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Received: 21 May 2019 / Accepted: 12 November 2019
© The Author(s) 2019

Abstract
In an individualized shee metal assembly line, form and dimensional variation of the in-going parts and different disturbances
from the assembly process result in the final geometrical deviations. Securing the final geometrical requirements in the
sheet metal assemblies is of importance for achieving aesthetic and functional quality. Spot welding sequence is one of the
influential contributors to the final geometrical deviation. Evaluating spot welding sequences to retrieve lower geometrical
deviations is computationally expensive. In a geometry assurance digital twin, where assembly parameters are set to reach an
optimal geometrical outcome, a limited time is available for performing this computation. Building a surrogate model based
on the physical experiment data for each assembly is time-consuming. Performing heuristic search algorithms, together
with the FEM simulation, requires extensive evaluations times. In this paper, a neural network approach is introduced for
building surrogate models of the individual assemblies. The surrogate model builds the relationship between the spot welding
sequence and geometrical deviation. The approach results in a drastic reduction in evaluation time, up to 90%, compared to
the genetic algorithm, while reaching a geometrical deviation with marginal error from the global optimum after welding in
a sequence.

Keywords Spot welding · Sequence · Neural network · Geometrical deviation · Surrogate model

1 Introduction

Mass production of the complex-assembled products has
increased the need for controlling the geometrical variation.
Form and dimensional variation of the included parts
in the assembly, referred to as part variation, and the
assembly process disturbances are the main sources of
the final geometrical variation in the assemblies. These
disturbances have been identified in several studies [1].
In order to secure the geometrical outcome of the welded
assemblies, Söderberg et al. have introduced a virtual
tool-box to support the decision-making during all the
product development phases [2]. In the early design phases,
variation simulations are used. Spot welding simulation is
alsot introduced for predicting the geometrical outcome of
the spot-welded assemblies in the early verification phases.
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The sequence, with which the spot welding is performed,
has a considerable effect on the final geometrical outcome.

In the automotive industry, the spot welding process
for the Body-In-White (BIW) assemblies is often divided
into two stations. Initially, the parts are spot welded by
a limited number of spot welds, referred to as geometry
points. The purpose of these spot welds is to lock the
geometry when the parts are being released from the fixture.
The sequence in which these points are being set has a
significant effect on the final geometrical outcome [3]. In
Fig. 1, the layout in a geometry assembly cell is shown.
In this setup, the geometry points are being welded by
one or multiple robot arms, holding a welding gun. The
assemblies, after these processes, are transported to other
cells, where the rest of the welding points, referred to as
re-spot points, are being welded. Minimum effect from
these weld points is expected on the final geometrical
deviation [4]. Predicting the outcome of all the possible
sequences, with simulations, is computationally expensive.
This is due to the large number of permutations available
and the iterative finite element analysis (FEA) calculations,
which are required for this purpose [5]. In this paper,
an efficient surrogate approach has been developed for
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Fig. 1 Layout in a geometry
assembly cell

estimation and optimization of the geometrical deviations
after spot welding with a specific sequence.

1.1 Spot welding sequence optimization

Welding sequence optimization for minimum geometrical
deviation has been studied in the literature. Fukuda et al.
have considered applying a neural network (NN) to solve
the continuous welding problem with a traveling salesman
formulation [6]. They have shown the fundamental effec-
tiveness of NN for this purpose. Huang et al. have applied
a genetic algorithm (GA) to minimize the displacements
after spot welding, with a specific sequence [7]. Other stud-
ies have also shown the applicability and effectivity of the
GA on the welding and clamping sequence problem [8–10].
Different evolutionary algorithms, namely, ant colony and
particle swarm optimization, have been evaluated using the
FEA approach. It has been shown that the performance of
these algorithms might be faster, for spot weld sequencing,
depending on the complexity of the assembly [5]. Heuris-
tic approaches have also been considered for obtaining
near-optimal sequences with regard to geometrical varia-
tion. Wärmefjord et al. have introduced strategies for spot
welding sequence selection. They have shown that sorting
the spot welds based on the relative sensitivity can repre-
sent a desirable sequence with a lower geometrical variation
[11].

Several studies have considered identifying the optimal
weld sequence for continuous welding [12]. For finding the
optimal continuous weld path, Voutchkov et al. [13] have
applied a surrogate model, built using the FEA simulation
and identification of the hot zones from the physical

experiments. To obtain the minimum displacements by
an optimized weld path, they have considered the total
displacements as the summation of the displacements of the
smaller weld paths on the nominal geometries. A Design
of Experiment (DoE) approach is followed to build the
surrogate model. The displacements after welding in a
sequence are then estimated, finding the common elements
of the sequence in the DoE and the evaluated sequence.
The displacements of each element of the sequence are
then added up linearly to generate the estimation of the
final geometrical displacement. They have shown that
application of a surrogate model with this approach can
reduce the computation time drastically. However, the effect
of the sequence in spot welding is not accumulative. This
means that the deformation after welding one point cannot
be stacked up until all the welds are set.

To explain this further, consider an assembly of two
parts with five weld points {w1, w2, w3, w4, w5}. The
deformation after welding w1 and w2 are calculated in a
sequence w1 → w2 and denoted as d1. In a new calculation,
the deformation after welding w3, w4, and w5 are calculated
in a sequence w3 → w4 → w5, d2. The total deformation
dt = d1+d2 may not be the same as the total deformation dt ,
when all the weld points are welded in the same sequence,
w1 → w2 → w3 → w4 → w5. This can be a result of
the part deviation that should be included in the simulation
while calculating the springback [14].

Previous studies have focused on the estimation of the
welding sequence outcome, summing up the displacements
of the sequence elements linearly, without taking the
part deviations into consideration [13]. However, the
existing part deviation between the assembly components
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results in significant forces exposed to the assembly, and
thereby internal stresses built up and spring back effect
is more challenging to model. Therefore, in this paper,
a new surrogate approach is proposed representing all
the possible permutations of spot welding sequence with
an input-output function for reducing computation time.
The surrogate model is built using non-rigid variation
simulation, taking the part deviations into consideration.
The surrogate approach is based on a NN method.

1.2 Non-rigid variation simulation

To predict the geometrical outcome of the assemblies, vari-
ation simulation is often performed within the Computer-
Aided Tolerancing (CAT) tools. Variation simulation of
rigid bodies is performed by calculating the transforma-
tion and rotation matrices of the positioning points of the
assemblies [14]. This simulation, in combination with the
Monte Carlo simulations (MCS), for building part variation
models, will result in a statistical analysis of the assem-
bly’s geometrical variation. However, for non-rigid parts,
like sheet metals, parts are bent and deformed during the
assembly. Therefore, over constrained positioning system,
with more than six positioning points, are often applied
to the part’s and assembly’s locating schemes [14]. To
foresee the non-rigid behavior of the sheet metal assem-
blies, the FEA in combination with MCS is shown to be
an efficient approach [15]. Method of influence coeffi-
cients (MIC) is an approach that is implemented on the
sheet metal assemblies, and have proved to be accurate and
time-efficient [15].

During the assembly in the FEA, the parts may penetrate
each other in the adjacent areas. To solve this issue, a contact
algorithm has been included in the variation simulation
tools [16]. In contact modeling, a search algorithm identifies
all the nodes that are in contact between the parts prior
to the assembly steps. During the assembly, if penetration
occurs on the position of the contacts, negative forces are
applied by the contact points to bring the nodes back to their
mating condition. The contact algorithm has been developed
for faster a response using a quadratic programming (QP)
formulation [17].

Spot welding is realized in this method by introducing
a stiff beam, locking all the degrees of freedom, in the
weld pairs. The effect of the sequences on the welded
assemblies has been introduced to the method by calculating
the updated stiffness matrix after welding each pair, where
the contact algorithm avoids the penetration during all the
steps [4].

The calculation time for updating the stiffness matrices
has been reduced by a Sherman-Morrison-Woodbury
formula to avoid the intermediate springback calculations
[18, 19]. In this work, the CAT tool RD&T is used to retrieve

the geometrical outcome of the assembly. State of the art in
non-rigid variation simulation, introduced above, is realized
within this tool [20].

1.3 Self-compensating assembly line

Söderberg et al. [21] have introduced a sheet metal assembly
line, in which the assembly parameters are being optimized
for each individual assembly for maximum geometrical
quality. Figure 2 shows the scheme of this assembly
line. The parts are being scanned to retrieve the part
deviations on single part level [22]. Later, the parts are
being selectively matched for optimal mating conditions
[23]. Within the assembly cell, the optimal parameters for
locating adjustments are retrieved. Finally, spot welding
is performed in a sequence. The optimization of the spot
welding sequences takes place at this stage. For this,
within the analysis module, the CAT tool RD&T is in
interaction with an optimizer to retrieve the optimal spot
welding sequence. In this environment, where the locators
are adjusted in the assembly cell, a limited amount of
time is available for spot welding sequence optimization.
Therefore, faster approaches to propose a sequence for the
optimal geometrical outcome are required.

1.4 Scope of the paper

Spot welding sequence optimization belongs to the class
of combinatorial problems, where for each permutation,
non-rigid variation simulation is needed. This makes the
optimization, using the standard genetic algorithms, time
consuming for proposing a sequence. In spot welding,
the effect of the welding sequence is not cumulative,
and can not be broken into steps. Therefore, an approach
to build accurate surrogate models considering the time
aspect for building the models for each individual spot-
welded assembly has not been introduced. In this paper,
an approach to build efficient surrogate models for spot
welding sequence optimization is introduced. The surrogate
model intends to represent the behavior of each spot-welded
assembly, while the final deformations are retrieved after
the assembly is released from the fixture and springback
occurs. The proposed surrogate models have been evaluated
on three reference automotive BIW assemblies. For
comparison, the results achieved by the proposed method
have been compared to an exhaustive search, where all
the permutations are evaluated. A time comparison with a
standard GA has been performed. The proposed method
has shown to be accurate and time-efficient. The rest of
the paper is structured as follows. Section 2 introduces the
formulation on which the surrogate model is built and the
application of the neural networks and the sampling strategy
is introduced. Section 3 introduces the reference assemblies
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Fig. 2 Self-compensating
assembly line

in detail. Section 4 presents the results of the application of
the proposed surrogate model on the selected assemblies.
The comparison with the exhaustive search is presented to
evaluate the accuracy. Time comparison with a standard GA
is also presented. In Section 5, the conclusions are drawn
based on the presented results and the future research is
presented.

2 Surrogatemodeling

Spot welding sequence optimization for minimum geomet-
rical deviations, in individual assemblies, is of NP-hard
combinatorial problems. There are no analytical functions
that can model the effect of the sequence of the spot weld-
ing, which is the input, to the geometrical deviation, the
output. However, with the state-of-the-art, non-rigid vari-
ation simulation, the geometrical deviation of each node,
included in the FEA, can be retrieved. As mentioned in
Section 1.2, several steps, together with a contact algorithm,
are considered for this calculation. In this paper, black-
box surrogate models are built for individual assemblies,
mapping the direct behavior of the welding sequences to
the final geometrical deviation after welding. The formu-
lation for retrieving the geometrical deviations and input-
output processing functions using NN are described in the
following.

2.1 Model formulation

To retrieve the geometrical deviation of the assembly after
the spot welding, the state-of-the-art non-rigid variation
simulation, Section 1.2, is used. In the simulation, firstly,
parts are being positioned and clamped in the fixture.
Spot welding is performed, and contact iterations are
considered to avoid penetration of the adjacent surfaces.
Finally, the assembly is released from the fixture, and
springback occurs. The steps above are formulated in the
following, building the linear relationships between the
forces and displacements. In an assembly of parts a and b,
the following applies:

i Positioning the parts and clamping

F a = Kau
a, F b = Kbu

b (1)

where:
F a,b= force needed to close the gap between the parts
ua,b= gap between the parts, resulting from part
deviations
Ka,b= stiffness matrix of parts a and b.

ii Welding and contact iteration

F i
w = K i−1

w ui−1
w (2)

Fi
w= welding gun force of the ith weld,

ui−1
w = gap between the weld nodes before the ith weld,

Ki−1
w = stiffness before weld i,

these forces are applied using a balanced welding gun
where equal forces are applied to the welding nodes on
parts a and b.
At each step after clamping or welding, the contact
forces avoid penetration of the adjacent parts into each
other,

F i
c = K i

wui
c (3)

F i
c= contact force needed to compensate for the

penetration,
K i

w= stiffness after weld i,
ui

c= penetrated distance between the contact nodes after
the ith weld, sensitivity matrix S, can be constructed,
reformulating the response from the contact forces.

iii Release and springback

us = Suw (4)

us= deformation after springback,
S= sensitivity matrix,
uw= displacements of the weld points,
The final deformation can then be calculated as:

u = uc + us (5)

u= final deformation,
uc= calculated clamping displacements by the sensitiv-
ity matrix,
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the details of the matrix multiplications and inversions
to retrieve the updated stiffness matrices are presented
in [18, 19].

2.2 Function approximation

To build the relations, a NN is used to fit the input to output.
In this study, the spot welding sequence has been used as
the input to the NN. The total root mean square (RMS) of
the deviation of each node included in the assembly after
welding is considered as the measure (Q) of the output.

qi = qi
u − qi

nom (6)

Q =
√
√
√
√

1

N

N
∑

i=1

q2
i (7)

where:
qi= deviation of node i from its nominal position,
qu= position of the node after welding and springback,
qnom= nominal position of the node,
Q= root mean square of the deviation of each node,
N={1, 2, . . . n} number of the nodes in the assembly.

This measure is chosen due to its generic form
representing all the nodes included in the assembly. Any
available critical points, representing the characteristics of
the assembly, can also be defined as a measurement point.

To build the input-output relation, a radial basis function
(RBF) NN [24] is used. This type of network has shown to
be a universal approximator and has been used for function
approximation extensively [25, 26].

The input-output function can be formulated as:

Q = f (ξ) (8)

where, ξ is the vector of the weld sequence, and Q is the
total RMS of the deviations of all the nodes in millimeter.

2.3 Sampling strategy

The number of the possible permutations to spot weld,
in an assembly with Nw number of weld points, is Nw!.
To choose a limited number of the permutations of the
weld sequences, denoted as the number of the samples
Ns , in a setup to represent all the possible permutations,
is the challenge. Different sorting strategies for the weld
point sequences have been tested. During these tests, it was
identified that the sequence of the initial weld points in
the sequence plays a crucial role to determine the complete
sequence. Therefore, the samples have been chosen in a set
up where the sequence of the first “s” weld points are taken
into consideration. To clarify this point further, consider
the sequence of five weld points {1, 2, 3, 4, 5}. If the first
two weld points are considered to generate the sample,

the sequences {1, 2, 3, 4, 5}, {2, 1, 3, 4, 5}, {3, 1, 2, 4, 5}
to {5, 1, 2, 3, 4} for the first element, and {2, 1, 4, 5, 3},
{1, 2, 4, 5, 3}, {1, 3, 2, 4, 5} to {1, 5, 2, 4, 3} for the second
element are chosen for evaluation.

The number of the ways that the s can be selected from
Nw follows the binomial coefficient:

(
Nw

s

)

= Nw!
s!(Nw − s!) s, Nw ∈ Z (9)

where Nw is the number of the weld point to be welded and
s is the number of the first weld points in the sequence to
be used for sampling. Thereby, the number of evaluations
needed to be performed to retrieve the sample is:

Ns =
(

Nw

s

)

s! = Nw!s!
s!(Nw − s)!

= Nw(Nw − 1) . . . (Nw − s − 1) (10)

with this strategy, the number of samples required to be
performed is a small portion of all the possible sequences.
This ratio can be presented as:

Ns

Nw! = 1

(Nw − s)! (11)

in the case of a seven-weld point assembly, Nw = 7, s can
be selected from one to five. Choosing s = 6 corresponds
to all the permutations of Nw. Increasing the s number
increases the number of the sequences that need to be
evaluated. In this case, the sequence of seven-weld points
was taken into consideration; therefore, in total, 7! = 5040
sequences are available.

The sample size, including all the permutations of the
first five welds, is Ns = 2520, Eq. 10. This for s = 4
decreases to Ns = 840, s = 3 to Ns = 210, s = 2 to
Ns = 42, and finally s = 1 to Ns = 7 sequences.

Figure 3 shows the differences in the different RMS
of the deviation of all the nodes (Q) for each sequence
in an assembly. Sampled sequences and the corresponding
RMS of the deviation are also visualized, where s =
{1, 2, 3, 4, 5}. By reducing the s value, the accuracy of
the representation of all the permutation will decrease.
However, at s = 3, the sample shows to provide a lucid
representation of all the possible sequences. This means
that only four percent of the total permutations need to
be evaluated, Eq. 11, to represent the behavior of all the
permutations.

To further evaluate this aspect, an exhaustive search
has been performed on all the reference assemblies. This
strategy has been examined for all the assemblies, and the
applicability of the sampling strategy is analyzed. This is
described further in Section 4.2.
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Fig. 3 Sampling strategy for a
seven-weld point assembly

2.4 Radial basis function network

The function approximation of Eq. 8 is achievable by an
RBF NN. Figure 4 shows the structure of a three-layer
RBF network. In the radial basis (RB) layer, a Gaussian
transfer function is used to calculate the weights of the
input layer [25, 26]. This is realized by computing the
Euclidean distance between the input vector ξ , and the
network parameter input vector. The output of RB layer is
calculated as:

yi(x) =
P

∑

j=1

wij e
(

−||x−cj ||2
2σ2

j

+bj )

(12)

where i = {1, . . .M} with M number of the output neurons,
j = {1, . . . , P } with P number of the neurons in the RB
layer. yi is the output of the ith neuron of the RB layer.
x is the input vector, which is ξ with RNs×Nw number of

elements. wij is the weight of the jth hidden neuron to the
ith output in the RB layer. cj is the center of the RBF
of the jth neuron in the RB layer, and σj is the standard
deviation of the jth RBF. The bias of the jth RBF is denoted
as bj = 1/(σj

√
2).

In the second layer, a linear transfer function is used
to map the network input to the outputs. The output is
calculated as:

ŷi = WT
i yi (13)

where i = {1, . . . M} with M number of output neurons. ŷi

is the output of the ith neuron, which can be translated as
the approximation of Q, Q̂. Wi is the weight vector of the
neuron i and yi is the output vector from the ith RB layer.
This process continues until the mean square of the errors
becomes lower than the assigned goal. In this study, zero
error is considered where biases have been represented in
both layers.

Fig. 4 Radial basis function NN
structure
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The RBF network is set up with MATLAB RBF network
function, and used to approximate the sample, chosen with
the strategy presented above. The network is then used to
evaluate all the possible permutations. The minimum Q

value among all the permutation is looked for. The sequence
corresponding to the minimum Q is then evaluated using
the CAT tool RD&T, to retrieve the simulated displacements
after welding. The values retrieved from the network and the
CAT tool are then compared to verify the accuracy of the
surrogate models.

To further increase the accuracy of the surrogate models,
a larger data set is required. Increasing the number of data
points for training the network increases the accuracy of
the network. For this purpose, before training the network,
the generated sample can be interpolated using the nearest
neighbor interpolation method [27] over all the possible
sequences. New data points can be generated using the
interpolated function for a larger data set without any
additional evaluations by the CAT tool.

3 Reference assemblies

To evaluate the proposed sampling strategy and the sur-
rogate model, three automotive BIW reference assemblies
have been chosen. The assembly models have been built for
evaluation of the spot welding sequences, with the formula-
tion presented in Section 2.1. In the following, the details of
these models are presented.

3.1 Assembly I

This assembly consists of two sheet metal parts. Seven spot
welds are to be welded, joining the two sheets together.
Figure 5 shows the CAT model of the assembly. The
positions of the spot welds are shown with gray spheres. The
numbering of these weld points is shown by the text boxes,
in the figure. The positioning points of the parts are shown
with the red arrows. Both parts have six locating points
locking the degrees of freedom. The mid-surface meshes of
both parts represent the nominal parts. Deformed meshes
have been used to introduce the part deviations to the
nodes. These meshes are generated by running a preliminary
non-rigid CAT simulation on the nominal geometries with
a deviation within the specified design tolerances on the
positioning points. Contact modeling is performed, to avoid
the penetration in the adjacent surfaces, using 159 contact
nodes.

3.2 Assembly II

In this assembly, three sheet metal parts are to be welded
together using seven weld points. The position and the

Fig. 5 Assembly I

numbering of the weld points are shown in Fig. 6. In
this figure, the assembly model is shown. The yellow and
the purple parts have six positioning points, shown with
red arrows and one extra clamp, shown with an orange
arrow. The green part is located using six positioning
points. Deformed meshes have been used to introduce part
deviations to the model by running the preliminary non-
rigid variation simulation. Contact modeling is performed
with 59 contact nodes, defining the mating surfaces.

3.3 Assembly III

This assembly is composed of three sheet metals with nine
weld points. The position of the weld points and their
numbering are shown in Fig. 7 The first seven-weld points
of this assembly is considered as geometry spot welds, and
thereby considered in sequence evaluation. The last two
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Fig. 6 Assembly II

weld points, w8 and w9, are set simultaneously, according
to the assembly procedure. Therefore, in the sequence
evaluations, the first seven-weld points are set in a sequence,
and the last two weld points are welded simultaneously.

The purple part has nine positioning points, shown with
the arrows. The small, blue part has six positioning points.
The yellow part has eight positioning points. To avoid the
penetration states, 194 contact points define the contact
areas. In this assembly, the non-ideal shape is coming from
the 3D-scanned data of the single parts.

4Method evaluation

In this section, the proposed method is applied to the three
reference assemblies. The proposed method is composed of
the following steps:

Fig. 7 Assembly III

1. Create the sample based on the sampling strategy
proposed in Section 2.3.

2. Evaluate the sample with the provided model formula-
tion, Section 2.1, to retrieve the geometrical deviation
corresponding to the sampled sequences.

3. Approximate the sample input-output, weld sequence,
and geometrical deviation, function using the RBF
network.

4. Evaluate all the feasible sequences using the approxi-
mated RBF network.

5. Retrieve the sequence corresponding to the minimum
geometrical deviation.

6. Evaluate the proposed sequence with the formulation
provided, Section 2.1, to retrieve the numerical
simulation of the geometrical deviation when welding
is performed with the proposed sequence.

4.1 Exhaustive search

To verify the accuracy of the method, an exhaustive search
has been performed, evaluating all the possible sequences
of the three reference assemblies. The sample input-output
relation and the surrogate performance have been compared
against the exhaustive search results. The outcome of the
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Fig. 8 Comparison between the
sampled sequences and all the
feasible sequences

exhaustive search on each assembly is presented in Fig. 8,
where the RMS of geometrical deviation of the assembly
for all the permutations is presented. In assemblies I and II,
one sequence results in the minimum RMS of geometrical
deviation. These sequences are presented in Table 1. In
assembly III, sixty sequences result in a RMS of geometrical
deviation equal to the minimum of this value. The sequence
presented in Table 1 for the assembly III is one of the
sequences among the sixty.

4.2 Surrogatemodel

To build the surrogate models, initially the sample required
to train the RBF network is generated. Based on the
comparison that is made between different sample sizes,

Fig. 3, for all the three assemblies, all the permutations
of the initial three weld points, s = 3, are considered to
generate the sample to be evaluated. Having theNw = 7 and
s = 3, then the Ns can be calculated to 210 samples. These
sample sequences are generated for all the three assemblies.
The geometrical deviation, Q in Eq. 7, representing each
sequence is evaluated using the CAT tool RD&T, with
the formulation provided in Section 2.1. Figure 8 shows
the Q value, corresponding to all the possible sequences
and for the sampled sequences. The sampled sequences
provide a clear representation of all the permutations, for
all the three assemblies. This shows that analyzing the first
three elements of a sequence vector, s = 3, results in a
satisfying sample size with an accurate representation of
all the possible permutations. The sampling strategy can

Table 1 Exhaustive search and surrogate model results comparison

Assembly Criteria Exhaustive search Surrogate model Enhanced surrogate

I Seq.∗ {1,4,2,5,3,6,7} {1,4,2,7,6,5,3} {1,4,2,5,3,6,7}
Q∗ 0.3235 0.3251 0.3235

Error 0.0017 0

II Seq.∗ {3,5,7,2,4,6,1} {3,5,2,7,6,4,1} {3,5,2,7,1,6,4}
Q∗ 0.0809 0.0856 0.0839

Error 0.0047 0.0029

III Seq.∗ {3,4,6,7,2,5,1,(89)}a {3,4,6,7,5,2,1,(89)} {3,4,5,2,1,7,6,(89)}
Q∗ 0.6554 0.6576 0.6554

Error 0.0022 0

aWelds 8 and 9 are set simultaneously after the first seven welds are set in a sequence
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Fig. 9 Trained networks for
each assembly

be used to build an accurate surrogate model to reduce
the geometrical deviation caused by applying a different
sequence of spot welding.

Using the presented RBF network, Section 2.4, the
samples are approximated. The goal is set to approximate
the function with zero error. The spread, σj (see Eq. 12), is
set to 1 for assembly I and III, while in assembly II where
the sample data is much noisier, this spread is reduced to
0.001, to achieve a zero error approximate function.

Figure 9 presents the trained network approximating the
sample data. The red dashed line represents the network
output, while the black line represents the sampled data
input. The correlation between the trained data and the
output is visualized in this figure. Perfect fit on the R =
1, representing the highest correlation value, is achieved.
The error has been less than e−15 in all the three trained
networks. These three trained networks are used to evaluate
all the feasible sequences.

4.3 Spot welding sequence evaluation

The three networks have been applied to all the feasible
sequences for the three assemblies. The outcome of the
network has been compared with the exhaustive search
performed on all the sequences, in Fig. 10. The surrogate,
for all the three cases, has identified the minimum regions.
The minimum sequences corresponding to the minimum
Q has been retrieved for all the three assemblies. These
sequences have been evaluated to retrieve the geometrical

deviation, by the formulation presented in Section 2.1. The
results of this evaluation are presented in Table 1.

The optimum results show that the surrogate model
is capable of proposing sequences with neglectable error
ranges. Provided that the surrogates are built based on
a sample size, which consists of four percent of the
total feasible permutations, the accuracy of the proposed
sequences is considerably high.

To build a surrogate model that can be representative of
all the sequences, the interpolated function of the assembly
model using the sampled data is built. These models are
referred to as enhanced surrogates. After generating the
sample with the approach proposed in Section 2.3, the
interpolated function is generated using the nearest neighbor
method over all the sequences, using the previously
generated 210 samples. The interpolated assembly functions
are built by a one-dimensional interpolation function with
the nearest neighbor method in MATLAB. This function
is built for each assembly, and 840 data points generated
by the interpolated function are used to train the RBF
network. These 840 data points are created with the
presented sampling strategy when s = 4. The RBF network
parameters are adjusted to the new data set with 840 data
points.

Figure 11 shows the comparison between the enhanced
surrogates and the exhaustive search. These models have
increased accuracy for all the sequences. In Table 1, the
results retrieved by the enhanced models are presented.
The error in the retrieved optimum is reduced to zero in
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Fig. 10 Surrogate model output
compared with exhaustive search

assemblies I and III, and in assembly II, this error is reduced
by 38%.

4.4 Evaluation time

To compare the evaluation time required to build the sur-
rogate models and the previously applied GA optimization
algorithms, the numbers of the function evaluations (NFE)
are compared with each other. NFE corresponds to the num-
ber of the times that the CAT tool is called to evaluate the
geometrical deviation, Q value, of a proposed sequence.
The evaluation time of a standard GA applied previously
on the reference assemblies is compared with the surrogate
modeling approach in Table 2.

In this comparison, a standard discrete GA with a single-
point crossover using a roulette wheel selection approach
has been applied to the three reference assemblies. The
mutation operator has been based on inversion, insertion,
and swapping. The crossover parameter has been 0.5, and
the mutation parameter 0.9. A range of population sizes
from 2 to 100 have been considered. For each population
size, the optimization algorithm has been run 1000 times.
The mean NFE, ¯NFE, has been calculated for each
population. The minimum ¯NFE achieved in this range of
population for each assembly has been reported in Table 2.

For assemblies I and II, the minimum ¯NFE has been
achieved in the population of size two. In assembly

III, the population size 28 resulted in the minimum
¯NFE, for achieving the sequence with optimum RMS

of the geometrical deviation among all the possible
permutations.

Table 2 shows that the proposed surrogate modeling
approach can save up to 91% of the time that is required to
reach a sequence with the minimum Q value. This depends
on the number of evaluators that are applied to evaluate
the generated sample. The surrogate modeling approach
can also help to save up to 11% of the time with a single
evaluator, compared with the applied GA with optimal
parameters.

One of the advantages of the proposed surrogate
modeling approach is that the sampling strategy is fully
parallelizable. This means that the time required to use
the proposed approach for real-time optimization of the
individual assemblies can be decreased drastically by
increasing the number of evaluators. Unlike any heuristic
optimization algorithm, namely, GA, where the evaluations
are dependent on each other to evolve, the sampling strategy
can be performed using as many evaluators as available.
As an example, having two evaluators, in this case, the
CAT tools, will reduce the computation time to half, ten
evaluators to one-tenth of the time, and so on (Table 2). This
is a great advantage to reduce the calculation time required
to optimize the sequence of the spot welding for minimized
geometrical deviation.
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Fig. 11 Enhanced surrogate
model trained with interpolated
data set compared with
exhaustive search

The other advantage of the proposed surrogate approach
compared to the GA is that the RBF parameter tuning does
not require extra evaluation time. However, in the GAs,
to find the optimal algorithm parameters, like population
size, mutation, and crossover rate, extra evaluation time is
required.

Parallel GAs have also shown to reduce the compu-
tational time compared with the standard GA. In these

algorithms, a master algorithm initiates the population ran-
domly, in the first step. Depending on the fitness of this
step, crossed over and mutated populations are generated
by several parallel sub-algorithms [28]. Therefore, several
dependent evaluation steps need to be performed in such
algorithms. The advantage of the proposed surrogate mod-
eling approach over these algorithms is that the sample is
generated in one step, where the sequences can be evaluated

Table 2 Time comparison between surrogate approach and GA

Assembly

Method Criteria I II III

GA 1000 trial ¯NFE 235 237 122

1 evaluator NFE 210 210 210

Surrogate model 5 evaluators NFE 42 42 42

10 evaluators NFE 21 21 21

Improvement % 10.6–91.1 11.4–91.1 0–82.8
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in parallel, and the model is built based on this evaluation.
The sample is built by the proposed strategy in Section 2.3,
for reduced evaluation time.

5 Conclusion

A new surrogate model approach for individualized spot
welding sequence optimization with respect to geometrical
quality is proposed. The method takes advantage of a time-
efficient sampling strategy to build an input-output function.
The function is approximated using the RBF network.
The network is used to retrieve the optimal sequence
corresponding to the minimum RMS of geometrical
deviation in all the nodes of the assembly after welding. The
proposed approach is successfully applied to three reference
BIW assemblies for evaluation. The results achieved from
the surrogate model are compared with the exhaustive
search performed on the three reference assemblies.

The approach has shown to provide the sequence within
the minimum area with a marginal error from the global
optimum. The advantage of the approach is the ability
to propose a sequence with the partial evaluation of the
complete sequence problem, where only 1

(Nw−s)! percent of
all the permutations needs to be evaluated. This makes the
approach to use a fixed number of parallelizable evaluations.
This is on the contrary to other heuristic optimization
and search algorithms where the number of evaluations is
fluctuating relative to the algorithm parameters.

Previous studies have considered applying the evolution-
ary algorithms for this purpose, while in these algorithms
the number of evaluations is changing based on the popula-
tion sizes and other parameters that are set in the algorithm.
Moreover, in heuristic search algorithms, the evaluations are
dependent on each other, meaning that a new solution can
only be produced based on the evaluated value of the previ-
ous solution. This makes them more complex to parallelize.
However, in the proposed surrogate approach, the sample
evaluations can be fully parallelized, and there is no depen-
dency between the evaluations. This is a great advantage,
for real-time optimization of the individualized assemblies,
Section 1.3, compared with the other heuristic optimiza-
tion algorithms. In the time comparison that is performed in
Section 4.4, the surrogate modeling approach has shown to
reduce up to 90 percent of the evaluation time required by
a standard GA, depending on the number of the evaluators
that are deployed.

Further studies are required to evaluate the application of
the approach on the assemblies with a large number of weld
points. The authors intend to propose a clustering approach
to identify the critical weld points for geometrical quality
to be considered for sequence analysis, using the proposed
surrogate modeling approach.
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4. Wärmefjord K, Söderberg R, Lindkvist L (2010) Variation
simulation of spot welding sequence for sheet metal assemblies.
In: Proceedings of NordDesign2010 international conference on
methods and tools for product and production development, vol 2,
pp 519–528
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contact modeling in nonrigid variation simulation. J Comput Inf
Sci Eng 16(1):11002–11007. https://doi.org/10.1115/1.4032077

18. Lorin S, Lindau B, Lindkvist L, Söderberg R (2018) Efficient
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