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Abstract

Sequence comparison and analysis of the various ribosomal genetic markers are the

dominant molecular methods for identification and description of fungi. However,

new environmental fungal lineages known only from DNA data reveal significant

gaps in our sampling of the fungal kingdom in terms of both taxonomy and marker

coverage in the reference sequence databases. To facilitate the integration of refer-

ence data from all of the ribosomal markers, we present three sets of general pri-

mers that allow for amplification of the complete ribosomal operon from the

ribosomal tandem repeats. The primers cover all ribosomal markers: ETS, SSU, ITS1,

5.8S, ITS2, LSU and IGS. We coupled these primers successfully with third‐genera-
tion sequencing (PacBio and Nanopore sequencing) to showcase our approach on

authentic fungal herbarium specimens (Basidiomycota), aquatic chytrids (Chytrid-

iomycota) and a poorly understood lineage of early diverging fungi (Nephridiophagi-

dae). In particular, we were able to generate high‐quality reference data with

Nanopore sequencing in a high‐throughput manner, showing that the generation of

reference data can be achieved on a regular desktop computer without the involve-

ment of any large‐scale sequencing facility. The quality of the Nanopore generated

sequences was 99.85%, which is comparable with the 99.78% accuracy described

for Sanger sequencing. With this work, we hope to stimulate the generation of a

new comprehensive standard of ribosomal reference data with the ultimate aim to

close the huge gaps in our reference datasets.
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1 | INTRODUCTION

In 1990, it became clear that ribosomes are common to all extant

organisms known today (Woese, Kandler, & Wheelis, 1990). The

ribosomal genetic markers are located in the ribosomal operon, a

multi‐copy region featuring genes and variously also spacers and

other poorly understood elements (Rosenblad et al., 2016). Clearly

defined fragments of these regions and spacers have been identified

as suitable markers for various scientific pursuits in different groups

of organisms (Hillis & Dixon, 1991; Tedersoo et al., 2015) depending

on their individual substitution rates and length. Well‐known exam-

ples include the SSU (16S/18S), which has been used to explore the

phylogeny of prokaryotes and microeukaryotes and the ITS region,

which is the formal DNA barcode for molecular identification of

fungi (Schoch et al., 2012).

The fungal kingdom is vast, with estimates ranging from 1.5 to

6 million extant species (Hawksworth and Lücking, 2017; Taylor

et al., 2014). On the other hand, a modest ~143,000 species are

formally recognized (https://www.speciesfungorum.org/Names/Na

mes.asp, accessed August 2018), underlining a considerable knowl-

edge gap. The discrepancy between the known and unknown fungi

becomes readily apparent when doing environmental sequencing,

where it is not uncommon to find for instance that >10% of all fun-

gal species hypotheses (a molecular based species concept akin to

operational taxonomic units, OTUs; Blaxter et al., 2005; Kõljalg

et al., 2013) do not fall in any known fungal phylum (Nilsson et al.,

2016). This hints at the presence of a large number of unknown

branches on the fungal tree of life (Tedersoo et al., 2017). Com-

pounding this problem, not all described fungi have a nucleotide

record, which is often but not always related to older species

descriptions made before the advent of molecular biology (Hibbett

et al., 2016). Consequently, many studies fail to classify more than

15%–20% of the fungal sequences to genus level (e.g., Wurzbacher

et al., 2016), which severely hampers the interpretation of the

results.

While the ITS is a well chosen barcode, it is less suitable for phy-

logenetic analysis and it is not optimal for all fungal lineages. For

instance, the Cryptomycota taxonomy is based on the ribosomal

SSU gene as the primary genetic marker (e.g., Lazarus & James,

2015), while Chytridiomycota taxonomists mainly work with riboso-

mal large subunit data (LSU/23S/26S/28S) (Letcher, Powell, Churchill,

& Chambers, 2006). Similarly, studies on Zygomycota often employ

the SSU and LSU (White et al., 2006), while work on yeast species is

often done using the LSU (Burgaud et al., 2016). Researchers study-

ing fungal species complexes regularly need to consider genetic

markers with even higher substitution rates than the ITS (e.g., the

IGS region, Nilsson et al., 2018; O'Donnell et al., 2009).

There are thus serious gaps in the reference databases relating

to (a) taxonomic coverage and (b) marker coverage. Some groups

have ample SSU data; others have a reasonable ITS and LSU cover-

age; others are known only from ITS or LSU data. We argue that it

is crucial to close these two types of gaps—ideally at the same time

—to achieve robust data‐driven progress in mycology. Having access

to all ribosomal markers at once solves a range of pertinent research

questions, such as trying to obtain a robust phylogenetic placement

for an ITS sequence (e.g., James et al., 2006), trying to prove that an

unknown taxon does indeed belong to the true fungi (Tedersoo,

Bahram, Puusepp, Nilsson, & James, 2017) or moving forward in

spite of the fact that an ITS sequence produces no BLAST matches

at all in the public sequence databases (Heeger et al., 2018). Thus,

an urgent goal is to fill the taxonomic and marker‐related gaps in our

reference sequence databases (e.g., SILVA: Glöckner et al., 2017,

UNITE: Kõljalg et al., 2013, and RDP: Cole et al., 2014).

In this study, we explore a promising way to close the gaps in

the reference databases and simultaneously unite them through the

use of emerging long‐read sequencing technologies. Here, we aim to

generate high‐quality de novo reference data for the full ribosomal

operon and the adjacent intergenic regions, which would unify five

or more distinct marker regions: the SSU gene, the ITS region includ-

ing the 5.8S rRNA gene, the LSU gene the ETS regions, and the IGS

(that often but not always contains the 5S gene, too). Fortunately,

the eukaryotic ribosomal operon is arranged in tandem repeats in

the nuclear genome, which makes its amplification by PCR compara-

tively straightforward. In theory at least, DNA sequencing of the full

ribosomal operon is perfectly possible. So far, it has not been feasi-

ble to sequence such long DNA stretches in a simple, time and cost‐
efficient way. In principle, Sanger sequencing with maybe 10 internal

sequencing primers is a possibility, or alternatively, shotgun sequenc-

ing could do it, which, however, would require prior fragmentation

of the long amplicon. Both of these approaches are less than

straightforward in that they require substantial time, multiple rounds

of sequencing and significant laboratory expertise.

In contrast, emerging third‐generation sequencing technologies—
MinION (Oxford Nanopore Technologies; https://nanoporetech.com/)

and PacBio SMRT sequencing (Pacific Biosciences; https://

www.pacb.com/)—offer the possibility to sequence long DNA

amplicons in a single read, much like Sanger does so well for short

amplicons. Both of these technologies are suitable for high‐accuracy,
long‐range sequencing (Benitez‐Paez & Sanz, 2017; Karst et al.,

2018; Singer et al., 2016; Tedersoo, Tooming‐Klunderud, & Anslan,

2018). PacBio excels where high accuracy is crucial due to its circu-

lar consensus sequencing mode. The advantage of Nanopore

sequencing is the moderate price and the fast processing time. In

addition, there is no need for a sequencing provider when it comes

to Nanopore sequencing, because the sequencing can be done

through a regular desktop computer. We believe that these features

combine to make both technologies invaluable for our envisioned

generation of comprehensive reference data.

In this work, we present PCR primers to cover the whole fun-

gal nuclear ribosomal region in either two shorter amplifications of

5 kilobases (kb) each or in a single long amplicon of approximately

10 kb. The end product of both approaches is a 10 kb long

stretch of nucleotide data that comprise all ribosomal markers,

thus forming reference sequence data that satisfy many different

research questions at once. Our secondary objective was to pro-

vide a cost‐efficient and easy‐to‐use system that can be adopted
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even in small laboratories with limited budgets to facilitate broad

generation of complete ribosomal reference data that may, as a

joint effort, eventually help to fill our knowledge gaps in mycology

and elsewhere. We targeted three fungal phyla (Chytridiomycota,

Basidiomycota and the enigmatic Nephridiophagidae lineage; Radek

et al., 2017) separated by more than a hundred million years of

evolution (Tedersoo, Sánchez‐Ramírez, et al., 2018) in an attempt

to establish the wide taxonomic scope of our primers and

approach.

2 | METHODS

2.1 | Tested samples

We tested several samples of various origins to evaluate the primer

systems for our respective fields of research with a focus on refer-

ence material from herbarium specimens (Supporting Information

Appendix S1). For Basidiomycota species within our target class

Agaricomycetes, we tested DNA extracted from herbarium speci-

mens deposited at the infrastructure of University of Gothenburg,

Herbarium GB (n = 66). DNA extraction from the fungal material

was performed with the DNA Plant Mini Kit (Qiagen, Hilden, Ger-

many). We furthermore evaluated the use of the primers for a few

early diverging and poorly known environmental fungal lineages. For

parasitic uncultured aquatic fungi of the phylum Chytridiomycota,

we employed micromanipulation as described in Ishida, Nozaki,

Grossart, and Kagami (2015). Briefly, cells or sporangia were identi-

fied under a microscope, picked by a micropipette, washed, trans-

ferred to a microreaction tube and lysed. This was followed by a

whole genome amplification (illustra Single Cell GenomiPhi V1/V2

DNA amplification kit; GE Healthcare), which provided the DNA

template for our ribosomal PCRs (n = 9). Finally, to test the amplifi-

cation of an extremely distant fungal lineage from an animal host,

we worked with DNA extracted from Malpighian tubule tissue from

two cockroaches infected with members of the early diverging fun-

gal lineage Nephridiophaga, derived from previous work (Radek

et al., 2017).

2.2 | Primer design

The operon PCR was performed with newly designed and adapted

primer pairs. The primer pairs were modified from previous primers,

namely the universal NS1 primer that offers a broad coverage of

many eukaryotic lineages (White, Bruns, Lee, & Taylor, 1990) and a

Holomycota‐/Nucletmycea‐specific primer derived from the RD78

primer (Wurzbacher, Rösel, Rychła, & Grossart, 2014). The modified

and further developed primers were designed and tested in ARB v. 6

(Ludwig et al., 2004) against the SILVA reference databases v. 123

(Glöckner et al., 2017) for SSU and LSU. NS1 was shortened by

three bases at the 3′ end to avoid mismatches to major lineages in

the Chytridiomycota and Cryptomycota. Furthermore, to maintain an

acceptable melting temperature, the primer was prolonged with two

bases at the 5′ end from a longer version of NS1 mentioned in

Mitchell & Zuccharo (2006) and was named NS1short: CAGTAGT-

CATATGCTTGTC.1 We further developed the RD78 primer with the

Probedesign and Probematch tools integrated in ARB by shifting it

towards the LSU 5′ by several bases, so that the mismatches to out-

groups such as Eumetazoa fall in the 3′ end of the primer region.

This will facilitate the application of the primer in, for example,

mixed‐template samples such as environmentally derived DNA. Simi-

lar to RD78, the resulting primer is highly specific to true fungi, and

we named it RCA95m (CTATGTTTTAATTAGACAGTCAG) since it

matches more than 95% of all fungi in the SILVA LSU database.

However, we found exceptions (mismatches) in a few long‐branched
Kickxellomycota (e.g., Dimargaris of the Dimargaritales) and in the

close vicinity of the genus Neurospora (Sordariales, Ascomycota). A

phylum‐based in silico analysis of all primers used in this study is

found in Supporting Information Appendix S1. This primer pair

(NS1short and RCA95m) was used to amplify the greater part of the

ribosomal operon (rDNA PCR; Figure 1) of the ribosomal tandem

repeat. In order to amplify the missing parts of the ribosomal region

(the 3′ end of the LSU, IGS and the ETS region), we simply used the

reverse complementary version of each primer: NS1rc (GACAAGCA-

TATGACTACTG) and RCA95rc (CTGACTGTCTAATTAAAACATAG).

As a third primer pair, we developed a primer pair based on

RCA95m that binds to a single region in the LSU: the forward primer

Fun‐rOP‐F (CTGACTGTCTAATTAAAACAT) amplifies in the 3′ direc-
tion of the LSU, while the reverse primer Fun‐rOP‐R (TCA-

GATTCCCCTTGTCCGTA) amplifies in the 5′ direction (Figure 1).

Note that the last four nucleotides of both Fun‐rOP primers are pair-

ing and that these four nucleotides resemble the position overlap in

the template (CTGA) at the exact Escherichia coli reference position

1770–1773 of the LSU (SILVA LSU reference position). This allows a

subsequent end‐to‐end assembly of the full ribosomal region (LSU‐
IGS‐ETS‐SSU‐ITS1‐5.8S‐ITS2‐LSU) extracted from the ribosomal tan-

dem repeat. All primer pairs were barcoded following the dual index-

ing strategy of Illumina sequencing (Part#15044223Rev.B; Illumina,

San Diego, CA, USA). That means that we introduced the forward

barcode series S500 to the 5′ end of each forward primer and the

N700 barcode series to the 5′ end of the reverse primer, which

allows the simultaneous sequencing of more than 100 samples, at

least in theory. These barcodes are exchangeable and could also be

replaced by, for example, longer Nanopore barcodes. After each bar-

code, we added one or two extra nucleotides as a precaution against

nuclease activity. Between barcode and primer nucleotides, we

added a two‐nucleotide wide spacer (see Supporting Information

Appendix S1) that has a mandatory mismatch to the fungal kingdom

at these two positions. These two mismatches were validated by

using ARB and the respective SILVA reference databases (SSU and

LSU). We did not test all samples with all amplicons, since our pri-

mary focus in this study was the herbarium specimens (Table 1).

1We noticed that there are a few cases in the reference data where this 5' prolongation

“CA” is replaced by “TC” in several not necessarily related fungal species. Closer inspection

of these cases by BLASTing and aligning to the SILVA SSU reference database (v. 128)

showed that this was due to incomplete trimming of the sporadically used primer PNS1

(Hibbett, 1996), which produces severe 5' mismatches to the fungal backbone.
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2.3 | Long‐range PCRs

In general, we applied the PrimeStar GLX polymerase (Takara) for all

primer systems. For the IGS stretch (IGS PCR) and the full ribosomal

region tandem repeat PCR (TR PCR), we employed only the Prime-

Star GLX (Takara). The PCR was performed in 40 µl reactions with

1.5 µl enzyme, 12 pmol of each barcoded primer (a unique combina-

tion for each sample), 1 mM dNTPs and 1 µl of template (with a

concentration of approximately 1–40 ng/µl). For all primer pairs, we

ran an initial denaturation of 1 min at 98°C, then 36 cycles at 98°C

for 10 s, 55°C for 15 s and 68°C for 2.5 min. We increased the

elongation step of the TR PCR from 2.5 to 4 min. For the Chytridio-

mycota samples, we exchanged the PrimeStar polymerase for Hercu-

lase II (Agilent Technologies) for the rDNA PCR. The reason for this

is that we worked on these samples in a second laboratory, in which

the Herculase II was the established polymerase. We ran a two‐step
protocol for Herculase II. An initial PCR with native (non‐barcoded)
NS1short/RCA95m primers and 3% BSA (molecular grade, Carl‐Roth)
as additive was run with the following program: 5 min at 95°C, then

35 cycles at 95°C for 30 s, 55°C for 30 s and 68°C for 4 min. The

PCR product was then used as template in a second PCR with 10

cycles but otherwise identical conditions, exchanging the native pri-

mers with barcoded primers. In general, we recommend the use of a

polymerase that is specifically engineered for long amplicons for all

three amplifications (e.g., PrimeStar GLX).

2.4 | Library preparation and sequencing

The PCR products were purified with either 0.8 (v/v) of AMPure

beads (Beckmann) or PCR purification plates (Qiagen) following the

respective manufacturer's recommendations. After that, the purified

PCR products were quantified using Nanodrop 2000 (Thermo Scien-

tific) and pooled in an approximately equimolar way. This final pool

was purified anew with AMPure beads using 0.4 (v/v) of beads and

eluted in a 50–100 µl molecular grade water. The concentration of

the amplicon pool was quantified with a Qubit instrument (Invitro-

gen). Approximately 2–4 µg was sent for sequencing with PacBio RSII

(Pacific Biosciences) at the Swedish SciLife Lab in Uppsala, Sweden.

Another batch of 800 ng was used for Oxford Nanopore library

preparation following the manufacturer's protocol and recommenda-

tions for D2 sequencing (LSK‐208; Oxford Nanopore Technologies;

discontinued as of May 2017, with the R9.4 chemistry) or alterna-

tively 1D2 sequencing (LSK‐308, with the most recent R9.5 chemistry

as of May 2017). In brief, both protocols consist of end‐repair, adap-
ter ligation and purification steps that take approximately 2 hr in the

laboratory. Sequencing took place locally on a MinION instrument

(Oxford Nanopore Technologies) operated with FLO‐107 flowcells.

We aimed for more than 2,000 sequences per sample and stopped

the sequencing as soon as we achieved this goal, which took 2–8 hr

depending on the pool size and amplicon length.

2.5 | Sequence data processing

The first step after obtaining the Nanopore data is the 2D base call-

ing, which was done with Albacore (v2.4; Oxford Nanopore Tech-

nologies). We observed that for a successful calculation of the

F IGURE 1 Schematic representation of the fungal ribosomal tandem repeat with two copies of the ribosomal operon and its transcribed
and nontranscribed regions (precursor rRNA and IGS, respectively). Please note that the 5S is not always present (Balzi, Pietro, Goffeau,
Heerikhuizen, & Klootwijk, 1985). The primers and the positions of the primer binding sites for the three employed amplicons (rDNA: 4–6 kb,
IGS: 2–6 kb, and TR: 7–13 kb) are indicated

TABLE 1 Amplification overview for the sample types

Technology

Herbarium
specimens
(n = 66)

Chytridiomycota
cells (WGA)
(n = 9)

Nephridiophaga
(host tissue)
(n = 2)

PacBio rDNA, IGS, TR n.t. rDNA

Nanopore TR, rDNA rDNA n.t.

Note. n.t. (not tested); rDNA refers to the amplicon produced by

NS1short/RCA95m; IGS refers to the amplicon produced by RCA95rc/
NS1rc; TR refers to the amplicon produced by Fun‐rOP‐F/Fun‐rOP‐T;
WGA (whole genome amplification).
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required sequencing depth, usually 20% of the sequences are

retained as good quality 2D reads, which is one of the limitations of

the 1D2 chemistry. Not all reads are complementary reads, and cur-

rently, the base caller can only base call ~50% as complementary

(i.e., paired reads), while the other 50% remains unpaired. Unpaired

reads have a higher error rate than paired reads and were therefore

discarded in this study. These formerly complementary sequences

subsequently formed pairs, resulting in 25% of the initial reads.

Finally, ~5% did not pass the quality‐filtering step, so that as a rule

of thumb, a total of 20% of the initial reads remain as high‐quality
paired reads for generation of the consensus reference sequences.

For the PacBio data, we only worked with the “reads of insert”
(ROS) data in the next steps of the data processing. After these ini-

tial steps, all sequences from both sequencing platforms are pro-

cessed in the same way. An initial quality‐filtering step (USEARCH

v8.1; Edgar, 2010) was performed. The maximum allowed error rate

was set to 0.02 for PacBio sequences. After testing this quality fil-

tering for the Nanopore data (which come pre‐filtered at an error

rate of 0.08), ranging from 0.04–0.08, however, we came to the con-

clusion that quality filtering had no beneficial effect on the final con-

sensus quality (Supporting Information Appendix S2). We thus

removed it from the Nanopore pipeline. Additionally, we filtered the

sequences by length using Biopython (v1.65; Cock et al., 2009) to

exclude too short and too long sequences as detected in the his-

tograms. This helped to increase the quality of the subsequent align-

ment. Then, all quality filtered and trimmed sequences were

demultiplexed as FASTA files into individual samples according to

their combined barcodes (Flexbar, v2.5, Dodt, Roehr, Ahmed, & Diet-

erich, 2012). Barcodes and adapters were removed in this step. All

sequences from each individual sample were subsequently aligned

using MAFFT (v7.397, Katoh & Standley, 2013) using the auto‐align-
ment option. The aligned sequences were clustered in mothur

(v1.39, Schloss et al., 2009) using the Opticlust algorithm, and the

consensus sequences for each operational taxonomic unit were built

using a custom‐made Perl script (Consension) available at https://mic

robiology.se/software/consension/. The optimal OTU clustering

threshold for Nanopore data was determined to be 0.07 for shorter

amplicons (rDNA and IGS PCR) and 0.08 for the long TR PCR (Sup-

porting Information Appendix S3). To counter spurious OTUs, we

determined a dynamic OTU size cut‐off that is provided to Consen-

sion. It was calculated as:

K ¼ ½number of sample reads� � ½error rate�
½length correction� (1)

The length correction is an integer and defined as amplicon

length [kb] divided by 5 kb of the expected amplicon length. Kmin

(the minimum number of sequences a OTU can hold) was set to 3

for PacBio and 5 for Nanopore sequences. The consensus sequences

were finally compared by inspecting the alignment visually in Sea-

View (v.4.7; Gouy, Guindon, & Gascuel, 2009) and by calculating

sequence similarities with local BLAST searches (nucleotide BLAST+,

v2.2.28). Visualization of the BLAST‐based TR results matching all

other sequences (rDNA, IGS and ITS) was done with BRIG (v 0.95,

Alikhan, Petty, Zakour, & Beatson, 2011). In the few cases where we

obtained more than 1 OTU after consensus generation, we only

used the most abundant OTU for subsequent similarity comparisons.

In addition, we evaluated the effect of polishing the Nanopore con-

sensus sequences by mapping the FASTQ files to the consensus

sequences with Racon (v.1.3; https://github.com/isovic/racon).

Finally, we examined the variation across all ribosomal regions on

PacBio generated TR sequences from 13 Inocybe (Agaricomycetes)

species to provide a first look at the explanatory power of full‐length
rDNA sequencing. For this analysis, we first annotated all regions

and subsequently extracted them (excluding introns) to evaluate the

pairwise similarity of each region by inferring the respective distance

matrices.

3 | RESULTS

All primer pairs worked successfully on our target herbarium speci-

mens. The rDNA primers also worked both with samples from the

early diverging lineages of Chytridiomycota (whole genome amplified

DNA of infected single algal cells) and with cockroach tissue infected

with Nephridiophaga. This confirmed the fungal specificity and the

broad spectrum of the primers, which should, based on in silico anal-

ysis, cover all fungal phyla with the few within‐phyla exceptions

mentioned above (see Primer design, Supporting Information

Appendix S1). The performance of the rDNA and IGS PCR was

robust and worked for >93% of the herbarium extracts. We noted,

however, that the longest amplicon (TR PCR) was amplified in only

50% of the otherwise successfully amplified herbarium specimens

(29 of 58 samples), potentially due to DNA integrity issues in older

herbarium specimens (see Discussion section and Larsson & Jacob-

sson, 2004). To demonstrate what could be gained in mycological

efforts by sequencing the full ribosomal region (either by combining

the two shorter rDNA and the IGS amplicons or by the TR amplicon

alone), we analysed the inter‐species variation for 13 species of the

genus Inocybe (Table 2).

An example of a full comparison between Sanger, PacBio and

Nanopore‐generated sequences and all applied primer pairs for one

of our herbarium DNA samples is seen in Figure 2 for specimen GB‐
0158876 (Inocybe melanopus EL263‐16).

As expected, PacBio‐derived sequences had a high‐accuracy and

matched high‐quality Sanger sequences with 100% identity in 23 of

64 cases, while Nanopore sequences achieved this only in 3 of 41

cases. The discrepancy between PacBio and Sanger was in most

cases related to mismatches in the distal ends of the ITS sequences,

potentially reflecting quality issues of Sanger sequences (Supporting

Information Appendix S5). Similarly, Nanopore‐derived sequences

(1D2 chemistry) had on average only 0.15% mismatches to PacBio

sequences, resulting in a consensus accuracy of 99.85%, identical to

the median Sanger similarity to PacBio sequences (Table 3). In the

alignment view, most of the Nanopore‐based mismatches could be

identified as indels in homopolymeric regions. The discontinued D2

chemistry in combination with its outdated base calling reached a

consensus accuracy of 99.4%.
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In a few samples (on average in 12% of the amplicons), we saw

two or more distinct consensus sequences, both of which crossed

the consensus threshold K. Often, these low‐abundance alternative

consensus sequences differed significantly—by more than 100 bases

—in length, and it is likely that these represented genomic variants

of the ribosomal regions. In this study, we disregarded these

sequences, but they may be worth a second look in future studies as

they may have implications for the outcome of phylogenetic analy-

ses. We found that a lower clustering threshold (0.08 or below) is

important in retaining special cases of these variants separate, for

example, identical sequences with one large intron (Supporting Infor-

mation Appendix S3).

4 | DISCUSSION

The disjunct distribution of ribosomal marker sequences across dis-

tinct databases is not only a mycological problem but also one that

pertains to most DNA‐based studies targeting bacteria, algae and pro-

tists (e.g., De Vargas et al., 2015; Wurzbacher, Nilsson, Rautio, &

Peura, 2017). We are currently missing a lot of reference data in the

databases we all use on a regular basis. In a time where biodiversity

screening by high‐throughput sequencing methods is becoming rou-

tine, these deficits in taxonomic and marker‐related sampling of

genetic material are developing into severe problems. Any strategy

that may help closing these gaps in the future will be extremely valu-

able. The genetic markers of the ribosomal operon differ from each

other, and across the fungal tree of life, in length and level of conser-

vation. As a consequence, different markers have been used to

address research questions in different parts of the fungal tree of life

and at different evolutionary timescales. The incompleteness and frag-

mentation of extant ribosomal data are clearly problematic, and our

sampling of fungal ribosomal DNA sequences should be augmented

with full‐length reference sequences that span several regions suitable

for everything from conservative (high‐level) taxonomic classification

to intraspecies assignment (see Table 2). The primers we present here

extend the currently longest sequenced ribosomal fragments (Karst

et al., 2018; Tedersoo, Tooming‐Klunderud, et al., 2018) and enable

TABLE 2 Sequence variation analysis of the ribosomal tandem
repeat regions for 13 Inocybe species

Ribosomal
region

Average
pairwise
identity (%)

Minimum
pairwise
identity (%)

Maximum
pairwise
identity (%)

Consensus
length
(bases)

5′‐ETS 54.2 43.2 67.5 500

SSU 98.4 97.5 99.3 1,803

ITS 53.3 42.6 66.4 401

5.8S 98.2 95.6 100 159

LSU 95.8 93.6 97.9 3,386

3′‐ETSa 49.6 29.8 68.3 439

5S 92.9 79.5 100 121

IGS 24.5 3.5 35.1 1,870

All regions 63.3 54.1 73.8 8,720

aAnnotation of the 3′‐ETS region is uncertain and may falsely include a

second conservative region of unknown identity.

F IGURE 2 Left panel: graphic view on the BLAST+ comparison of the ribosomal regions generated with the three amplicons and the
Sanger reference sequence of the ITS region. The TR amplicon generated by PacBio sequencing was used as reference. Similarities are
displayed for each amplicon, respectively. Right panel: photograph of in situ basidiomata of herbarium specimen GB‐0158876 (Inocybe
melanopus) [Colour figure can be viewed at wileyonlinelibrary.com]
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the generation of data in an easy and straightforward way for the

whole fungal ribosomal tandem repeat region, solving the problem of

non‐overlapping sets of ribosomal markers.

The primer pairs we introduce with the present paper worked

not only for the Basidiomycota species examined, but also for

Chytridiomycota and the distant genus Nephridiophaga. Indeed,

according to the in silico primer design and evaluation, they should

be suitable for the greater majority of fungal species, with the chief

exception of some long‐branching Zygomycota lineages, for which

primer adaptations may be required. The primers RCA95m and Fun‐
rOP‐F are fairly fungus‐specific and will in many cases preferentially

amplify fungi from mixed‐DNA samples (e.g., our cockroach host tis-

sue, see also Heeger et al. (2018) for an application of the rDNA

amplicon on environmental samples). Users wanting to examine the

performance of the primers on as yet untested fungal taxa without

having to do actual PCR runs can evaluate the primers through simu-

lated PCR runs (e.g., ecoPCR; Ficetola et al., 2010) on authentic, long

rDNA reads available in, for example, SILVA.

The decreased success rate that we observed for the TR amplifi-

cation in comparison with the rDNA and IGS PCR is probably linked

to the DNA integrity in the sense that DNA is known to degrade

(fragment) over time in herbarium settings (Larsson & Jacobsson,

2004). The TR‐PCR approach, in contrast, requires long genomic

fragments with intact ribosomal tandem repeats. In the present

study, we used herbarium specimens, which are usually moderately

to fairly fragment depending on age of collection and storage condi-

tions, so the degree of fragmentation may have hindered the amplifi-

cation of the TR fragment, while the shorter rDNA and IGS PCRs

still worked. Although the accuracy of TR fragments (99.63%) is

slightly lower, it is still within the range of Sanger sequencing. A pol-

ishing step was not successful in increasing the overall quality

(Table 3). The reason could lie in the underlying alignment algorithm,

which may not have been optimized for long fragments with high

individual error rates. In summary, the concerted sequencing of

rDNA and IGS is a robust way to obtain the complete ribosomal

operon and its adjacent regions in terms of sequence quality and

amplification success (e.g., in cases of difficult DNA extractions and

lower template DNA integrity).

Long‐read sequencing offers the possibility to generate reference

data for fungi, potentially other eukaryotes, and bacteria at high read

quality. Given that our PacBio data are almost perfect (99.99% accu-

racy; Travers, Chin, Rank, Eid, & Turner, 2010), the average Nanopore

consensus quality of 99.85% is already as good as the average Sanger

quality of 99.78% (Nilsson et al., 2017) or for our data 99.73% (aver-

age of TR and rDNA results, Table 3). We argue, therefore, that the

use of Nanopore sequencing is justified. Our results are in line with

recently applied Nanopore‐driven CO1 barcoding for metazoa (Srivath-

san et al., 2018). In particular, Nanopore sequencing offers a cheap

method to generate full‐length ribosomal data independently of ampli-

con length and at excellent quality. It does not require additional

clean‐up steps, as may be necessary for PacBio (See Supporting Infor-

mation Appendix S4 for a direct comparison between PacBio and

Nanopore in terms of produced fragment lengths). We anticipate that

Nanopore sequencing will prove to be a valuable tool for small labora-

tories, culture collections, herbaria, fieldwork and single cell workflows

for the generation of high‐throughput reference data, potentially also

for mixed environmental samples (Calus, Ijaz, & Pinto, 2018; Karst

et al., 2018). The sequencing can be done in‐house within a couple of

days, significantly speeding up the generation of reference data and

rendering it suitable in the context of affordable high‐throughput solu-
tions (Srivathsan et al., 2018). Importantly, Nanopore sequencing does

not rely on sending DNA for sequencing at large‐scale facilities but is,

rather, amenable to analysis on a modern desktop computer.

Similar to mock communities in environmental samples (Heeger

et al., 2018), we consider it as absolutely crucial to spike in control

DNA in Nanopore‐driven studies. If no partial or complete reference

data are available, we recommend doing complementary ITS Sanger or

PacBio sequencing as an internal standard control. The generated data

should be deposited to sequence repositories just as carefully and as

richly annotated as in the case of Sanger sequences to avoid errors

derived from the experimental procedure (cf. Nilsson et al., 2017). The

sequencing error rate, determined through the use of known high‐
quality reference data, should always be included in the submission,

included either in the sequence header or as additional data.

In conclusion, we hope that this study lays out the first steps for

a new way of generating full‐length reference data for fungi. This

TABLE 3 Similarities of sequences compared to Sanger or PacBio sequences

PacBio data (vs.
Sanger ITS)

Nanopore data (vs.
Sanger ITS) Nanopore data (vs. PB amplicons)

Difference
(Nanopore vs.
PacBio)

D2‐chemistry
(vs. Sanger)

rDNA TR rDNA TR rDNA TR TRPolished rDNA TR rDNA

Average 99.68 99.78 99.20 99.52 99.85 99.63 99.63 0.15 0.37 99.4

Median 99.86 99.85 99.37 99.59 99.85 99.71 99.71 0.15 0.29 99.5

SD 0.45 0.19 0.60 0.38 0.05 0.20 0.20 0.05 0.20 0.40

Min. 98.31 99.37 98.09 98.5 99.7 99.16 99.19 0.30 0.84 98.73

Max. 100 100 100 100 99.91 99.83 99.85 0.09 0.17 99.85

n 45 19 17 24 17 18 18 n.a. n.a. 9

Note. rDNA refers to the amplicon produced by NS1short/RCA95m; TR refers to the amplicon produced by Fun‐rOP‐F/Fun‐rOP‐R; TRPolished refers to

the TR data, which were processed with Racon v 1.3.; Min. (minimum); Max. (maximum); SD (standard deviation); n.a. (not applicable).
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will enable mycologist to comprehensively fill up the taxonomic and

marker‐related gaps in the sequence databases in a straightforward

and cost‐efficient way. We found the adaptation to high‐throughput
data generation to be surprisingly easy and to require only an initial

investment in barcoded primers, as well as good sample and data

management. Our approach does place some demands on availability

of bioinformatics expertise, testifying to the multidisciplinary nature

of contemporary mycology.
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