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a b s t r a c t 

The optical properties of atmospheric black carbon (BC) aerosols are needed to model the direct radia- 

tive forcing of the climate system, as well as for interpreting and assimilating remote sensing observa- 

tions from satellites. Modelling efforts during the past decade have predominantly been based on using 

morphologically highly realistic representations of the particle geometry in conjunction with numerically 

exact methods for solving the light-scattering problem. We review (i) the present state of knowledge 

about the morphological, dielectric, and compositional properties of BC aerosols, (ii) the state-of-the-art 

in numerical light-scattering methods frequently applied to black carbon, and (iii) the recent literature 

on modelling optical properties of BC aggregates, both bare and internally mixed with liquid-phase ma- 

terial. From this review we formulate some key lessons learned regarding those morphological properties 

that have a dominant impact on the optical properties. These morphological key features can form the 

basis for devising simplified model particles that can be used in large-scale applications. We illustrate 

this approach with one example appropriate for climate modelling, and one example relevant to the in- 

terpretation of lidar remote sensing data. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Black carbon aggregates with varying fractal parameters; a: D f = 1.8, k 0 = 1.3; 

b: D f = 1.8, k 0 = 0.7; c and d: D f = 2.4, k 0 = 0.7. Geometries a–c were generated with the 

cluster-cluster aggregation algorithm, geometry d was produced with the diffusion- 

limited cluster aggregation algorithm. 
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1. Introduction 

Black carbon (BC) aerosols are among the strongest radiative

forcing agents in the atmosphere that can contribute to anthro-

pogenic warming of the climate system [1–3] . Also, elevated con-

centrations of black carbon aerosols in ambient air are a public

health concern [4] , as they can cause allergies, pulmonary and

cardiovascular diseases, and premature deaths (e.g. [5] ). Thus, BC

emission abatement measures have significant co-benefits for im-

proving air quality and for counteracting climate warming on a

short time scale [6] . 

A thorough understanding of the optical properties of BC par-

ticles is required for quantifying the radiative forcing effect of this

type of aerosol (e.g. [7–9] ). Incorrect or oversimplified assumptions

about the particles’ morphological properties can have a signifi-

cant impact on the simulation of broadband radiative forcing rates

in global models [10–12] . One important question is how to ac-

curately represent the absorption enhancement caused by internal

mixing with liquid-phase material (e.g. [13–16] ). 

Air quality models are frequently being constrained by assimi-

lation of remote sensing observations (e.g. [17] ). In chemical data

assimilation an accurate description of aerosol optical properties

is critical for making correct use of the information provided by

the observations (e.g. [18,19] ). A closely related problem is the in-

version of ground based and satellite based remote sensing obser-

vations (e.g. [20] ). One example are lidar profiles of the aerosol

backscattering coefficient and depolarisation ratio (e.g. [21–24] ).

Differential scattering optical properties, such as those observed by

lidar instruments, are significantly more sensitive to aerosol mor-

phological properties than broadband radiative forcing rates. Thus,

a comprehensive understanding of the optical properties of mor-

phologically complex BC aerosols is even more essential in chem-

ical data assimilation and remote sensing than in climate mod-

elling. 

A review of earlier work on light scattering by fractal aggregates

can be found in [25] . Highly insightful overviews over current work

on black carbon and its optical properties are found in two recent

book chapters [26,27] . One goal of the present review is to distill

from the present state of knowledge a microphysical understand-

ing of the relation between morphological and optical properties.

By identifying those microphysical features that have a dominant

impact on the optical properties we can construct simplified model

particles with a reasonable prospect of being utilised in large-scale

applications, such as remote sensing retrievals, chemical data as-

similation systems, and climate models. 

The main focus in our review is on work done during the past

decade on both bare and coated BC aerosols. The common theme

in much of this work is an endeavour to understand the signifi-

cance of various morphological features on the optical properties

of BC aerosols. For this reason, we will start in Section 2 by re-

viewing our current state of knowledge of morphologically proper-

ties of bare and coated black carbon particles, as well as their size

distribution and dielectric properties. Accounting for morphologi-

cal details in a model requires state-of-the-art methods for solv-

ing the light-scattering problem (e.g. [28,29] ). Thus, we proceed

in Section 3 with discussing numerical light-scattering methods

suitable for application to BC aerosols. Optical properties of pure

and coated BC particles are discussed in Sections 4 and 5 , re-

spectively. From this review, we make an attempt in Section 6 to

draft a summary of our present physical understanding of the re-

lation between BC morphology and optical properties. Based on

this interpretation, we discuss two models that focus on what

we presently regard to be the essential morphological features of

BC; one model tailored to the needs of climate forcing compu-

tations ( Section 7 ), and another for modelling depolarisation by

coated aggregates ( Section 8 ). In Section 9 we provide a brief
ummary and specific recommendations as a baseline for future

ork. 

. Physical properties of black carbon 

.1. Morphology of bare black carbon particles 

Black carbon (BC) can be described as a fractal-like aggregate

n which the aggregate size R and the number of primary parti-

les (monomers) N s are related by a power law N s ∝ R D f , where D f 

enotes the Hausdorff dimension (or fractal dimension) [30] . More

pecifically, the canonical description of the fractal geometry of BC

ggregates is given by the statistical scaling relation [31] 

 s = k 0 

(
R g 

a 

)D f 

, (1)

here a is the monomer radius, k 0 is known as the fractal prefac-

or, and the radius of gyration is given by 

 g = 

√ 

1 

N s 

N s ∑ 

i =1 

(r i − r 0 ) 2 (2)

see also the review in [32] ). Here, r i denotes the position vec-

or of the i th monomer, and r 0 is the position of the aggregate’s

entre of mass. In this idealised description all monomers are

omogeneous spheres with the same radius a , and neighbouring

onomers are in point-contact with each other. The important

oint in this model is that the aggregates are assumed to be self-

imilar on different length scales. Thus, the scaling relation given

n Eq. (1) applies not only to the aggregate as a whole, but also to

ny (sufficiently large) parts of the aggregate. 

If the monomers can have different masses m i , the radius of

yration is given by [33] 

 g = 

√ ∑ N s 
i =1 

(r i − r 0 ) 2 m i ∑ N s 
i =1 

m i 

. (3)

or polydisperse monomers the radius a in Eq. (1) needs to re-

laced by the geometric mean of the monomers’ radii. 

As an illustration of the scaling law, Fig. 1 shows aggregates

ith different fractal properties (as indicated in the caption). All

our aggregates consist of N s = 500 monomers. Aggregates a and b

oth have fractal dimension D f = 1.8, while c and d have D f = 2.4.

he aggregates with the lower fractal dimension are significantly

ore lacy than those with the higher fractal dimension. Aggre-

ates a and b only differ in the fractal prefactor. The prefactor

an be interpreted as a measure for the compactness of the ag-

regate branches. In the branches of aggregate b with a low pref-

ctor ( k 0 = 0.7) the branches form more linear chains as com-

ared to those of aggregate a ( k = 1.3). Finally, aggregates c and
0 
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 have exactly the same fractal parameters. However, c has been

onstructed with the diffusion-limited cluster aggregation (DLCA)

lgorithm, while d has been formed with the diffusion-limited ag-

regation (DLA) algorithm (e.g. [31] ). Both look rather similar, al-

hough c seems to have a more homogeneous distribution of the

onomers throughout the aggregate. This illustrates that the ge-

metry of the particles is not only defined by the set of parameters

 N s , a, D f , k 0 ), but also by the algorithm used for constructing the

odel particles. 

Aging [34,35] and embedding of BC in liquid-phase material

36–39] results in a compaction of the particles, i.e., an increase

f the fractal dimension. Laboratory measurements indicate that

his process can proceed on different time scales, depending on

he coating material. But often the compaction process is largely

ompleted when only very small amounts of coating material have

een added onto the BC particle (see Fig. 4d in [40] ). Further ad-

ition of coating material leads to a radial growth of the particles.

he speed of restructuring process depends on the coating mate-

ial [41–44] : rapid collapse [41,42] , rapid collapse after reaching a

hreshold of coating volume [43] , or slow collapse [44] . The com-

action does not only depend on the volume of coating material,

ut in addition on the material’s surface tension [45] . 

The fractal dimension of newly produced BC particles depends

n the type of BC and the combustion conditions, but also on

he method that is being employed for determining the fractal

imension from observations. For instance, for diesel soot values

f D f in the range 1.57–2.1 [46] and 2.1–2.9 [47] have been de-

ermined; the frequency distribution of fractal dimensions peaks

round D f = 1.8–1.85 [48] . For Palas soot D f lies in the range

f 1.9–2.1 ( [46] ). In [39] values in the range of D f = 1.82–2.08

ere observed. Soot aggregates formed in a spark-ignition engine

howed fractal dimensions of D f = 2.2–3.0. More recent measure-

ents based on 3D electron tomography with a transmission elec-

ron microscope [49] suggest that the fractal dimension is sys-

ematically underestimated by those techniques that are based on

nalysis of 2D images [50] . The 3D analysis yields D f values for at-

ospheric BC particles near traffic emission sources in the range

.1–2.3 with a median value of 2.2. The corresponding fractal pref-

ctor k 0 ranges between 0.34 and 1.2 with a median value of 0.71.

arther away from emission sources, samples of BC particles were

aken that were slightly older than those near the emission hot

pot, but not yet embedded in liquid phase material. The 3D anal-

sis gave D f = 1.9–2.6 with a median of 2.4, and k 0 = 0.25–1.6 with

 median 0.67. Thus aging of BC generally results in an observable

ncrease of D f . 

The mean value of the monomer radius a typically varies in

he size range from around 10 nm to 25 nm. For instance, in

51] the mean values of a for soot generated in turbulent diffu-

ion flames was found to lie in the range 15–25 nm. In [52] diesel

oot particles were found to have monomer radii in the range 14–

7 nm, where the smaller monomers were generated at higher

ngine loads with higher operating temperatures. Other investiga-

ions on diesel soot found a mean monomer radius of 11 ± 3 nm

46] . Soot particles generated in the laboratory with a diffusion

cetylene burner were found to have a mean monomer radius

f 21 ± 4 nm [48] . Black Carbon collected in the field are com-

osed of monomers of comparable sizes. For instance, a study

n Mexico City as well as in a nearby area gave a monomer

adius of 22 ± 6 nm [53] . In another field study [50] BC par-

icles from two different sources yielded mean values of a of

6 nm and 18.5 nm; the monomers radii varied between 14–

7 nm and 13–22 nm, respectively. The size of the monomer

adius varies not only among aggregates, but even within each

ggregate (e.g. [33,54–56] ). Such polydisperse fractal aggregates

an be seen in transmission electron microscope (TEM) images

e.g. [57] ). 
Inspection of TEM images further reveals that the aforemen-

ioned assumption of monomers in point contact is an idealisa-

ion (e.g. [58–60] ). In reality, there is a finite contact surface be-

ween neighbouring spheres. Such morphological subtleties can be

ccounted for in models by allowing the spheres to overlap [60–

4] , or by adding material between neighbouring monomers, so-

alled necking [60,62,64–66] . Overlapping can be described by in-

roducing an overlap factor [67] 

 ov = 

2 a − d i j 

2 a 
, (4) 

here d ij denotes the distance between two neighbouring

onomers. If that distance is equal to the monomer diameter 2 a ,

hen C ov = 0 , i.e., the monomers are in point-contact. On the other

and, if d i j = 0 , then the spheres overlap completely, and C ov = 1 .

ther authors [68] describe the degree of overlap by an overlap

arameter 

= 

2 a 

d i j 

= 

1 

1 − C ov 
. (5) 

ecking has been described, e.g., by adding material around the

ontact surface according to a three-dimensional Levelset function

60] , or simply by linear or cylindrical connectors between neigh-

ouring spheres [66] . 

Little quantitative information on overlapping or necking is

vailable from measurements. Electron microscope analysis of

ildfire smoke particles yielded C ov = 0 . 33 [69] . Modelling studies

ssume either a fixed value of, e.g., C ov = 0 . 15 [70] , or they study

he sensitivity to overlapping by considering a range of values, e.g.,

 ov = 0–0.33 [46] , 0–0.4 [60] , or 0–0.5 [68] . 

.2. Morphology of coated black carbon particles 

Diesel soot particles are often assumed to be emitted as pure

C, although small amounts of organic carbon (OC) have been ob-

erved in fresh diesel soot with BC/OC mass ratios ranging between

 and 5 [71] . Biomass-burning aerosols originate from incomplete

ombustion of organic material, such as wood combustion [72] or

ildfires [73,74] , which typically produces brown carbon as well

s BC coated with organic material. Also, aging of bare BC in the

tmosphere is accompanied by oxidation of the particles, which

ncreases their hygroscopicity (but it can also alter the dielectric

roperties of BC). Subsequent condensation of vapours onto the

articles leads to internal mixing of BC with other components.

hus, aged BC, whether originating from diesel engines or biomass-

urning, are often internally mixed with organic substances. 

The condensation of sulphuric acid onto BC can accelerate the

ging process [75] . Field-emission scanning electron microscope

mages reveal that BC particles mixed with small amounts of

iquid-phase material can become coated by a thin film that fills

ut the void fraction in the aggregate [69] . On the other hand,

eavily coated BC particles become partially or completely embed-

ed in the liquid phase material. Depending on the amount and

omposition of the coating material, the coating can be spherical

e.g. [76] ), or nonspherical (e.g. [53,69] ). The most common coating

aterials are secondary organic compounds [13,53,77,78] , sulphate

53,57,77,79] , sulphuric acid [14] , sea salt [57] , and water [48,80–

2] . 

Condensational growth of BC typically happens on a time scale

f a few hours [83,84] , which is short compared to the lifetime of

nthropogenic aerosols in the atmosphere. For this reason, heav-

ly coated BC particles are very common in the atmosphere. Cor-

espondingly, the volume fraction of BC f BC = V BC /V total , which ex-

resses the ratio of the volume of black carbon to the total aerosol

olume of an internally mixed aerosol, tends to fall off rapidly as

he BC particles age and undergo condensational growth. For in-

tance, two different studies of aircraft samples taken over and
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near Mexico City showed median volume fractions of 15 % [77] and

7 % [53] , respectively. Some of the samples were locally emitted,

others originated from biomass burning sources outside the city.

The Mexico city basin is rapidly ventilated with residence times

typically less than 12 hours. It was estimated that most of the col-

lected samples originating from local emissions had probably aged

for about eight hours, while those from outside had aged for about

1–2 days [77] . This suggests that black carbon volume fractions

larger than 15 % are likely to be limited to particles very close to

emission sources. 

Beside BC aggregates coated by or encapsulated in a shell of liq-

uid material, some studies have considered BC aggregates attached

to a sulphate sphere [85,86] or to a water droplet [81] . 

2.3. Size distribution 

The median size of black carbon particles typically lies in the

Aitken or accumulation mode, but it can vary significantly among

samples. For instance, aircraft measurements of boreal biomass-

burning aerosols in eastern/Atlantic Canada showed that aged par-

ticles lie predominantly in the accumulation mode with a median

mobility-equivalent diameter of D m 

= 230 nm and a modal width

of σ = 1 . 5 [87] . Laboratory measurements found that the size dis-

tributions of freshly produced diesel soot as well as Palas soot peak

at mobility-equivalent diameters around D m 

= 200 nm; the size

distributions of either type of black carbon evolves toward larger

sizes over time as the particles interact dynamically and grow by

coagulation [46] . 

Different measurement techniques have been used to study

aerosol size distributions. The number size distribution can be ob-

tained by use of a scanning mobility particle sizer (SMPS), differ-

ential mobility particle sizer (DMPS) [13] , electrical low pressure

impactor (ELPI) [88] , electrical aerosol spectrometers [89] , parti-

cle counters, such as passive cavity aerosol spectrometer probe

[90] , or analysis of scanning electron microscope (SEM) or trans-

mission electron microscope (TEM) images [46,77,91] . The mass

distribution of black carbon can be measured, e.g., by use of

aerosol mass spectroscopy [92] or single particle soot photometers

(SP2) [93] . 

SMPS and DMPS measurements yield the mobility-equivalent

particle diameter, ELPI provides the aerodynamic diameter, while

image analysis yields, e.g., the maximum dimension [46] or the

size of a fitted ellipse [77] . Modelling studies often characterise

the size of black carbon particles by specifying either the volume-

equivalent radius r V or the number and size distribution of

monomers in the aggregate (as well as, if applicable, the overlap

parameter or necking specifications). This can make it very diffi-

cult to precisely base model calculations on observations. However,

some experimental studies have reported both the mean monomer

radius a and the number of monomers N s in the aggregate. These

types of size measurements can more easily be used in mod-

elling studies than, e.g., observations of aerodynamic or mobility-

equivalent sizes. For instance, 3D TEM analysis of two different

field samples produced mean values of ( a, N s ) = (26 nm, 139) and

(18.5 nm, 203) [50] . The number of monomers in the two sam-

ples varied in the range 7–509 and 47–792, respectively. The cor-

responding radii of gyration varied in the range 115–1017 nm and

99–560 nm, respectively. The same methodology applied to coated

black carbon particles from a different sam pling site gave mean

values of ( a, N s ) = (22 nm, 40) with a standard deviation of (6 nm,

32); the volume-equivalent radius of the host particle was 206 nm

with a standard deviation of 71 nm [53] . Analysis of SEM images

of soot particles freshly emitted from wildfires gave mean values

of ( a, N s ) = (28 nm, 498) and ( a, N s ) = (21 nm, 437) with standard

deviations of (6 nm, 995) and (5.5 nm, 846) [69] . 
.4. Dielectric properties 

Much of what we know about the dielectric properties of BC

s inferred from laboratory studies, in which the soot particles are

ypically generated under controlled combustion conditions by use

f pure fuels. BC in the atmosphere usually originates from diesel

ngines, coal combustion, or biomass burning under less ideal con-

itions. It is therefore not trivial to decide which laboratory studies

rovide results that can be generalised to atmospheric BC. A com-

rehensive review of the literature can be found in [94] . 

The most important microscopic properties that determine the

ielectric properties are the electronic structure of the carbona-

eous material, and the embedding of voids therein. Perfect lat-

ice structures of carbon are diamond and graphite. The crys-

al lattice of diamond is built up of tetrahedral units of carbon

toms, in which the valence electrons are sp 3 hybridized (as in

he methane molecule). This electronic structure is characterised

y tightly bound electrons, resulting in low electric conductivity.

y contrast, graphite is built up of unit cells in which the valence

lectrons of the carbon atom are sp 2 hybridized (as in benzene).

hese bonds are characterized by delocalised π electrons that can

reely move along the lattice, resulting in high thermal and electri-

al conductivity. Correspondingly, diamond is optically transparent

ver a large spectral range from the UV to the far IR, while graphite

s strongly absorbing. 

Amorphous carbon can be seen as a mixture of sp 2 and sp 3 

onds [95] . While such a mixture does not display any large-scale

rder, it can have a characteristic structure on the scale of several

toms. This medium range order is one important factor that de-

ermines the dielectric properties of BC [96] . More specifically, the

arger the graphitic clusters of sp 2 aromatic carbon rings, the lower

he energy gap between the electronic ground state and the lowest

xcited state, resulting in enhanced absorption. The medium range

rder, in turn, depends on the combustion conditions. 

Not only the electronic structure of BC, but also the content

f voids entrained in the material during the formation process

an impact the dielectric properties. Bond and Bergstrom [94] re-

iewed a sizable number of studies that inferred refractive indices

rom optical measurements at a wavelength of 0.55 μm. They in-

estigated the variation of the imaginary part with the real part

f the refractive index for the reported literature values and com-

ared the results to theoretical predictions. They found that most

f the reported values are consistent with the void fraction model,

hile a smaller number is consistent with the partial graphiti-

ation model. Based on a discussion of the representativeness of

vailable laboratory measurements for atmospheric BC, they con-

lude that the most realistic values for the refractive index should

ie in the upper part of the void fraction curve. This range lies be-

ween m = 1.75 + 0.63i and 1.95 + 0.79 i. 

The spectral variation of the refractive index of flame soot has

een studied in [97] . The spectral extinction measurements cov-

red the wavelength range 0.20–6.4 μm. Calculations based on the

ubtractive Kramers–Kronig (SKK) technique [98] allowed for infer-

ing the refractive index up to 30 μm wavelength. The following

arameterisation was obtained as an empirical fit of the spectral

ependence of the real part n and the imaginary part k of the re-

ractive index. 

 = 1 . 811 + 0 . 1263 ln λ + 0 . 027 ln 

2 λ + 0 . 0417 ln 

3 λ (6)

 = 0 . 5821 + 0 . 1213 ln λ + 0 . 2309 ln 

2 λ − 0 . 01 ln 

3 λ, (7)

here the wavelength λ is given in μm. The parameterisation

s accurate in the wavelength range 0.4–30 μm. For shorter

avelengths, the authors reported m = n + i k = 0.94 + 0.35 i at

= 0.20 μm, and m = 1.19 + 0.79i at λ = 0.26 μm, where both val-

es are based on measurements 10 mm above the burner surface
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f a propane flame. At 0.55 μm wavelength, the parameterisation

ields m = 1.74 + 0.59i, while the measurements at 0.54 μm gave

 = 1.77 + 0.63i. Both values lie along the upper part of Bond and

ergstrom’s void fraction curve [94] . 

In light scattering modelling of soot at and near a wavelength of

.55 μm it has become popular to use the value of m = 1.95 + 0.79i

e.g. [86,99] ), but lower values along the void fraction curve are

lso being used, such as m = 1.75 + 0.63i (e.g. [100,101] ). When a

pectral variation is considered, one frequently uses the parameter-

sation determined in [97] and given here in Eqs. (6) and (7) (e.g.

7,100,102] ), which has the advantage of covering a large spectral

ange. 

However, owing to the high variability in the degree of graphi-

isation and in the amount of void fractions in the material, the re-

ractive index of soot can vary considerably. Therefore it is imper-

tive to consider this variablility as an important source of model

ncertainty. This has been discussed in [103] , in which the refrac-

ive index was parameterised according to 

 = n 0 + A (λ − 0 . 55) (8)

 = k 0 · 10 

B (λ−0 . 55) . (9)

ere n 0 + ik 0 denotes the refractive index at a wavelength of λ =
 . 55 μm. Note that the parameterisation is limited to the spectral

ange of 0.3–1.0 μm. The authors fitted the parameterisation to dif-

erent measurements reported in the literature [13,34,97,104–106] .

hey concluded that the uncertainty range of the refractive index

f soot is well represented when varying the fitting parameters

n the ranges 0.0 ≤ A ≤ 0.25 and −0 . 25 ≤B ≤ 0.0, although some ob-

ervations lie even outside this range. The reference value n 0 + ik 0 
aries among different studies within a range similar to that given

n [94] . 

. Computational methods 

Numerical methods for light scattering computations are typi-

ally much simpler for regularly shaped particles (e.g. [107,108] ),

han for irregular particles, such as soot. Both approximate and nu-

erically exact methods have been employed for modelling opti-

al properties of BC aggregates. The Rayleigh–Debye–Gans (RDG)

heory ( [25,109] ) is perhaps the most widely used approximate

ethod (e.g. [110–113] ). For instance, it is the basis of the COSIMA

omputer program for simulating the dynamics of fractal BC aggre-

ates [114] . It has also been applied to the retrieval of soot proper-

ies from light scattering measurements (e.g. [115] ). The first as-

umption in RDG theory is that the monomer radius a is small

ompared to the wavelength λ, 

 πa/λ � 1 . (10) 

hus each monomer scatters in the Rayleigh limit. The second as-

umption is that the monomers are optically soft, i.e. 

 m − 1 |� 1 , (11)

here m denotes the refractive index of the monomers. Under the

econd assumption multiple electromagnetic interactions among

he monomers are negligibly small, and each monomer can be

ssumed to only interact with the incident electromagnetic field.

hile the first assumption is often well satisfied for BC aggre-

ates, the second one is not [113] . For this reason, several studies

ave evaluated the range of validity of the RDG approximation (e.g.

116] ). Such evaluations are based on comparing RDG results to ei-

her numerically exact results [113,117,118] , or to measurements on

ggregates of TiO 2 and SiO 2 [119] as well as BC [120] . 

Among the earliest work on accounting for electromagnetic in-

eraction among monomers were studies based on the method
f moments [121,122] and the coupled dipole method [122,123] ,

here each monomer is treated as an electric dipole. Extensions

f RDG theory have been developed, e.g., by introducing correc-

ions for multiple scattering among monomers [124,125] . Karlsson

t al. introduced a generalised RDG theory based on accounting for

he electric near-field interaction among monomers, while neglect-

ng electric far-field interaction [126,127] . Other approximate meth-

ds have been devised, such as the grouping adding method [128] ,

n electrostatic approximation method [129] , and the geometric-

ptics surface-wave approach [130] . 

With the steady advance of computational capacities numeri-

ally exact methods have become increasingly popular. The Multi-

le sphere T matrix (MSTM) method is based on using the super-

osition formulation for radiative interactions among monomers

131–133] . A publicly available superposition T matrix code has

een developed [134] which makes use of analytic orientation av-

raging for randomly oriented particles [135,136] . An updated ver-

ion of the MSTM code has been tailored to parallel computing en-

ironments [137] . The monomers in the aggregate can be located

ither internally or externally to each other, and they can have

ifferent dielectric properties. There are only two restrictions. (i)

ll monomers must be homogeneous spheres. (ii) The monomers

ust not intersect each other; i.e., the surfaces of any two spheres,

hether internal or external to each other, must have, at most, a

ingle point of contact. A main strength of the method is its high

omputational speed and accuracy in comparison to other numer-

cally exact methods. The MSTM code has been employed exten-

ively in applications to BC aggregates (e.g. [55,81,85,86,117,138–

48] ). 

An equally popular numerically exact approach is the dis-

rete dipole approximation (DDA), which was originally devel-

ped by Purcell and Pennypacker [149] . Reviews of the method

an be found, e.g., in [122,150] . Publicly available computer im-

lementations are DDSCAT [151] and ADDA [152] . The method

as no restrictions on particle shape; it can accommodate, e.g.,

verlapping spheres, necking, and nonspherical monomers. How-

ver, it is slower than the MSTM; orientation-averaging is car-

ied out numerically rather than analytically. A sizable number

f modelling studies on BC is based on using the DDA (e.g. [60–

2,64,66,101,102,118,144,153–161] ). 

An important issue in application of the DDA is the choice of

he dipole spacing d , which controls the accuracy of the results

e.g. [162] ). The quantity | m | kd , where m is the complex refrac-

ive index, and k is the wavenumber in vacuum, has to be chosen

ufficiently small so that (i) the dipole approximation holds (e.g.

29,163] ); and (ii) the geometry of the particle is sufficiently well

pproximated by the array of dipoles (e.g. [163] ). The best choice

f | m | kd depends on the optical properties of interest. Differen-

ial scattering properties typically require a smaller dipole spacing

han integral optical properties. It may also depend on the specific

eometry, and on whether or not the aggregates are coated. But

n general, the dipole spacing for BC aggregates has to be chosen

uch smaller than for compact particles (e.g. [155,163] ). One can

nvestigate the accuracy of the DDA results by checking the con-

ergence with decreasing d (e.g. [164,165] ), by comparison with T-

atrix results (e.g. [155,163] , or, possibly, by use of the reciprocity

ondition [166] . A systematic study of the performance of the DDA

or computing optical properties of BC aggregates has been re-

orted in [163] . 

Another efficient method for aggregates of non-overlapping

pheres is the Generalised Multiparticle Mie method (GMM) [167–

70] , which has been applied to BC aggregates in [140] . In the lat-

er paper, the GMM was also compared to the MSTM. The other-

ise popular Finite-Difference Time-Domain method (e.g. [171] ) is

nly occasionally applied to BC aggregates (e.g. [161] ). A finite el-

ment method, referred to as the finite-element boundary integral
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domain decomposition method, has been presented and applied to

randomly oriented aggregates, as well as compared to MSTM re-

sults [172] . A machine learning method to estimate integral op-

tical properties of soot has been reported in [146] . The authors

employed a supervised learning model that has been trained with

data generated by use of the MSTM code. 

Comparison of the RDG and MSTM applied to BC can be found

in [117,173] . Comparisons of DDA and MSTM applied to BC have

been presented in [144,155,163] . The geometric-optics surface-

wave approach has been compared to MSTM computations for BC

aggregates in [99] . 

4. Optical properties of pure black carbon aggregates 

RDG theory can, in some cases, provide sufficiently accurate

predictions of the absorption cross section of pure BC aggregates,

while in other cases, it can under-predict absorption by 10–20 %

(e.g. [174] ). This has spawned the development and use of nu-

merically exact methods for modelling optical properties of pure

BC aggregates. In [138] it was shown that accounting for electro-

magnetic interaction among monomers in BC aggregates enhances

absorption by more than 25 %, while the single scattering albedo

(SSA) and the asymmetry parameter g can be enhanced by more

than a factor of 10. The phase function acquires a pronounced

forward peak as compared to the Rayleigh-like phase function of

independently scattering small monomers. A comprehensive sen-

sitivity study of the integral optical properties to changes in D f 

for a selection of different values of k 0 , a, N s , and refractive in-

dex m has been reported in [139] . One of the refractive indexes

as well as about half of the range of fractal dimensions considered

in that study were representative for atmospheric BC aerosols. It

was found, in most cases, that the optical cross sections and the

asymmetry parameter increase monotonically with increasing D f .

However, for large lacy aggregates one can observe an initial de-

crease of the absorption cross section as the aggregates becomes

more compact, followed by a monotonic increase at higher values

of D f . These findings underscore the importance of accounting for

electromagnetic interaction among monomers in modelling the in-

tegral optical properties of BC aggregates. 

The work reported in [140] included a comparison between

MSTM and GMM computations for bare, monodisperse BC aggre-

gates. The GMM method allows for approximate solutions based on

introducing an interaction index f i, j = (a i + a j ) / | r i − r j | , where a i
and a j are the radii of monomers i and j , and | r i − r j | is the separa-

tion of their centres of mass. Interaction among all monomers with

an interaction index f i,j smaller than a prescribed value f 0 is ne-

glected. The exact solution corresponds to f 0 = 0 , and the RDG so-

lution to f 0 = 1 . The method is able to interpolate between those,

which gives us an idea of how important and how far-reaching

electromagnetic interaction among monomers within an aggregate

is. The computations were performed for aggregates in the range

from N s = 5 up to N s = 10 0 0 , and for D f = 1.82, k 0 = 1.27. The re-

sults revealed that the approximate solution only gave good agree-

ment with the exact solution for both the cross sections and the

asymmetry parameter if f 0 ≤ 0.02. This strongly suggests that elec-

tromagnetic interactions among monomers can be far-reaching,

even in such relatively lacy aggregates. The study further investi-

gated the sensitivity of the integral optical properties to a variation

in m and a . The parameter range was limited to values representa-

tive of atmospheric BC. It was found that the mass absorption cross

section (MAC) monotonically increased as the refractive index was

varied from 1.75+0.63i to 1.95+0.79i. The SSA only changed from

0.22 to 0.26. By contrast, an increase in a from 15 to 25 nm re-

sulted in no change in MAC, and in a monotonic increase in SSA

from 0.18 to 0.26. It was concluded that MAC is highly sensitive to
 variation in the refractive index, while an increase in monomer

adius mainly increases the single scattering albedo. 

Polydispersity of aggregates can impact the optical properties

54] . For instance, in [63] total cross sections as well as differential

cattering cross sections were compared for (i) monodisperse ag-

regates with a monomer diameter 2 a = 34 nm, and (ii) polydis-

erse aggregates with a mean monomer diameter 2 ̄a = 34 nm and

 standard deviation σ = 6.9 nm, where the size distribution was

ssumed to be Gaussian. They found that polydispersity enhanced

he cross sections. Similar findings were reported in [55] , in which

 larger number of samples was used for computing ensemble-

veraged optical properties. A lognormal size distribution for the

onomers was assumed: 

 (a ) = 

1 

a 
√ 

2 π ln σ
exp 

[ 

−
(

ln (a/a 0 ) √ 

2 ln σ

)2 
] 

. (12)

he optical cross sections and the asymmetry parameter obtained

or polydisperse aggregates were compared to those of monodis-

erse aggregates, were the latter were computed for monomer

adii a = a 0 , and a 0 denotes the geometric mean radius of the log-

ormal distribution. As in [63] , the monodisperse aggregate model

ends to give lower cross sections than the polydisperse model.

owever, the authors also tested a different measure of equivalent

onomer radius a vol defined such that a monodisperse aggregate

omposed of N s monomers of radius a vol has the same volume as

 corresponding polydisperse aggregate of N s monomers, i.e. 

 s 

4 πa 3 
vol 

3 

= N s 

∫ 
4 πa 3 

3 

n (a )d a. (13)

onodisperse aggregates with this equivalent monomer radius

ave much better agreement with the polydisperse aggregates, but

hey still underestimated the scattering cross section by 10 %.

imilarly, a volume-equivalent monomer diameter was defined in

143] according to 

 v = 

3 

√ 

N ∑ 

i =1 

d 3 
i 
/N , (14)

here d i denotes the diameter of the i th monomer. Computa-

ions of optical properties of volume-equivalent aggregates showed

hat in most cases the cross sections and SSA were similar when

omparing polydisperse aggregates with monodisperse aggregates

omposed of monomers with diameter d v . However, the differ-

nces were larger for more extreme cases of polydispersity. 

The existing literature on polydispersity gives little clues as

o why one should choose one measure of size equivalence or

he other. Neither the use of a geometric mean radius a 0 nor

he use of an equivalent volume radius a vol seems to be based

n any assumptions grounded in the relevant physical processes,

amely, the interaction of light with aggregated particles. If the

onomers were independent scatterers, they would be in the

ayleigh regime. Also, it is known that the absorption cross sec-

ion of monodisperse BC aggregates scales with the volume of the

articles (e.g. [7] ), i.e. C abs ∝ Na 3 , just as in Rayleigh scattering. For

his reason, a physically well-motivated measure of monomer size-

quivalence could be obtained by averaging a over the size distri-

ution weighted by the particle volume; i.e., we could define an

ffective monomer radius by 

 eff = 

∫ 
4 
3 
πa 3 n (a ) a d a ∫ 

4 
3 
πa 3 n (a )d a 

, (15)

hich is the ratio of the fourth to the third moment of the size

istribution. Note the analogy to the definition of the effective ra-

ius of particles in the geometric optics regime as the ratio of the

hird to the second moment of the size distribution (since in that
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egime, the optical cross sections scale with the cross sectional

eometric area of the particles). Clearly, a eff is shifted to larger

adii compared to a 0 , which explains why monodisperse aggregates

ith a radius a 0 underestimate the optical cross sections, espe-

ially C abs . It remains to be seen how such a measure of size equiv-

lence would perform in practice. Note that other optical prop-

rties of aggregates do not display a simple scaling relation with

he particle volume [7] . Therefore, it is by no means guaranteed

hat assuming a measure of size equivalence grounded in optical

caling relations will automatically give us a better representation

f the optical properties of polydisperse aggregates. But in gen-

ral, it still seems most promising to base a size-equivalence mea-

ure on our understanding of optical processes. An indirect clue

ay come from the sensitivity study of SSA as a function of a re-

orted in [140] . It was found that modelled SSA values gave the

est agreement with reported measurements (reviewed in [94] )

or a = 25 nm, which lies close to the upper end of monomer

adii found in measurements (also reviewed in [94] ). For smaller

onomer radii, SSA was too low, because the scattering cross sec-

ion C sca was too low. It is quite possible that the size measure

 vol used by [55] underestimates C sca , because it is only based on

he third moment of the size distribution, which gives too low val-

es for the effective monomer radius. A physically motivated size

easure based on the fourth moment of the size distribution, such

s in Eq. (15) , would be shifted to larger radii, resulting in higher

alues of C sca . 

The effect of monomer shape has been investigated in [158] .

ggregates composed of spherical monomers were compared to

hose composed of axis-parallel spheroidal monomers, where the

pheroidal monomers had the same volume as the spherical ones.

he simulations were performed for a range of different fractal

imensions, monomer radii, wavelengths, refractive indices, and

pheroid aspect ratios R a / R b , where R a and R b denote the dimen-

ion perpendicular and parallel to the spheroid’s symmetry axis,

espectively. The authors concluded that monomer shape has a

arge impact on optical properties; nonsphericity enhances C abs by

p to 15 %, SSA by up to 10 %, and it reduces the asymmetry pa-

ameter g by as much as −25 %. However, upon closer inspection of

hese results one should note that the maximum variation given in

his summary correspond to rather extreme monomer shapes. The

spect ratio of the spheroids was varied between 1/3 and 3, and all

pheroidal monomers had the same orientation. This results in ag-

regate morphologies that are, arguably, not very realistic. Further,

ome of the diagrams in the paper by [158] show that the fractal

imension and the refractive index of soot have a stronger impact

n MAC and SSA than the monomer nonsphericity. The monomer

adius a has a profound impact on SSA, which confirms the results

eported in [140] ; this impact far exceeds that of the monomers’

spect ratio. 

Deviations from the idealised assumption of point-contacting

onomers have been discussed extensively in the literature

60,61,63–66,68] . Both overlapping and necking was systematically

tudied for a bisphere in [66] . It was found that different necking

odels do not lead to significant differences in the optical prop-

rties. Therefore, the authors recommend to use the simple cylin-

rical connector model. An increase in the overlap factor C ov be-

ween 0 and 0.18 results in a monotonic increase of C abs by about

 %, followed by a monotonic decrease. Between C ov = 0.18 and

 the absorption cross section drops by about −8 %. A compari-

on of fractal BC aggregates of three different sizes showed that

0 % overlapping of the monomers slightly decreased C abs as com-

ared to point-contacting aggregates, and it increased C sca [63] . A

ystematic study for a range of different overlapping and neck-

ng parameters on realistic, polydisperse BC aggregates was pre-

ented in [60] . The study covered the spectral range from 266

o 1064 nm. It was found that the mass extinction cross section,
 ext / m p (where m p denotes the particle mass), is lowered by over-

apping and necking in the UV, and enhanced in the visible and

ear IR part of the spectrum. The asymmetry parameter is low-

red over the whole spectral range, while SSA is enhanced for all

avelengths. The magnitude of the impact on extinction and SSA

s largest for shorter wavelengths. 

Thanks to a substantial amount of work invested into optical

odelling, we have now reached a fairly high level of understand-

ng of how various morphological properties impact the integral

ptical properties of bare BC aggregates. It is clear that there are

ubstantial differences in the optical properties of fractal aggre-

ates and mass-equivalent spheres. For instance, a fractal aggre-

ate model of BC can yield spectral [18] and broadband [7] radia-

ive forcing estimates that are higher by a factor of 2 than corre-

ponding estimates based on a homogeneous sphere model. Part

f the problem is that the homogeneous sphere model underesti-

ates C abs , and it overestimates SSA. This gives too little radiative

arming by absorption and too much radiative cooling by scat-

ering. These two errors are additive in radiative transfer simula-

ions. The poor performance of homogeneous spheres in represent-

ng absorption by soot can be understood physically [8] . A compact

phere of highly absorbing material shields part of the BC mass

ear its centre from interacting with the electromagnetic field. By

ontrast, a lacy aggregate allows a larger part of the BC mass to

ome into contact with the field, thus contributing to absorption

f radiative energy. This is why the homogeneous sphere model

nderestimates C abs . 

By contrast, comparing fractal aggregate models with fractal pa-

ameters ( D f , k 0 ) = (2.4, 0.7) and (1.8, 1.3) only leads to differences

n the broadband radiative forcing by a factor of 1.1–1.6 [8] . More

ubtle morphological features can be expected to have an even

maller impact. Therefore, based on our current state of knowl-

dge, it seems most reasonable that pure BC aerosols should be

epresented in models by monodisperse, point-contacting, spher-

cal monomers (with a suitable measure of size-equivalence for

he monomer radius). Minor morphological features should be

ccounted for by including them in the error estimates, or by

mploying a simple empirical correction. An important step to-

ard such an approach was made in a recent study [64] . The au-

hors quantified the effect of five minor morphological structures,

amely, monomers with polydispersity, irregular shapes, and thin

oatings, as well as necking and overlapping. It was found that

hese minor structures only have a small effect on the asymme-

ry parameter and on the elements of the Mueller matrix. The ef-

ect on the scattering and absorption cross section is more signif-

cant, but much of this can be attributed to the effect of minor

tructures on the particle volume. Necking has the strongest effect.

n the Rayleigh regime, C abs ∝ V and C sca ∝ V 

2 , where V denotes the

article volume. Thus it was proposed to introduce empirical cor-

ection factors B abs and B sca and to make the ansatz 

 abs = B abs 

V 

V 0 

C 0 abs (16) 

 sca = B sca 

(
V 

V 0 

)2 

C 0 sca , (17)

here C abs , C sca , and V denote the cross sections and particle vol-

me in the presence of minor structures, while C 0 
abs 

, C 0 sca , and

 0 denote the corresponding quantities for the idealised monodis-

erse, bare aggregates of homogeneous spheres in point-contact.

t a wavelength of 500 nm, it was found that a correction factor

f B abs = B sca = 1.05 resulted in very good agreement with nu-

erically exact reference computations accounting for aggregates

ith non-ideal minor structures. Thus, when the effect of minor

tructures on the particle volume is accounted for, the remaining
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Fig. 2. Core-grey-shell (CGS) model with variable choices of the free tuning param- 

eter, i.e., the BC core fraction f core . Limiting cases comprised by the CGS model are 

the core-shell model (a) with f core = 1, and the homogeneous grey-sphere model 

(d) with f core = 0. 
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effect of these morphological features on the optical cross sections

is remarkably small; it is only on the order of 5 %. 

For fractal aggregates consisting of monodisperse, point-

contacting spherical monomers a data base of optical properties

has been described in [148] . The authors of that study make the

data base available upon request. 

Linearly polarised light becomes partially depolarised upon

scattering by BC aggregates [175] . It is evident that depolarisation

is caused by electromagnetic interaction among the monomers in

the aggregate, as non-interacting monomers would not change the

polarisation state. The sensitivity of depolarisation to morpholog-

ical properties was tested [65] by use of DDA computations. The

DDA was also compared to a simplified model that limits mul-

tiple scattering among monomers to second order. The approxi-

mate model was found to be overall consistent with the DDA re-

sults. The simulated backscatter depolarisation ratio δl decreases

with increasing D f , it increases with N s for N s ≥ 20, and it increases

with monomer radius a. δl was also found to increase with | m |.

However, m was varied from 1.16+0.71i to 2.65+1.32i, resulting in

a variation of δl from 0.0025 to 0.025. Only a small sub-interval

of these values of m are representative for atmospheric BC. Within

that sub-range the variation of δl is very small. Overlapping and

necking can enhance δl from 0–0.005 for point-contacting spheres

to 0.005–0.03 for aggregates with strong overlap/necking. For suffi-

ciently large values of N s , δl depends most strongly on a . However,

in most cases typical for atmospheric BC the depolarisation ratio

of bare BC aggregates rarely exceeds 0.01–0.03. 

In [176] the extinction and backscattering cross section, the li-

dar ratio LR , and the linear depolarisation ratio δl in the backscat-

ter direction were simulated for bare BC aggregates. A sensitivity

analysis suggested that (i) all of these lidar-relevant quantities are

sensitive to the monomer radius; (ii) the number of monomers

had a strong impact on the cross sections (as expected), but not

so much on δl ; and (iii) the fractal dimension of the aggregates

only had a weak impact on all lidar-relevant optical properties. 

5. Optical properties of black carbon aggregates mixed with 

liquid material 

The simplest model to describe BC mixed with liquid material is

to assume a homogeneous sphere, and to compute an effective re-

fractive index of the BC/liquid mixture by use of effective medium

theory (EMT) (e.g. [177,178] ), such as the Maxwell-Garnett [179] or

the Bruggemann rule [180] . Since the mixing with BC “darkens”

the liquid material, we will refer to this as the homogeneous grey-

sphere model. Only if the size parameter x = 2 πR/λ of the BC in-

clusions is smaller than 0.5, where R is the radius of a volume-

equivalent sphere, then EMT reproduces the integral optical prop-

erties with 1 % accuracy [181] . For instance, for a monomer radius

of a = 25 nm and λ = 500 nm, this would correspond to a frac-

tal aggregate composed of less 17 monomers. Comparisons with

detailed DDA computations showed that, in general, EMT models

tend to underestimate the scattering efficiency and overestimate

the asymmetry parameter and absorption efficiency [156,182] . 

Among the earliest inhomogeneous particle models were the

concentric [183] and non-concentric spherical core-shell models

[184,185] , in which the liquid-phase material makes up the shell,

and BC makes up the core. Another approach is the equivalent

coated sphere model, in which the shell has the index of refraction

of the aggregate, and the core has the index of refraction of the

surrounding medium [186,187] . Slightly more complexity is added

in the spherical concentric core-shell dimer model [188] . An exten-

sion of this model is the so-called closed cell model, in which the

aggregate is composed of core-shell monomers. The BC monomers

are concentrically [35,80,130,189–193] or off-centre coated [194] ,

and the shells of the monomers are in point contact with neigh-
ouring core-shell monomers. It was shown that this model ap-

roximates the optical properties of more realistic BC monomers in

oint contact coated with a film of weakly absorbing coating mate-

ial if the BC volume fraction is higher than 0.75. For thickly coated

ggregates, a model consisting of a spherical shell with multiple

pherical BC inclusions has been considered [153] . Shortly after

hat the first models of morphologically realistic fractal BC aggre-

ates encapsulated in a shell of homogeneous [155] and inhomoge-

eous liquid materials [53] have been considered. Comparisons of

orphologically realistic and more or less simplified morphologies

re reported in [148,153,155,156,190] . 

From a climate modelling perspective, one of the main concerns

s the question by how much the coating enhances light absorption

ompared to bare BC aggregates (e.g. [195] ). A significant number

f studies have investigated this problem by use of modern coated

ggregate models. For instance, computations for fractal BC aggre-

ates encapsulated in a spherical shell of sulphate were compared

o three simplified model particles [155] . The simplest one of those

as an external-mixture model, in which BC and sulphate each are

escribed by separate homogeneous spheres of equivalent volume.

alculations were reported for one UV, one visible, and one NIR

avelength. The use of the external-mixture model results in sub-

tantial biases in the optical cross sections. Depending on particle

ize, wavelength, and BC volume fraction, C abs of coated fractal ag-

regates can be 3–8 times higher than the corresponding averaged

bsorption cross section in the simple external-mixture model. In

he same study, the encapsulated aggregate model was compared

o a homogeneous grey-sphere model based on using EMT accord-

ng to Maxwell–Garnett [179] . It was found that the homogeneous-

ixture model generally overestimates absorption. Finally, the con-

entric core-shell model was shown to underestimate absorption

t the visible and the NIR wavelength (see Figs. 5 –8 in that pa-

er), but generally not at the UV wavelength ( Figs. 2 and 3 ). Simi-

ar results were later reported in [191] . These results were further

orroborated in a more comprehensive study covering the entire

pectral range from 230 nm to 8.0 μm [156] . The biases intro-

uced by the external-mixture, EMT, and core-shell models were

ost pronounced in the visible and near IR part of the spectrum,

here most of the solar energy is found. It was also shown that

he overestimation of C abs by the core-shell model extends over

he entire visible spectrum and into the NIR (see Fig. 4 in that pa-

er). Thus, despite a possible overestimation at wavelengths below

50 nm [155,191] , the core-shell model will overestimate broad-

and absorption by coated BC aerosols. 

Another investigation with a focus on BC aggregates covered

ith sea salt compared coated with uncoated aggregates [157] . Av-

raged over the spectral range from 200 to 10 0 0 nm, the coating

nhanced MAC by a factor ranging between 1.0 for lacy, partially

mmersed BC aggregates, up to 2.2 for compact, fully encapsulated

ggregates. Similar results were reported in [101] ; they considered

ulphate-coated BC aggregates with various fractal dimensions and

C volume fractions, but for a single wavelength of 550 nm. It was

hown that for a BC volume fraction of 0.15, coating enhances ab-

orption of bare BC aggregates by a factor ranging from 1.5 to 1.65,
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Fig. 3. C abs (top row), SSA (second row), g (third row), and C bak (bottom row) 

as a function of volume-equivalent radius r v obtained for BC volume fractions of 

f BC = 0.07 (left column) and 0.20 (right column) at a wavelength of λ = 533 nm. Re- 

sults are obtained for a sulphate-coated fractal aggregate model (black), CGS model 

with f core = 0.5 (red), core-shell model (solid blue), and homogeneous grey-sphere 

model (dashed blue). The range of CGS results with different choices of f core is in- 

dicated by the shaded region. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 4. As Fig. 3 , but for a fixed particle radius r v = 500 nm. Each optical property 

is shown as a function of wavelength (note the logarithmic scale). 
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here the higher end corresponds to aggregates with larger fractal

imension. 

The work in [62] examined coated BC aggregates in the spectral

ange of 26 6–10 64 nm. The coating was non-spherical and more

r less followed the shape of the aggregate. For the aggregates, the

ffects of monomer polydispersity, overlapping and necking have

een taken into account, and the sizes ranged from N s = 1–96

onomers. The absorption enhancement factor varies between 1

nd 1.5, depending on the coating thickness. The core-shell model

as shown to overestimate the enhancement factor, while a model

ased on individually coated monomers strongly underestimates

he absorption enhancement. 

A model with a focus on BC aggregates coated with a thin film

f organic material (with a BC volume fraction of 0.8) reported an
bsorption enhancement factor of 1.15 [160] . The calculations were

imited to a wavelength of 550 nm. This relatively small absorp-

ion enhancement for weakly coated particles would be more typ-

cal for freshly emitted BC aerosols. Field measurements from both

inter and summer campaigns in near-source environments con-

rm that absorption enhancement of such BC particles is rather

mall [196] . 

A study focusing on coated BC particles at wavelengths 532 nm

nd 1064 nm reported computations with the MSTM model for

C mass fractions in the range 0.01–1 [147] . The mass fraction is

efined analogously to the volume fraction, i.e., f m 

BC 
= M BC /M total ,

here M BC and M total denote the masses of the BC aggregate and

f the total BC+coating particle, respectively. It was shown that the

bsorption enhancement factor increases with decreasing BC mass

raction; it reaches a constant average value of 2.5 at mass frac-

ions f m 

BC 
≤0.01. Another MSTM study limited to computations at a

avelength of 550 nm and to BC aggregates fully encapsulated in

 spherical sulphate shell reported absorption enhancement factors

n the range between 1.3 and 2.4 varying with BC volume fraction,

ff-center position of the BC core, fractal prefactor, and size class

145] . 

Scaling relations of the MAC enhancement factor E MAC were re-

orted in [197] . The study compared measurements with a coated

ggregate model for BC mass fractions f m 

BC 
= 0.07–1.0 and for

avelengths 405, 532, and 880 nm. It was found that the wave-

ength dependence of MAC follows a λ−1 power law. More specifi-

ally, MAC of the coated BC aggregates can be described by MAC =
 . 6 f m 

BC 
−1 / 3 λ−1 . Note, however, that the refractive index of BC as

ell as the coating was assumed to be independent of wavelength

n that study. They further found that the absorption enhancement

actor due to the coating ranged between 1.3 and 1.9 for partially

mbedded BC, and between 2.2 and 2.5 for BC that is completely

ncapsulated by the coating. The enhancement factor E MAC can be

odelled as E MAC = 1 . 0 f m 

BC 
−0 . 32 

. 

The spectral variation of the optical properties, and specif-

cally the extinction Ångström exponent (EAE) and absorption
˚ ngström exponent (AAE) were investigated in several stud-

es [103,156,191,192,198] . The spectral ranges considered were

30 nm–8.0 μm [156] , 350–880 nm [198] , 355–1064 nm [191] ,

0 0–10 0 0 nm [103] , and 350–700 nm [192] . The optical cross sec-

ions, EAE, and AAE depend on particle size and spectral range

156] , on the assumed particle morphology [191] , as well as on

C volume fraction, to whether the coating material is absorb-

ng or not, and to the fractal dimension D f [192] . In general, the
˚ ngström exponents are more sensitive to particle morphology at

ower wavelengths, where the size parameter is higher [198] . The

odelling results demonstrate that AAE can be significantly dif-

erent from unity [103,198] , while it has previously been assumed

hat AAE = 1.0 is a reasonably good approximation, at least for BC

mitted from motor vehicles (e.g. [106] ). 

Other studies considered more subtle morphological features.

he effect of polydispersity on the optical properties of coated BC

ggregates was studied in [143] . It was found that polydispersity

nhances the single scattering albedo by up to 50 %, while the

ffect on C abs is less than 8 %. It has been shown in [140] for

onodisperse aggregates that the SSA is mainly sensitive to the

ize of the monomers, while the optical cross sections are not

trongly affected by the monomer size. This indicates that the large

iscrepancy in SSA between the polydisperse and monodisperse

odel reported in [143] may be caused by the use of an inad-

quate measure of monomer size euqivalence. In fact, the com-

arison in [143] was based on defining the equivalent monomer

ize of monodisperse aggregates as in Eq. (14) . This definition of

ize equivalence is certainly more adequate than to simply use the

ode radius of the lognormal monomer size distribution. However,

s argued in Section 4 , an even more suitable, and physically better
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motivated measure of size equivalence may be the one proposed in

Eq. (15) . This hypothesis remains to be tested. 

Whenever aggregates become only partially embedded in the

liquid phase coating, part of the aggregate sticks out of the coat-

ing [144] . As a result, some of the monmer surfaces may intersect

with the surface of the coating. The MSTM cannot be applied to

such geometries. One has to resort to using the numerically more

demanding DDA. Two different approaches have been proposed for

constructing partially embedded soot aggregates with the addi-

tional constraint that the surfaces of the monomers and the coat-

ing do not intersect. In one model [144] , the first two monomers

are placed on either side of the coating, i.e., one on the inside and

the other on the outside, such that the two monomers and the

coating all touch in a single common point. Subsequently, more

monomers are added to the outside and inside so that the fractal

scaling relation in Eq. (1) is satisfied in each step of the construc-

tion process. The total number of monomers and the size of the

monomers and coating (thus the volume fraction), as well as the

number of inside and outside monomers are prescribed. In another

model [199] , the aggregates are first formed and placed inside the

coating with a prescribed displacement of the centres of mass.

Subsequently, all overlapping monomers are displaced by a small

distance outward until they no longer overlap with the coating.

The approach proposed in [144] has the advantage that the model

particles have well defined fractal parameter D f and k 0 . It is un-

clear to what extent the displacement of monomers in [199] may

alter the fractal parameters of the particles. In either case, elimi-

nation of the problem of overlapping spheres allows us to use of

the MSTM. In [144] MSTM results were compared to correspond-

ing DDA computations for particles that had the exact same fractal

parameters, and in which the same fraction of the aggregate pro-

truded out of the coating, but the particles were constructed with-

out the constraint of non-intersecting surfaces. It was found that

differences in C sca , SSA, and g were less than 1 %, while C abs dif-

fered by less than 5 %. These findings are of great practical value,

as they suggest that integral optical properties can be computed by

the MSTM by use of the non-intersecting sphere model proposed

in [144] , as long as all monomers as well as the coating are spher-

ical. 

The positioning of the BC core inside the liquid phase host par-

ticle has been considered by several authors [53,155,156,188,191] .

In general, BC cores that are placed off-centre have lower absorp-

tion cross sections than corresponding model particles in which

the centres of mass of the BC core and the coating coincide. How-

ever, the magnitude of this effect can vary. In [188] a spherical

core-shell model has been employed. The size of the spherical BC

core was fixed at a = 10 nm, while the total size of the compos-

ite particle was varied between 0.01 and 1 μm. Concentric core-

shell particles were compared to one model with randomly placed

inclusions, and to another model with subsurface inclusions. The

MAC results did not differ appreciably up to particle sizes of 0.15–

0.2 μm, beyond which they started diverging. The concentric core-

shell particles displayed, on average, the highest MAC values, while

the particles with subsurface BC inclusions lay lowest. However, it

was estimated that concentric core-shell geometries will overesti-

mate absorption by no more than 15 %. The spherical concentric

and eccentric core-shell model was recently revisited for fixed BC

volume fractions of f BC = 0.07 and 0.15 [191] . The results largely

confirmed those found earlier in [188] . For instance, for f BC = 0.07,

a core radius of 0.1 μm, a composite particle radius of 0.243 μm,

and at a wavelength of 532 nm, the absorption cross section mod-

elled with the concentric core-shell model lies about 8 % higher

than that obtained with a subsurface spherical core shell model.

Computations with a more advanced embedded fractal aggregate

model showed that moving the BC aggregate off the centre can re-

duce absorption by up to 20–30 % [53] . 
The fact that the concentric spherical core-shell model pre-

icts higher absorption than the corresponding eccentric core-shell

odel seems to be more of a side-issue, considering that, on

he whole, that model was shown to strongly underestimate ab-

orption in comparison to more realistic coated aggregate models

155,156] . By moving the core off the centre, this problem only in-

reases. The remedy is the so-called core grey shell model [156] ,

hich will be discussed in Section 7 

The chemical composition, and thus the refractive index of the

oating is another important aspect that has been discussed in sev-

ral papers [188,191,192,200] . The sensitivity of the Ångström expo-

ent and the linear depolarisation ratio on the refractive index is

articularly pronounced. It may even be strong enough to allow us

o obtain information about the composition of the coating from

easurements of the Ångström exponent and of δl [200] . 

To understand the relation between morphology and the linear

epolarisation ratio δl is among the most challenging and inter-

sting topics in aerosol optics. One of the earliest studies based

n the use of a realistic encapsulated aggregate model assumed

hat the BC core is off-centre, partially sticking out of the coating,

nd that the shell has spherical shape. Results for the full Muller

atrix have been reported at a wavelength of 533 nm for par-

icles with a volume equivalent radius of 0.5 μm and a BC vol-

me fraction of f BC = 0.07 [155] . In the backscattering direction,

he results for the Mueller matrix element F 22 correspond to a lin-

ar depolarisation ratio of about δl = 0.03, which is rather low.

n a follow-up study [156] , δl has been modelled for two different

olume fraction, f BC = 0.07 and 0.20, three different wavelengths,

= 304 nm, 533 nm, and 1010 nm, for different radii of the com-

osite particle between 0.1 and 0.5 μm, and for different stochas-

ic realisations of the aggregate geometry with prescribed fractal

arameters. Unlike the optical cross sections, SSA, and g , the lin-

ar depolarisation ratio was found to vary among coated aggre-

ates with different stochastic realisations of the geometry. Thus,

hen modelling δl , one always needs to average the optical prop-

rties over an ensemble of stochastic geometries. Further, the vari-

tion of δl among different realisations of the aggregate geometry

eeds to be quantified as part of the error estimate of the optics

odel. The model simulations in [155,156] were later compared

o field measurements with NASA Langley airborne High Spectral

esolution Lidar [201] . The simulations were roughly consistent

n the visible and NIR, but too low in the UV part of the spec-

rum. 

In [158] a completely different model has been proposed in

hich the coating was assumed to form a film following the shape

f the aggregate. For a volume fraction of f BC = 0.6, N s = 100,

 f = 1.8, a = 20 nm, and a wavelength λ = 0.55, the result re-

orted for the F 22 element of the Mueller matrix corresponds to a

inear backscatter depolarisation ratio of about δl = 0.02, which is

ery close to bare aggregates. 

Depolarisation ratios modelled with a closed-cell model, a

imer of encapsulated aggregates, and a concentric core-shell

pheroid were compared in [202] . The models yield results con-

istent with reported lidar field observations at 355, 532, and 1064

m [201] only if the particle contains sufficient amount of weakly

bsorbing material, and if the overall shape deviates significantly

rom that of a sphere. 

A wide selection of model particles were compared for two dif-

erent aggregate sizes N s = 125 and 422, two coating materials,

olume fractions f BC = 7 and 15 %, and at three wavelength (355,

32, and 1064 nm) [191] . Results for the linear depolarisation ratio

aried widely among particle models. Several models yielded un-

ealistically low values of δl . Among the models that gave higher

alues of δl were a BC aggregate partially embedded in a sulphate

r brown carbon host sphere, the closed cell model, and a dimer

f BC aggregates embedded in spherical host particles. 
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Table 1 

Free tuning parameter in the CGS model as a function of wavelength, 

based on [156] . 

λ [μm] 0.232 0.304 0.393 0.533 0.702 > 1.0 0 0 

f core 0.7 0.7 0.6 0.5 0.5 0.1 

a  

h  

B  

u  

c  

s  

s  

t  

t  

t

7

s

 

b  

m  

i  

“  

h  

fi  

a  

r  

w  

s  

m  

l  

t  

t  

s  

m  

t  

i

 

t  

p  

t  

r  

0  

m  

d  

t  

s  

w  

w  

e  

S  

p  

t

 

p  

h  

f  

w  

r  

e  

(  

λ  

a  
In [190] a first attempt was made to construct a model that

nifies the idea of film-coating and of encapsulated geometries.

he particles were constructed such that coating is first applied

s a thin film onto the aggregate. Then, as more and more coat-

ng is added, the shape of the coating gradually becomes more

pherical. The computations were compared with published results

rom lidar field observations. For intermediate BC volume fractions

nd particle sizes, the model predicts δl values that are gener-

lly consistent with the observations. However, for low BC volume

ractions (i.e., for heavily coated BC) and for larger particle sizes,

he model predicts δl values that are higher than published mea-

urements. The study concluded that it is, most likely, the non-

phericity of the coating that causes the overestimation of δl , since

he model requires a very high amount of coating before the shell

eaches perfect spherical shape. In [161] a coating model was pro-

osed that mimicked the effect of surface tension of the coating.

imilar to the model particles in [190] , the coating shell reached

pherical shape only for very high coating thicknesses, and the

imulated values of δl had a tendency to overshoot the range of

eported literature values. This supports the conclusion in [190] ,

amely, that the shape of the coating is essential for modelling δl .

his hypothesis was clearly formulated and tested in [70] , which

esulted in a coated aggregate model with a tunable transition

rom film-coating to encapsulated geometries. This model will be

iscussed in detail in Section 8 . 

. Toward a physical understanding of the relation between 

erosol morphology and aerosol optics 

In many existing studies, morphologically sophisticated models

or soot aggregates have been employed for quantifying the optical

roperties and the enhancement factor of the coating. This ques-

ions is most important from a practical point of view, not least

rom a climate-modelling perspective. However, from a more fun-

amental point of view it is imperative to understand the physical

rocesses that give rise to the optical properties. In particular, we

ant to gain physical insight into the relation between morpholog-

cal and optical properties. Most importantly, we need to identify

hose morphological features that have the strongest impact on op-

ical properties, and those that only cause minor changes. 

It was noted in [18] and, more explicitly in [8,155] that the main

orphological property that determines the absorption cross sec-

ion of BC is the amount of material that interacts with the electro-

agnetic field. For a sufficiently large homogeneous sphere com-

osed of highly absorbing material, such as BC, the electromag-

etic field is quickly attenuated inside the sphere. (This effect may

e somewhat weaker in the UV part of the spectrum, where the

maginary part of the refractive index of BC is lower.) As a result,

uch of the material near the centre of the sphere does not get

n contact with the field and, consequently, does not contribute to

bsorption. By contrast, in a lacy fractal aggregate the BC material

s distributed such that only little of the total aggregate mass is

creened from interacting with the field. By this it has been ex-

lained why lacy aggregates have higher MAC values than com-

act ones, and why compact aggregates have higher MAC values

han homogeneous spheres [8] . This explanation is corroborated

y modelling calculations of the absorption inside aggregates and

pheres [197] . Based on this physical understanding, the core grey

hell model has been devised [155] as a simple and numerically ef-

cient model for coated BC aggregates, which allows to smoothly

une the amount of BC material that interacts with the electromag-

etic field, thus contributing to MAC. This model will be described

n more detail in Section 7 . 

Understanding the interplay of morphology and polarisation of

ight poses a much greater challenge than understanding absorp-

ion properties. However, recent work [70,156,161,190,200,202] has
llowed us to better understand which morphological properties

ave a dominant impact on the depolarisation properties of coated

C aggregates. As mentioned in the previous section, our present

nderstanding is that the shape (spherical or nonspherical) of the

oating is essential for the depolarisation ratio. It is well under-

tood that even particles that only slightly deviate from spherical

hape can cause significant depolarisation (e.g. [203,204] ). Thus,

he degree of nonsphericity of the coating constitutes a feature

hat can be exploited as a sensitive tuning parameter [70] . A model

hat makes use of this idea is discussed in Section 8 . 

. Core grey shell (CGS) model for simulating optical cross 

ections of coated BC aggregates 

The CGS model and its basic idea is illustrated in Fig. 2 . It is

ased on the notion that a core-shell model ( Fig. 2 a) underesti-

ates absorption, because much of the BC mass is shielded from

nteracting with the external field. By contrast, in a homogeneous

grey sphere” ( Fig. 2 d), in which BC and the coating material are

omogeneously mixed, too much BC mass gets in contact with the

eld, resulting in too much absorption. In the CGS model, only

 fraction f core of the BC mass is put into the core, while the

emaining BC mass fraction (1 − f core ) is homogeneously mixed

ith the coating. For f core = 1, we retrieve the conventionel core-

hell model; for f core = 0 we obtain the homogeneous grey-sphere

odel. Thus, these two models are included in the CGS model as

imiting cases. By varying f core from 1 to 0 we can continuously

une the model and obtain a gradual transition from the core-shell

o the homogeneous grey-sphere model ( Fig. 2 , a–d). In this tran-

ition, the core becomes steadily smaller, while the shell becomes

ore and more grey. As a result, an increasingly larger fraction of

he BC mass gets in contact with the external field, resulting in

ncreased absorption. 

The CGS model has been tested by comparison to a realis-

ic model of sulphate-coated fractal aggregates [156] . The com-

utations were performed for the spectral range from 230 nm

o 8.0 μm, for composite volume-equivalent particle radii in the

ange r v = 0.1–0.5 μm, and for BC volume fraction f BC = 0.07 and

.20. The CGS model outperformed both the core-shell and the ho-

ogeneous grey-sphere model (where the effective refractive in-

ex had been computed by Maxwell-Garnett EMT). It was shown

hat the free parameter f core could be tuned for each wavelength

uch that the model closely fitted the reference results obtained

ith the coated-aggregate model. The best choice of f core for each

avelength reported in [156] is reproduced in Table 1 . Remarkably

nough, the CGS model turned out to not only fit C abs , but also

SA, g , and C bak with high accuracy. The choice of f core only de-

ended on λ; it was independent of particle size, BC volume frac-

ion f BC , and of the optical parameter being fitted. 

The CGS model is based on the plausible hypothesis that inter-

olation between the two extreme cases, the core-shell and the

omogeneous grey-sphere model, should yield a tunable model

or fitting optical parameters. We demonstrate this here in Fig. 3 ,

hich shows computational results for C abs (top row), SSA (second

ow), g (third row), and C bak (bottom row) as a function of volume-

quivalent radius r v obtained for BC volume fractions of f BC = 0.07

left column) and 0.20 (right column). The wavelength of light is

= 533 nm. The reference computations (black lines) are based on

 coated fractal aggregate model as described in [156] . The red line
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Fig. 5. Coated soot model with tunable transition speed. 

Fig. 6. Coated aggregates ( N s = 512 , D f = 2 . 4 , k 0 = 0 . 7 , cluster-cluster algorithm) 

with f vol = 0 . 1 . Parameter f c changed: 0.5, 0.75, 1.0, 1.25 (left to right) 
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shows corresponding results obtained with the CGS model with

f core = 0.5 (see Table 1 ). The pink shading shows the range of re-

sults obtained by varying f core between 0 and 1. Results obtained

with the homogeneous grey-sphere and the core-shell model are

indicated by the dashed and solid blue lines, respectively. It is evi-

dent that the homogeneous grey-sphere and the CGS models yield,

indeed, extreme values of C abs , SSA, and g , between which the CGS

model interpolates. In most cases, the coated aggregate model falls

within the range covered by the CGS model. Indeed, the CGS model

with f core = 0.5 lies very close to the reference results. The only

exception is SSA in the size range 200–350 nm, in which all mod-

els underestimate the reference results. The backscatter cross sec-

tion C bak displays a rather remarkable behaviour, particularly for

f BC = 0.07 (bottom left). Both the core-shell and, even more so, the

homogeneous grey-sphere model overestimate C bak . Nevertheless,

the reference results lie within the range of CGS results; the CGS

computations for f core = 0.5 follow the reference results closely.

Thus the CGS model, although designed to fit C abs , also performs

well for modelling SSA, g , and even the differential scattering prop-

erty C bak . 

Fig. 4 shows results analogous to those in Fig. 3 , but as a func-

tion of wavelength λ for a fixed particle radius r v = 500 nm. In

general, the core-shell model does not provide a good fit of the

optical properties of the coated-aggregates. The asymmetry param-

eter g is least sensitive to the choice of particle model, while the

backscatter cross section is strongly sensitive over the full spec-

tral range. C abs and SSA are most sensitive in the spectral range

from 0.2 to 1.0 μm. The homogeneous grey-sphere model only

gives a reasonable representation of C abs for a BC volume fraction

f BC = 0.20, but it overestimates C abs for f BC = 0.07. By contrast, the

CGS model, properly tuned accoding to Table 1 , faithfully repre-

sents all four optical parameters for both BC volume fractions over

the entire spectral range. 

These results illustrate the potential of the CGS model. It has all

the required features of a versatile simple model particle, i.e., this

model 

• simplifies the morphology as far as possible; 
• has a small number of free tuning parameters (namely, a single

parameter f core ); 
• covers a large range of values by varying the tuning parameter;

and 

• is capable of reproducing several optical parameters for a range

of particle sizes, wavelengths, and compositions. 

The high degree of symmetry of these particles is essential

for computational speed in light scattering computations (e.g.

[107,108] ). 

The model has, so far, been integrated into the aerosol optics

module of the chemical transport model MATCH (Multiple-scale

Atmospheric Transport and CHemistry modelling system) [19] . It

has been applied to investigation of the information content of li-

dar observations [205,206] and to assimilation of CALIOP extinction

profiles into MATCH [207] . 

8. Tunable model for simulating depolarisation by coated BC 

aggregates 

The main principle of this model is illustrated in Fig. 5 . We start

from a bare BC aggregate, and we imagine a sphere with diameter

D c that partially contains the aggregate. For instance, we can take

the maximum diameter D of the aggregate and scale it with a fac-

tor f c , so that our imaginary sphere has diameter D c = f c D . Next,

we add a thin film of coating material with a pre-defined coating

thickness d c closely following the shape of the aggregate. If using

the DDA, the coating thickness can be set equal to the dipole spac-

ing, d c = d. The coating is constrained to lie inside the sphere of
iameter D c . If all monomers inside the sphere are coated, than

e add another coating layer of thickness d c , again constrained to

ie inside the imaginary sphere. The procedure is continued un-

il a prescribed BC volume fraction f BC is reached. If the sphere of

iameter D c is completely filled before f BC is reached, then subse-

uent coating layers of thickness f c are added onto the sphere. The

oating makes a gradual transition from film-coating to a radially

rowing sphere. The smaller D c = f c D, the more “rapidly” this tran-

ition takes place, i.e., the less coating material is required to make

he coating spherical. The free tuning parameter f c can be used to

ontrol the shape of the coating. If f c is small, then the coating be-

omes spherical very quickly as more coating material is added. If

 c is large, then the coating will be non-spherical even for thickly

oated aggregates. 

This is illustrated in Fig. 6 . As f c is increased from 0.5 to 0.75

nd 1.0, the coating becomes strongly non-spherical. A further in-

rease from f c = 1.0 to 1.25 has no effect in this case ( f BC = 0 . 1 ),

ut it would have for lower values of f BC . 

The main idea behind this model is to tune the depolarisa-

ion properties. Aggregates with a perfect spherical coating have

een hypothesised to depolarise only weakly [190] (since spheres

o not depolarise, and BC aggregates depolarise only weakly). Ag-

regates with even mildly nonspherical coating are hypothesized

o cause stronger depolarisation. This has been tested and con-

rmed in [70] . Fig. 7 illustrates this for the model particles shown

n Fig. 6 . For this particular BC volume fraction f BC = 0.1, the coat-

ng is spherical for f c ≤ 0.6. Indeed, δl is low and independent of f c 
or f c ≤ 0.6. As soon as f c is made large enough so that the coating

ecomes even mildly nonspherical, δl increases steeply with f c . It

eaches a maximum around f c = 0.8, and beyond f c = 1.0 it does

ot change anymore. This is because for f = 0.1, the circumscrib-
BC 
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Fig. 7. Depolarisation as function of f c , four of the geometries used, are shown in 

Fig. 6 . 
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ng sphere has no constraining effect on the shape of the coating

or f c > 1.0. 

In this example, by varying f c between 0.6 and 1.0 one covers a

ange of δl between 0.07 and 0.25. Thus, this model is capable of

overing a large range of δl values by varying a single tuning pa-

ameter. However, it is computationally expensive, since the parti-

les lack symmetry. A first application of the model has been re-

orted recently [200] , in which the sensitivity of δl and other opti-

al properties to the composition of the coating material has been

tudied. 

. Summary and recommendations 

Modelling the optical properties of bare black carbon aggre-

ates has reached a high degree of maturity. The impact on optical

roperties of number and size of monomers, dielectric properties,

ractal parameters, monomer polydispersity and nonsphericity, as

ell as overlapping and necking have been extensively studied. As

emonstrated in [64] , the impact of minor geometric structures on

ptical properties derives, to a large extent, from their impact on

he particle volume. 

• The volume effect of minor structures on the optical proper-

ties should be accounted for as explained in [64] . When doing

so, the optical cross sections of bare fractal aggregates can be

quite accurately modelled by use of a fractal aggregate model of

monodisperse monomers in point contact. The remaining error

(not explained by the volume effect) introduced by neglecting

minor structures is on the order of 5 %; it can be accounted for

by a simple bias correction [64] . 

Optical properties of black carbon aggregates mixed with other

aterial, such as sulphate, organic carbon, sea salt, or water, are

hallenging to model accurately. The absorption cross section and,

elated to that, the absorption enhancement factor, depend on the

mount of BC mass that interacts with the incident field. In a

ompact core-shell model, an unrealistically high amount of the

C mass is shielded from the external field by the obstructing ef-

ect of BC near the surface of the sphere. However, it has been

emonstrated that the core grey shell (CGS) model provides us,

y introducing a single free parameter, with a class of spherically

ymmetric core-mantel model geometries that encompass a large

ange of absorption and scattering cross sections, single scattering

lbedos, asymmetry parameters, and backscattering cross sections.

hus, our recommendation is: 

• The conventional core-shell model should be retired as a ref-

erence geometry. It should be replace by the CGS model as a
reference model in future studies on optical properties of en-

capsulated BC aerosols. 

(This situation is similar to mineral dust aerosols, where homo-

eneous spheres are clearly unfit for mimicking optical properties.

owever, by introducing a single free parameter (the aspect ratio),

ne has replaced spheres by spheroids, which have been demon-

trated to provide a significantly improved representation of dust

ptical properties compared to spheres [208,209] ). 

Our understanding of the relation between morphological prop-

rties and the linear depolarisation ratio δl of encapsulated BC

erosols has significantly improved. According to our present state

f knowledge, the shape of the mantel has a dominant impact on

l . Model particles in which the mantel retains a non-spherical

hape even for heavily coated BC aggregates tend to overestimate

l [161,190] . A recently introduced tunable model [70] is tailored to

over a large range of δl values by varying a single parameter that

mpacts the shape of the coating. 

• Future studies on the depolarisation properties of coated BC ag-

gregates should aim at further investigating the hypothesis that

δl is predominantly determined by the shape of the mantel. 

The long-term goal should be to develop a model for computing

epolarisation by coated BC aerosols suitable for large-scale appli-

ations. 
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