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The most heavily-obscured, luminous quasars might represent a specific phase of the

evolution of the actively accreting supermassive black holes and their host galaxies,

possibly related to mergers. We investigated a sample of the most luminous quasars

at z ≈ 1 − 3 in the GOODS fields, selected in the mid-infrared band through

detailed spectral energy distribution (SED) decomposition. The vast majority of these

quasars (∼80%) are obscured in the X-ray band and ∼30% of them to such an

extent, that they are undetected in some of the deepest (2 and 4 Ms) Chandra X-ray

data. Although no clear relation is found between the star-formation rate of the host

galaxies and the X-ray obscuration, we find a higher incidence of heavily-obscured

quasars in disturbed/merging galaxies compared to the unobscured ones, thus possibly

representing an earlier stage of evolution, after which the system is relaxing and becoming

unobscured.

Keywords: galaxies: active, quasars: general, quasars: supermassive black holes, X-rays: galaxies, infrared:

galaxies, galaxies: star formation

1. INTRODUCTION

The similarity between the accretion history of galaxies and supermassive black holes (SMBHs),
peaking at redshift z ≈ 1− 2 (e.g., Madau et al., 1996; Hopkins et al., 2006; Brandt and Alexander,
2015), suggests that there is a connection between the evolution of a galaxy and the black hole in
their center. Such connection has also been hinted by the observed correlations between the BH
mass and the velocity dispersion of the stars in the bulge (MBH − σ relation; Ferrarese and Merritt,
2000; Gebhardt et al., 2000) or with the bulge mass (MBH−Mbulge; Kormendy and Richstone, 1995;
Magorrian et al., 1998). Whether this parallel evolution is simply due to a larger gas supply at high
redshift, feeding both the SMBH and star formation (SF), or whether there are other processes self-
regulating the SMBH and galaxy growth (e.g., AGN feedback) is still uncertain (e.g., Alexander and
Hickox, 2012; Kormendy and Ho, 2013).

Studying active galactic nuclei (AGN) at all cosmic epochs is crucial to fully understand the
accretion history of the SMBHs and their role in galaxy evolution. However, most of the accretion
onto SMBHs is expected to be heavily obscured by dust and gas, making the identification of the
most obscured AGN population very challenging, even in the deepest X-ray surveys. According
to the unified model (e.g., Antonucci, 1993), AGN appear obscured due to orientation effects,
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when our line-of-sight crosses high column densities (NH) of
circumnuclear material, the so called “torus”. However, it has
been suggested that the most heavily-obscured, Compton-thick
(CT; where NH > 1.5 × 1024 cm−2) AGN, especially the
(intrinsically) most luminous ones, could represent a particular
phase of galaxy evolution, associated to a major merger, when a
lot of gas and dust are funneled into the center of the galaxy,
deeply hiding the active nucleus within it (Di Matteo et al., 2005;
Hopkins et al., 2006; see also Alexander and Hickox, 2012, for a
review). Yet, the emission reprocessed by the obscuring dust is
re-emitted in the mid-infrared (MIR) band, which can therefore
be used to find even the most obscured and elusive quasars.

2. SAMPLE SELECTION

The sample was selected from a large catalog of 24 µm-detected
sources within the GOODS-Herschel North and South fields. We
performed detailed SED decomposition using Spitzer 8, 16, and
24 µm and Herschel 100, 160, and 250 µm data, to separate the
AGN from SF emission. We adopted the AGN and star-forming
galaxy (SFG) templates described in Mullaney et al. (2011) and
Del Moro et al. (2013); details of the SED fitting are described
in Del Moro et al. (2016). Amongst these sources we selected the
most luminous quasars in the MIR band, with rest-frame 6 µm
luminosity of νLAGN,6 µm > 6 × 1044 erg s−1, corrected for the
galaxy contribution, at redshift z = 1 − 3. This selection results
in a sample of 33 sources.

3. ANALYSES AND RESULTS

3.1. AGN: Heavily Obscured Population at
z ≈ 2
To characterize the quasars in our sample, we used the deep X-
ray Chandra data available in the Chandra Deep Field North
(CDF-N; 2 Ms; Alexander et al., 2003) and Chandra Deep
Field South (CDF-S 4 Ms; Xue et al., 2011). For details on the
data reduction we refer to Alexander et al. (2003), Luo et al.
(2008), and Xue et al. (2011). Of our 33 quasars, 24 (∼73%) are
detected in the X-ray band, while 9 (∼27%) remain undetected,
despite being intrinsically very luminous in the MIR band.
These sources are candidates to be the most heavily obscured,
CT AGN.

For the sources that are detected in the X-rays, we extracted
the spectra using ACIS Extract (AE; Broos et al., 2010, 2012)
and analyzed them using a simple absorbed power-law model
(including Galactic and intrinsic absorption) to constrain the
amount of NH. In Figure 1 we show the NH distribution of the
sample. We find that the majority of these quasars (16/24;∼67%)
are obscured by columns of NH > 1022 cm−2, of which more
than half (9/16) are heavily obscured (NH > 2 × 1023 cm−2).
Amongst these heavily-obscured sources, we identified six of
them as CT quasars from the X-ray spectral analysis, using
spectral models appropriate for heavily-obscured sources, such
as, PLCABS (Yaqoob, 1997) and TORUS (Brightman andNandra,
2011). The fraction of obscured quasars in our sample reaches
∼76%, and 54% of heavily-obscured quasars, if we include

FIGURE 1 | Distribution of the X-ray column density (NH) for the

X-ray-detected MIR quasars (∼70% of the sample). The dashed histogram

represents the NH upper limits (calculated at a 90% confidence level).

the X-ray-undetected sources, assuming these are the most
heavily CT ones. Indeed, the comparison between the intrinsic
luminosity at 6 µm and the X-ray luminosity upper limit
of these sources suggests that the X-ray emission is heavily
suppressed compared to the intrinsic LX − L6 µm relation found
for AGN (e.g., Lutz et al., 2004; Fiore et al., 2009; Gandhi et al.,
2009), making them very good candidates to be heavily CT
quasars.

We note that amongst the X-ray undetected quasars in the
sample, there is one source, #28 (see Table 1 from Del Moro
et al., 2016), that is now detected in the 7 Ms CDF-S catalog
(XID 28; Luo et al., 2017). This source has a very flat effective
photon index of Ŵ < 0.93 (compared to the typical Ŵ ≈ 1.8
for unabsorbed AGN) and an extremely low rest-frame X-ray
luminosity (L0.5−7 keV ≈ 1.5 × 1041 erg s−1, uncorrected for
absorption) compared to its intrinsic luminosity measured in
the MIR band (log ν L6 µm = 45.97 erg s−1), consistent with the
upper limit reported in our analysis (Del Moro et al., 2016)1,
supporting our assumption that the source might be a heavily
obscured, CT quasar.

These results suggest that there is a large population of
heavily-obscured, intrinsically luminous quasars at high redshift,
which are very elusive even for deep X-ray surveys. These sources
might constitute a special phase of the BH-galaxy evolution,
where the actively growing BH is embedded in large amounts of
gas and dust, possibly as a result of a recent merger.

1We note however, that the photometric redshift assumed in our analysis of this

source (z = 2.55) differs from that reported in the Luo et al. (2017) catalog

(z = 1.81).
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3.2. AGN Host Galaxies: Star-Formation
Rates and Merger Fraction
To study the characteristics of the host galaxies of these MIR-
luminous quasars, we investigated their star-formation rates
(SFRs) and their morphologies, in particular the disturbance or
distortion of theirmorphology, as an indication of galaxymergers
and interactions. We derived the SFR of each galaxy from its far-
infrared (FIR) luminosity (or upper limit) resulting from the SED
decomposition in the IR band (see section 2 and Del Moro et al.,
2016), assuming a Salpeter initial mass function (Salpeter, 1955)
and the relation from Kennicutt (1998). We also calculated the
average SFR separately for the unobscured/moderately obscured
quasars (NH < 2 × 1023 cm−2) and for the heavily-obscured
quasars (NH > 2 × 1023 cm−2) in three different redshift
bins (see Figure 2). To estimate the average SFRs accounting
for the upper limits, we used the Kaplan-Meier (KM) product
limit estimator (Kaplan and Meier, 1958), a non-parametric
maximum-likelihood estimator of the distribution function (see
Stanley et al., 2015, for details on the method).

We find that the average SFR increases with redshift, in general
agreement with the SFR main sequence of galaxies (Figure 2).
Moreover, although the heavily-obscured sources seem to have a
slightly enhanced SFR compared to the unobscured/moderately
obscured ones (especially at z ≈ 2), these differences are not
statistically significant, and therefore we find no clear dependence
of the amount of SF in the galaxy with the X-ray obscuration of
the quasar. This suggests that the obscuration in the X-ray band

FIGURE 2 | Average star-formation rate (SFR) for the

unobscured/moderately-obscured quasars (NH < 2× 1023 cm−2; blue

squares) and the heavily-obscured quasars (NH > 2× 1023 cm−2; magenta

circles) in our sample, divided in three redshift bins. None of heavily-obscured

quasars are detected in the lowest redshift bin. The gray dashed lines

represent the SFR track for main-sequence (MS), starburst (SB; SFRMS × 2)

and quiescent (Quies.; SFRMS/2) galaxies with a typical mass of

M∗ = 9× 1010 M⊙ (e.g., Elbaz et al., 2011).

is likely confined in the nuclear regions and not related to the
presence of gas on larger scales (e.g., Rosario et al., 2012; Rovilos
et al., 2012).

Using the high-resolution optical HST images available in the
GOODS-N and GOODS-S fields, as part of the GOODS and
CANDELS projects (Giavalisco et al., 2004; Grogin et al., 2011),
we visually inspected the morphology of these galaxies to identify
signs of distortions or disturbances, which would indicate a
recent galaxy merger/interaction event. We adopted a similar
classification scheme to that used by Kocevski et al. (2012); see
Del Moro et al. (2016, for details), separating the sources into
“disturbed” and “undisturbed”. In Figure 3 we show the fraction
of sources having disturbed and undisturbed morphologies
over the total, dividing them again into unobscured/moderately
obscured (blue squares) and heavily obscured (magenta circles),
as in Figure 2. We find that a relatively high fraction of our
sources shows signs of distortions/interactions (≈40%), higher
than those typically found at low redshift (∼15–20% at z <

1; e.g., Cisternas et al., 2011). This is in agreement with the
trend of increasing major-merger fraction with redshift seen in
previous works (e.g., Conselice et al., 2003; Treister and Urry,
2006; Kartaltepe et al., 2007). We find that, on average, the
most-heavily obscured quasars tend to have more disturbed
morphologies than the unobscured/moderately obscured ones
(≈53 vs. ≈20%, respectively); although the errors on these
fractions are large due to the small number of sources in our
sample, the difference between the two quasar populations is

FIGURE 3 | Fraction of MIR quasar hosts showing disturbed and undisturbed

galaxy morphologies, classified using HST images. The fractions and 1σ

uncertainties for the unobscured/moderately-obscured quasar hosts

(NH < 2× 1023 cm−2) are plotted as blue squares and for the

heavily-obscured quasars (NH ≥ 2× 1023 cm−2) as magenta circles. For

comparison we also show the fractions for z ≈ 2 AGN and non-AGN samples

from Kocevski et al. (2012): filled black triangles and gray squares,

respectively. The unobscured/moderately-obscured quasars reside

preferentially in undisturbed systems, while the heavily-obscured quasars are

equally found in disturbed and undisturbed systems.
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significant at the 90% confidence level (Fisher exact probability
test: P = 0.087). This trend is seen also in other studies (e.g.,
Kocevski et al., 2015; Ricci et al., 2017). We note, however,
that these studies investigated samples in different redshift
and/or luminosity ranges compared to ours, and therefore the
actual fractions of sources with disturbed morphologies are not
directly comparable. The smaller fraction of disturbed systems
we found for the unobscured/moderately-obscured quasars
could be interpreted within the SMBH-galaxy evolutionary
models, as the unobscured quasars would represent a later
stage of the evolution compared to the heavily-obscured sources
and the distortion features due to mergers or interactions
might have faded by the time these quasars are observed as
unobscured, given the relaxation time of a galaxy is typically
∼ 200–400 Myr (e.g., Lotz et al., 2010). On the other hand,
for the most heavily-obscured quasars, which might represent
a younger stage of evolution after a merger in this scenario,
the signatures of the recent interactions are still evident in their
hosts.

4. CONCLUSIONS

We have investigated the AGN and host galaxy properties of a
sample of 33 quasars at z = 1 − 3 within the GOODS-Herschel
fields, selected in the MIR band through detailed SED analysis to
have an intrinsic AGN luminosity of νL6 µm > 6× 1044 erg s−1.
Despite being intrinsically the most luminous quasars within
these fields, ∼26% of them are not detected in the deep 2 and
4 Ms Chandra X-ray data covering these sky areas.

We performed X-ray spectral analysis of the 24 X-ray-detected
sources to investigate the AGN properties, and we found that
the vast majority (∼67%; 16/24 sources) are obscured by NH >

1022 cm−2, with more than half of them (9/16) being heavily
obscured (NH > 2×1023 cm−2). Including the X-ray undetected
sources, which are likely to be the most heavily CT AGN,
these fractions reach ∼76% (∼54% are heavily obscured). This
means that there is a very large population of heavily obscured,
intrinsically luminous quasars at redshift z ≈ 2, which can be
revealed in the IR band, but remains (in part) undetected in the
X-ray band.

We investigated the host galaxy properties of these quasars
through their SFR, measured in the FIR band from SED fitting
using Spitzer and Herschel data, and did not find any strong link
between the amount of SF and the X-ray obscuration, possibly
suggesting that the X-ray obscuration is mostly concentrated in
the nuclear regions and does not depend on the presence of gas
on larger scales.

We also visually classified the morphology of these quasars
as disturbed or undisturbed using high-resolution HST data to
identify signs of distortions/asymmetries in the galaxies. We find
that a significant fraction (∼40%) have disturbed morphologies,
suggesting they have experienced a recent merger or interaction
event. We find a larger fraction of sources with disturbed
morphologies amongst the heavily-obscured quasars (∼53%)
rather than the unobscured/moderately-obscured ones (∼20%).
Our results possibly support the SMBH-galaxy evolutionary
scenario where the heavily-obscured quasars represent an earlier
stage of evolution after the merger, while the unobscured quasars
represent a later stage of the evolution, when the system has
relaxed, the signs of interaction have already faded, and the
nucleus becomes unobscured.
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