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Abstract
We give an explicit formula for the second variation of the logarithm of the Selberg zeta
function, Z(s), on Teichmüller space. We then use this formula to determine the asymptotic
behavior as �s → ∞ of the second variation. As a consequence, for m ∈ N, we obtain
the complete expansion in m of the curvature of the vector bundle H0(Xt ,Kt ) → t ∈ T
of holomorphic m-differentials over the Teichmüller space T , for m large. Moreover, we
show that this curvature agrees with the Quillen curvature up to a term of exponential decay,
O(m2e−l0m), where l0 is the length of the shortest closed hyperbolic geodesic.

Keywords Selberg zeta function · Selberg trace formula · Second variation ·
Plurisubharmonicity · Teichmüller theory · Zeta-regularized determinant · Higher Selberg
zeta functions

Mathematics Subject Classification Primary: 11F72; Secondary: 30F60 · 32G15 · 30F30

1 Introduction

Selberg was one of many mathematicians for whom investigating the Riemann hypothesis
would lead to deep results of broad interest, not only in analytic number theory but also in
many other neighboring fields. To wit, Selberg’s trace formula was one of the main inspira-
tions of the Langlands program. The Selberg zeta function is shroudedwith a certainmystique
because it is defined in terms of quantities which are in general incomputable, namely the
set of lengths of closed geodesics on a Riemannian manifold,
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Z(s) :=
∏

γ∈Prim(0)

Zγ (s), Zγ =
∞∏

k=0

(
1 − e−l(γ )·(s+k)

)
. (1.1)

Here, the geometric setting is a compact Riemann surface, X , of genus g ≥ 2, equipped
with the hyperbolic metric of curvature −1. Let � be the fundamental group of X . We may
then fix X as the quotient of the upper half plane, H = {z = x + iy, y > 0}, by �, so that
X = �\H. We say a hyperbolic element, γ ∈ �, is primitive if for all γ0 ∈ � and k ∈ N

with γ = γ k
0 it follows that γ0 = γ and k = 1. Then Prim(0) in (1.1) is the set of conjugacy

classes of primitive hyperbolic elements γ of �, which is in canonical bijection with the set
of primitive closed geodesics, and �(γ ) is the geodesic length of the associated conjugacy
class of γ .

It is clear from (1.1) that the Selberg zeta function is intimately linked to the Riemannian
geometry of X . What is perhaps not so obvious is that it is also closely connected to the
complex structure of X . To describe this, we fix S, the so-called model surface of genus
g ≥ 2. The Teichmüller space T = Tg of surfaces of genus g is the set of equivalence classes
[(�, ϕ)], where � is a Riemann surface, and ϕ : S → � is a diffeomorphism, known as a
marking. On each such surface, �, there is a unique Riemannian metric which has constant
curvature−1, however in this notation the Riemannianmetric is suppressed. The equivalence
relation identifies

(�1, ϕ1) ∼ (�2, ϕ2)

if there is an isometry I : �1 → �2 such that I and ϕ2 ◦ ϕ−1
1 are isotopic. Hence, from

the Riemannian geometric perspective, these two surfaces are identical, in that they are
topologically the same, and they are equipped with the same Riemannian metric.

One may also consider T from a complex analytic perspective. For this purpose, we
recall that a Beltrami differential, μ, is a � invariant ∂z ⊗ dz̄ tensor on H; thus, we write
μ = μ(z)∂z ⊗ dz̄. It is harmonic if μ(z) = φ(z)y2, and φ = φ(z)dz2 is a � invariant
holomorphic quadratic differential. Ahlfors [2] showed that tangent vectors in Tt for a point
t = [(X , ϕ)] ∈ T are represented by harmonic Beltrami differentials. To see this, for a
harmonic Beltrami differential μ, let f μ be the solution of the Beltrami equation

fz̄ = μ(z) fz, z ∈ H,

fz̄ = μ(z̄) fz, z ∈ L,

f (0) = 0, f (1) = 1, f (∞) = ∞,

(1.2)

where L is the lower half plane inC. For a fixed Beltrami differential μ of (supremum) norm
1, let ε be a small complex number. Consider the Beltrami equation for εμ with solution
f εμ. Then, for sufficiently small ε, f εμ defines a Fuchsian group �ε = f εμ�( f εμ)−1. The
Riemann surfaces Xε = �ε\H define a curve in T with X0 = X . Hence, we identify unit
tangent vectors in Tt with harmonic Beltrami differentials of unit norm. Each of these in
turn defines a local one parameter family of Riemann surfaces, Xε. In this way we compute
the variation of quantities defined on the surface X corresponding to the point t ∈ T in the
directions corresponding to these harmonic Beltrami differentials of unit norm. The stage is
now set to present our main results.

1.1 Main results

Our first main result generalizes [15, Theorem 1.1.2] in which Gon computed a formula for
the first variation of the log of the Selberg zeta function; this may be compared with our
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Proposition 4. The variation is computed, in both our setting and that of Gon, by viewing
the Selberg zeta function as a function on Teichmüller space, T , defined for t ∈ T as the
Selberg zeta function on the corresponding Riemann surface equipped with the hyperbolic
Riemannian metric of constant curvature −1.

Theorem 1 For �(s) > 1, we have

∂̄μ∂μ log Z(s) =
∑

γ∈Prim(0)

∂̄μ∂μ log �(γ )Aγ (s) +
∑

γ∈Prim(0)

|∂μ log �(γ )|2(Aγ (s) + Bγ (s))

(1.3)
where

Aγ (s) = s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1 =

∞∑

k=0

(s + k)�(γ )

e(s+k)�(γ ) − 1
,

and

Bγ (s) =
(
s2

d2

ds2
log Zγ (s) + 2s

d2

ds2
log zγ (s)−1 + d2

ds2
log z̃γ (s)−1

)

= −l(γ )2
∞∑

k=0

(s + k)2e(s+k)�(γ )

(e�(γ )(s+k) − 1)2
.

Above zγ (s) and z̃γ (s) are as in (3.15) and (3.17), respectively.

To avoid cumbersome notation, we have not included the explicit formulas for the first and
second variations of the lengths of closed geodesics in the second variational formula above.
These are contained in Sect. 3.1, Propositions 2 and 3, respectively.

In our next main result, we prove asymptotics of the second variation of log Z(s) for
�(s) → ∞. To state the result, we require the set of systole geodesics,

S(X) := {γ ∈ Prim(0) : l(γ ) = l0}, l0 = inf{l(γ ) : γ ∈ Prim(0)}. (1.4)

Correspondingly, listing all the systole geodesics as S(X) = {l(γ1), . . . , l(γN )}, we define
∂l0 : μ ∈ T (1,0)

t (T ) 
→ (∂μl(γ1), . . . , ∂lμ(γN )) ∈ C
N . (1.5)

and
|∂μl0|2 :=

∑

S(X)

|∂μl(γ )|2, (1.6)

and
∂̄μ∂μ log l0 :=

∑

S(X)

∂̄μ∂μ log l(γ ). (1.7)

Theorem 2 If |∂μl0|2 �= 0, then

lim�s→∞
∂̄μ∂μ log Z(s)

s2e−sl0
= − |∂μl0|2

1 − e−l0
< 0. (1.8)

For the Ruelle zeta function, R(s), which is defined in (2.12),

lim�s→∞
∂̄μ∂μ log R(s)

s2e−sl0
= − |∂μl0|2

1 − e−l0
< 0.
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The square of the Hilbert–Schmidt norm of the resolvent, which is defined in Lemma 3,
satisfies

lim�s→∞
∂̄μ∂μ||(
0 + s(s − 1))−1||2HS

e−sl0
= |∂μl0|2l20

4(1 − e−l0)
> 0.

In case |∂μl0|2 = 0, then we have

lim�s→∞
∂̄μ∂μ log Z(s)

se−sl0
= l0

1 − e−l0
∂̄μ∂μ log l0 > 0. (1.9)

In this case, we also have for the Ruelle zeta function,

lim�s→∞
∂̄μ∂μ log R(s)

se−sl0
= l0

1 − e−l0
∂̄μ∂μ log l0 > 0.

The square of the Hilbert–Schmidt norm of the resolvent in this case satisfies

lim�s→∞
∂̄μ∂μ||(
0 + s(s − 1))−1||2HS

1
s e

−sl0
= − l20 ∂̄μ∂μ log l0

4(1 − e−l0)
< 0.

The zeta-regularized determinant, det(
0 + s(s − 1)), satisfies

∂̄μ∂μ log det(
0 + s(s − 1)) = ∂̄μ∂μ log Z(s),

and therefore analogous results hold for its behavior as �s → ∞.

It follows from the above theorem that the Hessian ∂̄∂ log Z(s) for large s ∈ R is not
positive definite on Teichmüller space, T . More precisely for each fixed t ∈ T let r = r(t)
be the rank of the linear map (1.5). It follows from the result of Wolpert [38, Theorem 8] that
the differential dl of the length function of one geodesic l is everywhere non-vanishing. In
particular theRN -valueddifferential ∂l0 defined in (1.5) is non-vanishing, and1 ≤ r ≤ 3g−3.
It is also known (see [22, Theorem 3], [25]) that there exists t ∈ T such that the number
N of systole geodesics is bounded above by 2g, N ≤ 2g, thus the rank r ≤ 2g at t . Our
result states then that if μ ∈ Tt (T ) is in the subspace Ker∂l0 then the Hessian ∂̄μ∂μ log Z(s)
has positive sign for large s ∈ R, and if μ is in the orthogonal complement (Ker∂l0)⊥ then
Hessian has negative sign for large s ∈ R, the dimension of the two spaces being r and
3g − 3 − r , respectively.

Assume now that m ∈ N. As a consequence of Theorem 2, we prove that the curvature,
Chern(m)(μ, μ), of the vector bundle H0(Xt ,Kt ) → t ∈ T of holomorphic m-differentials
over the Teichmüller space, T , agrees with the Quillen curvature up to a term of exponential
decay. In particular we obtain the full expansion of the Chern(m)(μ, μ) in m.

Corollary 1 The curvature, Chern(m)(μ, μ), of the vector bundle H0(Xt ,Kt ) → t ∈ T over
the Teichmüller space, T , has the following expansion,

Chern(m)(μ, μ) = 6m(m − 1) + 1

12π
||μ||2WP + R(m), m → ∞. (1.10)

Here, ‖μ‖2WP is the square of the Petersson norm of μ. The remainder

R(m) = O(m2e−ml0), m → ∞.
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The corollary shows that Chern(m)(μ, μ) and the Quillen curvature agree up to an expo-
nentially small remainder term. This improves, in the case of Riemann surfaces, the result
of Ma-Zhang [21] where the first two terms were found. In this sense, our result can be seen
as a variational version of the result of Bismut–Vasserot [10] on the asymptotics of analytic
torsion. It is also closely related to the curvature of the Quillen metric on Teichmüller space
which has been studied in the general context of holomorphic families of Kähler manifolds
[9].

1.2 Related works

To the best of our knowledge, the first result on plurisubharmonicity of naturally defined func-
tions on Teichmüller space appeared in [36]. There, Wolpert showed that geodesic length
functions are plurisubharmonic as functions on Teichmüller space. He has built upon and gen-
eralized those results in [32,37]. More recently, Axelsson and Schumacher [5], using Kähler
geometric methods, established the plurisubharmonicity of each geodesic length function.
They obtained this result as a corollary to formulas they demonstrated for the first and the sec-
ond variations of the geodesic length as a function on Teichmüller space. The WeilPetersson
Hession of length was also studied byWolf [31] at the same time as Axelsson & Schumacher
obtained their results.

Closely related to our work is that of Gon [15]. That context is more general because
the underlying model surface in the definition of Teichmüller space is of type (g, n), that
is genus g and punctured at n points. Our work is only for (g, 0), so that our surfaces are
not punctured. The main result of [15] expresses the variation ∂μ log Z�(s) as a sum over
conjugacy classes of primitive hyperbolic elements of certain quantities depending on local
higher zeta functions and periods of the automorphic forms over the closed geodesic. The
formula was obtained with the help of Takhtajan and Zograf’s integral expression for the first
variation of the Selberg zeta formula,

∂μ log Z�(s) =
∫

X
Fs(z)μ. (1.11)

Above, Fs is a certain Poincaré series constructed from a second derivative of the resolvent
kernel Qs(z, z′) of the Laplacian on the surface. More precisely,

Fs =
∑

γ �=e,γ∈�

∂2

∂z∂z′
Qs(z, γ z

′)
∣∣∣∣
z=z′

,

where e denotes the identity element. Using the explicit formulas for Qs(z, γ z′), Gon was
able to express ∂μ log Z�(s) via the sum of local Selberg zeta functions [15, Theorem 1.1.2].

Ourmethod is different. Instead of exploiting the integral formula of Zograf andTakhtajan,
we show that it is possible to differentiate the definition of the Selberg zeta function, directly,
as long as it converges. This serves our purposes well, because we are interested in arguments
forwhich the product (1.1) converges.Next,we use the result ofAxelsson andSchumacher [5]
for the variation of the length of a geodesic. Interestingly, although ourmethod is different, we
arrive at the same formula as Gon. Moreover, our approach gives a geometric interpretation
for the automorphic forms appearing in Gon’s formula: the automorphic forms correspond
to the variations of the lengths of the geodesics. Furthermore, with our method we are able
to calculate the second variation of the Selberg zeta function as a sum over primitive closed
geodesics of the surface.
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Consequently, thismethod is applicable not only for studying the Selberg zeta function, but
also to study all other functions that are defined in an analogous way. In particular, our tech-
niques apply equally well to functions which are defined as a sum or product, over primitive
closed geodesics, of quantities depending on the lengths of closed geodesics. To illustrate the
utility of our method, we compute in Sect. 4.2 variational results for: the trace of the squared
resolvent, the Ruelle zeta function, the zeta-regularized determinant of the Laplacian, and the
hierarchy of higher Selberg zeta functions. For the definition of these higher zeta functions,
see (2.14). These form a real-parameter family Z(s, t) of zeta functions which generalize the
notion of the Selberg zeta function. Interestingly, the local version of these higher Selberg
zeta functions also appear in Gon’s formula. Here, we prove directly using their definitions
a variational formula for the whole hierarchy which relates the variation of Z(s, t) to that of
Z(s, t ′) for t ′ < t .

We would also like to mention related results obtained by Fay [13], who considered Sel-
berg zeta functions twisted by a representation of �. It may be possible to generalize our
results to that setting as well, if the key elements in the proofs are amenable to suitable
adaptations. Finally there is a conjecture of Sarnak [25, p. 411] that the analytic torsion is
a Morse function on Teichmuller space; understanding its second variation at critical points
will be important in resolving the conjecture.

1.3 Key elements in the proofs

Initially, we prove the first and second variational formulas, Proposition 4 and Theorem 1,
respectively, by differentiating the definition of the logarithm of the Selberg zeta function and
verifying convergence. As we proceed directly using the sum over closed geodesics, we must
compute the first and second variation of the length of each closed geodesic. To compute the
first variation, although this would follow from [5], we compute in a more classical and direct
way using Gardiner’s formula, obtaining an equivalent but superficially different formula.
However, unlike the first variational formula of [5], one can read-off the terms in Gon’s
formula directly from our Proposition 2.

The asymptotics of the second variation of log Z(s) are obtained by locating the dominant
term in our formula as �s → ∞. When s = m ≥ 0 is an integer, the variation is the
difference of the curvature of the vector bundle H0(�t ,Km

t ) → t ∈ T over the Teichmüller
space T and the Quillen curvature. The Quillen curvature is well known and is given by
a second degree polynomial in m. We therefore obtain the full expansion of the curvature
Chern(m)(μ, μ). Apart from the case of abelian varieties this seems the first case where a full
expansion of Chern(m)(μ, μ) has been obtained.

1.4 Further developments

In a subsequent paper [14] we shall demonstrate an integral formula for the second variation
which holds for �(s) > 1, in the spirit of the integral formula of Takhtajan and Zograf, [39,
Theorem2] for s = m ∈ N.We shall use this formula to define the curvature, Chern(m)(μ, μ),
for non-integer m. The Teichmüller space and the vector bundle H0(Km

t ) 
→ t ∈ T of
holomorphic m-differentials H0(Km

t ) over the Teichmüller space can be formulated in the
general setup of relative ample line bundles for fibrations of Kähler manifolds [6]. In a recent
preprint [30] the third author together with Wan has been able to prove a generalization of
Corollary 2 in this general setup.
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1.5 Organization

In the next section we gather definitions and notations and demonstrate the requisite prelimi-
naries. In Sect. 3 we prove the first variational formula as well as estimates and a convergence
result which will be used to justify convergence of the second variational formulas demon-
strated in Sect. 4. The asymptotics of the second variation for �s → ∞ are computed
in Sect. 5, which are then used to compute the asymptotics of the curvature of a Hermi-
tian holomorphic vector bundle. We conclude with an investigation of the special cases
s = m ∈ {1, 2}. Finally, in the “Appendix” we provide a calculation of the Hilbert–Schmidt
norm of the squared resolvent. Although the formula is known, our particular method of cal-
culation is not contained in the literature to the best of our knowledge and therefore may be
interesting or useful. This calculation is used to compute the variation of the Hilbert–Schmidt
norm in Sect. 4.

2 Preliminaries

We fix notations and prepare the technical tools required for our proofs.

2.1 Hodge and @̄ Laplacians on L2m,l(X)

We briefly recall a few known results for certain Laplace operators on Riemann surfaces
which shall be important ingredients in the proofs of our results. Each point in Teichmüller
space T = Tg is canonically identified with a compact Riemann surface, X of genus g ≥ 2,
which admits a unique Riemannian metric of constant curvature −1. Then, X is identified
with the quotient �\H, where � is the fundamental group of X , andH is the upper half plane
in C. The hyperbolic metric in Euclidean coordinates on the upper half plane is given by

ρ(z)|dz|2, ρ(z) = y−2, H = {z = x + iy ∈ C : �z = y > 0}. (2.1)

Let 
0 = −y2(∂2x + ∂2y ) be the Laplace operator on scalar functions. We note that


0 = −4y2
∂2

∂z∂ z̄
.

For this reason, there are different normalizations of the Laplacian by different authors.
Particularly relevant to our work is the definition in [28], who defined the Laplacian as

−y2
∂2

∂z∂ z̄
= 1

4

0.

LetK be the holomorphic cotangent bundle and K̄ the anti-holomorphic cotangent bundle
over X . We also use the standard notation that K−k = (Kk)∗ is the dual bundle of Kk . The
scalar product on sections of Kk ⊗ K̄l is given by

〈 f , g〉k,l :=
∫

X
〈 f , g〉zρ(z)(

i

2
)dz ∧ dz̄ =

∫

X
f ḡρ1−k−ldA. (2.2)

The integration above is with respect to the Euclidean measure, dA = dxdy, and is taken
over a fundamental domain of X . In the case of functions, we note that k = l = 0, and we
may simply write the integral of a function ϕ on X as

∫
X ϕ, suppressing the ρdxdy.
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Let L2
k,l(X) be the corresponding Hilbert space. We write L2

k(X) = L2
k,0(X). Denote

by ∇′
k the (1, 0) part of the Chern connection, ∇k = ∇′

k + ∇′′, ∇′′ = ∂̄ . Let � = �′ =
(∇′)∗∇′ + ∇′(∇′)∗ and �′′ = ∂̄∗∂̄ be the corresponding Laplace operators. The Chern
connection ∇ = ∇′ + ∂̄ can be extended to sections of Km ⊗ K̄ as (0, 1)-forms with values
in Km . Note that �′′ = ∂̄∗∂̄ + ∂̄ ∂̄∗ = ∂̄ ∂̄∗ on (0, 1)-forms.

Let H0(Kk) = Ker ∂̄ be the space of holomorphic k-forms, k ≥ 0, and H (0,1)(Kk)

the ∂̄-cohomology of (k, 1)-forms, k ≤ 1. Elements in H (0,1)(K−1) are represented by the
harmonic Beltrami differentials μ = μ(z)(dz)−1dz̄ and are identified with H0(K2) via the
duality,

φ(z) := ρ(z)μ(z) = y−2μ(z), φ := φ(z)(dz)2 ∈ H0(Xt ,K2). (2.3)

The following Lemma is a consequence of the general well-known Kodaira–Nakano-type
formulas [12, Chapter VII, Section 1]. For completeness, we provide an elementary proof.

Lemma 1 On the space L2
k,1(X) of (0, 1) formswith coefficients inKk the operators (∇′)∗∇′,

∇′(∇′)∗, and �′′ = ∂̄ ∂̄∗ are related by

(∇′)∗∇′ = ∇′(∇′)∗ + k − 1

2
= ∂̄ ∂̄∗.

Proof The Chern connection∇′ (also calledMaass operator) is given by∇′ ( f (z)(dz)kdz̄
) =

y−2k∂( f (z)y2k)(dz)k+1dz̄ and ∂̄
(
f (z)(dz)k

) = ∂̄ f (z)(dz)kdz̄. Thus their adjoints are

(∇′)∗
(
f (z)(dz)k+1dz̄

)
= −∂̄(y2 f (z))(dz)kdz̄

and

(∂̄)∗
(
f (z)(dz)kdz̄

)
= −y2−2k∂(y2k f (z))(dz)k .

We have thus

(∇′)∗∇′ ( f (z)(dz)kdz̄
)

= ∂̄ ∂̄∗ (
f (z)(dz)kdz̄

)
= g(z)(dz)kdz̄,

g(z) = −∂̄
(
y2−2k∂(y2k f (z))

)
,

and

∇′(∇′)∗
(
f (z)(dz)kdz̄

)
= h(z)(dz)kdz̄, h(z) = −y−2(k−1)∂

(
y2(k−1)∂̄(y2 f (z))

)
.

The operators f = f (z)(dz)kdz̄ 
→ g = (∇′)∗∇′ f , and f 
→ h = ∇′(∇′)∗ f then differ by
a constant. More precisely

g(z) = −y2∂̄∂ f (z) − iy∂ f (z) + iky∂̄ f (z) − k

2
f (z),

h(z) = −y2∂̄∂ f (z) − iy∂ f (z) + iky∂̄ f (z) − 2k − 1

2
f (z)

and g(z) = h(z) + k−1
2 f (z). This completes the proof. ��
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2.2 TheWeil–Peterssonmetric on Teichmüller space

We introduce theWeil–Petersson metric following [29], and we take the opportunity to recall
as so nicely done there the origins of this metric. Petersson introduced an inner product on
the spaces of modular forms of arbitrary weight in the context of number theory. Observing
that modular forms of weight two are precisely holomorphic quadratic differentials, André
Weil remarked in a letter to Lars Ahlfors that Petersson’s inner product should give rise to
a Riemannian metric on Teichmüller space. This is indeed the case, and Ahlfors went on to
prove [1] that the holomorphic sectional curvature and the Ricci curvature of T with respect
to this metric, known as the Weil–Petersson metric, are both negative. However, this metric
is not complete, which was demonstrated by Wolpert [33].

At each point t ∈ T , we may identify the holomorphic tangent vectors at t with harmonic
Beltrami differentials, μ. The Weil–Petersson metric is defined by

〈μ,μ〉 := 〈μ,μ〉WP :=
∫

X
|μ|2 :=

∫

X
|μ(z)|2ρ(z)dA(z).

This defines a Hermitian metric on T , which taking the real part defines a Riemannian metric
on T , but we shall only be interested in the Hermitian Weil–Petersson metric on T .

2.3 The curvature of vector bundles on Teichmüller space

For each point t ∈ T = Tg , the Teichmüller space of marked surfaces of genus g, we denote
the corresponding Riemann surface as Xt . When it is clear from context, we may simply
write X . The holomorphic tangent vectors at each t ∈ T , μ ∈ T (1,0)

t (T ), are identified
with harmonic Beltrami differentials μ ∈ H (0,1)(Xt ,K−1). We may also identify K−1 with
K, with the observation that (∂z)

∗(∂z) = 1 = dz ⊗ ∂z . Thus we write in terms of a local
coordinate, z,

T (1,0)
t (T ) � μ = μ(z)dz̄∂z .

The coholomogy H (0,1)(Xt ,K−1) is identified further with H0(Xt ,K2) as in (2.3). In this
way, we have an anti-complex linear identification between T (1,0)

t (T ) with the holomorphic
quadratic differential H0(Xt ,K2), namely the dual of T (1,0)

t (T ) with H0(Xt ,K2).
Let m ≥ 1. The map H0(Xt ,Km

t ) 
→ t ∈ T can be used to define a holomorphic
Hermitian vector bundle over the Teichmüller space T . More precisely, p : X → T is a
smooth proper holomorphic fibration of complex manifolds of (complex) dimensions 3g−2
and 3g − 3, respectively, such that for each point t ∈ T , the fiber over t is the surface, Xt . In
the language of [7], Y = T , and the relative (complex) dimension, n = 1. We then consider
the holomorphic line bundle L → X such that L|Xt = Km−1

Xt
:= Kt . It is well known that

L → X is equipped with a smooth metric of positive curvature; the positivity follows from
[35, Lemma 5.8]. Moreover, Wolpert also showed in that work that X is equipped with a
Kähler metric.

The direct image sheaf of the relative canonical bundle twisted with L,

p∗(L + KX /T )

is then associated to the vector bundle, E , over T , with fibers

Et = H0(Xt ,KXt + L|Xt ) = H0(Xt ,Km
Xt

).
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Thus, an element in Et is a holomorphic (1, 0) form, u, on Xt with values in L|Xt . The
Kodaira–Spencer map at a point t ∈ T is a map from the holomorphic tangent space to the
first Dolbeault cohomology group, H0,1(Xt , T 1,0(Xt )) of Xt with values in the holomorphic
tangent space of Xt . The image of this map is known as the Kodaira–Spencer class, Kt . This
class has a natural action on u ∈ Et , which is denoted by Kt ·u. If kt is a vector-valued (0, 1)
form in Kt , then

Kt · u := [kt · u] ∈ H (0,1)(Xt ,Km−1
Xt

). (2.4)

In this setting, we note that the harmonic Beltrami differential, μ, is in the Kodaira–Spencer
class, Kt , so we may take kt = μ above. Then, the action μ · u is well-defined defined via
kt · u.

We recall the curvature formula of Berndtsson [6,7] for general relative direct image
bundle specified to our case above. Interestingly, it is precisely the curvature of this bundle
which shall appear in our second variational formula for the logarithm of the Selberg zeta
function at integer points. Fix X = Xt and denote

f (μ) = (1 + �0)
−1|μ|2 (2.5)

where �0 = 2∂̄∗∂̄ is the Laplacian on functions. Although μ(z) is not a well-defined point-
wise function, |μ|2 = |μ(z)|2|dz̄|2|∂z |2 is indeed well-defined pointwise. Similarly for an
element u ∈ Et , |u|2 is also a well-defined pointwise function.

Proposition 1 The curvature R(m)(μ, μ) of the bundle H0(Xt ,Km
t ) → t ∈ T is given by

〈R(m)(μ, μ)u, u〉 = ‖[μ · u]‖2, for m = 1. (2.6)

Above, [μ · u] is defined in (2.4), and the norm is with respect to the natural Kähler metric
on the bundle E induced by the Kähler metric on X . The norm is taken with respect to the
unique harmonic representative in the class [μ · u]. For m ≥ 2, the curvature

〈R(m)(μ, μ)u, u〉 = (m − 1)
∫

X
f (μ)|u|2 + m − 1

2

〈(
�′′ + m − 1

2

)−1

(μ · u), (μ · u)

〉
.

(2.7)

Above,�′′ = ∂̄ ∂̄∗ = (∇′)∗∇′ is the ∂̄-Laplacian acting on (m−1, 1)-formsμ ·u in Lemma 1.
Letting {u j }dmj=1 be an orthonormal basis of H0(Km), the curvature,

Chern(m)(μ, μ) = Tr R(m)(μ, μ)

is given by

Chern(m)(μ, μ) =
dm∑

j=1

||[μ · u j ]||2, for m = 1,

where the norm is the same as in (2.6). For m ≥ 2, the curvature

Chern(m)(μ, μ) = I (m) + I I (m)

with

I (m) = (m − 1)
dm∑

j=1

∫

X
f (μ)|u j |2
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and

I I (m) = m − 1

2

dm∑

j=1

〈(
�′′ + m − 1

2

)−1

(μ · u j ), μ · u j

〉

for m ≥ 2.

Proof Form = 2, this curvature formula is due toWolpert; see [35, Theorem 4.2]. The results
are proved in [6,7] for the general setup, and we specify them to our case. We also show
how the result in [27] for our case is a consequence of the general results. The fibration is
now the Teichmüller curve, denoted X above; X is the natural fiber space over Teichmüller
space, T = Tg . The fiber, Xt , for t ∈ T is the Riemann surface X = Xt . The line bundle
L = Km−1 whose restriction on each surface X isKm−1

X . The metric, indicated by e−φ in [7]
on K is in our case ρ−1 = y2 on each fiber X . More precisely, on each fiber, X the metric
is ρ(z)|dz|2, with ρ(z) = y−2, defined via the identification of X = �\H. The harmonic
Beltrami differentialμ here is a representative of the element kt in the Kodaira–Spencer class
as described above. The first formula (2.6) for m = 1 is now an immediate consequence of
[7, Theorem 1.1].

To state the curvature formula in [7, Theorem 1.2] for m ≥ 2 we recall that the metric on
Km−1 is e−ψ = y2m−2, with ψ = (m − 1)φ. The complex gradient Vψ , of ψ with respect
to the fixed potential φ (see [7, p. 1213]) can be chosen as Vψ = Vφ . The corresponding

Kodaira–Spencer class k(m−1)φ
t is represented by ∂̄Vφ restricted to the fiber space and is thus

also kt , so that

k(m−1)φ
t = kt .

We put η = −kt ·u = −μ ·u, a (m−1, 1)-form. The curvature formula in [7, p. 1214–1215]
reads as follows

〈R(m)(μ, μ)u, u〉 =
∫

X
c((m − 1)φ)|u|2e−φ + ‖η‖2 − ‖ξ‖2.

Here, ξ is the L2-minimal solution of the ∂̄ equation,

∂̄ξ = −∇′η.

The function c((m−1)φ) is linear inm−1 by its definition [7, (1.2)], and sowehave c((m−
1)φ) = (m − 1)c(φ). Moreover, as explained in [7, p. 1217], it follows from Schumacher’s
formula [26, Proposition 3] that

c(φ) = (1 + �0)
−1|μ|2 = f (μ).

The equation for ξ is now solved by

ξ = −(∂̄∗∂̄)−1∂̄∗∇′η = −∂̄∗(∂̄ ∂̄∗)−1∇′η.

Thus
‖ξ‖2 = −〈∂̄∗(∂̄ ∂̄∗)−1∇′η, ξ 〉 = 〈(∂̄ ∂̄∗)−1∇′η,∇′η〉

Now by Lemma 1 we have ∂̄ ∂̄∗ = ∇′(∇′)∗ + m−1
2 on the (m, 1) form ∇′η and

(∂̄ ∂̄∗)−1∇′ =
(

∇′(∇′)∗ + m − 1

2

)−1

∇′ = ∇′
(

(∇′)∗∇′ + m − 1

2

)−1
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on the (m − 1, 1) form η. Hence,

‖ξ‖2 =
〈
∇′

(
(∇′)∗∇′ + m − 1

2

)−1

η,∇′η
〉

=
〈(

(∇′)∗∇′ + m − 1

2

)−1

η, (∇′)∗∇′η
〉

and finally

‖η‖2 − ‖ξ‖2 = m − 1

2

〈(
(∇′)∗∇′ + m − 1

2

)−1

η, η

〉
= m − 1

2

〈(
�′′ + m − 1

2

)−1

η, η

〉
,

using again Lemma 1. This completes the proof. ��

Remark 1 Since the sum
∑

j |u|2j in I (m) is the Bergman kernel, its expansion [20] for large

m ∈ N could be used to compute the expansion of Chern(m)(μ, μ). Here we instead com-
pute the explicit formula for the second variation of the Selberg zeta function because it
contains much detailed geometric data. In this way we obtain the asymptotic expansion
of Chern(m)(μ, μ) in m as m → ∞ as a corollary. We note that in [27] the second term
m−1
2 〈(�′′ + m−1

2 )−1η, η〉 above appears as (m − 1)〈(
 + m − 1)−1η, η〉 where 
 is the
∂̄-Laplacian, �′′. The discrepancy with our formula is due to our definition of the norms on
the L2-spaces of (m, 1) forms, so with this consideration, our formulas agree.

2.4 Zeta-regularized determinant, analytic torsion, Ruelle and higher zeta functions

Let det(
0 + s(s − 1)) be the zeta-regularized determinant of the Laplacian on scalars. This
is defined through the spectral zeta function. For �(s) > 1 and �(z) > 1, this spectral zeta
function is defined by

ζ(z) =
∑

k∈N
(λk + s(s − 1))−z,

where {λk}k∈N are the eigenvalues of 
0. In the special case s = 1, the sum above is only
taken over the nonzero eigenvalues of 
0. It is well known that the spectral zeta function
admits a meromorphic extension to z ∈ C which is regular at z = 0. The determinant is then
defined to be exp(−ζ ′(0)).

This determinant is closely related to the Selberg zeta function (1.1). By [24, Theorem 1]
the determinant, det(
0 + s(s − 1)), and the Selberg zeta function, Z(s), are related by

det(
0 + s(s − 1)) = Z(s)

(
eE−s(s−1) �2(s)2

�(s)
(2π)s

)2g−2

, �(s) > 1. (2.8)

Above, g is the genus, �2(s) is the Barnes double gamma function, defined by the canonical
product

1

�2(s + 1)
= (2π)s/2e−s/2− γ+1

2 s2
∞∏

k=1

(
1 + s

k

)k
e−s+s2/2k, γ is Euler’s constant,

and

E = −1

4
− 1

2
log(2π) + 2

(
1

12
− log(A)

)
.
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Above, A is the Glaisher–Kinkelin constant.1 In the special case s = 1, we have

det(
0) = Z ′(1)e(2g−2)(−1/(12)−2 log(A)+(log(2π))/2). (2.9)

2.4.1 Holomorphic analytic torsion

Holomorphic analytic torsion, or ∂̄-torsion, as Ray & Singer originally introduced in their
pioneering work [23], is a complex analogue of analytic torsion. To define it, let D p,q be the
set of C∞ complex (p, q)-forms on X . Then the exterior differential d splits as

d = d′ + d′′,

where

d′ : D p,q 
→ D p+1,q ,

d′′ : D p,q 
→ D p,q+1.

Let Dp,q be the corresponding Laplacian,

Dp,q = ∗d′ ∗ d′′ + d′′ ∗ d′∗ : D p,q 
→ D p,q .

We note that defined in this way, as in [23], the eigenvalues of this operator are non-positive.
Thus, they defined the associated spectral zeta function,

ζDp,q (s) =
∑

λn �=0

(−λn)
−s

for �(s) large. This zeta function may also be expressed in terms of the Mellin transform of
the heat trace. In this way, using the short time asymptotic expansion of the heat trace, one
can prove that ζDp,q extends to a meromorphic function in C which is regular at s = 0. One
may therefore make the following

Definition 1 For each p = 0, . . . , N , where N is the complex dimension of X , the holomor-
phic analytic torsion, Tp(X), is defined by

log Tp(X) = 1

2

N∑

q=0

(−1)qqζ ′
Dp,q

(0).

In our case, N = 1, and so there are two holomorphic analytic torsions,

T0(X) = e
− 1

2 ζ ′
D0,1

(0)
and T1(X) = e

− 1
2 ζ ′

D1,1
(0)

. (2.10)

It is well known that the nonzero eigenvalues of D0,1 coincide with those of D0,0 = 
0 as
do those of D1,1 [8]. We therefore have

T0(X) = √
det(
0) = T1(X). (2.11)

1 The term with 1
12 − log(A) comes from the derivative of the Riemann zeta function at −1.
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2.4.2 Ruelle and higher zeta functions

We shall also consider the Ruelle zeta function. For �(s) > 1, the Ruelle zeta function is

R(s) :=
∏

γ∈Prim(0)

(
1 − e−sl(γ )

)
. (2.12)

Above, Prim(0) denotes the set of conjugacy classes of primitive hyperbolic elements in �.
The last type of zeta functionswhich are relevant to our presentwork are the higher Selberg

zeta functions, the first of which was introduced and studied by Kurokawa and Wakayama
[19]:

z(s) :=
∏

γ∈Prim(0)

zγ (s), zγ (s) :=
∞∏

k=1

(
1 − e−l(γ )·(s+k)

)−k
. (2.13)

More generally, this notion of higher Selberg zeta function was generalized in [16] who
defined a whole procession of higher Selberg zeta functions. For t ∈ C and �(s) > 1, let

z(s, t) :=
∏

γ∈Prim(0)

zγ (s, t), zγ (s, t) :=
∞∏

k=0

(
1 − e−l(γ )·(s+k)

)(t+k−1
k )

. (2.14)

3 First variation

In this section we compute the first variation of log Z(s). We start by computing the variation
of the length of an individual closed geodesic, ∂μl(γ ).

3.1 Variation of the length of a closed geodesic

We shall demonstrate a variational formula for the length of a closed geodesic in Proposition 2
using [5, Theorem 1.1]. There, Axelsson & Schumacher worked in the more general context
of families of Kähler–Einstein manifolds. Here, we note that by [2, Theorem 5], for a neigh-
borhood (with respect to theWeil–Petersson metric) in Teichmüller space, the corresponding
family of Riemann surfaces, each equipped with the unique hyperbolic Riemannian metric
of constant curvature −1, form a holomorphic family. Thus, we are indeed in the setting of
[5]. Related works include [4,34], and [15].

Here we shall prove our variational formula, Proposition 4 using Gardiner’s formula, [18,
Theorem 8.3]. This formula states that the variation ∂μl(γ ) is given by2

∂μl(γ ) =
(

μ,
1

π
�γ

)
(3.1)

where �γ is [18, p. 224]

�γ =
∑

κ∈〈γ 〉\�
(ωγ ◦ κ) · (κ ′)2.

Above, ωγ (z) =
(

a−b
(z−a)(z−b)

)2
, where a, b ∈ ∂H are the fixed points of γ , 〈γ 〉 is the cyclic

subgroup of � generated by γ , and κ ′ denotes the derivative of κ . We also recall (c.f. [15])

2 We note that in [18, Theorem 8.3], they considered the real variation, so they have �
(
μ, 2

π �γ

)
. We are

taking the complex variation, and so we have the formula above for the variation.
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that for any γ ∈ �, the vector field

qγ (z) = (cz2 + (d − a)z − b)
∂

∂z
(3.2)

satisfies

(σ−1)∗qγ (z) = qσ−1γ σ (z), ∀ σ ∈ PSL(2,R).

In particular, the integral
∫ γ z0

z0
ϕ(z)(dz)2qγ (z) =

∫ γ z0

z0
ϕ(z)(cz2 + (d − a)z − b)dz. (3.3)

is independent of both the path and the starting point z0 for any weight 4 holomorphic
modular form, ϕ for �. We may therefore use this integral to define the period integral as in
[15, Definition 1.1.1].

Definition 2 For any weight 4 holomorphic modular form ϕ for � and a hyperbolic element
γ ∈ �, we define the period integral α(γ, ϕ) by (3.3).

Proposition 2 The variation of the length l(γ ) is given by

∂

∂μ
l(γ ) = 1

2

∫

γ

μ(z(t))ż(t)
2
ρ(z(t))dt = − α(γ, φ)

4 sinh(l(γ )/2)
.

Above, z = z(t) is a parametrization of the geodesic representing γ with ‖ż(t)‖ = 1, and
the integration is over the footprint of γ in X. We note that the variation is independent of
the choice of parametrization, and φ is defined via μ as in (2.3).

Proof We can assume γ is the diagonal matrix γ = diag(e
l
2 , e− l

2 )with l = l(γ ). We choose

F0 = {z ∈ H; 1 < |z| < el}
as a fundamental domain of the cyclic subgroup 〈γ 〉. Gardiner’s formula (3.1) can now be
written as (see [18, Theorem 8.3, pp. 226–227])

∂μl(γ ) = 1

π

∫

F0

μ(z)

z2
dxdy = 1

π

∫

F0

φ̄(z)y2

z2
dxdy.

Writing in polar coordinates z = eteiθ , 0 < θ < π , 0 ≤ t ≤ l, dxdy = e2tdtdθ , we have

∂μl(γ ) = 1

π

∫

F0

φ(z)y2

(z̄)2
dxdy = 1

π

∫ π

0

∫ l

0
φ(eteiθ )

(et�eiθ )2
(ete−iθ )2

e2tdtdθ

= − 1

π

1

4

∫ π

0

∫ l

0
φ(eteiθ )(1 − e2iθ )2e2tdtdθ.

(3.4)

Consider the segment, Rθ , defined by z(t) = eteiθ , 0 ≤ t ≤ l. Then the vector field
q(z) = qγ (z) from (3.2) is

q(z) = −2

(
sinh

l(γ )

2

)
d

dt

and the quadratic form

φ(z)(dz)2 = φ(eteiθ )e2te2iθ (dt)2.
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Hence,

α(γ, φ) =
∫

Rθ

φ(z)(dz)2q(z) = −2

(
sinh

l(γ )

2

) ∫ l

0
φ(eteiθ )e2te2iθdt . (3.5)

With the small observation that (ż(t))2 = (z(t))2, we also have

− α(γ, φ)

4
(
sinh l(γ )

2

) = 1

2

∫

γ

φ(z(t))(ż(t))2dt = 1

2

∫

γ

μ(z(t))(ż(t))2ρ(z(t))dt . (3.6)

Note that the integral in (3.5) does not depend on the path nor the starting point. Consequently,
for any θ ∈ (0, π),

∫ l

0
φ(eteiθ )e2te2iθdt = −

∫ l

0
φ(et i)e2tdt =: C,

and

α(γ, φ) = −2

(
sinh

l(γ )

2

)
C . (3.7)

Substituting C into (3.4), we obtain

∂μl(γ ) = − 1

π

1

4
C

∫ π

0
(1 − e2iθ )2e−2iθdθ = − 1

π

1

4
C(−2π) = 1

2
C .

By (3.4), (3.6), and (3.7)

∂μl(γ ) = 1

2
C = − α(γ, φ)

4 sinh(l(γ )/2)
= 1

2

∫

γ

φ(z(t)) ż(t)
2
dt = 1

2

∫

γ

μ(z(t))ż(t)
2
ρ(z(t))dt .

��

Remark 2 Our approach to compute the variation of the lengthmay be compared toWolpert’s
in [35].

We also recall the second variation formula of Axelsson–Schumacher [5, Theorem 6.2].

Proposition 3 The variation ∂̄μ∂μl of l = l(γ ) is given by

∂̄μ∂μl = 1

2

∫

γ

(
(�0 + 1)−1(|μ|2) +

(
− D2

dt2
+ 2

)−1

(μ)μ̄

)
+ 1

l
|∂μl|2.

Here D
dt is differentiation along the geodesic γ .

An immediate consequence of [5, Corollary 1.7] is

Corollary 2 There exists a constant C > 0 which is independent of γ such that

|∂μl(γ )| ≤ C‖μ‖∞l(γ ), and |∂̄μ∂μl(γ )| ≤ C‖μ‖2∞l(γ ).
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3.2 Convergence

In order to rigorously justify our variational formulas, we must demonstrate the convergence
of a certain sum.

Lemma 2 For n ∈ N, the sum

∑

γ∈Prim(0)

∂μ(l(γ ))
∑

k≥1

kn · l(γ )

el(γ )·(s+k) − 1

converges absolutely and uniformly on compact subsets of �(s) > 1.

Proof Let ε > 0 satisfy
kn < eεk, k ∈ N\{0}. (3.8)

First, we consider only geodesics whose lengths, L , satisfy L > max(1, ε). This implies
el(γ )·(�(s)+k)−1 > 1 as �(s) + k ≥ 1, and hence

el(γ )·(�(s)+k)−1(e − 1) > 1

and
el(γ )·(�(s)+k) − 1 > el(γ )·(�(s)+k)−1. (3.9)

It follows from (3.8) and (3.9) that

kn

|el(γ )·(s+k) − 1| ≤ kn

el(γ )·(�(s)+k) − 1
≤ e

el(γ )·(k+�(s))−ε·k . (3.10)

Note that

∑

k≥1

1

el(γ )·(k+�(s))−ε·k = 1

el(γ )·�(s)

∑

k≥1

1

ek·(l(γ )−ε)
≤ 1

el(γ )·�(s)
· 1

el(γ )−ε − 1
. (3.11)

The geometric progression converges because l(γ ) − ε > 0, hence el(γ )−ε > 1. Combining
(3.10) and (3.11) with |∂μl(γ )| ≤ 1

2‖μ‖ · l(γ ), we obtain

∑

γ∈Prim(0),l(γ )≥L

|∂μ(l(γ ))|
∑

k≥0

∣∣∣∣
kn · l(γ )

el(γ )·(s+k) − 1

∣∣∣∣ ≤ e‖μ‖ ·
∑

γ∈Prim(0),l(γ )≥L

1

el(γ )−ε − 1

l(γ )2

el(γ )·�(s)

≤ 1

el0−ε − 1
e‖μ‖∞ ·

∑

γ∈Prim(0),l(γ )≥L

l(γ )2

el(γ )·�(s)
,

where l0 denotes the length of the shortest closed geodesic. Recall that [11, p. 33],
∑

γ∈Prim(0)

e−l(γ )s1 (3.12)

converges absolutely for �(s1) > δ = 1. Choose ε1(L) > 0 such that l(γ )2 ≤ el(γ )·ε1(L) for
l(γ ) ≥ L .

∑

γ∈Prim(0),l(γ )≥1

l(γ )2

el(γ )·�(s)
≤

∑

γ∈Prim(0)

1

el(γ )·(�(s)−ε1(L))
(3.13)
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converges for �(s) > δ + ε1(L). We are left with l(γ ) < L . As there are only finite many
such geodesics, it is obvious that the series

∑

γ∈Prim(0), l(γ )<L

∑

k≥0

kn · l(γ )

el(γ )·(s+k) − 1
(3.14)

converges absolutely for any fixed s ∈ C.
The last step is to consequently take L larger and larger, allowing us to make ε1(L)

arbitrary small. This shows that the series converges absolutely and uniformly on compact
subsets of �(s) > 1. ��

3.3 First variational formula of Z(s) for�s > 1

We introduce the local zeta function as in [15],

zγ (s) :=
∏

k≥1

(
1 − e−l(γ )(s+k)

)−k
. (3.15)

We also recall the local Selberg zeta function for convenience here,

Zγ (s) =
∏

k∈N

(
1 − el(γ )(s+k)

)
. (3.16)

We define further the higher local zeta function,

z̃γ (s) :=
∏

k≥1

(
1 − e−l(γ )(s+k)

)−k2

. (3.17)

We now have requisite tools to prove the first variational formula.

Proposition 4 Suppose �(s) > 1.

∂μ log Z(s) =
∑

γ∈Prim(0)

∂μ log l(γ )

(
s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1

)
.

Above, ∂ log l(γ )
∂μ

= l(γ )−1 ∂l(γ )
∂μ

and ∂l(γ )
∂μ

is given by Propositions 2 and 3.

Proof We compute by definition of Z(s) and Lemma 2 which allows us to differentiate
termwise,

∂μ log Zγ (s) =
∑

γ∈Prim(0)

∑

k∈N
∂μ

(
log(1 − e−l(γ )(s+k))

)

=
∑

γ∈Prim(0)

∑

k∈N

∂μ(l(γ ))(s + k)e−l(γ )(s+k)

1 − e−l(γ )(s+k)

=
∑

γ∈Prim(0)

∑

k∈N
∂μl(γ )

s + k

el(γ )(s+k) − 1
.

By Lemma 2, this converges absolutely and uniformly on compact subsets of �(s) > 1.
Recalling the definition of the local Selberg zeta function (3.16), and the local zeta function
(3.15) we compute in a similar fashion that

d

ds
log Zγ (s) =

∑

k∈N

l(γ )

el(γ )(s+k) − 1
and

d

ds
log zγ (s)−1 =

∑

k∈N

k

el(γ )(s+k) − 1
.
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Therefore, we have

s
d

ds
log Zγ (s) =

∑

k∈N

sl(γ )

el(γ )(s+k) − 1
and

d

ds
log zγ (s)−1 =

∑

k∈N

k

el(γ )(s+k) − 1
. (3.18)

Hence,

∂μ log Zγ (s) =
∑

γ∈Prim(0)

∂μl(γ )

l(γ )

(
s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1

)

=
∑

γ∈Prim(0)

∂μ(log l(γ ))

(
s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1

)
.

��

4 Second variation

We prove here the second variational formula for the log of the Selberg zeta function as well
as first and second variational formulas for: the Ruelle zeta function, the zeta-regularized
determinant of the Laplacian, the square of the Hilbert–Schmidt norm of the resolvent, and
the higher zeta functions,

4.1 Second variation of Selberg zeta function

In preparation for the proof, we note first the following differentiation formulas

d2

ds2
log Zγ (s) = −�(γ )2

∞∑

k=0

e�(γ )(s+k)

(e�(γ )(s+k) − 1)2
,

d2

ds2
log zγ (s)−1 = −�(γ )2

∞∑

k=0

ke�(γ )(s+k)

(e�(γ )(s+k) − 1)2
,

d2

ds2
log z̃γ (s)−1 = −�(γ )2

∞∑

k=0

k2e�(γ )(s+k)

(e�(γ )(s+k) − 1)2
.

Hence, we see that

s2
d2

ds2
log Zγ (s) + 2s

d2

ds2
log zγ (s) + d2

ds2
log z̃γ (s)

= −�(γ )2
∑

k∈N

(s + k)2e�(γ )(s+k)

(e�(γ )(s+k) − 1)2
. (4.1)

Proof of Theorem 1 We perform the differentiation ∂̄μ on the result obtained in Proposition 4,

∂̄μ∂μ log Z(s) = ∂̄μ

⎛

⎝
∑

γ∈Prim(0)

∂μ log �(γ )

(
s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1

)⎞

⎠ .
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By Leibniz’s rule, this is

∑

γ∈Prim(0)

∂̄μ∂μ log �(γ )

(
s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1

)

+
∑

γ∈Prim(0)

∂μ log �(γ )∂̄μ

(
s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1

)

=
∑

γ∈Prim(0)

∂̄μ∂μ log �(γ )Aγ (s)

+
∑

γ∈Prim(0)

∂μ log �(γ )∂̄μ

(
s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1

)
.

Thus, it only remains to consider the second term. For this, we compute

∂̄μ

(
s
d

ds
log Zγ (s) + d

ds
log zγ (s)−1

)
= ∂̄μAγ (s)

= ∂̄μ

∑

k∈N

(s + k)�(γ )

e�(γ )(s+k) − 1
=

∑

k∈N

(
∂̄μ�(γ )(s + k)

e�(γ )(s+k) − 1
− �(γ )(s + k)2∂̄μ�(γ )e�(γ )(s+k)

(e�(γ )(s+k) − 1)2

)
.

Thus, we have for this second term,

∂̄μAγ (s) = ∂̄μ�(γ )
∑

k∈N

s + k

e�(γ )(s+k) − 1
− �(γ )(s + k)2e�(γ )(s+k)

(e�(γ )(s+k) − 1)2
.

Hence, the expression becomes

∂̄μ∂μ log Z(s) =
∑

γ∈Prim(0)

∂̄μ∂μ log �(γ )Aγ (s) +
∑

γ∈Prim(0)

∂μ log �(γ )∂̄μ�(γ )
∑

k∈N

s + k

e�(γ )(s+k) − 1

−�(γ )(s + k)2e�(γ )(s+k)

(e�(γ )(s+k) − 1)2
.

The second term above is

∑

γ∈Prim(0)

∂μ log �(γ )∂̄μ�(γ )
∑

k∈N

(
s + k

e�(γ )(s+k) − 1
− �(γ )(s + k)2e�(γ )(s+k)

(e�(γ )(s+k) − 1)2

)

=
∑

γ∈Prim(0)

|∂μ log �(γ )|2
∑

k∈N

(
(s + k)�(γ )

e�(γ )(s+k) − 1
− �(γ )2(s + k)2e�(γ )(s+k)

(e�(γ )(s+k) − 1)2

)

=
∑

γ∈Prim(0)

|∂μ log �(γ )|2Aγ (s) −
∑

γ∈Prim(0)

|∂μ log �(γ )|2�(γ )2
∑

k∈N

(
(s + k)2e�(γ )(s+k)

(e�(γ )(s+k) − 1)2

)
,
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where we have used the simple fact ∂μ log �(γ )∂̄μ�(γ ) = |∂μ log �(γ )|2�(γ ). By our pre-
liminary calculation (4.1),

−
∑

γ∈Prim(0)

|∂μ log �(γ )|2�(γ )2
∑

k∈N

(s + k)2e�(γ )(s+k)

(e�(γ )(s+k) − 1)2

=
∑

γ∈Prim(0)

|∂μ log �(γ )|2
(
s2

d2

ds2
log Zγ (s) + 2ks

d2

ds2
log zγ (s) + d2

ds2
log z̃γ (s)

)

=
∑

γ∈Prim(0)

|∂μ log �(γ )|2Bγ (s).

Thus, the total expression is

∂̄μ∂μ log Z(s) =
∑

γ∈Prim(0)

∂̄μ∂μ log �(γ )Aγ (s) + |∂μ log �(γ )|2(Aγ (s) + Bγ (s)).

Finally, we note that convergence follows from the estimates in Corollary 2 and Lemma 2. ��

4.2 Applications to further variational formulas

The following formula for Tr(
+s(s−1))−2 may be proven as a consequence of the Selberg
trace formula for the divided resolvents [17], [24, p. 118].We have a somewhat different proof
which may be of independent interest; this proof comprises “Appendix” section.

4.2.1 Variation of the resolvent

Lemma 3 Let �s > 1. The squared resolvent (
0 + s(s − 1))−2 is of trace class, and the
Hilbert–Schmidt norm of the resolvent is given by its trace,

||(
0 + s(s − 1))−1||2HS = Tr(
0 + s(s − 1))−2 =
∑

k∈N

1

(λk + s(s − 1))2

= (g − 1)π2

α
(1 + tan2(πα)) + (g − 1)

4αs2
− (g − 1)s

α

∑

n≥1

n

(n2 − s2)2
− L2 log Z(s),

where above α = s − 1/2, and the operator L := 1
2s−1

d
ds .

Lemmas 2 and 3 immediately imply

Corollary 3 For�(s) > 1, the first and second variations of the square of theHilbert–Schmidt
norm of the resolvent are, respectively

∂μ||(
0 + s(s − 1))−1||2HS = −L2∂μ log Z(s),

∂̄μ∂μ||(
0 + s(s − 1))−1||2HS = −L2∂̄μ∂μ log Z(s).
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4.2.2 Variation of the Ruelle zeta function

Proposition 5 For �(s) > 1, we have the first and second variations of the Ruelle zeta
function

∂μ log R(s) =
∑

γ∈Prim(0)

∂μ(l(γ ))se−sl(γ )
(
1 − e−sl(γ )

)−1

=
∑

γ∈Prim(0)

∂μ(l(γ ))s
(
esl(γ ) − 1

)−1

∂μ∂̄μ log R(s) =
∑

γ∈Prim(0)

∂̄μ∂μ(l(γ ))s
(
1 − e−sl(γ )

)−1

−
∑

γ∈Prim(0)

s2|∂μ(l(γ ))|2esl(γ )
(
esl(γ ) − 1

)−2
.

4.2.3 Variation of the determinant and torsion

Proposition 6 The first and second variations of the log of the determinant, log det(
0 +
s(s − 1)), are equal to the corresponding variations of log Z(s), that is, for �(s) > 1,

∂μ log det(
0 + s(s − 1)) = ∂μ log Z(s),

∂̄μ∂μ log det(
0 + s(s − 1)) = ∂̄μ∂μ log Z(s).

For the case s = 1, we have

∂μ log det(
0) = ∂μ log Z ′(1),
∂̄μ∂μ log det(
0) = ∂̄μ∂μ log Z ′(1).

Proof The proof follows immediately from (2.8). ��
As a corollary, we obtain the variation of the holomorphic analytic torsion.

Corollary 4 The first and second variations of the logarithm of the holomorphic analytic
torsion, T0(X), defined in (2.10), are, respectively,

∂μ log T0(X) = 1

2
∂μ log Z ′(1),

∂̄μ∂μ log det(
0) = 1

2
∂̄μ∂μ log Z ′(1).

4.2.4 Variation of the higher zeta functions

We conclude this section by computing the variation of the higher zeta functions.

Lemma 4 For a fixed point s ∈ C with �(s) > 1, we have

∂

∂μ
log z(s) =

∑

γ∈Prim(0)

∂μ log(l(γ )) ·
(
s
d

ds
log zγ (s) − d

ds
log z̃γ (s)−1

)
,

where

z̃γ (s) =
∞∏

m=1

(1 − e−l(γ )·(s+m))−m2
.
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The sum in the right-hand side of the equation above is absolutely convergent.

Proof First compute

∂

∂μ
(log zγ (s)) =

∑

k≥0

∂μ(−k log(1 − e−l(γ )·(s+k)))

=
∑

k≥0

−∂μ(l(γ )) · k(s + k)e−l(γ )·(s+k)

1 − e−l(γ )·(s+k)
=

∑

k≥0

−∂μ(l(γ )) · k(s + k)

el(γ )·(s+k) − 1

=
∑

k≥0

−∂μ (log l(γ )) · l(γ ) · k(s + k)

el(γ )·(s+k) − 1
.

Second,

d

ds

(
log zγ (s)

) = d

ds

⎛

⎝
∑

k≥0

−k log
(
1 − e−l(γ )·(s+k)

)
⎞

⎠ =
∑

k≥0

−k · l(γ )

el(γ )·(s+k) − 1
.

Third,

d

ds
(log z̃γ (s)−1) = d

ds

⎛

⎝
∑

k≥0

k2 log
(
1 − e−l(γ )·(s+k)

)
⎞

⎠ =
∑

k≥0

k2 · l(γ )

el(γ )·(s+k) − 1
.

To finish the lemma, we need to prove that we can change the order of differentiation with
respect to μ (or s) and the summation over the set of primitive closed geodesics, that is

∑

γ∈Prim(0)

∂μ(l(γ ))
∑

k≥1

k2 · l(γ )

el(γ )·(s+k) − 1
< ∞,

∑

γ∈Prim(0)

∂μ(l(γ ))
∑

k≥1

k · l(γ )

el(γ )·(s+k) − 1
< ∞.

(4.2)
��

Lemma 5 For any fixed point s ∈ C with �(s) > 1 and t > 1, we have

∂

∂μ
log z(s, t) =

∑

γ∈Prim(0)

⎛

⎝s
d

ds
log zγ (s, t) +

t−1∑

j=1

d

ds
log zγ (s, t − j)

⎞

⎠ ,

The sum in the right-hand side of the equation above is absolutely convergent in �(s) > 1.

Proof The proof follows the termwise differentiation of ∂
∂μ

log z(s, t). First we compute

∂

∂μ
(log zγ (s)) =

∑

k≥0

∂μ

((
t + k − 1

k

)
log(1 − e−l(γ )·(s+k))

)

=
∑

k≥0

∂μ(l(γ )) ·
(t+k−1

k

)
(s + k)e−l(γ )·(s+k)

1 − e−l(γ )·(s+k)

=
∑

k≥0

∂μ (log l(γ )) · l(γ ) · (t+k−1
k

)
(s + k)

el(γ )·(s+k) − 1
.
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The differentiation is justified because
(t+k−1

k

)
(s + k) is a polynomial in k and hence the

right-hand side of the previous equation converges for �(s) > 1 by Lemma 2. For j ∈ Z,
0 ≤ j < t ,

d

ds
(log zγ (s, t − j)) = d

ds

⎛

⎝
∑

k≥0

(
t + k − j − 1

k

)
log

(
1 − e−l(γ )·(s+k)

)
⎞

⎠

=
∑

k≥0

(t+k− j−1
k

) · l(γ )

el(γ )·(s+k) − 1
,

and especially for j = 0,

d

ds
(log zγ (s, t)) =

∑

k≥0

(t+k−1
k

) · l(γ )

el(γ )·(s+k) − 1
.

As before, the differentiation is justified by Lemma 2. Note that
(
t + k − 1

k

)
(s + k) = s

(
t + k − 1

k

)
+

(
t + k − 1

k + 1

)
.

By the Christmas stocking identity,

(
t + k − 1

k + 1

)
=

t−1∑

j=1

(
t + k − j − 1

k

)
,

��
Remark 3 It is straightforward to repeat the calculations for the Selberg zeta function to
compute the second variation of these zeta functions as well; this is left as an exercise for the
reader.

5 Asymptotic behavior as�s → ∞
We begin by estimating the terms Aγ (s) and Bγ (s) when �s → ∞.

Proposition 7 We have for each γ

lim�s→∞
Aγ (s)esl(γ )(1 − e−l(γ ))

sl(γ )
= 1.

Proof We write

Aγ (s) = sl(γ )

esl(γ )

∑

k≥0

1

ekl(γ ) − e−sl(γ )
+ l(γ )

esl(γ )

∑

k≥0

k

ekl(γ ) − e−sl(γ )
.

Hence, we define

Ia(s) :=
∑

k≥0

1

ekl(γ ) − e−sl(γ )
, I Ia(s) =

∑

k≥0

k

ekl(γ ) − e−sl(γ )
.

Since we are interested in the behavior as �s → ∞, we may assume that

�s >
ln(2)

l0
.
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Then we have

0 < |e−sl(γ )| <
1

2
≤ ekl(γ )

2
∀k ≥ 0 �⇒

∣∣∣∣
1

ekl(γ ) − e−sl(γ )

∣∣∣∣ < 2e−kl(γ ),

hence

0 < |Ia(s)| ≤
∑

k≥0

2e−kl(γ ) = 2

1 − e−l(γ )
.

More generally, by the absolute convergence of the series, the function

f (z) =
∑

k≥0

1

ekl(γ ) − z
,

is continuous for |z| < 1. In particular, it is continuous at z = 0. Hence, using

e−sl(γ ) = z,

we have

lim
z→0

f (z) = lim�s→∞ Ia(s) = f (0) = 1

1 − e−l(γ )
.

Next, we estimate the I Ia term,

0 < |I Ia(s)| < 2
∑

k≥0

ke−kl(γ ) = −2
d

dx

∑

k≥0

e−kx

∣∣∣∣∣∣
x=l(γ )

= 2e−l(γ )

(1 − e−l(γ ))2
.

Consequently,

lim�s→∞
Aγ (s)esl(γ )(1 − e−l(γ ))

sl(γ )
= lim�s→∞ Ia(s)(1 − e−l(γ )) + I Ia(s)(1 − e−l(γ ))

s
= 1.

��
In a similar way, we compute the asymptotic behavior of Bγ (s) as �s → ∞.

Proposition 8 We have for each γ

lim�s→∞ − Bγ (s)esl(γ )(1 − e−l(γ ))

l(γ )2s2
= 1.

Proof The proof is quite similar to that of the preceding proposition. We write

Bγ (s) = −l(γ )2

⎡

⎣s2
∑

k≥0

e(s+k)l(γ )

(e(s+k)l(γ ) − 1)2
+ 2s

∑

k≥0

ke(s+k)l(γ )

(e(s+k)l(γ ) − 1)2
+

∑

k≥0

k2e(s+k)l(γ )

(e(s+k)l(γ ) − 1)2

⎤

⎦ .

We therefore define three terms,

Ib(s) :=
∑

k≥0

e(s+k)l(γ )

(e(s+k)l(γ ) − 1)2
, I Ib(s) =

∑

k≥0

ke(s+k)l(γ )

(e(s+k)l(γ ) − 1)2
,

and

I I Ib(s) =
∑

k≥0

k2e(s+k)l(γ )

(e(s+k)l(γ ) − 1)2
.
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We begin by computing that

Ib(s) =
∑

k≥0

1

(e(s+k)l(γ ) − 1)(1 − e−(s+k)l(γ ))

= 1

esl(γ )

∑

k≥0

1

(ekl(γ ) − e−sl(γ ))(1 − e−(s+k)l(γ ))
.

We note that

lim
s→∞ 1 − e−(s+k)l(γ ) = 1 ∀k ≥ 0,

and that

|1 − e−(s+k)l(γ )| ≥ 1

2
, for all k ≥ 0, when �s >

ln(2)

l0
.

The function

f (z) =
∑

k≥0

1

(ekl(γ ) − z)(1 − ze−kl(γ ))

is continuous for all |z| < 1. In particular, this function is continuous at z = 0. We therefore
have with

z = e−sl(γ ),

lim
z→0

f (z) = f (0) =
∑

k≥0

e−kl(γ ) = 1

1 − e−l(γ )
.

Hence, we see that
lim�s→∞ esl(γ ) Ib(s)(1 − e−l(γ )) = 1. (5.1)

We shall estimate the other two terms,

0 < |I Ib(s)| =
∣∣∣∣∣∣

1

esl(γ )

∑

k≥0

k

(ekl(γ ) − e−sl(γ ))(1 − e−(s+k)l(γ ))

∣∣∣∣∣∣

≤
∣∣∣∣

1

esl(γ )

∣∣∣∣
∑

k≥0

∣∣∣∣
2k

(ekl(γ ) − e−sl(γ ))

∣∣∣∣

≤
∣∣∣∣

4

esl(γ )

∣∣∣∣
∑

k≥0

ke−kl(γ ) = 4e−l(γ )

|esl(γ )|(1 − e−l(γ ))2
.

We therefore see that

lim�s→∞
I Ib(s)esl(γ )

s
= 0. (5.2)

Next,

0 < |I I Ib(s)| = 1

|esl(γ )|

∣∣∣∣∣∣

∑

k≥0

k2

(ekl(γ ) − e−sl(γ ))(1 − e−(s+k)l(γ ))

∣∣∣∣∣∣
≤ 4

|esl(γ )|
∑

k≥0

k2e−kl(γ ).

We compute the sum

∑

k≥0

k2e−kx = d2

dx2
∑

k≥0

e−kx = e−x

(1 − e−x )2
+ 2e−2x

(1 − e−x )3
.
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Hence,

0 < |I I Ib(s)| ≤ 4

|esl(γ )|

(
e−l(γ )

(1 − e−l(γ ))2
+ 2e−2l(γ )

(1 − e−l(γ ))3

)
.

In particular,

lim�s→∞
I I Ib(s)esl(γ )

s2
= 0. (5.3)

Recalling that

Bγ (s) = −l(γ )2
(
s2 Ib(s) + 2s I Ib(s) + I I Ib(s)

)
,

by (5.1)–(5.3) we see that

lim�s→∞ − Bγ (s)esl(γ )(1 − e−l(γ ))

l(γ )2s2

= lim�s→∞ Ib(s)e
sl(γ )(1 − e−l(γ )) + 2I Ib(s)esl(γ )(1 − e−l(γ ))

s

+ I I Ib(s)esl(γ )(1 − e−l(γ ))

s2
= 1.

��
We are now poised to complete the proof of Theorem 2.

Proof of Theorem 2 We first assume, recalling (1.6),

|∂μl(γ0)|2 �= 0.

This immediately implies

∂μ log l(γ0) �= 0 �⇒ |∂μ log l(γ0)|2 �= 0.

For all γ with l(γ ) > l0, we note that by Propositions 7 and 8,

lim�s→∞
Aγ (s)

Bγ0(s)
= 0 = lim�s→∞

Bγ (s)

Bγ0(s)
.

Hence, we see that by Theorem 1,

lim�s→∞
∂̄μ∂μ log Z(s)

Bγ0(s)
= 1.

This together with Proposition 8 for the asymptotics of Bγ0(s) as �s → ∞ completes the
proof of the theorem in this case.

Next, we assume that

∂μl0 = 0.

This shows that the coefficient of Bγ0(s) vanishes. By [5, Corollary 1.3]

∂̄μ∂μl(γ ) �= 0, ∀γ ∈ �.

Hence, the term with the slowest exponential decay as �s → ∞ is Aγ0(s). We similarly see
that for all γ with l(γ ) > l0 = l(γ0) that

lim�s→∞
Bγ (s)

Aγ0(s)
= 0 = lim�s→∞

Aγ (s)

Aγ0(s)
.
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We therefore have by Theorem 1,

lim�s→∞
∂̄μ∂μ log Z(s)

Aγ0(s)
= 1.

The proof is then completed by the asymptotics of Aγ0(s) as s → ∞ given in Proposition 7.
The statements for the Ruelle zeta function follow immediately upon noting that log R(s) is
simply given by the k = 0 term in log Z(s).

For the Hilbert–Schmidt norm of the squared resolvent,

∂̄μ∂μ||(
0 + s(s − 1))−1||2HS = −L2∂̄μ∂μ log Z(s).

Recalling the definition of L from Lemma 3, we compute that

L2 = − 2

(2s − 1)3
d

ds
+ 1

(2s − 1)2
d2

ds2
.

In the case |∂μl(γ0)|2 �= 0, the asymptotic behavior of ∂̄μ∂μ||(
0 + s(s − 1))−1||2HS as
�s → ∞ is therefore given by the dominant asymptotic behavior of

|∂μl0|2
1 − e−l0

(
− 2

(2s − 1)3
d

ds
+ 1

(2s − 1)2
d2

ds2

)
s2e−sl0

= |∂μl0|2
(1 − e−l0)(2s − 1)2

[
−2

(
2se−sl0 − s2l0e−sl0

)

2s − 1
+ 2e−sl0 − 2sl0e

−sl0

−2sl0e
−sl0 + s2l20e

−sl0
]

= |∂μl0|2l20e−sl0

4(1 − e−l0)

(
1 + O(s−1)

)
, �s → ∞.

We therefore have in this case

lim�s→∞
∂̄μ∂μ||(
0 + s(s − 1))−1||2HS4(1 − e−l0)

|∂μl0|2l20e−sl0
= 1.

In the case ∂μl0 = 0, the asymptotic behavior of ∂̄μ∂μ||(
0+s(s−1))−1||2HS as�s → ∞
is given by that of

−L2∂̄μ∂μ log l0

(
sl0e−sl0

1 − e−l0

)

= ∂̄μ∂μ log l0
1 − e−l0

(
2

(2s − 1)3

(
e−sl0 − l0se

−sl0
)

− 1

(2s − 1)2

(
−l0e

−sl0 − l0e
−sl0 + l20se

−sl0
))

= − l20e
−sl0 ∂̄μ∂μ log l0
4s(1 − e−l0)

(1 + O(1/s)) �s → ∞.

We therefore have

lim�s→∞ − ∂̄μ∂μ||(
0 + s(s − 1))−1||2HS4s(1 − e−l0)

l20e
−sl0 ∂̄μ∂μ log l0

= 1.

��
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5.1 Curvature asymptotics

We now consider the special case when s = m ∈ N, beginning by recalling

Proposition 9 [39, Theorem 2] The second variation

∂̄μ∂μ log Z ′(1) = −Chern(1)(μ, μ) + 1

12π
‖μ‖2WP. (5.4)

Let m ≥ 2. Then, the second variation

∂̄μ∂μ log Z(m) = −Chern(m)(μ, μ) + 6(m − 1)2 + 6(m − 1) + 1

12π
‖μ‖2WP. (5.5)

The curvature Chern(m)(μ, μ) has been known to admit an expansion of the form c2m2 +
c1m + c0 + · · · for large m.3 In [21] the first two coefficients have been found explicitly for
general fibration of Kähler manifolds. We determine c0 and the remainder in Corollary 2.

Proof of Corollary 2 We use (5.5) to write

∂̄μ∂μ log Z(m) = −Chern(m)(μ, μ) + 6m(m − 1) + 1

12π
‖μ‖2WP.

We have proven that

lim
m→∞ − ∂̄μ∂μ log Z(m)eml0(1 − e−l0)

l20m
2|∂μ log l0|2

= 1.

This shows that

lim
m→∞

(
−Chern(m)(μ, μ) + 6m(m − 1) + 1

12π
‖μ‖2WP

)
eml0

m2 = l20 |∂μ log l0|2
(1 − e−l0)

.

Hence,

−Chern(m)(μ, μ) + 6m(m − 1) + 1

12π
‖μ‖2WP = O(m2e−ml0), m → ∞,

which shows that

Chern(m)(μ, μ) = 6m(m − 1) + 1

12π
‖μ‖2WP + O(m2e−ml0), m → ∞.

��
Remark 4 In a recent preprint [30], the third author together with Xueyuan Wan has been
able to prove a general result in the setting of families of Kähler manifolds. The result shows
that the leading three terms of the curvature Chern(m)(μ, μ) and the Quillen curvature agree.
In the case of Riemann surfaces, this can be proved independently using the Bergman kernel
expansion [20] and Berndtsson’s curvature formula in Proposition 1.

3 We began by computing the coefficients of m−k for k ∈ N using the expression of the curvature given in
Proposition 1. These coefficients become increasingly complicated expressions at an exponential rate, and
in the end, they vanished in each increasingly lengthy calculation. Indeed, our results show that there are no
further nonzero coefficients ckm

k for k ∈ Z with k ≤ −1, because the remainder is O(k−N ) for any N ∈ N

as k → ∞.
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5.2 The casesm = 1, 2

Here we consider the special cases m = 1, 2. For m = 1 we show that there are surfaces and
harmonic Beltrami differentials for which the second variation is strictly positive, as well as
surfaces and harmonic Beltrami differentials for which the second variation is strictly nega-
tive. In [35, Lemma 4.6], Wolpert obtained an upper estimate of − 1

2π(g−1) for the curvature

−Chern(2). We shall use Wolf’s pointwise estimates [31] for solutions of the Laplace equa-
tion to find a sharper estimate,− 1

6π(g−1) . This might also be known to experts. Consequently
we find also estimates for the variation of the Selberg zeta function.

Proposition 10 Let m = 1.

(1) Let the genus g ≥ 3. Then there exists t ∈ Tg such that the corresponding Riemannian
surface, X = Xt is hyperelliptic. Moreover, there exist harmonic Beltrami differentials,
μ such that ∂̄μ∂μ log Z ′(1) > 0.

(2) Let g ≥ 2. At any point t ∈ Tg there exists a Beltrami differential μ such that for the
corresponding Riemannian surface, X = Xt , ∂̄μ∂μ log Z ′(1) < 0.

Proof If X is hyperelliptic, then there exist harmonic Beltrami differentials μ such that

〈R(μ,μ)u, u〉 = 0

for all u ∈ H0(K). This follows for example from [7, Lemma 3.3 & Proposition 3.4]. Thus
by Propositions 1and 9, we have

∂̄μ∂μ log Z ′(1) > 0.

To prove the second statement, for any Riemann surface, X , let ω be any nonzero abelian
differential of norm 1. Then ω2 is a holomorphic quadratic differential. Let μ = ρ−1ω2 be
the corresponding harmonic Beltrami differential. We compute the curvature Chern(1)(μ, μ)

using Proposition 1. To do this, let {ω j } be an orthonormal basis of H0(K), and fix ω1 = ω.
The sum ‖[μ · ωi ]‖2 is

∑

i

‖[μ · ωi ]‖2 ≥ 〈μ · ω, ω̄〉2

and

〈μ · ω, ω̄〉 =
∫

X
ρ−1ω2ωω = ‖ω2‖2 = ‖μ‖2WP.

Thus

−Chern(1)(μ, μ) ≤ −‖μ‖2WP,

and

∂̄μ∂μ log Z ′(1) = −Chern(1)(μ, μ) + 1

12π
‖μ‖2WP ≤

(
−1 + 1

12π

)
‖μ‖2WP < 0.

��
The case m = 2 is of special interest because H0(K2) can be viewed as the dual of the

tangent space of Teichmüller space. Moreover, the negative of the curvature, −Chern(2) is
therefore the Ricci curvature of the Weil–Petersson metric. This object has been studied
intensively for quite some time; see for example [35]. We demonstrate elementary upper and
lower estimates of the variation in this case.
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Proposition 11 Let m = 2 and B = B(2) be the Bergman kernel in this case. We have

∂̄μ∂μ log Z(2) ≥ 13

12π
‖μ‖2WP − ‖μ‖2L4(X)

‖B‖L2(X) − ‖|μ|2B‖L1(X)

and

∂̄μ∂μ log Z(2) ≤
(

13

12π
− 1

6π(g − 1)

)
‖μ‖2WP.

Proof In this case we have

∂̄μ∂μ log Z(2) = −Chern(2)(μ, μ) + 12

12π
‖μ‖2WP.

We shall prove the estimates by demonstrating upper and lower estimates for Chern(2)(μ, μ)

in this case. In this way, we are also simultaneously demonstrating lower and upper estimates
for the Ricci curvature of the Weil–Petersson metric.

By Proposition 1

Chern(2)(μ, μ) =
∫

X
f (μ)B +

d2∑

j=1

〈(�1,1 + 1)−1(μ · u j ), μ · u j 〉,

with

f (μ) = (1 + �0)
−1|μ|2.

By the Cauchy–Schwarz inequality
∣∣∣∣
∫

X
f (μ)B

∣∣∣∣ ≤ || f (μ)||L2(X)||B||L2(X).

We have the operator estimates (�1,1 + 1)−1 ≤ 1, and (�0 + 1)−1 ≤ 1. In this case,
we actually have the unitary equivalence of �1,1 and �0 via the natural identification of
f (z)dz⊗dz̄ with f (z)y2, as the metric tensor y−2dz⊗dz̄ is globally defined. Consequently

|| f (μ)||L2(X) ≤ ||μ2||L2(X) = ||μ||2L4(X)
.

Hence,

Chern(2)(μ, μ) ≤ ‖μ‖2L4(X)
‖B‖L2(X) +

d2∑

j=1

〈μ · u j , μ · u j 〉.

As for the second term, this is just

d2∑

j=1

〈μ · u j , μ · u j 〉 =
∫

X
|μ|2B,

so we have the lower bound

∂̄μ∂μ log Z(2) ≥ 13

12π
‖μ‖2WP − ‖μ‖2L4(X)

‖B‖L2(X) − ‖|μ|2B‖L1(X).

This implies the lower estimate.
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Toprove the upper estimate,we select one of the basis elements,u j , to be the corresponding
quadratic form of μ. So, for example, we set

u1 = 1

‖μ‖WP
ρμ,

We therefore have

Chern(2)(μ, μ) ≥
∫

X
(�0 + 1)−1(|μ|2)B + 〈(�1,1 + 1)−1(μ · u1), μ · u1〉

≥
∫

X
(�0 + 1)−1(|μ|2)|u1|2 + 〈(�1,1 + 1)−1(μ · u1), μ · u1〉.

It follows from the unitary equivalence of the operators �1,1 and �0 that

Chern(2)(μ, μ) ≥ 2

‖μ‖2WP

〈(1 + �0)
−1|μ|2, |μ|2〉 (5.6)

We proceed to estimate using [31]. On [31, p. 30], we see that in Wolf’s notation, our
μ = �

g0
. We also note that the operator denoted 
 there is equal to −
0 = −2�0 in our

notation. Hence, the statement of [31, Lemma 5.1] is in our context

0 ≤ v ≤ −2(−2�0 − 2)−1|μ|2, v = |μ|2
3

.

Of course, this is equivalent to

0 ≤ |μ|2
3

≤ (�0 + 1)−1|μ|2.
We use this estimate in (5.6) to obtain

Chern(2)(μ, μ) ≥ 2

3

1

‖μ‖2WP

∫

X
|μ|4. (5.7)

The Cauchy–Schwarz inequality gives
√∫

X
|μ|4

√∫

X
12 ≥

∫

X
|μ|2 · 1 �⇒

∫

X
|μ|4 ≥

(∫

X
|μ|2

)2 (∫

X
1

)−1

.

So, recalling the fact that the volume of our surface is 4π(g−1), we have the lower estimate
∫

X
|μ|4 ≥ ‖μ‖4WP

1

4π(g − 1)
.

Consequently, putting this estimate into (5.7),

Chern(2)(μ, μ) ≥ ‖μ‖2WP

6π(g − 1)
.

��
It would be interesting to find some more effective estimates for the variations in terms of

the eigenvalues of �m−1,1 and the geometry of the Riemann surface. The related questions
of estimating the Weil–Petersson sectional curvature have been studied extensively; see [38]
and references therein.
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Appendix A: The Hilbert–Schmidt norm of the squared resolvent and its
variation

Proof of Lemma 3 Let

N (γ ) = e�(γ ), α = s − 1/2, β = s′ − 1/2, c(r) = r tanh(πr).

For non-prime γ , with

γ = kγp, γp ∈ Prim(0), Np(γ ) := N (γp).

Recall that by the Gauss–Bonnet Theorem, the area of our Riemann surface is 4π(g − 1).
By the Selberg Trace Formula,

R(s, s′) :=
∑

n≥0

1

r2n + α2 − 1

r2n + β2

= (g − 1)
∫

R

(
1

r2 + α2 − 1

r2 + β2

)
c(r)dr + 1

2α

∑

γ∈L

log Np(γ )N (γ )−s

1 − N (γ )−s

− 1

2β

∑

γ∈L

log Np(γ )N (γ )−s′

1 − N (γ )−s′ .

Here note that we are taking γ not necessarily primitive, that is γ ∈ L rather than Lp .
Hence, N (γ ) = e�(kγ ) = ek�(γ ). The eigenvalues,

r2n + α2 = r2n + 1/4 + s(s − 1), r2n + 1/4 = λn, σ (
0) = {λn}n∈N.

Thus, the spectrum of the operator

σ(
0 + s(s − 1)) = {λn + s(s − 1)}n∈N = {r2n + α2}n∈N.

Then, the spectrum of the inverse,

σ((
0 + s(s − 1)−1) =
{

1

r2n + α2

}
.

Hence, the square of the Hilbert–Schmidt norm

||(
0 + s(s − 1))−1||2HS =
∑

n≥0

1

(r2n + α2)2
.
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Wedivide the expression for R(s, s′) by s−s′ and let s′ → s, thereby obtaining the derivative
with respect to s. Thus, we obtain

lim
s′→s

R(s, s′)
s − s′ = −2α

∑

n≥0

1

(r2n + α2)2
= −2α||(
0 + s(s − 1))−1||2HS.

By the Selberg Trace Formula, this is equal to

(g − 1)
∫

R

−2αr tanh(πr)

(r2 + α2)2
dr − 1

2α2

∑

γ

log(N (γ ))N (γ )−s

1 − N (γ )−s
− 1

2α

∑

γ

log(N (γ ))2N (γ )s

(N (γ )s − 1)2
.

Note that in terms of α,

1

2α

d

ds
= L.

Moreover,

log Z(s) =
∑

γ∈L
log(1 − N (γ )−s).

Hence,

L log Z(s) = 1

2α

∑

γ∈L

log N (γ )N (γ )−s

1 − N (γ )−s
.

Thus,

−2α||(
 + s(s − 1))−1||2HS = (g − 1)
∫

R

−2αr tanh(πr)

(r2 + α2)2
dr − d

ds
L(log Z(s)).

Dividing by −1/2α we then have

||(
 + s(s − 1))−1||2HS = −(g − 1)

2α

∫

R

−2αr tanh(πr)

(r2 + α2)2
dr + L2(log Z(s))

= (g − 1)
∫

R

r tanh(πr)

(r2 + α2)2
dr + L2(log Z(s)).

We consider the integral. Let

f (z) = z tanh(π z)

(z2 + α2)2
.

If |z| → ∞, | f (z)| = O(|z|−3), thus we can compute the integral over R using a large half
disk contour together with the residue theorem. The estimate shows that the integral on the
curved arc of the half disk is vanishing as the radius of the disk tends to infinity. Hence,

∫

R
f (z)dz = 2π i

∑

�(z)>0

Res( f ; z).

We compute the residues. The hyperbolic tangent has simple poles wherever the hyperbolic
cosine vanishes. For �(z) > 0, this occurs at

z = i(n + 1/2), n ∈ Z, n ≥ 0.

Moreover, there is also a pole of order two at z = iα. The residues at the simple poles are

lim
z→i(n+1/2)

z − i(n + 1/2)

cosh(π z)

z sinh(π z)

z2 + α2)2
.
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The first part converges to

1

cosh(π z)′
, z = i(n + 1/2) = 1

π sinh(π i(n + 1/2))
= (−1)n

π
.

The second part converges to

i(n + 1/2)(−1)n

(α2 − (n + 1/2)2)2
.

Thus the residues at these poles are

i(n + 1/2)

π(α2 − (n + 1/2)2)2
.

The residue at the pole of order 2 is F ′(iα), where F(z) := (z − iα)2 f (z). Hence, we
compute the derivative of

F(z) = z tanh(π z)

(z + iα)2
,

F ′(z) = (z + iα)2(tanh(π z) + π z(1 − tanh2(π z))) − 2(z + iα)z tanh(π z)

(z + iα)4
.

Hence,

F ′(iα) = tanh(iπα) + iπα(1 − tanh2(iπα))

(2iα)2
− 2iα tanh(iπα)

(2iα)3
= π

2iα
(1 − tanh2(iπα)).

We have by the Residue Theorem,

∫

R

r tanh(πr)

(r2 + α2)2
dr = (2π i)

⎛

⎝ π

2iα
(1 − tanh2(iπα)) +

∑

n≥0

i(n + 1/2)

π(α2 − (n + 1/2)2)2

⎞

⎠

= π2

α
(1 + tan2(πα)) − 2

∑

n≥0

n + 1/2

(α2 − (n + 1/2)2)2
.

This is due to the fact that

tanh(iπα) = i tan(πα), α ∈ R.

To achieve a bit more simplification, we use the fact that in general

1

(α + β)2(α − β)2
=

(
1

(α + β)2
− 1

(α − β)2

) −1

4αβ
.
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Then we have for the sum,

∑

n≥0

(n + 1/2)

(α + (n + 1/2))2(α − (n + 1/2))2

=
∑

n≥0

−(n + 1/2)

4α(n + 1/2)

(
1

(α + n + 1/2)2
− 1

(α − (n + 1/2))2

)

= − 1

α

∑

n≥0

(
1

(2(s − 1/2) + 2(n + 1/2))2
− 1

(2(s − 1/2) − 2(n + 1/2))2

)

= − 1

α

∑

n≥0

(
1

(2s + 2n)2
− 1

(2s − 2(n + 1))2

)

= − 1

4α

∑

n≥0

(
1

(n + s)2
− 1

(n + 1) − s)2

)

= − 1

4αs2
− 1

4α

⎛

⎝
∑

n≥1

1

(n + s)2
+

∑

m≥1

1

(m − s)2

⎞

⎠

= − 1

4αs2
+ 1

4α

∑

n≥1

−1

(n + s)2
+ 1

(n − s)2
,

and

1

4α

∑

n≥1

−1

(n + s)2
+ 1

(n − s)2
= 1

4α

∑

n≥1

4ns

(n2 − s2)2
.

Thus, the sum part simplifies to

− 1

4αs2
+ s

α

∑

n≥1

n

(n2 − s2)2
.

Hence, we have computed the Hilbert–Schmidt norm square,

||(
0 + s(s − 1))−1||2HS

= (g − 1)

⎛

⎝π2

α
(1 + tan2(πα)) − 2

⎛

⎝− 1

4αs2
+ s

α

∑

n≥1

n

(n2 − s2)2

⎞

⎠

⎞

⎠ − L2 log Z(s).

= (g − 1)π2

α
(1 + tan2(πα)) + (g − 1)

2αs2
− 2(g − 1)s

α

∑

n≥1

n

(n2 − s2)2
− L2 log Z(s).

Consequently we find also the variational formulas for the norm square

∂̄μ∂μ||(
0 + s(s − 1))−1||2HS = −∂̄μ∂μ(L2 log Z(s)) = −L2(∂̄μ∂μ log Z(s))

with ∂̄μ∂μ log Z(s) being given in Sects. 4 and 5 . ��
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