energy sources change over time. Lastly,

ased on the other characteristics, the model calculates the build-

ng agent’s energy use differentiated according to different energy

ervices (space heating, hot water, ventilation, lighting, appliances

nd auxiliary) as well as the resulting primary energy demand,

HG emissions and energy costs (see Section 3.3.3 ). 

.2.2. Model environment 

The model environment holds all other climatic, economic,

echnological and policy framework data needed to run the sim-

lation. This includes (1) climate data to run the energy calcula-

ion, (2) the market environment, i.e., economic and technological

haracteristics of the technologies modeled for retrofits and new

uildings (e.g. costs, efficiencies and lifetimes of building compo-

ents and HVAC systems)), market availability and energy prices,

3) the policy environment, i.e.. the policy framework data such as

he building standard, the development of restrictions of technolo-

ies to building agents and subsidy levels as well as (4) other data

uch as socio-demographic data (e.g.. population development). A

etailed description of the data and its sources is included in the

upporting information. 

.3. Model overview 

The structure of the ABBSM is shown in Fig. 2 . After the model

s initialized (see Section 3.3.1 ), the stock dynamics is modeled

hrough the processes of new construction, demolition as well as

etrofit and replacement in existing buildings ( Section 3.3.2 ). The

eneral decision model applied in these processes to model agents’

hoices is described in Section“General decision model", with sub-

equent section describing the individual processes. The effect of

he changes in the building stock in terms of energy and GHG

missions is tracked using an integrated energy demand simulation

nd impact assessment module ( Section 3.3.3 ). Results are used to

alibrate and validate the model based on the historical develop-

ent (see Section 4.1 ). 

.3.1. Building stock initialization 

The status quo is initialized by synthetically generating a repre-

entative sample stock of the building stock of Switzerland for the

ear 20 0 0 based on the method described in [47] . The initial stock

ize is set to 50 ′ 0 0 0 building agents at the model start. Each of

hese synthetically created buildings is representative of a number

f buildings in the actual stock, which is represented by a scaling

actor and representative floor area in the model (cf. Fig. 1 ), which

s used to scale results to the stock level. The structure of the stock

s based on data of the 20 0 0 census [48] , which is complemented

ith building archetype data to generate the synthetic buildings

nd complement them with the attributes needed to assess the

nergy demand of the building (see supporting information for a

etailed description). 

Additionally, each building is given a location specific attribute,

hich states which energy resources are available for a building,

efining whether gas, district heating as well as ground or ground-

ater source heat pumps are available or allowed for a given

gent. The share of buildings with such restriction is based on data

rom Lehmann et al. [35] for district heating and heat pumps as

ell as from VSG [49] for gas. 
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Fig. 1. Example representation of a building agent including its building components, systems, usage and other characteristics. Adapted and extended from FOS [47] . 
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3.3.2. Building stock dynamics 

Once the model is initiated, the model simulates the develop-

ment of the stock in time steps of one year. Each time steps starts

with updating the model environment, after which the existing

building agents are updated individually. For each building agent

the scaling factor and representative floor area is adjusted based

on the age of the building in order to account for demolition. The

model then checks whether a building envelope component needs

to be refurbished or the heating system replaced by checking if

the component has reached the end of its assigned lifetime. If so,

the respective decision process is carried out and the building up-

dated accordingly. After the existing buildings have been updated,

the model calculates the demand for new construction based on

the population development and new agents are added to repre-

sent the newly constructed buildings. The model initializes each of

these new building agents and chooses what heating system to in-

stall based on the new heating system decision. 

General decision model : The model applies a general decision

model (GDM), which is adapted for the different modeled deci-

sion processes such as for the envelope retrofit, heating system

replacement as well as the heating system choice for new build-

ings. The GDM is operationalized by combining different concep-

tual models such as the model for strategic decision processes by

Mintzberg et al. [50] and the theory of innovation [51] to struc-

ture the decision process. The model is structured after the model

for strategic decision process by Mintzberg et al. [50] , who struc-

ture the decision process in three main steps: (1) Identification, (2)

Development and (3) Selection (see Fig. 3 ). Within these steps the

model applies the concept of bounded rationality (in the develop-

ment step) and a discrete choice approach (in the selection step)

as outlined in Section 2 . 

First, the building agent identifies the need to make a decision.

The ABBSM differentiates between three different decision types:

(1) new building heating system, (2) heating system replacement

and (3) building envelope retrofit. The new building heating sys-

tem decision is triggered by a new agent being created, while the

two latter decision types are triggered by a component reaching

the end of its assigned lifetime. The lifetime for each building
omponent is assigned randomly based on a Weibull distribution

see Section “Aging building components and demolition"). 

Second, during the development step, the building agent con-

tructs the choice set for a given decision. Based on a universal

hoice set for each of the decision types, which includes all pos-

ible options, the actual consideration choice set is constructed. In

he case of the retrofit decision, the choice set is directly formed

rom the universal choice set, while for heating systems, the model

rst filters out any unfeasible and inapplicable solutions for a given

uilding agent (see Fig. 3 ) to filter out any options that are not

elevant (e.g. unavailability of district heating). Based on the re-

aining options, the model narrows down the options further to

ccount for the fact that not all options might be considered by

he building owner according to the concept of bounded rational-

ty (see Section 2.3 ). For this purpose, first the consideration choice

et size is defined based on a gamma distribution after the ap-

roach taken by de Haan et al. [52] , see Eq. (1) . The parameters of

he gamma function are set to α = 3 and θ = 2.5, which yields a

istribution with an average choice set size of 7. 

p ( n, α, θ ) = 

1 

�( α) θα
e −

n 
θ n 

α−1 (1)

 probability of choice set size nn number of choices in the choice

et α shape parameter θ scale parameter 

The choice set composition is then chosen through weighted

andomly sampling of the remaining options. The probability is de-

ned for each choice set based on the market share of the tech-

ologies in a given option as well as the current state of the build-

ng (e.g. in the case of existing buildings, the currently installed

ystem is always included except if it is no longer available due

o policy measures), see Eq. (2) . The market share of the differ-

nt technologies is based on the aggregated decision behavior of

uilding agents of the previous time step in order to take chang-

ng preferences and interactions with the market into account. 

 ni = 

e 
∑ 

w mn M S mi ∑ S 
j e 

∑ 

w mn M S m j 

(2)
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Fig. 2. Overview of the structure of the agent-based building stock model. Green arrows represent data flow, blue arrows the model flow. 

Fig. 3. Structure of the general decision model. 
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 ni : Probability of option i being included in consideration choice set

f decision maker nw mn : Weight of technology m for decision maker

MS mi : Market share of technology m which is part of option i 

In the third step, the building agent evaluates each option in

he consideration choice set and finally decides which option to

hoose from. In order to model the selection process, the model

pplies a discrete choice modeling (DCM) approach in order to

imulate the agent ́s decision-making process. The DCM model is

ased on microeconomic utility theory and calculates the choice

robability of a certain option based on the utility of that op-

ion in relation to the utility of the other options in the choice-set

 Eq. (3) ). The option is then randomly selected based on the calcu-

ated probability P i of each of the options in the choice set. 

 i = 

e V i ∑ S 
j e 

V j 
(3) 

The utility of a given option i is calculated based on an as-

essment of the total costs of the option (see Eq. (4) ). In order
o reduce unwanted scale effects in the calculated probability

etween building agents of different sizes (i.e., distortion of the

robability according to the logit function purely due to the size of

he building, rather than the economic viability of the alternative)

nd to be able to use the same utility function regardless of

uilding size the costs are converted to specific cost per m 

2 floor

rea. However, scale effects on the costs of the different measures

rising from both the building size and the energy-efficiency of

he buildings are considered through the cost factors of different

easures and technologies (e.g., cost factors for different heating

ystems depend on the required nominal heating power). More-

ver, to make investment costs comparable to recurring costs such

s energy or maintenance and operation costs, the investment

osts are converted to specific equivalent annual costs. using the

nnuity formula Subsidies for different technologies and retrofit

ptions are considered as a reduction in the investment costs.

he effects of CO 2 -tax are accounted for by changes in the energy

rice which together with the final energy demand affects the
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energy costs of each of the options. The willingness to pay (WTP)

factor is calculated based on a percentage of the annualized

investment costs and reflects additional attributes of a technology

not covered by the other factors (e.g. increased comfort through

new windows). The WTP factors are defined technology specific

based on literature assessing the willingness to pay for different

retrofit and renewable heating systems [ 34 , 53 ]. A more detailed

differentiation of the WTP factors according to agents was not

possible due to a lack of data. A detailed description of the utility

function can be found in the supporting information. 

 i = βAC EA C I,i + βMC C M,i + βEC C E,i + βW T P W T P i (4)

EAC I,i : Specific equivalent annual investment costs of option i in

CHF/year m 

2 C M,i : Specific operation and maintenance costs of option

i in CHF/year m 

2 C E,i : Specific energy costs of option i in CHF/year

m 

2 WTP i : Willingness to pay for option i βn Weighting factor for

decision criteria n 

Update model environment: Each time step starts by updating

the model environment. This involves the adjustment of frame-

work parameters such as energy prices, technology efficiencies,

cost factors, new building and retrofit standards as well as the

availability of technologies based on input data. Moreover, the

location-based availability of grid-bound energy systems (i.e. gas

and district heating) of buildings is updated. Meaning, the avail-

ability of gas and district heating for randomly selected buildings

is adjusted depending on whether the grid is extended or shrunk. 

Aging building components and demolition : The aging of building

agents over the model period has two effects. Firstly, the aging of

the building components triggers the retrofit and replacement de-

cisions in existing buildings and, secondly, it drives the demolition

of buildings. 

Each of the building components has an assigned maximum

lifetime after which it either needs to be reinstated, retrofitted

or replaced. The maximum lifetime of each component is as-

signed randomly based on a Weibull distribution, which is cali-

brated based on data from Agethen et al. [ 54 , 55 ]. Once a compo-

nent reaches the end of its lifetime, the respective retrofit or re-

placement decision is triggered. 

Demolition is modeled by adjusting the scaling factor and the

representative floor area of each building agent in the stock, sim-

ulating the share of the buildings represented by an agent being

demolished each year. This adjustment is modeled by the change

in the survival function deepening on the building agents´age from

one timestep to the next and does not depend on the demand for

new construction. The model uses a loglogistic survival function,

which is fitted based on survival data from Aksözen et al. [ 56 , 57 ]. 

Envelope retrofit: A building envelope retrofit is triggered by a

building component reaching the end of its assigned lifetime. The

choice set consists of a reinstatement option (i.e. keeping the cur-

rent level of energy efficiency) as well as three retrofit options

with an increasing level of energy efficiency (e.g. three different in-

sulation thicknesses in case of a wall retrofit) based on the retrofit

standard of that time step. The level of energy efficiency (i.e. insu-

lation thickness, U-values of windows) is increased over the mod-

eling period to reflect the increasing standards in line with increas-

ing standards for new construction due to technological progress

and a tightening of codes and standards. For each of the options in

the choice set the utility-based choice probability is calculated and

one option randomly selected based on the GDM. 

Heating system replacement : Similar to the envelope retrofit, the

heating system replacement is triggered by the heating system

reaching the end of its lifetime. To simplify implementation, the

system is always replaced as a whole, including a potential sep-

arate hot water system or connected solar collectors. The univer-

sal choice set for the replacement is constructed from all possible

combinations of heating system, hot water systems and including
dditional solar collectors (see supporting information for a full list

f technologies). The choice set is then adjusted to exclude un-

easible and inapplicable solutions based on the current system

e.g. buildings with central heating do not switch to a decentral

ystem), location restrictions (e.g. district heating not available for

hat building) or policy restrictions (e.g. central electrical heating is

ot allowed to be newly installed). Based on the remaining feasi-

le choice set, the consideration set is formed based on the market

hare of the technologies using the bounded rationality approach

utlined in Section “General decision model". However, the current

eating system option is always included in the choice set, except

f it is no longer available to that building due to policy restric-

ions (e.g. ban of central electric heating). The heating system to be

nstalled is then randomly chosen based on the calculated choice

robability. 

New construction : For each time step, the new construction de-

and in terms of new dwellings being added is calculated as a

unction of population growth. The function is calibrated based on

he actual population development and building stock growth over

he modeling period (see supporting information for details). Based

n the demand for new dwellings, the number of new buildings

nd new building agents is calculated based on the average scal-

ng factor in the existing stock. Afterwards, each of the new agents

s initialized and characterized individually. The characterization

ethod mirrors the approach used to generate the initial synthetic

uildings based on [47] . First, the building type and size in terms

f dwelling size, number of dwelling and floors are defined based

n the statistical data from that year. Afterwards, the building ge-

metry is defined based on a shoebox model (see supporting infor-

ation for details) and the efficiency standard of the envelope cho-

en based on the currently applicable building standard. The venti-

ation system is defined by technology shares based on [58] . Lastly,

he heating system is chosen based on the new building heating

ystem decision process. The process mirrors the heating system

eplacement decision. The differences lie in the choice restrictions

different policy restrictions apply) there is no currently installed

ystem, which is included in the choice set and investment costs

ay differ. Moreover, the market share relevant to the construc-

ion of the consideration choice set is tracked separately for new

onstruction choice affecting the composition of the consideration

hoice set. 

.3.3. Energy demand and impact assessment 

The individual building agent ́s energy demand and the related

HG emissions are assessed using an integrated energy demand

odel. The model is described in the supporting information and

s based on a monthly steady-state energy balance for space heat-

ng demand according to ISO EN 52,016-1 [59] (or the Swiss equiv-

lent SIA 380/1 [60] ). The model is extended with a method to

ccount for the performance gap and the fact that, in general, the

ndoor temperature is notably lower in inefficient buildings than in

ewer energy-efficient buildings, which affects their energy con-

umption [61] . Based on the calculated final energy demand the

odel then calculates the related primary energy and GHG emis-

ions using emission and primary energy factors of the different

nergy carriers based on [62] . 

.4. Scenario 

The modeled scenario is aimed to reflect the historic develop-

ent of the Swiss residential building stock between 20 0 0 and

017. Scenario drivers are, therefore, defined based on historical

ata. The population development driving the demand for new

onstruction is defined based on [63] . The resulting new construc-

ion and the distribution in terms of building types, number of

oors, dwellings, dwelling size is defined based on the distribution
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f newly added building to the national building and dwelling reg-

stry during that time [64] . The energy standard of new buildings is

efined based on the evolution of the Swiss building model code

65–67] . The same codes also define restrictions on the installa-

ion of heating systems (e.g. banning central direct electrical heat-

ng), as well as giving requirements on the use of renewable en-

rgy sources (RES) for new buildings. These restrictions are, how-

ver, not introduced in all states (cantons) of Switzerland simul-

aneously. Accordingly, the restriction is introduced stepwise based

n the percentage of the population living in regions with this reg-

lation in place according to ( [68] , including previous editions of

he same report). The development of the availability of grid based

nergy sources is based on data from [ 49 , 69–71 ]. 

Key drivers impacting the decision for retrofit and heating sys-

em replacement are the costs of the different options and the

osts of energy. Cost factors for retrofit options and heating sys-

ems are based on [72–76] . The different cost factors are adjusted

ver time based on labor and material cost development in the

onstruction industry [77–79] . Additionally, technological learning

s assumed for newer technologies such as heat pumps based on

80] and updated sales volumes for heat pumps based on [81] .

dditionally, subsidies for building retrofits and renewable heating

echnologies are included based on the development of the “har-

onized subsidy model” [82–85] . The energy price development is

aken from [86] , with updated prices for wood based on [87] . The

rices also include a CO 2 -tax on fossil energy carriers since 2008 of

2 CHF/tCO 2 (11 EUR/tCO 2 ), which has since been increased step-

ise to currently 96 CHF/tCO 2 (85 EUR/tCO 2 ). 

.5. Calibration 

The calibration of the decision model for the building envelope

etrofit and the heating system replacement and new construction

as been carried out using empirical data on the aggregate retrofit

ctivity between 20 0 0 and 2010 [88] and heating system structure

n the stock in 2017 [89] as benchmarks. Furthermore, the struc-

ural change in the stock as well as the development of the res-

dential energy demand are used to validate the model behavior

s well (see Section 4.1 ). The calibration of the model was carried

ut in two steps. First the initial parameterization of the decision

odel was set manually to arrive at reasonable parameter ranges

or the different parameters of the decision model (i.e. weighing

actor of the utility function, discount rate) as well as setting the

arameters of the gamma function to estimate the choice set size

 Eq. (1) ) and market share weights ( Eq. (2) ). Second, the model

alibration was fine-tuned by running multiple model runs using

ifferent combinations of parameter settings for the parameters of

he utility function. The different parameter settings are assessed

y calculating the root mean square deviation to the reference data

n terms of the share of retrofitted building components on the

ne hand as well as the resulting heating system structure in the

tock on the other hand, see Eq. (5) . The parameter setting with

he lowest average RMSD between the two was selected. The re-

ults of the different model runs and the selected parameters are

hown in Table 1 . 

MSD = 

√ ∑ N 
n 

(
ˆ y n − y n 

)2 

N 

(5) 

MSD: Root mean square deviationN: Number of observationsy: Ob-

erved and predicted values 

. Results and validation 

In this section, the results of the ABBSM for the residential

uilding stock of Switzerland are described. First, the model re-

ults are validated against reference data and statistics from the
odel period of 20 0 0–2017. Subsequently, the results of the stock

evelopment in terms of energy and GHG emissions are further

ssessed. 

.1. Validation of model results 

Fig. 4 shows the structure of the modeled building stock as well

s the reference statistics of the Swiss building and dwelling reg-

stry [ 48 , 64 ] for the year 20 0 0 and 2017. As the building stock in

0 0 0 is initialized using data from FOS [48] , the structure of the

odeled stock matches the reference statistics. In the year 2017,

he structure of the modeled stock deviates slightly in some as-

ects from the reference statistics. Overall, there are less build-

ngs in the modeled stock compared to the reference statistics, this

s mainly due to a mismatch in the number of buildings for the

uilding periods before 1945 between the two reference years. For

hese building periods the number of building increases from 20 0 0

o 2017 in the reference statistics, even though it could have been

xpected to decrease due to demolition. Potential explanations for

his are conversion of buildings and/or an update of the statistical

asis. Overall, the model slightly overestimates the new construc-

ion activity in terms of number of buildings. This may be partially

e explained that, compared to the reference statistics, the model

hows slightly higher shares of small buildings with one dwelling

ompared to larger multi-dwelling buildings. 

The modeled retrofit activity of the building envelope compo-

ents is compared to survey results from Jakob et al. [88] and is

hown in Fig. 5 . As can be seen from this figure, the model has

 tendency to underestimate the retrofit activity (i.e. energy effi-

iency improvement of the components) and overestimate the pure

einstatement of the component compared to the reference data

rom Jakob et al. [88] . This is most notable in the case of win-

ows, where especially the share of retrofitted windows in multi-

welling buildings is underestimated. 

The resulting distribution of heating and hot water systems in

he modeled building stock is calibrated with reference statistics

f the Swiss census [48] for the year 20 0 0 and validated against

 survey from the office for statistics [89] for 2017 (see Fig. 6 ).

esults from the period between is not available as the informa-

ion on space heating and hot water systems in the Swiss build-

ng registry is not updated consistently for existing buildings and

s therefore unreliable. The results show slight deviations between

he modeled stock and the reference data already for 20 0 0 due to

andom sampling when initializing the stock as well as differences

rising from mapping the information in the statistics to the space

eating and hot water system definition in the ABBSM (see sup-

orting information for details). In 2017, the distribution of space

eating systems in the modeled stock matches rather well with the

tatistics. There is, however, a slight underestimation in the share

f oil and gas boilers, with an overestimation of the increase in

eat pumps. Moreover, the share of direct electric heating is over-

stimated both in the initial year 20 0 0 as well as in 2017. 

The resulting development in the modeled stock in terms of

nal energy demand can be validated against the energy statis-

ics [90] . For this purpose, the modeled space heating demand is

eather adjusted according to factors from Prognos [86] to make

t comparable. The model overestimates the overall energy demand

n 20 0 0 by 1.9%. Over the modeling period until 2017 the devia-

ion between model and statistics fluctuates between −1.3% and

.9% (in 2017), which may also reflect uncertainties in the energy

tatistics. 

The breakdown and comparison of the energy statistics and

odel results according to energy carriers is shown in Fig. 7 . The

odeled results are weather adjusted based on [86] . Compared to

he overall demand, the demand per energy carrier deviates more

ignificantly. Over the whole modeling period, demand for wood



8 C. Nägeli, M. Jakob and G. Catenazzi et al. / Energy & Buildings 211 (2020) 109763 

Table 1 

Parameter settings and room mean square deviation of model results compare to calibration data of [ 88 , 89 ]. The different model runs are ranked according to the 

decreasing value of the average RMSD. 

Input parameter RMSD Rank 

Discount Rate Weighting Factor 

Invest Cost 

Weighting Factor 

WTP 

Weighting Factor 

O&M Cost 

Weighting Factor 

Energy Cost 

Retrofit 

Activity 

Heating 

Systems 

Average 

0.02 −0.5 0.5 −0.1 −0.1 0.036 0.016 0.0259 16 

0.04 −0.5 0.5 −0.1 −0.1 0.037 0.011 0.0238 3 

0.06 −0.5 0.5 −0.1 −0.1 0.040 0.010 0.0245 5 

0.02 −0.6 0.6 −0.1 −0.1 0.036 0.010 0.0233 1 

0.04 −0.6 0.6 −0.1 −0.1 0.039 0.011 0.0247 8 

0.06 −0.6 0.6 −0.1 −0.1 0.042 0.012 0.0274 21 

0.02 −0.7 0.7 −0.1 −0.1 0.039 0.011 0.0247 7 

0.04 −0.7 0.7 −0.1 −0.1 0.042 0.012 0.0273 20 

0.06 −0.7 0.7 −0.1 −0.1 0.045 0.017 0.0310 26 

0.02 −0.5 0.5 −0.15 −0.15 0.036 0.022 0.0291 24 

0.04 −0.5 0.5 −0.15 −0.15 0.036 0.015 0.0254 9 

0.06 −0.5 0.5 −0.15 −0.15 0.039 0.010 0.0246 6 

0.02 −0.6 0.6 −0.15 −0.15 0.037 0.014 0.0257 12 

0.04 −0.6 0.6 −0.15 −0.15 0.039 0.010 0.0245 4 

0.06 −0.6 0.6 −0.15 −0.15 0.042 0.010 0.0258 14 

0.02 −0.7 0.7 −0.15 −0.15 0.037 0.010 0.0237 2 

0.04 −0.7 0.7 −0.15 −0.15 0.041 0.010 0.0257 13 

0.06 −0.7 0.7 −0.15 −0.15 0.046 0.013 0.0293 25 

0.02 −0.5 0.5 −0.2 −0.2 0.036 0.027 0.0315 27 

0.04 −0.5 0.5 −0.2 −0.2 0.037 0.020 0.0284 22 

0.06 −0.5 0.5 −0.2 −0.2 0.038 0.015 0.0265 18 

0.02 −0.6 0.6 −0.2 −0.2 0.037 0.020 0.0286 23 

0.04 −0.6 0.6 −0.2 −0.2 0.038 0.014 0.0259 15 

0.06 −0.6 0.6 −0.2 −0.2 0.041 0.011 0.0259 17 

0.02 −0.7 0.7 −0.2 −0.2 0.037 0.014 0.0255 10 

0.04 −0.7 0.7 −0.2 −0.2 0.041 0.010 0.0255 11 

0.06 −0.7 0.7 −0.2 −0.2 0.044 0.010 0.0272 19 

Fig. 4. Structure of the building stock for the year 20 0 0 and 2017 based on model results and statistics [ 48 , 64 ]. 
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Fig. 5. Share of retrofitted and reinstated building components in the modeled building stock as well as based on reference data (Ref.) from [88] . Share represent carried 

out retrofits and reinstatements per building component in the stock built before 1990 from 20 0 0 to 2010. 

Fig. 6. Distribution of heating systems and hot water systems in the building stock for the year 20 0 0 and 2016 based on model results and statistics [ 48 , 89 ]. 

Fig. 7. Development of the final energy demand of the residential building stock according to model results (weather adjusted based on [86] ) and household energy statistics 

[90] . 
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Fig. 8. Index of the aggregated stock development in terms of structural parameters (population, dwellings, buildings and floor area) and the resulting energy and GHG 

emissions. Delivered final energy (and the related GHG emissions) is shown excluding electricity for household appliances and lighting and excluding energy from ambient 

and solar heat. Starting values in 20 0 0 correspond to index of 100. 
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is overestimated, while the demand for gas is underestimated. To

some degree these differences may be explained due to structural

differences in the distribution of heating systems in the stock be-

tween the synthetic stock and reality. For example, gas might me

more frequently used in larger buildings found in urban areas,

while wood-based systems (e.g. wood stoves) are might be more

common in smaller buildings, which would lead to the under- and

over estimation of the energy demand of these energy carriers re-

spectively. The overestimation of wood may also be attributed to

the fact that many wood-based heating systems (e.g. stoves) must

be operated manually (which is not reflected in the model), re-

sulting in underheating of buildings as they are not used to the

same degree as thermostat operated heating systems. Moreover,

such buildings may have a secondary heating system (e.g. electric

heaters) covering part of the space heating demand. The underesti-

mation of gas may also be partially due to additional gas consump-

tion for cooking, which is not included in this model. Moreover,

the deviation between model and statistics in terms of gas demand

may also stem from uncertainties as to the degree of deployment

of condensing boilers before 20 0 0 and during the modeling period

and the effect this has on the efficiencies defined in the input data

[ 58 , 73 , 86 , 91 , 92 ]. 

4.2. Energy and GHG emission development 

The development of aggregate indicators of the modeled build-

ing stock from 20 0 0 to 2017 such as delivered final energy demand

and GHG emissions as well as related structural parameters (num-

ber of dwellings, buildings and total heated floor area) are shown

in Fig. 9 . Compared to the overall final energy demand, the deliv-

ered final energy demand does not include on-site production and,

therefore, excludes energy from ambient and solar heat (which in

Fig. 8 is included under the category “Other Renewables"). More-

over, both delivered final energy and the related GHG emissions

are not including electricity for household appliances and lighting. 

The building stock increases over the whole modeling period.

The number of buildings grows slower compared to the number of

dwellings in the second half of the modeling period as the share of

multi-dwelling building increases in new construction. The grow-

ing stock does not translate into an increasing energy demand as

the demand from new construction is more than compensated

by energy efficiency retrofits as well as demolition of existing
uildings. This leads to decreasing energy demand over the entire

odeling period. The energy demand reduction is sped up from

008 when the new building code takes effect in most cantons, in-

reasing the energy efficiency standard for new building, resulting

n an overall energy demand reduction of 9.3 TWh/year ( −14%) in

017. The GHG emission are reduced more significantly compared

o the delivered final energy demand due to the decreasing use of

il for space heating and hot water to more and more use of heat

umps as well as to a lesser degree district heating (cf. Figs. 6 and

 ). 

This development is also reflected in the development of the

elivered final energy demand and GHG emission intensities in the

tock (see Fig. 9 ). In 20 0 0, the majority of the stock still consumed

ore than 100 kWh/m 

2 year. However, this share is steadily de-

reasing until 2017, where only about 60% of the floor area still

onsume more than 100 kWh/m 

2 year. This development comes

rom new buildings being added to the stock, the demolition of

xisting buildings as well as building retrofits and heating system

eplacements contribute to lowering demand intensities in the ex-

sting stock. A similar development can be seen in terms of GHG

mission intensities in the stock, where buildings with a GHG in-

ensity of below 10 kgCO2-eq/m 

2 year make up only 10% of the

tock in 20 0 0, which increases to 38% in 2017. However, the un-

erestimation of gas use as shown in Fig. 7 may lead to an un-

erestimation of the share of buildings with a high GHG emission

ntensity. 

.3. Retrofit and heating system market shares 

The achieved annual retrofit rates per building component are

hown in Fig. 10 , showing the share of building components that

re retrofitted each year. Floor and wall retrofits are implemented

n average at a low rate of below 0.5%/year, while window and

at roof retrofits are implemented at considerably higher rates,

ainly driven by shorter component lifetimes (case flat roofs) and

igher utility from replacement due to comfort increase (case of

indows). The retrofit rate of both pitched and flat roofs shows

 slight increase over the modeling period, while all other rates

emain more or less constant. The slight fluctuations in the rates

re mainly due to the stochastic nature of the decision model. 

The realized market shares of different heating systems for

eplacement and new construction according to the model results
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Fig. 9. Development of the delivered final energy demand and GHG intensities in the building stock based on the share of total heated floor area. 

Fig. 10. Development of the retrofit rate per building component. 
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re shown in Fig. 11 . The market shares in the replacement

arket show that fossil-based heating systems have the high-

st share, even though it is decreasing over the entire model

eriod. In contrast, they decrease significantly in new construc-

ion and are almost phased out by 2008. In new construction,

il and gas-based heating is mainly replaced by heat pumps

nd to a lesser degree by an increase in district heating. Direct

lectric heating, while still making up a small share of the re-

lacement market, is decreasing towards the end of the model

eriod. 

.4. Detailed stock breakdown 

Fig. 12 shows the distribution of key parameters in the stock

ccording to construction period and shows how their distribution

volved over the model period from 20 0 0 (blue) to 2017 (red).

he results show the shift in the distribution of U-values, with
he median U-value (horizontal lines) shifting significantly espe-

ially for roofs and windows, which are retrofitted at a higher rate

han walls and floors. The results also show that the distribution

s not even and that the retrofitted building components form a

econdary peak in the distribution of the U-values. 

The resulting distribution of final energy demand and GHG

missions in the stock shifts also to lower intensities. Clear sec-

ndary peaks are formed in the existing stock, reflecting mainly

he increasing share of buildings with heat pumps. The more pro-

ounced peak in the case of GHG emissions comes from the share

f wood-heated buildings, which also results in a low GHG in-

ensity. The distribution of heating systems for 20 0 0 and 2017 in

ig. 12 shows the shift from mainly oil based heating to gas as well

s (to a lesser degree) heat pumps and district heating in the exist-

ng stock. In the building period after 20 0 0 the dominance of the

eat pump is clearly visible as well as the reemergence of wood-

ased heating. 
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Fig. 11. Market shares per heating systems for replacement and new construction according to the classification of [ 48 , 89 ]. 

Fig. 12. Overview of the distribution of key parameters as well as the share of heating systems in the building stock according to the different building periods for the year 

20 0 0 and 2017. Blue: stock in 20 0 0, red: stock in 2017. Vertical lines indicate the median value for this stock segment. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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5. Discussion 

5.1. Discussion of the methodology 

The agent-based building stock model presented in this pa-

per improves on the general building stock modeling practices

in numerous ways. The main improvement comes from moving
way from modeling stock dynamics through exogenously defined

ats (e.g. diffusion, renovation or new construction rates) to mod-

ling individual decisions of building owners. Modeling retrofit

nd replacement decisions on the building level makes it possi-

le to consider the effect of drivers on the decision such as costs,

nergy prices, technology availability as well as policy measures

uch as subsides or renewable energy requirements. This allows
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l  
or a more detailed description of stock dynamics over time and

akes the analysis of detailed and complex policy measures possi-

le (e.g. such as the requirements for renewable energy according

o [66] ). 

Modeling decisions on the building level enables the model to

onsider nonlinearities of interactions within the building as well

s in the stock in the diffusion of retrofit and heating system deci-

ions. E.g. as the economics of energy efficiency measures are as-

essed on the building level, the sequence in which decisions on

eating system and retrofit are made by a building agent affects

he final outcome. Moreover, as the choice of heating system de-

ends among other things on the market share of the different

echnology, the diffusion of technologies is accelerated as they gain

n market share. Therefore, both the influence of building level at-

ributes as well as higher level diffusion dynamics (such as the

popularity” of technologies in the market) are accounted for in

he decision model for heating systems and retrofits. 

The model not just accounts for a heterogeneity in the build-

ng stock in terms of buildings, but also differentiates between dif-

erent decision frames and their effect on the diffusion of tech-

ologies in the case of heating systems. By differentiating the deci-

ion model between replacement and new construction the model

akes into account not just the different requirements but also the

ifference in market share and costs of technologies between the

wo as well as status quo bias in replacement. This makes it possi-

le to model the different diffusion dynamics between the replace-

ent and new construction market. 

The agent-based building stock modeling approach shown in

his paper has some limitations. First and foremost, building agents

re mainly characterized from a building energy demand simula-

ion perspective and less detailed on the building owner attributes.

 more detailed description of different owner types as well as

heir decision-making processes and criteria would greatly improve

he model. However, lack of a comprehensive overview as well as

ata on the processes and criteria of different owner types led to

he development of this more simplified approach at this stage. 

Missing or incomplete data on the stock development in terms

f building retrofit and HVAC systems increases the difficulty in

he calibration and validation of the model behavior. The current

odel conceptualized based on established theory of decision-

aking of building owner and is calibrated and validated across

ifferent aggregate dimensions (e.g. aggregate stock development

nd retrofit rates). However, more detailed validation based on ac-

ual choice data or detailed longitudinal dataset tracking buildings

ver time could help improve the model further by improving the

ecision model as well as the underlying datasets (e.g. component

ifetime distributions). 

.2. Discussion of model results 

The results show the historic development of the Swiss resi-

ential stock between 20 0 0 and 2017. Despite growing floor area,

hich increases by 26%, the total delivered final energy demand of

he stock decreases by 12% and GHG emissions even by 18%. This

hows, that the decarbonization of the Swiss residential stock is

rogressing and the policies introduced to curb GHG emissions are

aking effect. Especially the introduction of the RES requirement

or new buildings helped make renewable based heating systems

uch as heat pumps the dominating technology in new construc-

ion. In contrast, while the share of renewable energy heating sys-

em in the existing stock are growing as well, there is still a large

hare of fossil heating systems as many buildings are still staying

ith oil and gas or are switching from oil to gas rather than to a

enewable heating system. 

Over the model period, retrofit rates of the different build-

ng components remain more or less stable as costs remained
airly stable and subsidies increased only incrementally. It is, how-

ver, unclear how the latest, more significant, increase in subsidies

85] will affect retrofit rate in the future. 

The model results show the phase out of oil- and gas-based

eating in new construction due to the implementation of RES

equirements in the building code. The phase out according to

odel results is almost complete, making heat pumps the domi-

ant technology in new construction. Only few buildings are built

ith fossil-based heating systems after 2008, at which point the

estriction for RES is implemented in the majority of cantons. The

ossibility to use fossil-based heating in case of an increased effi-

iency standard of the envelope according to the regulation [66] is

ot modeled as the choice of heating system is only modeled af-

er the definition of the efficiency level of the building envelope.

his exemption leads to a still slightly larger share of buildings be-

ng built with fossil-based heating systems than the model results

uggest compared to reference statistics [93] . 

In the existing building stock, the model shows decreasing

hares of oil-based heating, which are replaced by gas to a large

xtend, but also a significant share of heat pumps in building of

ll building periods. The large share of buildings with direct elec-

ric heating, especially from the 1970s and 1980s are decreasing

s well, being replaced by other systems as the restriction on in-

talling and replacing direct electric heating systems takes effect. 

. Conclusion 

The agent-based building stock model presented in this paper

as designed to support the study of the development of build-

ng stocks in terms of their energy demand and GHG emissions

nd in particular how building owner ́s decisions to retrofit the

uilding envelope and replace heating systems affects this devel-

pment. The model was implemented and validated for the resi-

ential building stock of Switzerland based on the past develop-

ent in the stock from 20 0 0 to 2017. The results show that the

odel can effectively reproduce the historic development of the

tock based on the development in policy, energy prices, and costs

uring that time, showcasing the effect of these policies on the en-

rgy and GHG emissions of the stock. 

The agent-based building stock modeling approach improves on

he current BSM modeling practice and is a useful tool to evaluate

olicies that influence the building stock development and aimed

t lowering its energy and GHG emissions due to the following rea-

ons: 

• The use of disaggregate representative building agents com-

pared to common building archetypes makes it possible to as-

sess results not just aggregated per building stock segment, but

to analyze distribution of key parameters and results in the

stock as well as track their development over time. 

• The model accounts for heterogeneity in the building stock and

decision frames, differentiating between new construction and

retrofit/replacement, in the diffusion of retrofit measures and

renewable heating systems including building related as well

as external driving and restricting factors such as costs, energy

prices, policy instruments, etc. 

• The model can incorporate a diverse set of policy measures

from regulatory (e.g. building codes, RES-requirements) to fi-

nancial (e.g. subsidies, taxes) instruments and assess their im-

pact on the adoption of energy efficiency measures and re-

newable energy technologies as well as the resulting develop-

ment of the energy demand and GHG emissions of the building

stock. 

The developed ABBSM may be extended in numerous ways and

ays the groundwork for future development of the agent-based
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building stock modeling approach. A logical next step is the ap-

plication of the model in forecasting future scenarios, which will

be tackled in future publications. In addition to that, the agent-

based approach to BSM could be further developed both in terms

of the description of (building) agents as well as their interac-

tions both between each other as well as with their environment.

For example, the model could be expanded to differentiate be-

tween building owner types and to refine the model for decision

making processes in terms of decision criteria and preferences of

these different types (e.g. differentiate between owner-occupiers

and landlords, etc.) as well as further differentiating decision trig-

gers (e.g. building purchase as a trigger for renovation). Moreover,

additional agents such as households or actors from the building

supply chain (installers, architects/engineers) could be added to

more accurately describe interactions such as between the owner

and tenants, building and user or owner and supply chain actors at

point of sale. Another possible development would be to spatially

distribute building agents to differentiate building locations based

on region (e.g., cantons in Switzerland), municipality, or hectare

raster level depending on the scale of the application in order

to account for geographical differences more accurately (e.g., en-

ergy prices or costs). Furthermore, other building types could be

added to the model framework to represent the complete build-

ing stock. Moreover, a comprehensively study of the sensitivities

and uncertainties of the model, similar to [ 94 , 95 ] is also planned

for future publications as part of the ongoing work in IEA-EBC

Annex 70. 
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