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ABSTRACT: Two-scale and single-scale models are used to analyse the response of reinforced concrete deep
beams with different reinforcement layouts. To this end, a novel approach of modelling non-uniformly rein-
forced structures in a multiscale manner is developed. Parameterised generation of suitable unit cells is de-
scribed, and the subdivision of problem domain into regions with different substructures is presented. Three
different reinforced concrete deep beams with available experimental data are analysed. Mid-span deflections
are slightly underestimated by both models, while the maximum load is captured reasonably well.

1 INTRODUCTION

Nowadays a wide variety of analysis methods are
available to structural engineers. Single-scale nonlin-
ear finite element analysis is often presented as the
most accurate method being able to capture cracking
in detail. However, for large reinforced concrete struc-
tures, it often leads to big and complex models that
are computationally too expensive. Multiscale mod-
elling, specifically the FE2 method provides an attrac-
tive alternative to conventional nonlinear finite ele-
ment analysis, as accurate results can be obtained at a
fraction of the single-scale analysis time. A two-scale
model of reinforced concrete was developed (Sciegaj
et al. 2018), wherein the cracking of concrete, plas-
ticity of reinforcement and bond-slip interaction be-
tween the materials were taken into account.

However, the response of beams with non-uniform
reinforcement layout has not been previously investi-
gated. The model was also not validated by compari-
son with available experimental data.

In this contribution, several deep beams with avail-
able experimental data were analysed with both two-
and single-scale models. A novel approach of mod-
elling structures with non-uniform reinforcement lay-
out in multiscale manner was employed, and a com-
parison with single-scale analyses was carried out. At
this stage of the study only the force–deflection re-
lation was examined. Of particular interest was the
choice of a suitable unit cell, especially in regions
where the reinforcement layout is not periodic. Lastly,

it was also of interest to compare the performance
of the two-scale analysis with single-scale modelling,
both in terms of computational time, and the mod-
elling effort.

2 PROBLEM FORMULATION

In this section, the governing partial differential equa-
tions, on which a finite element solution procedure
can be built in both single and two-scale setting, are
briefly outlined. For a detailed derivation the reader is
kindly referred to (Sciegaj et al. 2018).

2.1 Single-scale problem

A reinforced concrete member in plane stress is con-
sidered. The thickness of the structure, tc, is assumed
to be much smaller than the other dimensions. The
simplified two-dimensional domain Ω consists of the
concrete part, Ωc, and the reinforcement part, Γint,
which is idealised as one-dimensional segments. The
boundary of the domain Ω, which can be subjected
to prescribed tractions t̂ or prescribed displacements,
is denoted Γext. The concrete is assumed to be a two-
dimensional solid, for which momentum balance can
be established. Only the longitudinal (bar) action is
assumed for the reinforcement, whereby the normal
force, Ns, can be related to the bond stress, tΓ, dis-
tributed along the perimeter of the bar, Ss. The quasi-
static problem can then be summarised in the weak



forms as follows: find the concrete and reinforcement
displacements uc,us,l that solve

∫
Ωc

tcσc : [δuc ⊗∇] dΩ−
∫

Γint

SstΓelδucdΓ =

∫
Γext

tct̂ · δucdΓ,

(1)

∫
Γint

Ns
∂δus,l

∂l
dΓ +

∫
Γint

SstΓδus,ldΓ = 0, (2)

for a suitable choice of test functions δuc and δus,l.

2.2 Two-scale problem

In this contribution, a coupled hierarchical multiscale
method, more specifically the FE2 method was em-
ployed. In this method, the total solution field is split
into ”smooth” and ”fluctuation” parts, cf. (Larsson
et al. 2010). As a result, the problem is divided into a
large-scale domain Ω, which is considered to consist
of the homogeneous material with ”effective” prop-
erties, and the subscale domains, which reflect the
underlying heterogeneity (and possibly randomness)
of the material. The subscale problem follows di-
rectly from (1) and (2) upon restriction to a subscale
unit cell (also called Representative Volume Element
- RVE) domain, Ω�. The ”effective” response used
in the large-scale problem is obtained from computa-
tional homogenisation of the response of the subscale
unit cells. Classical first-order homogenisation is em-
ployed here, i.e. the gradient of the large-scale field is
imposed on the unit cells via suitable boundary con-
ditions (prolongation). In the case of the structural
problem considered here, the gradient of the large-
scale displacement, i.e. the effective strain was im-
posed on the RVE via Dirichlet boundary conditions,
which means that the deformation of the boundary of
the unit cell varied linearly. After solving the subscale
problem, the effective properties are computed via av-
eraging (homogenisation) and are transferred back to
the large-scale. A schematic illustration of the FE2

method is shown in Figure 1.
The large-scale problem can be expressed as: Find

the effective displacement ū that solves:∫
Ω

σ̄ : [δū⊗∇] dΩ =

∫
Γext

tct̂ · δūdΓ, (3)

where the effective stress σ̄ is computed from the sub-
scale problem as:

σ̄ =
1

|Ω�|

[∫
Ω�

tcσcdΩ +

∫
Γ�,int

Nsel ⊗ eldΓ

]
. (4)

RVE Boundary Value Problem
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Figure 1: FE2 scheme.
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Figure 2: Dimensions and rebar layout for ACI-I beam.

Although theoretically each macroscopic point has
an underlying microstructure, the numerical integra-
tion is performed at Gauss points. Hence, it suffices
to introduce the unit cells only at the large-scale inte-
gration points

3 EXPERIMENTAL STUDIES

The FE2 method described in previous section was
successfully used in structural analysis of reinforced
concrete members in plane stress, with uniform re-
inforcement pattern, cf. (Sciegaj et al. 2018, Sciegaj
et al. 2019). In reality, the reinforcement can be con-
centrated in certain parts of the structural member.
The described multiscale modelling technique was
used to analyse three different deep beams of rein-
forced concrete, for which well-documented exper-
imental results were available. The first two beams
were named ACI-I and STM-M, cf. (Aguilar et al.
2002), whereas the third beam was named WT4, cf.
(Leonhardt and Walther 1966). They are schemati-
cally depicted in Figures (2)–(4). For details regard-
ing the test setup, the reader is referred to the given
sources.

3.1 ACI-I beam

ACI-I consisted in a reinforced concrete member with
a rather uniform reinforcement layout, i.e. a reinforce-
ment grid in most part of the beam. However, it also
had a distinct tie at the bottom in form of two rebars
with considerably larger diameter than the rest. The
beam was subjected to four-point bending. Reported
compressive strength of concrete was 33 MPa, modu-
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Figure 3: Dimensions and rebar layout for STM-M beam.
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Figure 4: Dimensions and rebar layout for WT4 beam.

lus of rupture was 5 MPa (which was converted to a
tensile strength of 3.34 MPa according to (Fib 2013)).
The yield and ultimate strength for 25 mm bars were
420 MPa and 700 MPa, whereas the corresponding
values for 10 mm rebars were 450 MPa and 720 MPa,
respectively. The Young’s modulus (32 GPa) and frac-
ture energy (136.98 N/m) were obtained using the em-
pirical formulas from Model Code 2010 (Fib 2013).

3.2 STM-M beam

STM-M had the same geometry and material prop-
erties for concrete and steel as ACI-I beam, ex-
cept for the concrete compressive strength reported
as 28 MPa. However, the reinforcement layout was
hardly uniform as there was a distinct tie at the bot-
tom of the beam and only a few stirrups were present.
Like ACI-I, this beam was also subjected to four-point
bending. Model Code 2010 (Fib 2013) empirical re-
lations were used to calculate the Young’s modulus
(30.29 GPa) and fracture energy (132.99 N/m).

3.3 WT4 beam

The WT4 beam had a uniform reinforcement layout
throughout the structure and a much lower span-to-
depth ratio than the other beams. In addition to the
regular reinforcement grid, a tie in form of several
horizontal rebars concentrated at the bottom of the
beam was present. In contrast to the previous beams,
it was subjected to uniformly distributed load at the
top surface. Reported compressive strength of con-
crete was 32.17 MPa. The yield strength of reinforce-
ment was given as 415 MPa. Empirical formulas from
Model Code 2010 (Fib 2013) were used to compute
the Young’s modulus (31.74 GPa), tensile strength
(2.59 MPa) and the fracture energy (136.35 N/m).

L�

sx

sy φx

φy
t

Figure 5: Generic unit cell, �, and the input parameters.

4 COMPUTATIONAL MODELS

Two-scale simulations were performed using the open
source C++ code OOFEM (Patzák 2012), while
ABAQUS (Dassault Systèmes 2014) was used for
single-scale analyses. The simulations were per-
formed on a compute node with 20 core Intel 2650v3
CPU and 64 GB of RAM per node.

4.1 Two-scale models

Concrete and steel were modelled with bilinear
quadrilateral and truss elements, respectively, while
linear interface elements were used to simulate the
bond between them. The rotating crack model with
exponential softening in tension and linear elasticity
in compression was used for concrete. For the steel,
von Mises plasticity with linear hardening (ACI-I and
STM-M beams) or perfect plasticity (WT4 beam) was
used. The standard bond-slip relation given in Model
Code 2010 (Fib 2013) was used for the interface. In
order to build a two-scale model, it is necessary to find
a suitable unit cell, which should reflect the subscale
heterogeneity and randomness of the material in a
good way. In case of reinforced concrete at this scale,
the heterogeneity comes mainly from reinforcement
distribution, hence it is necessary to be able to in-
clude arbitrary reinforcement layout within the RVE.
Another important thing for the two-scale model is to
divide the large-scale domain into regions, which will
be represented by the same unit cell.

4.1.1 Subscale unit cell generation
A generic RVE can be seen in Figure (5). In order
to make the generation of the subscale unit cell ro-
bust, the process was parameterised. An arbitrary (pe-
riodic) arrangement of the reinforcement can be re-
produced by specifying the size of the RVE, L�, its
thickness, t, amount of horizontal and vertical rein-
forcement (φx and φy, respectively), as well as the
corresponding spacing between the rebars (sy and sx).
Depending on the relation between the spacings and
the side length, either one or more rebars can fit within
the RVE. The shape of the unit cell was chosen to be
a square, as it is usually done in practice. The sizes
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Table 1: Unit cell geometry in FE2 analyses of ACI-I beam.
L� t φx sy φy sx
mm mm − mm − mm

ACI-I1 �1 127 305 3φ25 127 2φ10 152.4
�2 101.6 305 2φ10 101.6 2φ10 152.4

ACI-I2 �1 254 305 3φ25 127 2φ10 152.4
�2 101.6 305 2φ10 101.6 2φ10 152.4

Table 2: Unit cell geometry in FE2 analyses of STM-M beam.
L� t φx sy φy sx
mm mm − mm − mm

STM-M1 �1 101.6 305 3φ25 101.6 2φ10 152.4
�2 152.4 305 − − 2φ10 152.4
�3 152.4 305 2φ25 152.4 2φ10 152.4
�4 101.6 305 3φ25 101.6 − −
�5 101.6 305 2φ25 101.6 − −
�6 101.6 305 − − − −

STM-M2 �1 203.2 305 3φ25 101.6 2φ10 152.4
�2 152.4 305 − − 2φ10 152.4
�3 152.4 305 2φ25 152.4 2φ10 152.4
�4 203.2 305 3φ25 101.6 − −
�5 101.6 305 2φ25 101.6 − −
�6 101.6 305 − − − −

of the unit cells were chosen to be equal to a multiple
of the spacing between rebars in one direction. Practi-
cal implication of this choice is that the periodicity of
the reinforcement mesh is disrupted if the spacings sx
and sy are different, which is often the case. To rem-
edy this, the amount of reinforcement (area) was ad-
justed so that the amount of reinforcement per length
is maintained between the RVEs. A number of unit
cells was generated for each analysis, which are sum-
marised in Tables (1)–(3). Depending on the RVE, the
element size varied between 7.5 mm and 31.75 mm.

4.1.2 Large-scale subdivision
The reinforcement layout present in the structure
should be reflected in the large-scale model by subdi-
viding it into regions that correspond to specific unit
cells. Although in theory, the size of the macroscopic
elements may be quite large, this subdivision will re-
strain the maximum size of some elements. In case of
uniformly distributed reinforcement the subdivision
is quite straightforward, but with concentrated rein-
forcement/singular rebars this is a more delicate task.

Table 3: Unit cell geometry in FE2 analyses of WT4 beam.
L� t φx sy φy sx
mm mm − mm − mm

WT4-1 �1 60 100 2φ8 60 2φ5 260
�2 60 200 2φ8 60 2φ5 260
�3 260 100 2φ5 260 2φ5 260
�4 260 150 2φ5 260 2φ5 260

WT4-2 �1 120 100 2φ8 60 2φ5 260
�2 120 200 2φ8 60 2φ5 260
�3 260 100 2φ5 260 2φ5 260
�4 260 150 2φ5 260 2φ5 260

WT4-3 �1 240 100 2φ8 60 2φ5 260
�2 240 200 2φ8 60 2φ5 260
�3 260 100 2φ5 260 2φ5 260
�4 260 150 2φ5 260 2φ5 260
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Figure 6: Subdivision of ACI-I beam into unit cell regions.
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Figure 7: Subdivision of STM-M beam into unit cell regions.

The large-scale subdivisions are depicted for the three
beams in Figures (6)–(8). The goal was to reflect the
real reinforcement layout in the beam with fidelity.
Special attention was given to concentrated reinforce-
ment at the bottom of the beams. It should be noted
that only half of each beam was modelled due to sym-
metry. The ACI-I and STM-M beams were subjected
to concentrated forces, and therefore it was possible
to run the analysis directly in displacement control by
increasing the displacement under the loading platen
gradually. WT4 beam was subjected to uniformly dis-
tributed load, hence it was decided to run the two-
scale analysis in arc-length control.

4.2 Single-scale models

The single-scale analyses were conducted using
static stress procedure (neglecting inertia effects) in
ABAQUS/Standard (Dassault Systèmes 2014). Four-
node bilinear plane stress quadrilateral (CPS4R) ele-
ments with reduced integration and hourglass control
were used for the concrete. The reinforcing steel was
modelled with 2-node linear truss (T2D2) elements

�2

�4

�3

�1

q

δ

Figure 8: Subdivision of WT4 beam into unit cell regions.
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embedded in the concrete, assuming perfect bond be-
tween the materials. An element size of 20 mm was
used for the ACI-I and STM-M beams, while an el-
ement size of 25.4 mm was used for the WT4 beam.
The Concrete Damaged Plasticity constitutive model
available in ABAQUS was used to model the be-
haviour of concrete. The dilation angle was set to 30◦

and the viscosity parameter to 10−5. Default values
were used for the other plasticity parameters (i.e. 0.1
for the flow potential eccentricity, 1.16 for the biaxial
to the uniaxial compressive strength ratio, and 0.67
for the tensile to compressive meridian ratio). Simi-
lar to two-scale models, linear elastic behaviour was
defined for the concrete in compression. In tension,
linear softening was employed, based on the frac-
ture energy values. Steel was modelled assuming von
Mises plasticity with linear hardening for the ACI-
I and STM-M beams and perfect plasticity for WT4
beam based on the available test results. Displacement
control (ACI-I and STM-M) and load control (WT4)
were used for the analyses.

4.3 Results and discussion

The force–mid-span deflection relations for the beams
are shown in Figures (9)–(11) for both two-scale
and single-scale analyses. It is noteworthy, that the
single- and two-scale analyses were performed inde-
pendently of each other. Furthermore, even though
different software and constitutive models were used,
the results from the single-scale analyses agreed well
with those from two-scale analyses in terms of force–
displacement response. Moreover, the initial struc-
tural stiffness is well reflected by the simulations, and
the predicted ultimate loads were close to those ob-
tained in the experiments (error below 10 % for all
analyses, except WT4-1 with an error below 15 %).
Since no explicit (macroscopic) failure conditions
were given in the models, the force–displacement re-
sponse is given here up to the maximum deformation
reported in the tests. The simulations continued past
the reported data following the plastic response (ex-
cept from single-scale analyses of ACI-I and STM-
M beams, where a shear failure was observed at de-
formations a few millimetres larger than the experi-
mental ones). There seems to be some additional de-
formation, measured in the experiments, which was
not captured by the finite element models. This could
be caused by the disparity between the ”idealised”
boundary conditions used in modelling and the real
conditions of experiments setup, which are difficult
to properly reproduce in a model.

It can be seen that the FE2 simulations overesti-
mated somewhat the structural response (for STM-M
and WT4 beam), something that could be explained
by the use of Dirichlet boundary conditions on the
unit cells. The size of the unit cell in the critical re-
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Figure 9: Force–mid-span deflection relation for ACI-I beam.
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Figure 10: Force–mid-span deflection relation for STM-M beam.

gions of the beams (usually at the bottom) did not
have much impact on the results for ACI-I and STM-
M beam. It did, however, influence the maximum load
prediction for the WT4 beam, with larger unit cell pre-
dicting lower load.

The run-times of the analyses are presented in Ta-
ble (4). For the studied beams, single-scale simula-
tions were faster than their two-scale counterparts.
However, it should be noted, that the two-scale im-
plementation was not parallelised to allow for concur-
rent solution of different RVE problems. Hence, only
a few of the available cores were used for the two-
scale simulations. Regarding modelling complexity,
the main difficulties in construction of two-scale mod-
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Figure 11: Force–mid-span deflection relation for WT4 beam.

255



Table 4: Run-times of the two-scale (FE2) and single-scale anal-
yses.

Analysis Time [h]
ACI-I1 (FE2) 01:38:10
ACI-I2 (FE2) 06:51:16

ACI-I (Singe-scale) 01:09:02
STM-M1 (FE2) 03:22:40
STM-M2 (FE2) 08:14:00

STM-M (Single-scale) 00:42:59
WT4-1 (FE2) 01:57:10
WT4-2 (FE2) 02:42:50
WT4-3 (FE2) 04:19:17

WT4 (Single-scale) 00:01:57

els of the beams comprise the choice of a suitable
unit cell and appropriate subdivision of the large-scale
domain. While the latter is a subtle geometric task,
which might prove difficult for complex reinforce-
ment layouts, the former can easily be parameterised
allowing for efficient creation of generic unit cells,
as long as reinforcement is arranged in a rectangu-
lar grid pattern. Single-scale simulations require more
modelling effort, as every reinforcement bar had to
be modelled separately. Moreover, allowing for bond-
slip requires further modelling work, as the interface
elements between steel and concrete need to be cre-
ated.

5 CONCLUSIONS

In this contribution, a previously developed two-scale
model of reinforced concrete was used for the first
time to model several realistic examples of reinforced
concrete deep beams with non-uniform reinforcement
layouts. In the model, the response of concrete, steel,
and the interface between them is considered in detail.
Based on the formulation of the single-scale problem,
the pertinent large-scale and subscale problems were
outlined. The macroscopic variables (effective strain)
were imposed on the subscale Representative Volume
Elements (RVEs) with Dirichlet boundary conditions,
and a procedure of computing the effective work con-
jugate (effective stress) was presented. A method of
parameterised RVE generation was described, and the
issue of large-scale subdivision was discussed.

Three reinforced concrete deep beams with differ-
ent amounts and layouts of reinforcement were anal-
ysed both with two- and single-scale models. The
main focus of the study was to investigate the feasibil-
ity of using a two-scale model when analysing struc-
tural members with non-uniform distribution of rein-
forcement. The ability of the model to capture force–
deflection relations, choice of suitable unit cell, and
appropriate large-scale subdivision were of special in-
terest. Moreover, the performance of the multiscale
method in terms of computational time and modelling
complexity was compared to single-scale modelling.

Both types of analyses underestimated the deflec-

tion, while predicting the maximum load reasonably
well. This slightly stiffer response could be caused
by the fact, that certain deformations measured in
the experiments were not reflected in the finite ele-
ment models. In the FE2 analyses, the size of the unit
cell in crucial regions of the beams did not influence
the force–deflection result much. Regarding compu-
tational performance, multiscale modelling provides
an attractive alternative to conventional single-scale
modelling in terms of modelling complexity. Poten-
tially, this approach enables the study of large re-
inforced concrete structures, which would otherwise
prove computationally far too expensive to handle in
a single-scale manner.

For future work, the influence of the unit cell and
large-scale subdivision on multiscale models should
be studied closer. Also, developing further methods
of including concentrated reinforcement in addition
to uniformly distributed reinforcement might prove
necessary. Furthermore, it is necessary to study the
feasibility of multiscale methods to predict also other
quantities, e.g. the crack widths and crack patterns,
which can have a big impact on structural perfor-
mance in the serviceability limit state. Finally, a larger
number of experimentally studied structures needs to
be examined in order to gain more insight.
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