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ABSTRACT

Concrete cracks at relatively low tensile stresses; cracks open up for ingress of harmful
substances, negatively affecting the durability of reinforced concrete structures. Crack
widths are thus limited in the design codes, and accurate predictions are needed, especially
for large reinforced concrete structures such as bridges or nuclear reactor containment
buildings. On the one hand, cracking of concrete, constitutive behaviour of steel, and the
bond between them must be accounted for in order to properly describe crack growth.
On the other hand, explicitly resolving these features in large structures could prove
computationally intractable.

This thesis concerns multiscale modelling of reinforced concrete structures. More
specifically, different two-scale models, based on Variationally Consistent Homogenisation
(VCH), are developed. In these models, the response of a Representative Volume Element
(RVE) is upscaled to a few popular structural models: a homogenised solid in plane stress,
the effective Euler-Bernoulli beam and the effective Kirchhoff-Love plate. The effective
response of the RVE is defined through a boundary value problem, for which different
types of boundary conditions are developed and discussed. Furthermore, in order to
allow for reinforcement slip transfer across the large-scale elements, a novel macroscopic
reinforcement slip field is introduced.

The developed two-scale models are used to analyse reinforced concrete deep beams
subjected to membrane loads, reinforced concrete beams subjected to uniaxial tension
and bending, and reinforced concrete panels subjected to combinations of membrane and
bending loads. The results show that the general structural behaviour is reflected well by
the multiscale models compared to single-scale analyses.

By enriching the model with a macroscopic reinforcement slip field prescribed at the
boundary of the RVE, the crack width predictions given by the two-scale models are
improved and localisation of effective strain is observed at the large-scale. However, the
results were dependent on the large-scale mesh and RVE sizes. In order to improve the
objectivity of the model, a novel boundary condition type, prescribing the effective slip
in the volume of the RVE, was developed. The macroscopic reinforcement slip became
no longer RVE-size dependent, and the maximum crack width predictions were more
consistent and showed a smaller variance for different large-scale meshes and sizes of
RVEs.

In conclusion, the developed two-scale models allow for the analysis of a wide range
of reinforced concrete structures, and show potential in saving computational time in
comparison to single-scale analyses.

Keywords: multiscale, reinforced concrete, computational homogenisation, cracking,
bond-slip
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Part 1
Extended Summary

1 Introduction

1.1 Background

Reinforced concrete is the most widely used construction material in the world, and the
use of it is forecast to increase in the future [16]. Even though concrete cracks at relatively
low tensile stresses, the structure does not fail as the steel reinforcement can carry the
stresses. However, the durability of the structure can be negatively affected by this, as
cracks open up the cross-section for ingress of harmful substances causing corrosion of
the steel [74]. As a result, the crack widths are limited in design codes [11], and accurate
prediction methods are needed. Even though good analytical and numerical models exist
[101, 34, 20, 42], the task is challenging especially for large-scale structures with complex
shape and loading such as bridges and nuclear reactor containments [9, 43, 83, 32, 33].

In order to properly describe the cracking process in concrete, a model accounting for
strain localisation in plain concrete, constitutive response of reinforcement, and bond-
slip behaviour in the interface is needed. However, explicitly modelling these fine-scale
features in the whole structure can prove computationally infeasible due to the size of
the model. In recent years, multiscale modelling methods have been gaining popularity.
In particular, methods based on computational homogenisation [64] allow for obtaining
accurate fine-scale results at a fraction of the computational cost of the single-scale models.
In these methods, the microstructure of the material is statistically represented by an
appropriately sized volume, also referred to as the Representative Volume Element (RVE).
Even though advanced multiscale models have been developed for plain concrete [69, 72,
75, 107, 47], their application to reinforced concrete has not been considered to the same
extent.

1.2 Aim of research

The aim of this research was to extend the multiscale modelling methodology to reinforced
concrete. The goal was to enable the study of crack development for large-scale structures,
and thus, the serviceability limit state was to be considered. To this end, the following
questions were of interest:

e [s it possible to use computational homogenisation to model cracking in reinforced
concrete structures?

e What kind of boundary conditions are most suitable for the RVE problem?

e Is it possible to upscale the response of the RVe to commonly used structural models?



e What is the significance of reinforcement slip in two-scale modelling?

e How can the slip be treated in computational homogenisation and how do the
different options affect the results?

e How well, compared to single-scale models, do two-scale models predict the global
structural behaviour and local crack development?

1.3 Method

In order to answer the previously stated research questions, the following tasks were
identified and carried out in this work:

e To establish a variationally consistent framework for two-scale analysis of reinforced
concrete.

e To create a numerical model of the reinforced concrete RVE.

e To upscale the response of reinforced concrete RVEs to effective solid, beam and
plate models.

e To investigate the effect of different boundary conditions for the reinforced concrete
RVE problem.

e To implement an FE? (Finite Element squared) algorithm for numerical two-scale
analyses of reinforced concrete structures.

e To incorporate the macroscopic reinforcement slip variable into the two-scale model
and study the effect of it.

e To evaluate the performance of the two-scale analyses with respect to conventional
single-scale analyses.

1.4 Scope and limitations

The main focus of this work was to develop multiscale modelling techniques for reinforced
concrete. Throughout this work, it is assumed that plain concrete can be represented
as a homogeneous material, i.e., the mesoscopic features of concrete are omitted. The
reinforcement is assumed to be adequately represented with either beam (Papers A,
B, C, E) or truss (Paper D) elements. Furthermore, only first order computational
homogenisation is considered, i.e., the macroscopic parts of the total fields vary linearly
within the RVEs. With regard to structures, this work treated mainly concrete structures
with uniformly distributed reinforcement layout, but a few examples of non-uniformly
reinforced structures were also considered in Paper D. Regarding load duration, no
dynamic response was simulated, as only quasi-static loading was considered. Since crack
widths are of interest, serviceability limit state was the main focus of the work. As such,
accurate modelling of structural failure due to macroscopic localisation was considered to
be out of the scope of this thesis.



1.5 Numerical implementation

Verification of the performance of the developed methodology was carried out through
the aid of numerical examples. To this end, the numerical algorithms were implemented
by the author of this thesis in the following software:

e The two-scale models were implemented in OOFEM [79], an object-oriented open
source C++ finite element solver. The Git repository containing the source code
along with numerous test examples is available at https://github.com/adsci/
oofem.

e Pre-processing of both macroscopic models and subscale unit cells was performed in
SALOME, an open-source pre- and post-processing platform for numerical simu-
lation, available at https://www.salome-platform.org/. The platform-provided
Python interface allows for automatic mesh generation. The unv2oofem converter, in-
cluded in the OOFEM distribution, was used for mesh conversion to OOFEM-native
format.

e The post-processing was done with Paraview (https://www.paraview.org/), GNU
Octave (https://www.gnu.org/software/octave/) and pgfplots, a LaTeX package
for creating scientific graphs.


https://github.com/adsci/oofem
https://github.com/adsci/oofem
https://www.salome-platform.org/
https://www.paraview.org/
https://www.gnu.org/software/octave/

2 Cracking in reinforced concrete

The problem of cracking in concrete spans multiple length scales, as it ranges from diffused
microcracks to localised failure [106], making accurate modelling thereof challenging. In
contrast to plain concrete, reinforced concrete does not fail structurally, as tensile stresses
are carried by the steel reinforcement after cracking of concrete. As a result, several
cracks can form before the structure fails due to ultimate load. At moderate load levels
(serviceability limit state) cracks are common and expected. A very important mechanism
governing the fracture development is the stress transfer in the steel/concrete interface.
Therefore, the bond between concrete and reinforcement must also be considered in
modelling [25].

2.1 Localised failure in plain concrete

Localised failure in tension can be illustrated with a uniaxial tensile test, cf. Figure 2.1.
At first, microscopic cracks start to nucleate at inhomogeneities in the aggregate-cement
interphase due to tensile stresses. As the load increases, the incipient microcracks coalesce
into a distinct fracture zone at the weakest section of the specimen. When the stresses
reach the tensile strength, we enter the softening regime and the deformations further
increase while the material outside of the fracture zone experiences unloading. The diffuse
fracture zone eventually evolves into a macroscopic crack and the material breaks, allowing
no further stress transfer between the parts.

PAARAA A (NRRNARN] PAAE A4
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Figure 2.1: Fracture development in a concrete specimen subjected to tensile load.

In modelling of fracture, there exist numerous ways to represent the fracture zone,
depending on the regularity of the displacement and strain fields, denoted u(x) and e(x),
respectively. Usually, three main types of strain discontinuity are considered: strong
discontinuity, weak discontinuity and continuous strain field (no discontinuity), see [44]
for an extensive review and Table 2.1 for an overview.

Strong discontinuity is represented by a displacement jump, and the strain field
comprises regular and singular parts. Cohesive zone models or discrete crack models [37,
103, 78, 92, 93], defining the traction-separation law of the crack are usually used to model
this type of localisation. In the finite element setting, interface elements can be used to



Table 2.1: Querview of models for strain localisation.
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Constitutive models/discrete crack | smeared crack models nonfoca / gra@ent
models enriched continua
models
interface elements,
Finite er'nbed(%ed' standard elements,
discontinuity . . standard elements,
element special elements with . .
. elements (ED-FEM), special enriched
implementa- . embedded
. extended finite e . elements
tion localisation bands
element method
(XFEM)

model a strong discontinuity in a straight-forward way, but the location and propagation
path of the crack need to be known in advance. Alternatively, elements with embedded
discontinuity (ED-FEM) [65, 41, 71, 54, 8] or the extended finite elements (XFEM) [5,
28], based on enrichment of the standard shape functions, can be used.

A weak discontinuity formulation considers a localisation band with a finite width.
While the displacement field remains continuous, a jump in strain field can be observed.
In contrast to the previous approach, no distinct separation can be seen in the model,
and the crack is represented by a band of high strains. The size of this band is often
denoted the crack band width [4, 3]. The previously discussed traction-separation law is
replaced by a stress-strain relation within the band, constituting a smeared crack model
[88, 89, 19]. Smeared crack models are very popular in modelling of concrete structures,
as they are compatible with standard finite elements and are relatively straight-forward
to implement. Even though many constitutive models for tensile fracture can be used
in smeared crack setting [46, 77, 18, 30, 91], regularisation of the models with respect
to mesh size is necessary in order to provide mesh-independent result. More specifically,
the model must be calibrated to the chosen band width, h, so that the fracture energy of
concrete, G, is preserved. In this work, isotropic damage models [62, 61] were used to
simulate the response of concrete under load, see Figure 2.2 for an example of stess—strain
response.

The third formulation ensures continuity of displacement and strain fields. The strains
are then localised in a narrow band of larger strains, and there is no strain discontinuity
between the band and the surrounding material. Strain fields fulfilling these criteria can
be reproduced by advanced constitutive models based on nonlocal or gradient enriched
continua [45, 80, 31]. However, the discretisation of the domain must be rather fine in
order to resolve large strain gradients. Alternatively, special enrichments of the elements



Figure 2.2: Uniaxial stress—strain (o.—¢) relation for concrete given by the Mazars
continuum damage model [62]. Here, Gy corresponds to the fracture energy, and h to the
chosen crack band width.

can be employed to allow for a coarser mesh.

It is noteworthy, that even though the discussion in this section pertained mainly to
strain localisation in tension, a similar physical phenomenon is observed for concrete in
compression, where concrete is crushed under excessive compressive strains. Since the
focus of this work is put on serviceability limit states, compressive failure of concrete is
not included in the used constitutive models.

2.2 Elastoplasticity of reinforcement

In this work, the reinforcement is considered to be subjected Os
to both normal forces and bending moments. It is therefore
modelled with classical beam elements, with the exception

of Paper D, where it is simplified to truss elements. Plas-

ticity is introduced by an elastoplastic constitutive model

based on Von Mises yield criterion. The model used in this

work considers linear isotropic strain hardening driven by

the cumulative plastic strain, see Figure 2.3 for a typical Figure 2.3: Stress—strain
uniaxial stress-strain curve. Similarly to concrete, the fail- (o,—¢) relation for steel us-
ure of the material (steel rupture at ultimate strain) is not ing an elastoplastic model
considered in this work due to the focus on serviceability with hardening.

limit state.

€

2.3 Bond between concrete and reinforcement

The bond between concrete and reinforcement results from three mechanisms: chemical
adhesion, friction, and mechanical interlocking [1, 7]. As the contribution from chemical
adhesion is small, it is lost as soon as the slip (difference in displacements) between steel
and concrete builds up [25]. Subsequently, stresses between reinforcement ribs and the



neighbouring concrete develop. The traction on the inclined interface can be decomposed
into longitudinal and radial components, denoted bond and splitting stresses, respectively.
It is noteworthy, that the presence of the splitting stresses is necessary for bond stress
transfer after the loss of chemical adhesion.

In reinforced concrete structures modelling, the
steel /concrete bond is often taken into account by a suitable
bond-slip model relating the bond stresses to reinforcement
slip [17, 67]. Such models, although simplifying the com-
plex mechanical behaviour of the interface, provide a good
approximation. Generally, two types of failure can occur
in the steel/concrete interface: splitting and pull-out fail-
ure. Splitting failure occurs when the concrete surrounding S
the steel bar cracks, and not enough transverse reinforce-
ment is present. Conversely, if the concrete around the
rebar is well-confined, i.e., when a large concrete cover and
dense transverse reinforcement or transverse compression are
present, a pull-out failure can be observed. The splitting and
pull-out failure constitute the lower and upper bounds, respectively, of the bond capacity.
The bond-slip model used in this work [26] assumes a pull-out failure, see Figure 2.4.

Figure 2.4: Example of
bond-slip (7—s) relation at
reinforcement pull-out.

For the numerical implementation, a few different finite element models have been
used to model the bond. A popular choice is to use interface elements and resolve the
steel/concrete interface. As the bond-slip law includes the effect of the ribs, there is no
need to explicitly resolve the inclined surfaces of the interface. The bond-slip relation
is then used as the constitutive traction-separation input in the tangential direction [56,
55, 57]. Alternatively, suitable enrichments of the finite elements used to model the
structure can be considered to allow for capturing the strain difference between concrete
and reinforcement [41, 21, 22, 40, 15, 27].

2.4 Response of a cracked reinforced concrete tie

As already alluded to, cracking of concrete does not result in structural failure of a
reinforced concrete member. Consequently, the load is still carried by the member even
after the concrete has cracked, see Figure 2.5, where the response of a cracked reinforced
concrete tie is shown.

Far away from the cracks (starting from the left side of the figure), the reinforcement
can be assumed to be perfectly bonded with concrete. Consequently, no slip is present
there, and both concrete and steel carry a portion of the load, corresponding to their
stiffness ratio. Moving closer towards the crack, the slip starts building up as the difference
in deformations becomes more apparent. In the vicinity of the crack the concrete unloads
until it is stress-free at the crack face, and the reinforcement takes up more load so that
equilibrium is fulfilled. At the crack face, the whole force is carried by the reinforcement,
and a relatively large value of the slip can be observed. On the other side of the crack we
have an analogous situation with the slip having an opposite sign. As we move further
away from the crack face (to the right), the stresses are transferred from the reinforcement



Os

> X

Figure 2.5: Variation of slip, s, concrete and steel stress, o. and o, respectively, in a
cracked reinforced concrete tie.

bars to the the uncracked concrete via bond stresses in the interface. Note that the sum
of the forces carried by steel and concrete is constant along the member. Furthermore,
the slip distribution can be used to easily identify the locations of the cracks, which are
indicated by large gradients of the slip with the slip changing sign.



3 Fine-scale model for reinforced concrete

Prior to introducing the multiscale modelling techniques, the fully-resolved model of
reinforced concrete used in this work, is briefly outlined. The problem domain, €2, is split
into the concrete and reinforcement part, i.e., Q = Q. U I'jys, while the problem boundary,
Text, is decomposed into the essential and natural boundaries, i.e., 9Q = T'eyy = ', UT}.
The concrete is assumed to be a continuum subjected to body forces b in Q. and tractions
t on I'y. The spatial arrangement of each reinforcement bar can be defined with unit
vector e) in the longitudinal direction, and unit vectors e ; in the transverse directions,
cf. Figure 3.1.

i on Ft Q
2141144 ) el
: ¥ €Lz | €l
, | I v e
| :

i F-\\ 1—‘in‘c

z P O
Yy i N
won I'y
x

Figure 3.1: A general reinforced concrete structure. For each reinforcement bar, longitu-
dinal and transverse unit vectors e; and e ; are defined.

The unknown displacement fields in steel (us) and concrete (u.) can be decomposed
into the longitudinal and transverse components as

Us ] = Us,1€], Uc,] = Uc,1€1, (3 1)
Us, | = IJ_ cUs, Uc, | = IJ_ *Uc,

where the tensor I, = [I — e] ® e)] extracts the transversal part of displacement vector.
Reinforcement slip, s = us1 — uc1, gives rise to bond stresses along the bar, ¢, which
are distributed around the perimeter S;. The bars are also subjected to transverse
loads A acting in the transverse directions. Additionally, it is assumed that there is no
reinforcement slip in the transverse direction, i.e. us | = uc, all along the bars.



Considering small strain setting and quasi-static loading, the strong form of the equilibrium
equations is given by
—UC-V:B in €,
ON;
Al
9% M
_ 612 5 =+ A=0 in Fint; (32)

Us, | — Uc, | = 0 in Finta

+ SstF =0 in Fintu

u=uon [,

o.-n=t on I'y,
Ny =0, Ty = Mg = 0 on Oy,

where o is the Cauchy stress in concrete, V is the gradient operator, n is a unit normal
vector, Ny is the normal force in the rebar and Ty and M are the shear forces and bending
moments in the rebars, respectively.

The equilibrium in the steel-concrete interface, schematically depicted in Figure 3.2,
can be expressed as

loc]] - er 1 Ho + [[oc]] - €1 2H1 + X + Sitre; = 0, (3.3)

where [[o.]] := 0 — o denotes the jump in the stresses across the interface and Hy x Ho
define a cut-out region surrounding the reinforcement bar.

o. n_ +
¢ ol el

Figure 3.2: Steel-concrete interface. Boundary forces on the rebar cut out and concrete
boundary tractions omitted.
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With the help of (3.3), the weak form of the equilibrium equations (3.2) is obtained as:
Find we, us 1, us, 1, A € Ue X Ugy x Ug ;| x LL such that

/ o [du. @ V] dQ — [Sstrer + A -1,] du. dT" =
Qe

Dint
‘/Fext

Odug
[ NG Sicbug A =0 Y Su € U, (34)
Ding

f-éuch‘+/ b- du. dQ VY du, € U,
Qc

ol

2
- Ms°%+A'5uSLdF:O YV ous, € Us g,
Fint al2 ' ’ ’
/ [us 1 — I -uc]-dAdl' =0 VoxeL,
Dint

for suitably defined trial and test spaces. The result in (3.4) is independent of Hy x Hs
if it is assumed that €2, does not exclude the cut-out region. In the continuous setting,
the displacement field in the concrete formally has to be regularised when comparing to
the beam elements in order to avoid artificial singularities. However, in this work, we
restrict to coarse meshes, whereby we assume that the finite elements of the concrete are
larger than the physical dimensions of the reinforcement cross-section. The fully-resolved
three-dimensional formulation presented above was used in Paper E. In Papers A-D,
the formulation was simplified to two dimensions. Thus, only one unit vector e is
considered for each rebar. Additionally, My, Ts, A, us,1 and uc | can all be represented
with scalar values.
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4 Computational Multiscale Modelling

4.1 Overview of multiscale methods

When modelling large-scale structures, it is necessary to have a suitable macroscopic
constitutive model of the material. Due to practical reasons, it is often desired to
simplify the representation of the material, e.g. by assuming it to be is macroscopically
homogeneous. However, the actual physical phenomena within the material usually take
place at smaller length scales. If the physical phenomena on smaller scales are completely
omitted, the results provided by the model might prove excessively inaccurate. On the
other hand, modelling the whole structure at the detailed fine-scale level might prove
infeasible in practice. Hence, it is important to incorporate the subscale physics into the
large-scale models without explicitly resolving every fine-scale detail. Depending on how
the information is passed between the scales, multiscale methods can be divided into
hierarchical an concurrent methods [6, 60]. Depending on the direction of information
transfer between the scales, hierarchical methods are further subdivided into coupled and
uncoupled hierarchical methods [105], see Figure 4.1.

{Multiscale modelling}

Hierarchical

Concurrent

Coupled Uncoupled

v

Figure 4.1: Classification of the multiscale modelling methods. The work in this thesis
can be classified as coupled hierarchical multiscale modelling.

In concurrent methods, the fine-scale model is embedded in the coarse-scale model
in a specific region of interest, enforcing equilibrium and compatibility along the micro-
macro interface [58]. Both of the models are then solved simultaneously, allowing for
unrestrained exchange of information in both directions between the scales. Concurrent
multiscale modelling has been used to study localised failure [90] in plain concrete [105,
94, 87] and reinforced concrete frames and beams [96, 95, 59]. However, structures that
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display distributed cracking, e.g. due to presence of uniform reinforcement in the form of
reinforcement grids, would eventually require fine resolution in the whole problem domain,
thus making the proposed method infeasible in practice due to computational effort.

In hierarchical methods, parts of the problem domain are occupied by multiple scales
simultaneously. The scales are then linked with each other by means of averaging theorems
(homogenisation) or parameter identification. Uncoupled hierarchical methods generally
allow for transfer of information only in one direction, i.e., from the fine-scale to the
large-scale model. For example, the fine-scale response can be computed a priori and
stored for future use by the macroscopic model. Macroscopic parameter identification from
subscale simulations and classical homogenisation are important examples of methods
falling within this category. Uncoupled hierarchical multiscale methods have been used in
application to plain and reinforced concrete in [50, 51, 39, 82, 53, 10, 68].

In coupled hierarchical methods (also called the semi-concurrent methods) the transfer
of information goes in between the scales in both directions. Usually, the fine-scale model
is asked for the response given a specific large-scale input. The subscale response is
then homogenised to a fitting macroscopic format and sent to the large-scale model for
further analysis. In contrast to uncoupled hierarchical methods, storage of the coarse-
scale phenomenological data is not necessary, as the subscale model takes the role of
a sophisticated constitutive driver. These methods have been widely applied to model
sandwich structures [48, 86, 12], masonry [63, 81] and reinforced concrete hollow-core
slabs [66] An example of an approach falling within this category is the FE? (Finite
Element squared) method [24, 23], which is used to analyse reinforced concrete structures
in multiscale manner in Papers A-E.

4.2 Variationally consistent homogenisation

In order to develop a suitable multiscale modelling scheme, we employ the concept
of Variationally Consistent Homogenisation (VCH) [52] for the standard first-order
homogenisation. To this end, a macroscopically homogeneous solid occupying the domain
Q is considered. The solid has a heterogeneous microstructure. In the reinforced concrete
setting used in this work, the subscale heterogeneity is represented by distinct reinforcement
bars and the interface between them and the concrete. However, for the purpose of
illustration of the VCH, a simpler problem pertaining only to concrete solid (corresponding
to the first equation in 3.2), is considered here:

/JC:[5UC®V] dQ:/ £-5ucdr+/ b-du. dQ VY du. € UL, (4.1)
¢ Text Q.

The goal of the multiscale method is to solve for the macroscopically smooth displacement
field w without explicit resolution of the microscopic details on the macroscale. As a
first step, the so-called Variational MultiScale (VMS) split [38] is applied, where the
total displacement field u is decomposed into macroscopic (u*) and subscale (u®) parts,
i.e., u = uM + w®. This way, the original problem in eq. (4.1) is replaced by the macro
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problem

/ o [ful @ V] dQ:/ t-ouM dF+/ b-oul dQ vV ouM e UMY (4.2)
Qe Toxt Qe

and the subscale problem
/ o.: [dul @ V] dQ = t-oul dF+/ b-oul dQ VouM e US. (4.3)
Qe Text Qe
For the second step, the integrals in (4.1) are reformulated using running averages so that
the problem is defined in the homogeneous domain 2. More specifically, for any function

f defined on €2, we introduce the approximation

/chdQ%/QfmdQ

1
fD = Ta fdQ7
120l Jog

(4.4)

where Qg defines the Representative Volume Element (RVE), a sample of the microstruc-
ture of the material. The macro problem then becomes

1 1
— o.: [buM @V deQ:/ —
[ g [, oot e . 100 Jo.

+/ t-sul dr.
r

ext

b-oul dQ dQ
(4.5)

Here, we have restricted to volumetric homogenisation. Hence, the surface integral over
[Cext in (4.5) is not affected. Surface homogenisation has been treated, e.g., in the context
of contact in [102]. In the next step, a suitable condition linking u* and @ need to
be defined in a process called prolongation. In the setting of first order computational
homogenisation [49, 29], a Taylor series expansion of @ up to the first order term is used,
ie.,

WW=a| +axV]|, [z, (4.6)
where & = ﬁ fQD x d€2 is the centre of the RVE. Inserting the prolongation condition in

(4.5) and assuming that the field is sufficiently smooth at the boundary, i.e., that uM ~u
on I'ext, we conclude that the macro problem becomes: Find @ € U such that

/6:[5ﬁ®V] dQ:/ £~5ﬂdF+/E~5a+B(2):[6ﬁ®V] dQ  Véu €T, (4.7)
Q Toxt Q

where U and UY are suitably defined trial and test spaces for the homogenised problem.
The effective quantities are then identified as

1
o= — o dQ,
Q0] Jog
b b dQ 4.8
120l Jag ’ (4.8)
_ 1 .
b = b®[x—x] dQ,
Q0| Jag,
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and can be computed from the solution of subscale problem. This process of averaging
subscale variables to an effective macroscopic variable is called homogenisation or micro-
to-macro transition. In the presented example, & and b denote the effective stress and
body force, respectively, while b(®) is a higher order term. Thus, for every macroscopic
point &, the macroscopic fields (and gradients) can be imposed on the associated RVE
via suitable boundary conditions. The RVE problem is then solved, and the subscale
variables are averaged to produce a macroscopic effective variable. It is noteworthy that
it is only the symmetric part of the macroscopic deformation gradient, [& ® V]™™, that
affects the macroscopic stress tensor. Due to invariance under rigid body motion u and
[2® V™ do not affect &.

Although VCH was applied in this Section to concrete continuum, the method maintains
generality when reinforcement is introduced. As an additional assumption, the body
forces b were neglected in Papers A—D. Even though only one macroscopic field @
was considered in this section, it is possible to include additional macroscopic variables,
provided that appropriate prolongation conditions are defined. This approach is further
illustrated in Papers B and C, where a macroscopic reinforcement slip field, s, is
introduced.

4.3 Subscale boundary conditions

Equation (4.3) localised in RVE represents the subscale problem which needs to be solved
in each macroscopic point &. However, in order to solve the problem, suitable boundary
conditions need to be applied on the RVE. In order to fulfil the so-called Hill-Mandel
macrohomogeneity condition [36], which ensures energy equivalence across the scales, the
average strain coming from the subscale fluctuation must vanish, i.e.,

[ wevaa=o. (4.9)
1Qal Jag

Using Gauss theorem, one can also express this requirement as a boundary integral. Even
though (4.9) can be satisfied in a number of ways, three types of boundary conditions are
most commonly used in practice, cf. Figure 4.2.

First of all, Dirichlet boundary conditions postulate that the subscale fluctuation field
vanishes at the boundary of the RVE, i.e., u®* = 0 on I'g. This implies that the total
displacement field u on the boundary of the RVE is equal to the macroscopic part u®,
which varies linearly along the boundary. Note that solving the boundary value problem
gives rise to boundary tractions.

In contrast, the Neumann boundary conditions do not impose any requirements on
the fluctuation u®. Instead, the macroscopic strain and the average strain in the RVE
are equated explicitly, i.e., [u @ V|*™ = ﬁ fQD (u® V)™ dQ. This is equivalent to
the statement that the boundary tractions are generated from a constant stress tensor,
and are thus piecewise constant along the boundary on the RVE. In displacement control
setting, the macroscopic and average strain equality is imposed weakly on the RVE, with
the help of Lagrange multipliers.
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For the third option, the Periodic boundary conditions posit that the average jump in
the fluctuation field at the opposite boundaries of the RVE is zero. Additionally, it is
required that the tractions at the opposite boundaries are anti-periodic, i.e., they have
the same value but point in opposite direction. This constraint can be imposed either
weakly [97, 98] or strongly, in which case a periodic mesh is required. As a result, the
fluctuation field is equal at the opposite boundaries, cf. Figure 4.2.

Dirichlet BC Neumann BC Periodic BC

Figure 4.2: Subscale fluctuation fields, u®, within the Representative Volume Element
(RVE) for different types of boundary conditions resulting from the same macroscopic
strain. The graphs show the fluctuation field along the black line indicated on the contour
plots. Color scales differ between the RVEs.

It is noteworthy, that in case of a reinforced concrete structure, the VMS split is
applied not only to the displacement field in concrete (u.), but also to the displacement
field in steel reinforcement (us). As a result, it is possible to apply different combinations
of boundary conditions on a reinforced concrete RVE. The different Dirichlet/Neumann
boundary condition combinations are studied in Paper A in detail. In Papers B—D
Dirichlet boundary conditions are applied to both concrete and reinforcement, while
periodic boundary conditions are used for both in Paper E. As already mentioned in the
previous section, a macroscopic reinforcement slip field is also introduced and studied in
this work. This field is imposed on the RVEs via Dirichlet boundary conditions in Paper
B, while Neumann boundary conditions and Lagrange multipliers are used to impose the
macroscopic slip field in Paper C.
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4.4 FE? method

The FE? (Finite Element squared) method is the direct implementation of the concept
presented in Sections 4.2 and 4.3. The internal algorithmic loop at a large-scale integration
point, based on computational homogenisation, is schematically illustrated in Section 4.4.
Macroscopically, the structure is represented with a homogeneous material with “effective”
properties. The effective field and its gradient, computed at the integration points of
large-scale finite elements, are imposed on the RVE via chosen boundary conditions. Upon
solution of the RVE problem, the effective work conjugates are homogenised. The internal
force vectors and macroscopic tangent stiffness matrix can then be computed for the
macroscopic elements, allowing for nonlinear the analysis based on Newton’s method. As
a result, a nested FE algorithm is created. Even though FE? is computationally expensive,
it is well suited for parallel computation, as all RVE problems are uncoupled and can
be solved independently. FE? has been used to model e.g. diffusion phenomena [73],
fibre-matrix composites [85], delamination in composites [35], and localisation phenomena
[76, 104, 70, 100, 99, 13, 14].

Large-scale Boundary Value Problem

RVE Boundary Value Problem

Figure 4.3: FE? scheme. At a given large-scale point, the effective fields are imposed
on the RVE via chosen boundary conditions. The effective work conjugates are then
computed from the solution of the RVE problem.
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5 Multiscale models for reinforced concrete
structures

5.1 Preliminaries

One of the advantages of the VCH is that upon introduction of a suitable prolongation
scheme, the homogeneous macro problem is derived in a straight-forward way, and the
associated scale transitions can be easily identified. Therefore, even though a three-
dimensional solid formulation of the problem is used at the subscale, different macroscopic
structural models can be obtained from VCH, depending on the employed prolongation.
In this chapter the effective equations and the corresponding micro-to-macro transitions
for a few different effective models, developed in course of this work, are presented along
with the necessary assumptions. As the starting point, the VMS split of the displacement
fields in concrete and steel is considered:

ue = uM 4+ ul, Us | :uﬁ—i—u;”], Us | :ugﬂ_—i—u:’r (5.1)

)

5.2 Effective solid in plane stress

As a basis for derivation of this model, the fine-scale model for reinforced concrete
described in Chapter 3 was simplified to two dimensions, cf. Figure 5.1. The thickness of
the structure is constant and denoted ¢. and is much smaller than the other dimensions.
Hence, the plane stress state can be assumed. Furthermore, the body forces b acting in
the structure are neglected. Due to dimensionality reduction, unique longitudinal and
transverse unit vectors e; and e can be defined for each reinforcement bar.

£ on Ft
AAAAS QD
P e,
1, |
el
N
~ 1—‘in
y — t

T—»gc u = u, on I'y

Figure 5.1: A two-dimensional reinforced concrete structure. For each reinforcement bar,
longitudinal and transverse unit vectors e; and e, are defined.

The unknown displacement fields are then decomposed into longitudinal and transverse

components as
Us,] = Ug,1€1, U] = Uc,1€1,

(5.2)
Us | = Us, 1€, Uc| = Uc,1€].

Next, the prolongation conditions linking the macroscopic parts of the fields with
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the homogeneous smooth field u = [a E]T are formulated using the usual first order
homogenisation as:

U, :ﬁ|j+[ﬁ®v]|§:'[m_i]’

ui=e-ul=e-ul,+e waV], [zr-a, (5.3)
=e;-ul;+e - [u®V]|,  |[zr—x|.
It is noteworthy, that the macroscopic part of the displacement field in steel w2 derives
entirely from the macroscopic displacement field in concrete ul. As a result, the
reinforcement slip is allowed to exist only at the RVE level. ~

Upon further derivation, the large-scale problem in this model becomes: Find uw € U
such that

/&:[5a®V} dQ:/ tt-dudl  Vouec TP, (5.4)
Q Pext

where U and U? are suitably defined trial and test spaces. From the result, the effective
stress o is identified as

1
o=— / teo. dQ2 Jr/ Nsey®e p, (5.5)
|QD| QD,C FD,int

with o being the stress tensor in concrete and Ny being the normal force in the reinforce-
ment. More detailed derivation of this model can be found in Paper A. In summary,
for a given macroscopic strain € = [u ® V|*™ it is possible to compute the work conju-
gated effective membrane stress tensor & from computational homogenisation of the RVE
response.

5.3 Effective Euler-Bernoulli beam

In order to upscale the subscale structure to an effective Euler-Bernoulli beam element,
the three-dimensional fully-resolved representation is used as a basis, cf. Figure 5.2.

X

g o
M vV M
oo O
L, Q l<_. ._>T )
Y N
r=L"
(a) Fully-resolved representation (b) Macroscopic simplification

Figure 5.2: Fully-resolved representation (a) and the macroscopic model (b) for a beam
structure. Tractions ¢t at beam ends give rise to end forces N, V and M.

Since the macroscopic beam is defined in zz-plane, only z- and z-components of the
total displacement field are considered to vary at the macroscale, and the y-component

19



is assumed to live only at the subscale. Consequently, the VMS split for the concrete
displacement is expressed as

uM us
C C
ue=uM +us =10 | + |02 (5.6)
c c c c . .
M s
wC C

Next, a macroscopic field @ = [a w] is considered. Employing the Euler-Bernoulli beam
model kinematics, the following prolongation conditions are established:

~ Ow ou _ 0%w _
uy:u\j—z% o [z — 7] Srw [z —a],
x
_ ow _
we' =]+ 5| [r-a], (5.7)
ué\f:el~uy=e1xuy+elzwéw’

uévﬂ_ =1, -u.
In the above, e)x and e}, denote the - and z-components, respectively, of the longitudinal
unit vector e; associated with the reinforcement bar. Since the macroscopic part of the
displacement field in steel u2! derives entirely from the macroscopic displacement field
in concrete w2, only subscale variation of the reinforcement slip is considered. The
large-scale problem for the effective Fuler-Bernoulli beam model is obtained as: Find
@, w € U x W such that

L _ — . L L . B
/ N% dz = [Noa] +/ botida Y 61 € T,
T
LO 025w . 95w ™ i 9L L (5:8)
/ M Az = | 2% f[vaw} f/ Gow dz ¥ §w € WP,
0 Ox? or |, 0 0

with the suitable trial and test spaces. The end forces N ,V, and M introduced in (5.8),
which represent the prescribed boundary data, constitute natural boundary conditions.
As the result of VCH, the effective normal force N and effective bending moment M
become

- 1
N=— / JXXdQ+/ Nyek dI'
‘LD| QD,C FD,iut

M=— / 20%x + Oxp [ — ] dQ+
QD c

2
/ N; (zef + e [z — Z]) + 2ey, Z M e jxeix dI' } ,
FD,mt =1

where o4y and oy, are the zz- and xz-components of the concrete stress tensor, and where
Nj is the normal force in the reinforcement bar. Bending moments Ms; and unit vectors
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e ;i pertain to transverse direction 4 of the rebar, cf. Figure 3.1. It is also noteworthy
that the previously used volume of the RVE, Qg, has been replaced by the length of
the unit cell in z-direction, L. More detailed derivation of this model can be found in
Paper E. In summary, for a given macroscopic axial strain & = 9u/dx and macroscopic
curvature k = 9%w/0x? it is possible to compute the work conjugated effective normal
force N and bending moment M from computational homogenisation of the response of
the RVE.

5.4 Effective Kirchhoff-Love plate

As a basis for upscaling to an effective plate model, a three-dimensional fully-resolved
representation is used, cf. Figure 5.3.

ext

(a) Fully-resolved representation (b) Macroscopic simplification

Figure 5.3: Fully—resolved representation (a) and the macroscopic model (b) for a plate
structure. Tractions £ at the external boundary Text give rise to membrane forces Nnx, Nny,
shear force VI17 and bending moments Mm7 Mny at a point on external boundary 0A with
normal and tangential unit vectors n and m, respectively.

Since the plate is defined in the zy-plane, the coordinate vector & along with the reinforce-
ment unit vectors e; and e ; are Split into in-plane and out-of-plane components, i.e.,
z =[x, z] where the x, = [z y] Similarly, e = lep elZ]T and e| ; =[elip eL’i’Z]T
with the membrane components e, = [eix ely] and e ;, =[elix €l ]T, respectively.
Similarly, the gradient operator V,, defines the gradlent with respect to the in-plane
coordinates.

Next, a macroscopic field @ = [, ﬁ/]T is considered, where u,, denotes the membrane
components of the fields, i.e. @, = [a 7]". Since the Kirchhoff-Love model kinematics
is simply a two-dimensional extension of the Euler-Bernoulli model, the prolongation
conditions can be expressed as

uM — ﬂp|ip _vaw|ip+[ﬂp®vp]|ip mp — Zp] _Z[pr(@VpHip'[wp_a_:p]
¢ w|afzp+vpm|:ﬁp'[$p*jp] 7
ug{:eyuc ,

M _ M
'U.:S’J_—IJ_"U,C .
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Similar to previous models, the macroscopic part of the displacement field in steel u?
derives entirely from the concrete displacement. Hence, the reinforcement slip is allowed
to vary only at the RVE level. For simplicity, we define the boundary membrane normal
forces and bending moments with component representation

N, = [ ] and N, = [ } (5.10)
P [Nyx Ny P My My,

Following the derivation, the large-scale problem for the effective Kirchhoff-Love plate
model can be obtained as: Find %y, w € U x W such that

/N:[(Sap@Vp} dA:/ Ny - 6@, dr+/6p-5ap dA v éa, € U,
A 0A A
/J\Zi:[vpm@vp] dA= [ M, n%—w—VanSw dF—/cjéw dA VY owe WY,
A oa  On A

(5.11)

with the suitable trial and test spaces. The boundary membrane forces Np)n, boundary

Kirchhoff force VX and boundary moment Mp’n present on the right hand side of (5.11)
are defined as

Now=Np-n, VE=Tit— (My:[neom]), Myn=M,:[nen], (5.12)
and denote the prescribed boundary data or reaction forces. From the results of VCH,
the effective membrane forces N and the effective bending moments M are identified as

_ 1
N=— / op dQ—‘r/ N361p®61p dr ,
|A|:|| QEI,C FD,int

— 1
M=— / 2o+ 0, ® [xp, — Tp] dQ +
Aol | Jego,

2
/ Ny (zelp X e + epep [iL'p — :I_ZPD + 2ey, Z Msﬁiej_,i’p ® elp dar } R
POjint i=1
(5.13)
where o, and o, contain the in-plane and the out-of-plane components of the concrete
stress tensor o, i.e.,

op = {UXX ny] and o, = [UXZ} . (5.14)

Oyx Oyy Oyz

It is noteworthy that the previously used volume of the RVE, Qg has been replaced
by the area of the unit cell in zy-plane, Ag. More detailed derivation of this model can
be found in Paper E. In summary, for a given macroscopic membrane strain tensor
€p = [, ® V™™ and a macroscopic curvature tensor & = [V, ® V] it is possible to
compute the work conjugated effective membrane forces N and bending moments M
from computational homogenisation of the response of the RVE.
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5.5 Macroscopic reinforcement slip

In order to allow for the transfer of reinforcement slip across macroscopic elements, the
model presented in Section 5.2 is subsequently enriched by a macroscopic reinforcement
slip field, § = [5x §y]T, representing the displacement of the reinforcement grid relative to
concrete, cf. Figure 5.4.

Figure 5.4: Interpretation of the macroscopic reinforcement slip field.

More specifically, the new effective field is introduced into the model by modification of
the prolongation condition for the longitudinal displacement in steel:

uM:ﬁ|f+[ﬁ®V]|f-[zc—a_:],

ué\ﬁ:61-uy+el-.§|i+el~[.§®V]|£~[a:—:i:], (5.15)
M M

Ug | =€l U .

Upon further derivation, the macroscopic problem in this model becomes: Find u, s €
U x & such that

[&:[5@@V} dQ:/ tt-dudl' vV oum e 1O,

¢ Foxt (5.16)
/?b-6§+65:[5§®V] d2=0 Vis¢e8,
Q

where U, U° and $ are suitably defined trial and test spaces. From the result of VCH,
the effective stress &, effective transfer stress T, and the effective reinforcement stress &

are identified as
B 1
o=— teo dQ + Ngsei e ¢,
jis] Q0 IOt

1
o= o Sstrep dT, (5.17)
|QD| FD,int
1
Oy = —— Sstre; ® [:13 — :i] + Nqse) ® e dI,
|QD| FD,int

with o being the stress tensor in concrete, Ny being the normal force in the reinforcement,
Ss denoting the perimeter of the rebar, and tr representing the bond stress in the
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steel/concrete interface. Note that in order to solve the problem (5.16), a custom finite
element implementation allowing for discretisation of two fields is needed. More details
regarding the derivation of the multiscale model and numerical implementation can
be found in Paper B. In summary, for a given macroscopic strain € = [u ®@ V],
macroscopic slip § and a macroscopic slip gradient g = [§ ® V], it is possible to compute
the work conjugated effective membrane stress tensor &, effective transfer stress 7y,, and
the effective reinforcement stress & from computational homogenisation of the RVE
response.
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6 Summary of appended papers

Paper A: Two-scale finite element modelling of reinforced concrete structures:
effective response and subscale fracture development

In Paper A, Variationally Consistent Homogenisation is used to derive a two-scale
model for reinforced concrete, whereby a two-dimensional reinforced concrete structure is
upscaled to effective solid in plane stress, cf. Section 5.2. The displacement field in steel
derives explicitly from the concrete displacement, and thus the reinforcement slip lives only
at the subscale. For the RVE, Dirichlet and Neumann boundary conditions are considered
for the concrete and steel reinforcement, respectively. Therefore, four combinations of
subscale boundary conditions are studied: Dirichlet-Dirichlet (DD), Dirichlet-Neumann
(DN), Neumann-Dirichlet (ND) and Neumann-Neumann (NN), see Figure 6.1.

Dirichlet-Dirichlet Dirichlet-Neumann

e 1%

M =0

Neumann-Dirichlet Neumann-Neumann

Figure 6.1: Combinations of subscale boundary conditions used in Paper A.

The developed multiscale algorithm is then used in analysis of a deep beam in four-
point bending and the results are compared with the single-scale solution. The main
results of Paper A can be summarised as follows:

e DD and NN boundary conditions provided respective upper and lower bounds on
the effective elastic stiffness of the material, see Figure 6.2.

e Excessive softening in the RVE was observed for the DN and NN combinations.

e DD and ND boundary conditions simulated the global structural behaviour well,
but the RVE response was found to be more reliable and consistent for the DD
boundary conditions.

e Maximum crack widths were underestimated by the DD boundary conditions, see
Figure 6.3.
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Figure 6.2: Homogenised stress-strain response of the RVEs under uniaxial tension (left).
Influence of the RVE size, L, on the largest eigenvalue of the elastic stiffness tensor, 1.
(right)
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Figure 6.3: External load (left), F', and maximum crack width (right), wpax, versus
mid-span deflection, 4, for two-scale analyses using a single-sized RVE compared with
fully-resolved analysis.
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Paper B: A multiscale model for reinforced concrete with macroscopic varia-
tion of reinforcement slip
In Paper B, the multiscale model from Paper A is enriched by a macroscopic reinforce-
ment slip variable, §, representing the deformation of the reinforcement grid relative to
concrete, cf. Section 5.5. For the subscale RVE problem, Dirichlet boundary conditions
were considered for both effective fields. More specifically, the previously studied DD
boundary condition is used to impose the macroscopic displacement gradient [u @ V|*™
on the unit cell. On top of that, the macroscopic slip § and its gradient [§ ® V] are
imposed strongly on the boundary of the RVE, i.e., at the endpoints of the rebars.

For the numerical simulations, a reinforcement pull-through test is simulated on the
RVEs. Furthermore, the deep beam from Paper A is analysed with the newly developed
multiscale formulation. The main results of Paper B can be summarised as follows:

e Incorporation of the macroscopic reinforcement slip variable resulted in localisation
of the effective strain at the macroscale, see Figure 6.4.

e Due to scale mixing in the enriched two-scale models, not only RVE size, but also
the macroscopic mesh size influenced the resolution of the effective strain in the
beam.

o Globally, the effective force—deflection response was not significantly influenced by
the enrichment, see Figure 6.5. Moreover, the global response was not very sensitive
to the macroscopic mesh size and the RVE size.

e The enriched two-scale models predicted larger crack widths compared to Paper
A, but the single-scale results were still underestimated by most of the multiscale
analyses, cf. Figure 6.5.

e The effective bond-stress versus effective slip relations obtained from the pull-
through tests were RVE-size dependent, see Figure 6.6. The input bond-slip law was
recovered only for small unit cells, which signifies that the physical interpretation of
the macroscopic slip depends on the size of the unit cell.
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Figure 6.4: First principal strain, &3, in the deep beam computed at the same large-scale
deformation with the two-scale model without (a) and with (b) macroscopic reinforcement

slip field.

Nel =23; 4,3 nel = 23; @
—— N =050; @,8 --- neg =050; u
ne =74; 4,8 Nel = 74; T
— N =108; 4,5 --- ng =108; u
e N =226; W,5 - ne=226; @
—_— FR
T T ~ T T T
1500 [ ;; /’,.'w// | 1 | |
_ AN T
7 1000 {2
& 2 05)
500 |- 1 ?
| |
OO 5 10 OO
0 [mm)] § [mm]

Figure 6.5: External load (left), F, and maximum crack width (right), wmpax, versus
mid-span deflection, §. The presented results are from a fully-resolved analysis and from
enriched (@, 8) and unenriched (@) two-scale analyses using a single-sized RVE and n,
finite elements in the large-scale mesh.
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Paper C: On a volume averaged measure of macroscopic reinforcement slip
in two-scale modelling of reinforced concrete

In Paper C, the two-scale model from Paper B is further developed. Namely, a
Neumann-type boundary condition is considered for the macroscopic reinforcement slip.
In contrast to Paper B, where the effective slip was prescribed only at the boundary of
the RVE, Lagrange multipliers are used to impose the macroscopic slip and its gradient
in the volume of the RVE. To this end, suitable micro-to-macro transitions for the slip
and slip gradient are proposed.

The Neumann-type boundary condition on effective slip field is then combined with the
Dirichlet-type boundary condition on the effective displacement field, and thus creating
a new alternative to be used in two-scale modelling. For the numerical simulations, the
reinforcement pull-through test from Paper B is repeated with both old and new type
of boundary conditions. Furthermore, the impact of the novel boundary conditions on
predicting the crack widths is studied on the example of the deep beam in four-point
bending. The main results of Paper C can be summarised as follows:

o Effective slip versus transfer stress response of the RVE was no longer size dependent
due to a consistent volumetric definition of effective slip and its gradient, see
Figure 6.6.

e Globally, the volumetric formulation produced more consistent amplitudes of effec-
tive slip fluctuations compared to the boundary formulation from Paper B, see
Figure 6.7.

e Crack width predictions, although still mostly underestimated, were more consistent
and had a lower variance when the macroscopic slip was prescribed in the volume
of the RVE, see Figure 6.8.
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Figure 6.6: Transfer stress versus macroscopic slip relations for RVEs of different sizes,
Lg, when prescribing the slip in the volume (Vol, Paper C) and at boundary (Bnd, Paper
B) of the RVE.
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Paper D: Two-scale modelling of reinforced concrete deep beams: Choice of
unit cell and comparison with single-scale modelling

In Paper D, the two-scale model from Paper A is used to analyse a few examples of
reinforced concrete deep beams with different reinforcement layouts, for which experimental
results were readily available. In contrast to the beams studied Papers A—C, some of the
chosen beams were not uniformly reinforced. As a result, a single RVE can no longer be
used to represent the substructure, and the macroscopic domains are further subdivided
into regions with approximately uniform reinforcement layout, see Figure 6.9.
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Figure 6.9: Reinforcement layout (a) and macroscopic subdivision (b) for one of the
modelled deep beams. Due to symmetry, only half of the beam is modelled.

An automatic unit cell generation scheme is implemented, whereby an RVE of a given
size can be easily created by specifying only few parameters such as the diameter and
spacing of rebars in each direction, side length and thickness, see Figure 6.10.

For boundary conditions, the Dirichlet-Dirichlet combination from Paper A is em-
ployed. The FE2 method is then used to analyse the beams with different sizes of the
subscale unit cells and the results are compared with single-scale analyses and experiments.
The main results of Paper D can be summarised as follows:
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Figure 6.10: A generic RVE with the necessary parameters for multiscale analysis of
uniformly reinforced structures in plane stress.
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e It is possible to use the developed two-scale model for non-uniformly reinforced
structures by suitable division of the macroscopic domain into subdomains with
approximately uniform reinforcement layout.

e The size of the unit cell in the subdomains did not significantly influence the global
load—deflection results, see Figure 6.11.

e Although both single- and two-scale models underestimated the deflection of the
beams, the maximum load was predicted reasonably well.
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Figure 6.11: External force, F', versus mid-span deflection, 9, response for the reinforced
concrete beam from Figure 6.9. In the graphs, results from two FE? analyses using
different sizes of the RVEs and a single-scale analysis are compared with the experimental
results from Aguilar et al. [2].
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Paper E: Upscaling of three-dimensional reinforced concrete representative
volume elements to effective beam and plate models

In Paper E, the response of a reinforced concrete RVE is upscaled to effective beam
and plate models, as briefly summarised in Sections 5.3 and 5.4. Since strongly periodic
boundary conditions are considered for the RVE, an efficient scheme for periodic mesh
generation is outlined. The effective in-plane strain tensor [ ® V)™ and curvature
tensor [V,w ® V| is then imposed on the RVE with special modified tetrahedral finite
elements. These elements treat the macroscopic variables as additional degrees of freedom,
providing a periodic solution of the RVE problem.

For the numerical examples, the effective beam and plate models are used to study
the qualitative response of the concrete structure under uniaxial tension and bending.
Furthermore, a series of tests on reinforced concrete panels subjected to bending and
membrane loads is simulated, and the the effective response is compared with experimental
results. The main results of Paper E can be summarised as follows:

e For the Euler-Bernoulli beam model, the effective response of the RVE followed the
well-known response of a reinforced concrete cross-section in tension and bending,
see Figures 6.12 and 6.13.

e The influecne of the RVE size on the effective response was negligible.

e The response of the RVE model agreed well with the experiments, and the average
crack spacings were reflected in a satisfactory way, see Figure 6.14 for an example
of the effective response and strain localisation pattern at the surface of the RVE.
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Figure 6.12: Normalised effective normal force versus normalised macroscopic axial strain
for three different beam RVEs.

33



1.2

Normalised bending moment, M /M, [-]

| | | |
0 02 04 06 08 1 12 14

Normalised curvature, Kyx/ky [-]

Figure 6.13: Normalised effective bending moment versus normalised macroscopic curva-
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Figure 6.14: Effective bending moment versus macroscopic curvature relations for a
reinforced concrete unit cell in biaxial bending (left). Strain localisation pattern at the
bottom surface of the RVE (right). Experimental results from Polak and Vecchio [84].
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7 Conclusions and future work

7.1 Conclusions

The goal of this work was to extend the multiscale modelling methodology to reinforced
concrete structures in order to allow for efficient study of crack formation in large-scale
structures. To this end, the Variationally Consistent Homogenisation (VCH) was used
as a basis for establishing the two-scale models for reinforced concrete. Representative
Volume Elements (RVEs) containing reinforcement grids, in which the reinforcment bars
are orthogonal, were considered to be well-suited for multiscale analyses of large-scale
reinforced concrete structures. To model the steel reinforcement, beam/truss elements and
a Von Mises elastoplastic material model with strain hardening was used. In order to take
the steel/concrete bond into account, the interface around the rebars was resolved using
interface elements, and a suitable bond-slip response was used as the traction-separation
law in the tangential direction.

For the boundary conditions on the RVEs, the classical Dirichlet, Neumann and
periodic boundary conditions were used as a starting point. Since the solution of the
RVE problem produces displacement fields in concrete and steel, different combination of
the classical boundary conditions can be used for the two materials. In this thesis, a few
different combinations of the aforementioned boundary conditions were developed and
studied. Dirichlet and periodic boundary conditions provided a consistent response of the
RVE and were suitable for two-scale models.

Since large-scale reinforced concrete structures are in practice rarely analysed with
three-dimensional detailed models, a few commonly used structural models were chosen
for upscaling. First, for large structures loaded in-plane, such as walls, an effective solid
in plane stress model was developed. Furthermore, structural elements with large span-
to-depth ratio such as reinforced concrete beams or columns can be suitably represented
with beam models. To this end, the response of the RVE was homogenised to an effective
Euler-Bernoulli beam model. Additionally, large scale out-of-plane loaded structures, such
as bridge decks, are often modelled with shell/plate elements. Hence, the RVE was also
upscaled to an effective Kirchhoff-Love model.

In order to investigate the significance of the slip in the two-scale model, different
approaches were considered and evaluated. Initially, the slip was considered to vary only
at the subscale. Subsequently, slip transfer across large-scale elements was enabled. To
this end, a novel macroscopic reinforcement slip field, representing the displacement of
the reinforcement grid relative to the concrete, was proposed and incorporated into the
existing model of effective solid in plane stress. In addition to the displacement fields
in concrete and steel, the macroscopic slip and its gradient were imposed either at the
boundary (Dirichlet boundary condition) or in the volume (Neumann boundary condition)
of the RVE.

Regarding the local results, such as crack widths, the predictions given by the multiscale
models underestimated the single-scale solution in most cases. However, the estimates
improved and became more consistent across multiple analyses upon introducing the
macroscopic slip variable and suitable boundary conditions, which prescribe the slip in

35



the volume of the RVE rather than only at its boundary. The volumetric definition of
macroscopic reinforcement slip resulted in an RVE-size independent interpretation of the
slip variable, and improved the objectivity of the model with respect to the large-scale
mesh and RVE size.

The main conclusion from the present work is that the developed two-scale models
simulate the general structural behaviour well, i.e., the multiscale results agreed well with
single-scale solution in terms of load—deflection curves, deformation shapes and average
strains. Furthermore, not only uniformly reinforced, but also structures with non-uniform
reinforcement layout can be analysed with the developed models by appropriate assignment
of the unit cells in different regions of the structure. The response of structures subjected
to complex membrane and bending loads was also captured well by the developed two-
scale models. The FE? method, upon proper parallelisation, shows potential in saving
computational time and thus making the developed multiscale formulation attractive for
implementation in finite element solvers.

7.2 Future work

For future work, multiple areas of interest can be identified. First of all, the multiscale
formulation can be extended also to other popular structural models, such as Timoshenko
beam and Mindlin plate. This will allow for modelling a wider range of engineering
structures for which the Euler-Bernoulli and Kirchhoff-Love kinematics are not enough,
e.g., shorter beams or thicker shells/plates. If needed, the new models can be then
enriched by the macroscopic slip variable, and the effect of it on both large-scale and
subscale response should be studied in more detail.

Another suggestion is to enhance the fidelity of the RVE models and to study the impact
of it on large-scale predictions. Examples include different crack modelling techniques as
well as different constitutive models for plain concrete, allowing for a more refined study
of subscale crack growth in detail. In order to obtain high fidelity models which can be
used for modelling structural performance in the serviceability limit state, the structural
problem can be coupled with ion ingress/corrosion problem, which have already been
studied with multiscale methods. If higher resolution results are needed, the concrete
itself could be resolved in more detail by modelling the aggregates and cement.

Since the focus of this work was put on the serviceability limit state (SLS), a natural
extension of the presented techniques is to study failure of structures in the ultimate limit
state (ULS). Macroscopic localisation, although omitted in this work, can be considered in
the models. Two-scale models, which consider upscaling of microscopic fracture patterns
to a macroscopic crack, e.g., by means of continuous-discontinuous homogenisation or
smeared micro-to-macro transitions, are already available today. Additionally, the model
can be extended from quasi-static to dynamic problems. As concrete is a strain-rate
dependent material, accurate structural predictions in large-scale structures subjected to
dynamic loads are certainly of interest.
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In order to use the developed techniques in practice, further verification and improve-
ments of the numerical performance are necessary. To this end, the multiscale models
should be applied to real-world case studies. Subsequently, the focus should be put
on benchmarking against industry best-practices in modelling of large-scale reinforced
concrete structures. Algorithmic improvements in terms of parallelisation, speed-up
procedures, adaptivity, numerical model reduction or machine learning could be utilised
to make the methods more attractive.

Finally it is noted that the models studied in this work could are also suitable to study
other types of composites. Among those, special consideration can be given to textile
reinforced concrete structures, due to their uniform reinforcement layouts.
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