
One and Two Bit Message Passing for SC-LDPC Codes with Higher-Order
Modulation

Downloaded from: https://research.chalmers.se, 2024-03-13 10:36 UTC

Citation for the original published paper (version of record):
Steiner, F., Ben Yacoub, E., Matuz, B. et al (2019). One and Two Bit Message Passing for SC-LDPC
Codes with Higher-Order Modulation. Journal of Lightwave Technology, 37(23): 5914-5925.
http://dx.doi.org/10.1109/JLT.2019.2943324

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



2

One and Two Bit Message Passing for SC-LDPC
Codes with Higher-Order Modulation
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Abstract—Low complexity decoding algorithms are necessary

to meet data rate requirements in excess of 1 Tbps. In this paper,

we study one and two bit message passing algorithms for belief

propagation decoding of low-density parity-check (LDPC) codes

and analyze them by density evolution. The variable nodes (VNs)

exploit soft information from the channel output. To decrease

the data flow, the messages exchanged between check nodes

(CNs) and VNs are represented by one or two bits. The newly

proposed quaternary message passing (QMP) algorithm is com-

pared asymptotically and in finite length simulations to binary

message passing (BMP) and ternary message passing (TMP) for

spectrally efficient communication with higher-order modulation

and probabilistic amplitude shaping (PAS). To showcase the

potential for high throughput forward error correction, spatially

coupled LDPC codes and a target spectral efficiency (SE) of

3 bits/QAM symbol are considered. Gains of about 0.7 dB and

0.1 dB are observed compared to BMP and TMP, respectively.

The gap to unquantized belief propagation (BP) decoding is

reduced to about 0.75 dB. For smaller code rates, the gain of

QMP compared to TMP is more pronounced and amounts to

0.24 dB in the considered example.

Index Terms—Quantized LDPC decoders, binary message

passing, ternary message passing, quaternary message passing,

higher-order modulation, probabilistic amplitude shaping

I. INTRODUCTION

O
PTICAL coherent transceivers with data rates of
400 Gbps are about to be installed in the field [1] and

research already considers 1 Tbps. These data rates require
sophisticated optical components, improved digital signal pro-
cessing algorithms, and forward error correction (FEC) solu-
tions that can cope with the high speed. While soft-decision
(SD) decoders are superior in terms of the net coding gain
(NCG), hard-decision (HD) decoders are appealing when low
power consumption and high throughputs are of paramount
importance. HD-FEC for optical communications is usually
based on product-like codes with Reed-Solomon (RS) or Bose-
Chaudhuri-Hocquenghem (BCH) component codes of high
rate, which can be efficiently decoded via bounded distance
decoding (BDD) (e.g., based on the syndrome). Spatially
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coupled HD-FEC constructions, such as staircase codes [2]
or braided codes [3] achieve additional gains.

Recently, hybrid approaches based on concatenating an
inner SD-FEC and an outer HD-FEC have received atten-
tion [4], [5]. These ideas have found their way into standards:
the optical internet working forum established the 400G ZR
standard, a specification to transmit at 400 Gbps over data
center interconnect links up to 100 km, and agreed on an FEC
solution consisting of an inner Hamming code and an outer
staircase code, where the inner code decoder is SD and the
outer code decoder is HD, with a total of 14.8% overhead and
a NCG of 10.8 dB.

To exploit the soft-information from the channel, while
still only exchanging binary messages during the iterations
of BDD, the authors of [6] weight the HD output of the com-
ponent decoders and recombine it with the soft-information
from the channel, after which another HD is made. Similar
approaches were also considered in [7], [8], where soft infor-
mation from the channel is used to exploit particularly reliable
and unreliable bits to improve the miscorrection-detection
capability of the BDD decoder.

In [9], the authors present a one-bit binary message passing
(BMP) algorithm for low-density parity-check (LDPC) codes.
In particular, the variable node (VN) processor combines the
soft channel message with scaled binary messages from the
check nodes (CNs), followed by a HD step. The idea of
passing binary messages dates back to the seminal work of
Gallager [10], where he presented algorithms that are now
called Gallager A and Gallager B.

The internal decoder data flow F , defined as the number
of bits that are processed in each belief propagation (BP)
iteration, is given by

F =
2 · kc · q · d̄v

Rc
= 2 · nc · q · d̄v (1)

where kc is the number of information bits, q is the number
of bits used to represent a message, Rc is the FEC code rate
and d̄v is average VN degree. Observe that nc = kc/Rc is the
number of coded bits. Thus, a BMP decoder (q = 1) allows to
reduce the data flow F by a factor of q compared to a decoder
using q bits to represent messages. It hereby alleviates the
routing congestion problem from which many high throughput,
parallel LDPC decoder architectures suffer [11].

The work in [12] considers an extension of the BMP
algorithm to ternary messages. The third message is an erasure
that denotes complete uncertainty about the respective bit
value. The algorithm, dubbed ternary message passing (TMP)
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decoding, closely resembles algorithm E from [13], except that
it exploits soft-information at the VNs.

These works study decoding for the binary symmetric
channel (BSC) or the additive white Gaussian noise (AWGN)
channel with binary phase shift keying (BPSK). For coherent,
spectrally efficient optical communication, higher modulation
formats are required and a dedicated code design should
take the modulation into account. This is particularly true
for probabilistic amplitude shaping (PAS) [14], [15], a coded
modulation technique that uses a non-uniform distribution for
the constellation points to operate close to the Shannon limit
and allows flexible in rate adaptation.

The main contributions of this paper are as follows:
• We introduce a quaternary message passing (QMP) de-

coding algorithm as an extension of BMP and TMP.
QMP improves the decoding performance for the con-
sidered examples by up 0.24 dB compared to TMP for
the same quantization resolution. The gain is particularly
pronounced for low FEC code rates.

• We complement the QMP decoding algorithm by deriving
its density evolution (DE) to compute iterative decoding
thresholds and obtain the optimal weighting factors re-
quired in the decoding algorithm.

• We adapt BMP, TMP, and QMP for higher-order modu-
lation and PAS targeting high-throughput decoding with
spectrally efficient signaling and performance close to
the Shannon limit by generalizing the DE formulations
to take the different bit-metric decoding (BMD) bit
channels into account. Previous work only considered
BPSK modulation. We also derive a simplified surrogate
channel approach for the initialization of DE for BMD
with higher-order modulation.

• We use BMP, TMP, and QMP for spatially coupled low-
density parity-check (SC-LDPC) codes and analyze their
decoding performance in the finite length regime. The
results show that an asymptotic design of the weights
via DE also yields very good performance at finite
blocklength.

This paper is organized as follows. In Sec. II, we introduce
the system model, explain the principles of PAS and review
protograph-based SC-LDPC codes. The one bit (BMP) and
two bit (TMP, QMP) message passing decoding approaches
are described in Sec. III. We develop DE for the three
algorithms and higher-order modulation with PAS in Sec. IV.
In Sec. V, we present finite length simulation results and
compare them to the asymptotic DE predictions. We conclude
in Sec. VI.

II. PRELIMINARIES

A. Notation

We refer to the set of natural numbers as N; if zero is
included, the set is denoted as N0. The set of real numbers
is R, the set of positive real numbers is R+ and the set
of non-negative real numbers is R+

0 . Other sets are denoted
by calligraphic letters such as A. In general, vectors are
written in bold font and are assumed to be row vectors, i.e.,
x = (x1, x2, . . . , xn). We denote random variables (RVs) with

upper case letters, e.g., X , and their realizations with lower
case letters, e.g., x. A discrete RV X has distribution PX on
a discrete set X , e.g., for x 2 X , PX(x) = Pr{X = x}. A
continuous RV X takes real values and has density pX , e.g.,R x
�1 pX(⌧) d⌧ = Pr{X  x}. The expectation of a RV X is

denoted by E [X]. Furthermore, H(X), H(X|Y ), and I(X;Y ),
denote the entropy of the RV X , the conditional entropy of
the RV X given the RV Y and the mutual information of X
and Y , respectively.

B. System Model

Previous works have shown that a discrete time AWGN
channel can be considered as an accurate model for dispersion-
uncompensated, long-haul optical links [16], where the noise
contribution is dominated by amplified spontaneous emission
noise from the erbium doped fiber amplifier. A transmitted
modulation symbol Xi is subject to Gaussian noise Ni with
zero mean and variance �2, and the received samples are

Yi = Xi +Ni, i = 1, . . . , n. (2)

For ease of notation we drop the subscript i whenever possible
and we describe the signaling for one real dimension only, i.e.,
the channel inputs are from an M -ary amplitude shift keying
(ASK) set X = {±1,±3, . . . ,±(M � 1)}, where M is even.
The extension to a two-dimensional M2-quadrature amplitude
modulation (QAM) constellation is straightforward: it can be
obtained by the Cartesian product of two real-valued ASK
constellations. A four-dimensional dual polarized QAM (DP-
QAM) constellation can be obtained as the Cartesian product
of two QAM constellations and equivalently, as the Cartesian
product of four ASK constellations. The signal-to-noise ratio
(SNR) is defined as SNR = E

⇥
X2
⇤
/�2.

To use binary FEC codes with higher order modulation
formats, we introduce a binary interface for the transmitted
constellation points. We define the binary labeling � : X !
{0, 1}m that assigns an m-bit binary label b to each constel-
lation point x, i.e., b = �(x). For BMD the decoder uses this
binary label to calculate a metric for each bit without taking
their stochastic dependence into account.

C. Signaling and Achievable Rates

The maximum rate at which reliable transmission over an
AWGN channel is possible is the Shannon capacity [17]. It is
achieved when the channel inputs are Gaussian distributed. A
uniform distribution on the constellation symbols in X entails
a loss in power efficiency compared to Gaussian signaling. The
use of non-uniform probabilities is called probabilistic shaping
(PS). Traditionally, the combination of PS and FEC was
considered difficult (e.g., see [18, Sec. 6.2], [19]). Recently, the
invention of PAS [14] allowed an easy integration of PS with
FEC. PAS concatenates a shaping outer code called a distribu-
tion matcher (DM) [20] and an FEC inner code. This “reverse
concatenation” was originally proposed for constrained coding
in [21], [22]. The PAS architecture has three properties that
distinguishes it from other PS schemes. First, it integrates
shaping with existing FEC, second, it achieves the Shannon
limit [23, Sec. 10.3], [24], and third, it allows rate adaptation



4

by changing the probability distribution, while leaving the FEC
unchanged.

The DM [20] realizes the non-uniform distribution. It takes
kdm uniformly distributed input bits and maps them to a length-
n sequence of symbols with the empirical distribution PA. For
PAS, the DM output set is A and the DM rate is

Rdm = kdm/n. (3)

The transmission rate Rtx of PAS is [14]

Rtx = Rdm +1� (1�Rc) ·m [bpcu (bits/channel use)] (4)

where Rc is the code rate of the FEC code.
An achievable rate for BMD with SD is given by [15]

RBMD(SNR) =

"
H(B)�

mX

k=1

H(Bk|Y )

#+
[bpcu] (5)

where [·]+ = max(0, ·). We introduce R�1
BMD(·) as the inverse

function. Its relation to other SD FEC metrics, e.g., the
normalized generalized mutual information (NGMI) [25] is
explained in [15].

PAS uses the BMD soft-information

lk(y) , log
PBk|Y (0|y)
PBk|Y (1|y)

, k = 1, . . . ,m (6)

as decoder input, where PBk|Y (b|y) is the probability that the
k-th bit level of a constellation symbol is equal to b for a given
y. We have

PBk|Y (b|y) /
X

x2X b
k

pY |X(y|x)PX(x) (7)

and X b
k , {x 2 X : [�(x)]k = b}. The notation [b]k refers to

the k-th component of the vector b.

D. Protograph-Based Low-Density Parity-Check Codes

Binary LDPC codes are binary linear block codes defined by
an mc⇥nc sparse parity-check matrix H . The code dimension
is kc � nc � mc. The Tanner graph of an LDPC code is a
bipartite graph G = (V [ C, E) consisting of nc VNs and mc
CNs. The set E of edges contains the element eij , where eij

is an edge between VN vj 2 V and CN ci 2 C. Note that
eij belongs to the set E if and only if the parity-check matrix
element hij (entry in the i-th row and j-th column of H) is
equal to 1. The sets N (vj) and N (ci) denote the neighbors
of VN vj and CN ci, respectively. The degree of a VN vj

is denoted by dvj and it is the cardinality of the set N (vj).
Similarly, the degree of a CN ci is denoted by dci and it is
the cardinality of the set N (ci).

For practical purposes, it is beneficial to impose structure on
an LDPC code ensemble. Examples of structured LDPC code
ensembles are multi-edge type (MET) [26] and protograph-
based ensembles [27], [28]. Protograph-based ensembles are
defined via a (typically small) base matrix B of dimension
mp ⇥ np and elements in N0. A base matrix may also be
represented as a bipartite graph, called a protograph. However,
since the elements of the base matrix are not strictly binary,
parallel edges are allowed and their numbers correspond to

the respective entries in the base matrix. The Tanner graph
of an LDPC code can be obtained by lifting a protograph:
through copy-and-permute operations a number of copies of
the protograph is generated and their edges are permuted such
that connectivity constraints imposed by the base matrix are
maintained [27]. A protograph-based LDPC code ensemble
CB
nc

is defined by the set of all length-nc LDPC codes whose
Tanner graph is obtained by lifting B by a factor of Q such
that nc = Q · np.1 To distinguish the VNs and CNs in the
protograph from those in the lifted parity-check matrix, we
introduce the protograph VN set Vp = {V1, V2, . . . , Vnp} and
CN set Cp = {C1, C2, . . . , Cmp}. Every protograph VN (CN)
identifies a VN (CN) type. We use the wording “a type Vi

VN” to identify a VN in the lifted Tanner graph of type Vi.
We also use the convention that a VN vj in the Tanner graph
is of type Vi if dj/Qe = i, i.e., consecutive blocks of Q VNs
are associated to a given type. The same applies to CNs.

E. Protograph-Based Spatially Coupled LDPC Codes

Consider an SC-LDPC code with a right-unterminated
parity-check matrix [29]

H =

0

BBBBBBBBBBBBB@

H0(0)

H1(0) H0(1)

... H1(1) H0(2)

Hµ(0)
... H1(2)

Hµ(1)
...

. . .

Hµ(2)
. . .
. . .

1

CCCCCCCCCCCCCA

. (8)

In (8), µ denotes the syndrome former memory of the
SC-LDPC code. The index in brackets denotes the spatial

position. If the matrices Hi(s), i 2 {0, . . . , µ}, are the same
for all spatial positions s 2 {0, . . . , S�1}, the SC-LDPC code
is called time-invariant and the index s can be dropped. The
dimension of the matrices Hi(s) is mSC

c ⇥ nSC
c .

Because of the diagonal structure of H , a CN is connected
to at most (µ+1)nSC

c VNs. This allows using a window decod-
ing approach [30] that reduces latency, increases throughput,
and makes SC-LDPC codes particularly interesting for optical
communications [29].

SC-LDPC codes are known to exhibit a phenomenon known
as threshold saturation [31] that allows to approach the bit-
wise maximum a-posteriori (MAP) decoding threshold of the
underlying block code with (unquantized) BP decoding.

SC-LDPC codes can be constructed from protographs and

1In this work, we do not consider LDPC codes with state (i.e., punctured)
VNs.
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have the structure

B =

0

BBBBBBBBBBBBB@

B0

B1 B0
... B1 B0

Bµ

... B1

Bµ

...
. . .

Bµ
. . .
. . .

1

CCCCCCCCCCCCCA

. (9)

The protograph in (9) is then lifted by a factor of Q to
obtain the final parity-check matrix H .

For practical operation, the SC-LDPC code is commonly
terminated after a number of S spatial positions. Due to this
termination, a rate loss occurs that vanishes for large S. The
resulting code rate is

Rc = 1� µ+ S

S

mSC
p

nSC
p

= 1�
⇣
1 +

µ

S

⌘ mSC
p

nSC
p

(10)

where the base matrices B0, . . . ,Bµ have dimensions mSC
p ⇥

nSC
p . The overall size of the matrix B is mP ⇥ nP = (µ +

S)mSC
P ⇥ nSC

P .

III. DECODING ALGORITHMS FOR ONE AND TWO BIT
MESSAGE PASSING

In this section, we first review the BMP and TMP decoding
algorithms introduced in [9] and [12, Sec. III-A]. In Sec. III-B,
we then present a new decoding algorithm that takes full
advantage of 2-bit messages, which we dub QMP.

For the described algorithms, we denote by m(`)
c!v the

message sent from CN c to its neighboring VN v at the `-
th iteration. Similarly, m(`)

v!c is the message sent from VN v

to CN c. The soft information at the input of the decoder for
the j-th coded bit is denoted by ldec,j and calculated according
to (6).

A. Binary and Ternary Message Passing

For BMP, the exchanged messages are binary, i.e.,
m(`)

v!c,m
(`)
c!v 2 MBMP , {�1,+1}. For TMP, the exchanged

messages are ternary and we have m(`)
v!v,m

(`)
c!v 2 MTMP ,

{�1, 0,+1}. A message value of zero indicates complete
uncertainty about the respective bit.

In every decoding iteration, each VN and CN computes
extrinsic messages that are forwarded to the neighboring
nodes. Specifically, the message from VN v to CN c is
obtained by combining the channel soft-information ldec with a
weighted version of all other incoming CN messages. Finally,
a quantization function f : R ! M is applied to turn the
result into binary and ternary messages for BMP and TMP,
respectively. The weighting factors w(`)

ij are real valued and
depend on the current iteration number. They can be obtained
from the DE analysis as shown in Sec. IV. The quantization
function is

 (x) =

(
+1, x > 0

�1, x  0
(11)

Algorithm 1 BMP and TMP decoding.

Set m(0)
vj!ci = ldec,i, 8j = 1, . . . , nc, 8ci 2 N (vj).

` = 0

while `  `max do

// CN update
for i = 1, . . . ,mc do

for vj 2 N (ci) do

m(`)
Ci!Vj

=
Q

vj02N (ci)\{vj}
m(`�1)

vj0!ci

end for

end for

// VN update
for i = j, . . . , nc do

for ci 2 N (vj) do

m(`)
vj!ci =  

 
ldec,j +

P
ci02N (vj)\{ci}

w(`)
i0jm

(`)
ci0!vj

!

end for

end for

` = `+ 1

end while

// Final codeword bit estimate
for i = j, . . . , nc do

ĉj =
1
2 � 1

2 sign

 
ldec,j +

P
ci2N (vj)

w(`max)
ij m(`max)

ci!vj

!

end for

for BMP and

 (x) =

8
><

>:

+1, x > T

0, �T  x  T

�1, x < �T

(12)

for TMP. The equality signs in (11) and (12) are chosen such
that any ties are broken. Note that the threshold parameter
T 2 R+

0 in (12) depends on the SNR and needs to be chosen
for each signaling mode and iteration individually to minimize
the decoding threshold. However, numerical studies reveal that
a single value that is kept constant over the iterations entails
almost no loss in performance. Therefore, we resort to this
setting in the following.

For the CN to VN update, a CN sends the product of
incoming messages from the other neighboring VNs. In the
last iteration `max, the a-posteriori estimate of each codeword
bit is calculated by taking a hard decision on the combined
soft-information from all CN neighbors and the channel.
The algorithmic procedure for BMP and TMP decoding is
summarized in Algorithm 1. The weighting factors w(`)

ij have
been derived as part of the DE for BMP and TMP in [12].

B. Quaternary Message Passing

The TMP algorithm of Sec. III-A requires two bits per
exchanged message. We now introduce a QMP decoding
algorithm that requires the same number of bits per exchanged
message, but allows a more granular quantization of the
associated reliability soft-information.

The key idea of QMP is to distinguish between low and high
reliability messages. The VN to CN and CN to VN messages,
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Algorithm 2 QMP decoding.

Set m(0)
vj!ci = ldec,j , 8j = 1, . . . , nc, 8ci 2 N (vj).

` = 0

while `  `max do

// CN update
for i = 1, . . . ,mc do

for j 2 N (ci) do

m(`)
ci!vj

= min
vj02N (ci)\{vj}

|m(`�1)
vj0!ci

|·
Y

vj02N (ci)\{vj}

sign

⇣
m(`�1)

vj0!ci

⌘

end for

end for

// VN update
for j = 1, . . . , nc do

for i 2 N (vj) do

l(`)av =
P

ci02N (vj)\{ci}
sign(m(`)

ci0!vj )w
(`)

i0j,|m(`)
ci0!vj

|

m(`)
vj!ci = f

⇣
ldec,j + l(`)av

⌘

end for

end for

` = `+ 1

end while

// Final codeword bit estimate
for i = 1, . . . , nc do

lin =
P

ci2N (vj)

sign(m(`max)
ci!vj )w

(`max)

ij,|m(`)
ci!vj

|

ĉj =
1
2 � 1

2 sign (ldec,i + lin)
end for

m(`)
v!c and m(`)

c!v, respectively, take values in the quaternary
alphabet MQMP , {�H,�L,+L,+H} and L and H correspond
to messages with low and high reliability, respectively. The
quantization function is

 (x) =

8
>>><

>>>:

�H x  �T

�L �T < x < 0

+L 0  x < T

+H x � T.

(13)

The QMP decoding algorithm is summarized in Algo-
rithm 2. At the CNs, a min-sum decoding rule is employed. At
the VNs, the incoming messages are weighted and combined
with the channel soft-information. In contrast to BMP and
TMP, two sets of weighting factors are needed for QMP
depending on the magnitude of the received message. The
weights w(`)

ij,L are used for messages with low reliability (i.e.,
mc!v 2 {�L,+L}), whereas w(`)

ij,H are used for messages with
high reliability (i.e., mc!v 2 {�H,+H}).

IV. DENSITY EVOLUTION ANALYSIS FOR QMP

In the following, we describe DE for QMP and protograph-
based LDPC code ensembles. The purpose of DE is twofold.
First, it provides asymptotic decoding thresholds of the con-
sidered ensembles. Second, it allows to compute the optimal
weighting factors for the VN update that are needed for the

decoding algorithm (optimal in an asymptotic sense, i.e., for
infinitely long block length and lifting factor).

A. Symmetry

DE analysis for binary LDPC codes [13] assumes that the
channel message and the extrinsic decoder messages fulfill the
symmetry constraint

pL|B(l|0) = pL|B(�l|1) (14)

where the RV L denotes the soft-information calculated from
the channel output. In this case, one can assume that the
all-zero codeword is transmitted and track the probability of
decoding failure over the iterations. As pointed out in [32], for
BMD with higher-order modulation, the bit channels pLj |Bj

are generally not symmetric2, where the RV Lk is defined as
(cf. (6))

Lk , log
PBk|Y (0|Y )

PBk|Y (1|Y )
, k = 1, . . . ,m. (15)

However, we can use channel adapters as outlined in [32], to
introduce symmetrized counterparts. This can be accomplished
by using a pseudo-random, binary scrambling sequence at both
the transmitter and receiver, which modifies (15) as

L̃k = Lk · (1� 2Bk). (16)

The resulting bit-channels pL̃k|Bk
are symmetric, i.e., we have

pL̃k|Bk
(l|0) = pL̃k|Bk

(�l|1). (17)

B. Initialization of Density Evolution for Different Bit Chan-

nels

We associate with each VN type a bit level. Let �(j) be
the bit level on which the VNs of type Vj are mapped and
let V(k)

p be the subset of protograph VNs that are mapped to
the k-th bit level. We assume that the number np of VNs in
the protograph is an integer multiple of m, such that each bit
level is assigned to the same number of VNs.

Let p(`)m (i, j) be the probability that the message sent from
Vj to Ci at the `-th iteration on one of the bij edges connecting
Vj to Ci is equal to m 2 {�H,�L,+L}. To initialize DE, we
calculate the initial message probabilities as

p(0)�H
(i, j) =

Z �T

�1
pL̃�(j)|B�(j)

(l|0) dl (18)

p(0)�L
(i, j) =

Z 0

�T
pL̃�(j)|B�(j)

(l|0) dl (19)

p(0)+L
(i, j) =

Z T

0
pL̃�(j)|B�(j)

(l|0) dl. (20)

The integrals in (18)–(20) do not allow a closed form
solution, but can be calculated by means of Monte Carlo
simulations or transformations of RVs. Note that the above
calculations need to be performed only once.

In Fig. 1, we show the cumulative distribution functions
(CDFs) Pr{L̃k  l} for 8-ASK (k = 1, . . . , 3) with uniform

2Symmetry depends on the chosen labeling function � and the input
distribution PX .
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and PS signaling obtained via Monte Carlo simulations. The
CDFs can be used to calculate (18)–(20) as

p(0)�H
(i, j) = Pr{L̃�(j)  �T}, (21)

p(0)�L
(i, j) = Pr{L̃�(j)  0}� Pr{L̃�(j)  �T}, (22)

p(0)+L
(i, j) = Pr{L̃�(j)  T}� Pr{L̃�(j)  0}. (23)

C. Density Evolution for QMP

Similarly to before, let q(`)m (i, j) denote the probability that
the message sent from Ci to Vj at the `-th iteration is equal to
m 2 MQMP.

1) Initialization. For j = 1, 2, . . . , np and i = 1, 2, . . . ,mp

with bij 6= 0, compute p(0)�H
(i, j), p(0)�L

(i, j) and p(0)+L
(i, j)

according to (18), (19) and (20).
2) For ` = 1, 2, . . . , `max repeat the following three update

steps

Check to variable update. For j = 1, 2, . . . , np and
i = 1, 2, . . . ,mp, if bij 6= 0 then compute

q
(`)
�H

(i, j) =
1

2

2

4
Y

bis 6=0

⇣
1� p

(`�1)
�L

(i, s)� p
(`�1)
+L

(i, s)
⌘bis��sj

�
Y

bis 6=0

⇣
1� 2p

(`�1)
�H

(i, s)� p
(`�1)
�L

(i, s)� p
(`�1)
+L

(i, s)
⌘bis��sj

3

5

(24)

q
(`)
�L

(i, j) =
1

2

2

41�
Y

bis 6=0

⇣
1� p

(`�1)
�L

(i, s)� p
(`�1)
+L

(i, s)
⌘bis��sj

�
Y

bis 6=0

⇣
1� 2p

(`�1)
�H

(i, s)� 2p
(`�1)
�L

(i, s)
⌘bis��sj

+

Y

bis 6=0

⇣
1� 2p

(`�1)
�H

(i, s)� p
(`�1)
�L

(i, s)� p
(`�1)
+L

(i, s)
⌘bis��sj

3

5

(25)

q
(`)
+L

(i, j) =
1

2

2

41�
Y

bis 6=0

⇣
1� p

(`�1)
�L

(i, s)� p
(`�1)
+L

(i, s)
⌘bis��sj

+

Y

bis 6=0

⇣
1� 2p

(`�1)
�H

(i, s)� 2p
(`�1)
�L

(i, s)
⌘bis��sj

�
Y

bis 6=0

⇣
1� 2p

(`�1)
�H

(i, s)� p
(`�1)
�L

(i, s)� p
(`�1)
+L

(i, s)
⌘bis��sj

3

5 .

(26)

Variable to check update. For j = 1, 2, . . . , np and
i = 1, 2, . . . ,mp, if bij 6= 0, compute

p(`)�H
(i, j) =

X

z

Pr

n
L(`)

av = z
o
Pr{L̃�(j)  �T � z}

(27)

p(`)�L
(i, j) =

X

z

Pr

n
L(`)

av = z
o
Pr{T � z < L̃�(j) < �z}

(28)

p(`)+L
(i, j) =

X

z

Pr

n
L(`)

av = z
o
Pr{�z  L̃�(j) < T � z}

(29)

where L(`)
av is a RV representing the sum of the log-

likelihood ratios (LLRs) of the dvj � 1 CN messages at
the input of Vj at the `-th iteration. We have

Pr

n
L(`)

av = z
o
=

X

u,v,t

Y

bsj 6=0

� bsj��si
us,vs,ts,bsj��si�us�vs�ts

�
·

q(`)�H
(s, j)usq(`)�L

(s, j)vsq(`)+L
(s, j)ts ·

⇣
1� q(`)�H

(s, j)� q(`)�L
(s, j)� q(`)+L

(s, j)
⌘bsj��si�us�vs�ts

(30)
where the outer sum is over all integer vector triplets
u,v and w for which

mpX

e=1

h
w(`)

ej,L(te � ve)+

w(`)
ej,H(bej � �ei � 2ue � ve � te)

i
= z

(31)

with

w(`)
ej,L = ln

 
q(`)+L

(e, j)

q(`)�L
(e, j)

!
(32)

and

w(`)
ej,H = ln

 
1� q(`)�H

(e, j)� q(`)�L
(e, j)� q(`)+L

(e, j)

q(`)�H
(e, j)

!
.

(33)
Specifically, the entries us, vs, and ts represent the
number of messages �H, �L and +L, respectively, that
Cs sends to Vj on bsj��si of the bsj edges connecting Cs

to Vj . Thus, for s = 1, 2, . . . ,mp we have 0  us, vs, ts
and us + vs + ts  bsj � �si.

A-posteriori update. For j = 1, 2, . . . , np, compute

P (`)
app (j) =

X

z

Pr

n
L(`)

in = z
o
Pr

n
L̃�(j)  �z

o
(34)

where L(`)
in is a RV representing the sum of the LLRs

of all incoming dvj CN messages at the input of Vj at
the `-th iteration. We have

Pr

n
L(`)

in = z
o
=

X

u,v,t

Y

bsj 6=0

� bsj
us,vs,ts,bsj�us�vs�ts

�
·

q(`)�H
(s, j)usq(`)�L

(s, j)vsq(`)+L
(s, j)ts ·

⇣
1� q(`)�H

(s, j)� q(`)�L
(s, j)� q(`)+L

(s, j)
⌘bsj�us�vs�ts

(35)
where the outer sum is over all integer vector triplets
u,v and t for which
mpX

e=1

h
w(`)

ej,L(te � ve) + w(`)
ej,H(bej � 2ue � ve � te)

i
= z

(36)
where w(`)

ej,L and w(`)
ej,H are given in (32) and (33). The

vector elements us, vs, and ts represent the number of
messages �H, �L and +L, respectively, that Cs sends
to Vj on the bsj edges connecting Cs to Vj . Thus, for
s = 1, 2, . . . ,mp we have 0  us, vs, ts and us + vs +
ts  bsj .
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Fig. 1. Comparison of CDF plots for 8-ASK with uniform and PS signaling. Both scenarios are for SNR = 9dB. PS signaling uses an MB distribution with
entropy H(X) = 2.25 bits. The dashed lines in the insets denote the CDFs obtained via the surrogate approach.

Remark 1. With a slight abuse of notation, the weighting
factors for QMP in Algorithm 2 are calculated from those
derived in this section as

w(`)
ij,H , w(`)

di/Qedj/Qe,H (37)

w(`)
ij,L , w(`)

di/Qedj/Qe,L (38)

for i = 1, . . . ,mc and j = 1, . . . , nc.

Remark 2. Practical decoder implementations may also quan-
tize the weighting factors or share the same weighting factors
for several iterations. Similar decoding approaches for product
codes [6] suggest only minimal performance degradation in
this case [33].

D. Surrogate Channel Approach for the Density Evolution

Initialization

As an alternative to Monte Carlo simulations, we may
resort to a surrogate channel approach [34], [35], [36] to ap-
proximate the required input probabilities (18)–(20). For this,
the bit-channels pL̃k|Bk

are replaced by “equivalent” AWGN
channels with uniform binary inputs for which the derivation
of the CDFs is easier. We establish their “equivalence”3 by
requiring that that the channel and its surrogate have the same
channel uncertainty. Let the surrogate be Y̆k = X̆k + N̆k with
X̆k 2 {�1,+1} and N̆k ⇠ N (0, �̆2

k) for k = 1, . . . ,m.
We calculate for each SNR the set of equivalent channel
parameters

�̆2
k : H(B̆k|Y̆ ) = H(Bk|Y ), k = 1, . . . ,m. (39)

3The term “equivalence” does not convey any strict information theoretic
meaning in this context. Rather, this term refers to the observation that both
types of threshold evaluations yield similar results numerically.

For QMP we obtain the expressions

p(0)�H
(i, j) = Q

✓
T + µch,�(j)

�ch,�(j)

◆
(40)

p(0)�L
(i, j) = Q

✓
µch,�(j)

�ch,�(j)

◆
�Q

✓
T + µch,�(j)

�ch,�(j)

◆
(41)

p(0)+L
(i, j) = Q

✓�T + µch,�(j)

�ch,�(j)

◆
�Q

✓
µch,�(j)

�ch,�(j)

◆
(42)

where µch,k = 2/�̆2
k, �2

ch,k = 4/�̆2
k, and Q(·) is the standard

normal Gaussian tail probability, i.e.,

Q(x) =

Z 1

x
(1/

p
2⇡) exp(�⌧2/2) d⌧. (43)

In Fig. 1, we show the approximations of the true CDFs by
the surrogate approach (dashed lines). A close match of the
true CDFs and their approximations is observed.

E. Density Evolution of Window Decoding for Spatially Cou-

pled Low-Density Parity-Check Codes

We follow the approach of [37] to determine the decoding
threshold of protograph-based SC-LDPC code ensembles for
window decoding. For this, we apply the DE analysis of
Sec. IV for the respective decoding algorithm on a protograph
matrix B[1:W,1:W ] that has been derived from (9) for a given
decoding window size of W with µ + 1  W  L. The
notation B[1:W,1:W ] denotes the block matrix of size W ⇥W
that is formed from the first W block rows and W block
columns of B. For instance, for µ = 2 and W = 4 we have

B[1:4,1:4] =

0

BB@

B0 0 0 0
B1 B0 0 0
B2 B1 B0 0
0 B2 B1 B0

1

CCA . (44)

Convergence of the window decoder is declared when
the probability of decoding error for the VNs in the first
block column is (approximately) zero. The respective decoding
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TABLE I
OPERATING MODES AND THEIR SHANNON LIMITS FOR SE = 1.5 BPCU.

Mode Rtx [bpcu] R�1
BMD(Rtx) [dB]

4U-0.50 1.0 5.2803
4U-0.75 1.5 9.3084
8PS-0.67 1.5 8.5334
8PS-0.83 1.5 8.5606

threshold is referred to SNRBMP
th for BMP, SNRTMP

th for TMP,
and SNRQMP

th for QMP, respectively.

V. NUMERICAL RESULTS

We investigate the following signaling modes. The first one
operates at 1.0 bpcu, whereas the others operate at a spectral
efficiency (SE) of 1.5 bpcu:

1) 4U-0.50: 4-ASK uniform with Rc = 0.50;
2) 4U-0.75: 4-ASK uniform with Rc = 0.75;
3) 8PS-0.67: 8-ASK PAS with Rc = 0.67;
4) 8PS-0.83: 8-ASK PAS with Rc = 0.83.

The required SNRs to operate at this SE are summarized in
Table I.

As FEC codes, we consider (asymptotically) regular,
protograph-based SC-LDPC codes with VN degrees dv = 4

and dv = 6, and design code rates Rc 2 {2/3, 3/4, 5/6}.
The submatrices Bi in (9) are given by

Bi = (1 1 . . . 1)| {z }
dc

, i = 0, . . . , µ, (45)

where µ = dv � 1. The corresponding right-unterminated
ensembles are referred to via their base matrices as B

dv,dc .

A. Asymptotic Decoding Thresholds

The decoding thresholds in Tables V-A, III and IV were
obtained for window decoding and a window size of W = 15

spatial positions, using the procedure presented in Sec. IV-E.
We use T = 1.3 as a threshold parameter for BMP, TMP, and
QMP in all numerical evaluations. A maximum number of
1000 iterations per window are performed. These parameters
were chosen to depict the absolute performance limits. Increas-
ing the window size did not further affect the numerical results.
We conclude that the performance of a block-based decoder
is similar. For uniform signaling, We use a consecutive bit
mapping of the BMD bit channel to each protograph VN, i.e.,
for 2m-ASK we have

V(1)
p = {V1, V1+m, V1+2m, . . . , VnP�(m�1)} (46)

...

V(m)
p = {Vm, V2m, V3m, . . . , VnP}. (47)

For PAS, we have to take into account that bit-level one
(representing the sign of the constellation points [14]) is

TABLE II
DECODING THRESHOLDS IN dB FOR 4-ASK UNIFORM AND AN SE OF

1.0 BPCU.

B SNRfull
th SNRBMP

th SNRTMP
th SNRQMP

th

B4,8 5.36 7.75 6.50 6.26

TABLE III
DECODING THRESHOLDS IN dB FOR 4-ASK UNIFORM AND AN SE OF

1.5 BPCU.

B SNRfull
th SNRBMP

th SNRTMP
th SNRQMP

th

B4,16 9.41 10.89 10.11 10.00
B6,24 9.34 10.72 10.0 9.88

mainly formed by parity bits and has to be placed accordingly.
We choose

V(1)
p = {V(np/m)·(m�1)+1, V(np/m)·(m�1)+2, . . . , VnP} (48)

V(2)
p = {V1, Vm, V2m�1, . . . , V(nP/m�1)·(m�1)+1} (49)

...

V(m)
p = {Vm�1, V2(m�1), V3(m�1), . . . , V(np/m)·(m�1)}. (50)

These mappings are repeated for each spatial position.
The decoding threshold for full BP decoding is obtained

via discretized DE [38] with 8-bit quantization and a dynamic
range of the soft-information of [�16,+16]. Increasing the
resolution had no further effect. The DM rate for the PS modes
was chosen according to (4) and the output symbols have an
MB distribution [39] with corresponding entropy.

As expected from [31], we see in Tables V-A–IV that
the regular ensembles under full BP decoding are able to
come close (within a few hundreds of a dB) to the theoretic
Shannon limits for the specific signaling modes. In previous
works [9], [12], the authors observed that quantized message
passing decoders have a smaller gap to the achievable rate
limit for high FEC code rates codes. This is also reflected in
the following results.

While BMP, TMP, and QMP have gaps of 2.39 dB, 1.14 dB,
and 0.9 dB to the unquantized BP threshold for 4U-0.50 (i.e.,
for Rc = 1/2), the gaps are only 1.48 dB, 0.70 dB, and 0.59 dB
for 4U-0.75 (i.e., for Rc = 3/4). The gain of TMP over BMP,
i.e., using two bits instead of one, is significant and ranges
from 0.7 dB to 1.25 dB depending on the signaling mode and
code ensemble. The gain of QMP over TMP is particularly
pronounced for low code rates (0.24 dB for 4U-0.50) and
decreases for higher code rates to about 0.1 dB. We note that
these gains can be obtained at no increase of the data flow.
This observation has a particular implication for PAS, where
the same transmission rate can be obtained with different
FEC code rates by adjusting the signaling distribution: Going
from a rate 2/3 to rate 5/6 code (B4,12 vs. B4,24) decreases
the decoding threshold by 0.75 dB (BMP), 0.35 dB (TMP)
and 0.27 dB (QMP). This is in contrast to full BP, where
the decoding threshold even slightly deteriorates. Uniform
signaling does not allow this flexibility, as the constellation
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TABLE IV
DECODING THRESHOLDS IN dB FOR 8-ASK PS AND AN SE OF 1.5 BPCU.

B SNRfull
th SNRBMP

th SNRTMP
th SNRQMP

th

B4,12 8.65 10.81 9.68 9.50
B4,24 8.67 10.06 9.33 9.23
B6,18 8.57 10.62 9.55 9.37
B6,36 8.59 9.88 9.21 9.10

TABLE V
DECODING THRESHOLDS IN dB VIA SURROGATES OF SELECTED

ENSEMBLES OF TABLE III AND TABLE IV.

B SNRBMP
th SNRTMP

th SNRQMP
th

B4,16 10.89 10.11 10.0
B4,12 10.81 9.68 9.50

order and FEC code rate directly determine the transmission
rate.

In Table V we show the thresholds for the B
4,16 (uniform)

and B
4,16 (PS) ensembles obtained via the surrogate approach

of Sec. IV-B. We observe that the decoding thresholds numer-
ically coincide.

B. Finite Length Simulations

We validate our asymptotic findings by finite length simula-
tions with a block-based decoder for the 4U-0.75 and 8PS-0.83
signaling modes in Fig. 2. We use terminated SC-LDPC codes
with S = 50 spatial positions and an overall blocklength of
nc = 60 000 bits. The resulting code rates are 0.735 (B4,16)
and 0.8233 (B4,24) according to (10) with lifting factors of
Q = 300 and Q = 200, respectively. We used cyclic liftings
and girth optimization techniques to ensure a minimum girth of
eight. Because of the termination, the effective SE is 1.47 bpcu.
The weighting factors were chosen as calculated by the DE
analysis at the respective decoding threshold.

For both cases, QMP gains about 0.8 dB compared to BMP.
As predicted by DE, the performance of QMP improves over
TMP in the order of about 0.1 dB. The gap of QMP to full
BP decoding is about 0.75 dB at a frame error rate (FER) of
10−4.

VI. CONCLUSION

Reducing the internal LDPC decoder data flow is essential
for hardware implementations targeting application specific
integrated circuits and constitutes an important prerequisite for
high throughput decoders. In this work, we extensively com-
pared one and two bit quantized BP decoding algorithms for
higher order modulation and PS. For this, we also introduced a
novel two-bit message passing decoding algorithm with a four-
ary message alphabet that improves upon the previous TMP
approach by up to 0.24 dB for low code rates while having
the same internal decoder dataflow. We showed how DE must
be modified for the quantized message passing algorithms to
account for higher order modulation and PS. The results were
applied to protograph-based SC-LDPC codes to show case
the potential of the decoding algorithms for high throughput

optical FEC solutions. Finite length simulation results reflected
the predicted gains by DE. The gap to unquantized BP is
reduced to 0.75 dB.
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APPENDIX A
SCALING OF CN MESSAGES

We motivate the scaling of CN messages with the scaling
factor w. Consider transmission of a binary symbol x over
two channels with transition probabilities PY1|X and PY2|X .
Upon observing y1 and y2, in order to perform a maximum
likelihood decision we may compute

l(y1, y2) = log
PY1|X(y1|0)
PY1|X(y1|1)| {z }

l1(y1)

+ log
PY2|X(y2|0)
PY2|X(y2|1)| {z }

l2(y2)

. (51)

We apply the same principle at each VN processor. Thus, let
the first channel be the communication channel for which l1 is
available. A message sent from a CN to a VN can be modeled
as the observation of the RV X after transmission over
a binary-input M -ary output discrete memoryless extrinsic
channel [40]. For an observation y2, l2 is computed from
the transition probabilities of the extrinsic channel, for which
accurate estimates can obtained by DE in the large block
length regime.

Consider QMP as an example. The 4-ary extrinsic channel
output alphabet is Y = {±H,±L}, and we have

l2(y) =

8
>>>>><

>>>>>:

log
PY2|X(H|0)
PY2|X(H|1) if y = H

log
PY2|X(�H|0)
PY2|X(�H|1) if y = �H

log
PY2|X(L|0)
PY2|X(L|1) if y = L

log
PY2|X(�L|0)
PY2|X(�L|1) if y = �L.

(52)

Similarly to (14), we require that the extrinsic channel fulfills
the symmetry constraint

PY2|X(H|0) = PY2|X(�H|1) (53)
PY2|X(L|0) = PY2|X(�L|1). (54)

Thus, we have

|l2(y)| =

8
<

:
log

PY2|X(H|0)
PY2|X(H|1) if y = ±H

log
PY2|X(L|0)
PY2|X(L|1) if y = ±L.

(55)

Above, we assumed that PY2|X(H|0) > PY2|X(H|1) and
PY2|X(L|0) > PY2|X(L|1). We have

l(y) = l1 + sign(y)|l2(y)|. (56)

As in (56), the VN update in Algorithm 2 performs a weighting
of the extrinsic CN messages. Observe that the weighting
factor w in (32) and (33), is defined as |l2(y)| in (55).
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Fig. 2. FER simulation results for uniform (a) and PAS (b) signaling and an SE of 1.5 bpcu.
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