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ARTICLE

Neighborhood size-effects shape growing
population dynamics in evolutionary public goods
games
Gregory J. Kimmel1, Philip Gerlee2,3, Joel S. Brown1 & Philipp M. Altrock 1

An evolutionary game emerges when a subset of individuals incur costs to provide benefits to

all individuals. Public goods games (PGG) cover the essence of such dilemmas in which

cooperators are prone to exploitation by defectors. We model the population dynamics of a

non-linear PGG and consider density-dependence on the global level, while the game occurs

within local neighborhoods. At low cooperation, increases in the public good provide

increasing returns. At high cooperation, increases provide diminishing returns. This

mechanism leads to diverse evolutionarily stable strategies, including monomorphic and

polymorphic populations, and neighborhood-size-driven state changes, resulting in hysteresis

between equilibria. Stochastic or strategy-dependent variations in neighborhood sizes favor

coexistence by destabilizing monomorphic states. We integrate our model with experiments

of cancer cell growth and confirm that our framework describes PGG dynamics observed in

cellular populations. Our findings advance the understanding of how neighborhood-size

effects in PGG shape the dynamics of growing populations.
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Nature offers many examples where individuals provide
public goods that benefit self and others, which can be
maintained by population assortment1. In banded mon-

gooses, an individual in the foraging line flushes insects for
others2. Prairie dogs maintain sight lines around their burrows
that become available to others in the colony3. Predator inspec-
tion by guppies4, or mobbing of hawks by crows5 provide safety
to self and others regardless of participation. Via associational
refuges, plants defended by spines or toxins may dissuade her-
bivores from feeding on any plants in a neighborhood6,7.
Microbes provide public goods by secreting defensive chemi-
cals8,9. Yeast synthesize and spill essential nutrients, such as key
amino acids into their surroundings10. Yeast consuming and
synthesizing amino acids for themselves and others were also
observed to coevolve in the form of a different social dilemma, the
snowdrift game11, in which stable coexistence can exist with or
without assortment12. Cancer cells, too, can engage in public
goods games13–15. As ecological engineers cancer cells can pro-
mote favorable environments16,17, suggesting that they evolve
cooperation18,19, or form mutualistic relationships with other
cells20. It benefits a cancer cell to recruit blood vessels, signal
normal cells and defend against the immune system, which
benefit neighbors too. Such interactions can strongly influence the
eco-evolutionary dynamics between cooperators (public good
producers) and defectors (free-riders).

Benefits that are produced and shared are often only available
within a finite neighborhood21,22. These finite neighborhoods
create a form of assortative interaction: an individual always
experiences a slightly higher frequency of its own strategy within
a neighborhood than present in the entire population. This tilt is
because the individual contributes to the public good if it is a
cooperator, and detracts from the collective public good if it is a
defector. Furthermore, cooperators may interact more locally
than defectors. We are interested in how strategy-specific
neighborhood sizes influence the population dynamics and the
evolutionarily stable strategy (ESS) of public goods games. In
addition, public goods game studies often assume a linear rela-
tionship between benefits and the number of cooperators23,24. Yet
this collective benefit may be nonlinear25–27. If one alarm call is
sufficient to alert the colony of prairie dogs to a predator, then
there are rapid diminishing returns to having several callers. If a
collective defense by microbes against a predator, or by cancer
cells against the immune system, requires a threshold effect, then
there may be increasing returns where two producers more than
double the collective benefit.

Here, we considered a nonlinear relationship between number
of cooperators and the resulting collective benefit. Using this
nonlinear relationship we integrated density-dependent popula-
tion growth and frequency-dependent local interactions into a
single modeling framework. We found that the resulting non-
linear intrinsic growth functions allow a diverse space of evolu-
tionarily stable strategies. In addition to parameter regions in
which cooperators can evade the tragedy of the commons,
neighborhood-size-driven state switching occurred, which resul-
ted in hysteresis between the monomorphic and polymorphic
strategies if the neighborhood size was varied. We also found that
stochastic fluctuations in the neighborhood size favored poly-
morphic strategies. To incorporate empirical evidence, we revis-
ited recent experimental findings of non-linearities in public
goods games played by IGF-II producer and non-producer pan-
creatic cancer cells in vitro14, which suggests that our framework
can be used to identify critical neighborhood sizes. We also tested
the sensitivity of our model by considering its stochastic analog,
in which one does not have to chose the neighborhood size
exogenously, and we touched on the emerging question of how
strategy-specific neighborhood sizes alter the available ESS.

Whether higher multi-cellular organisms with complex social
structure, yeast, or cancer cells, populations exhibit ecological
dynamics (changes in population size), and evolutionary
dynamics (changes in relative abundance). The framework we
develop here sheds new light on the conditions needed to
maintain cooperative traits that provide public good to the
environment.

Results
Nonlinear growth rate and neighborhood size shape selection.
To investigate the role of nonlinear growth and neighborhood
size on the public good game, we considered a population that
consists of two sub-populations. Producer cells, C (cooperators)
produce a public good at a cost and consume it to gain a benefit.
Free-rider cells, D (defectors), consume available public good, but
neither produce nor incur a cost (Fig. 1a). We modeled pro-
liferation and death events as an individual-based stochastic
process (see Equation (1), Methods) and in its deterministic limit.
The intrinsic growth rates of C and D are nonlinear functions of
the public good shared among a neighborhood of size n and the
frequency of C, which we implemented using two parameters, β
(frequency-dependent effects) and σ (frequency-independent
effects). These two parameters modulate the size of the non-
linearities in the growth rates (Fig. 1b) as a function of the fre-
quency (fraction) of C. In our model, producers carry a cost κ that
effectively reduces their intrinsic growth rate irrespective of the
environment. Yet, at relatively low neighborhood sizes,
producers take advantage of their own public good, as they
experience a benefit-to-self. In addition, we considered ecological
feed-back in the form of a carrying capacity parameter K. Using
this model, we observed different ESSs emerge by varying para-
meters (Fig. 1c, d). Despite a low starting cooperator population,
coexistence was still obtained in a few simulations via stochastic
branching, which corresponded to passing the threshold needed
to enter the long-term coexistence region (Fig. 1d). In the
deterministic limit of the stochastic process, the system approa-
ches a set of coupled logistic ordinary differential equations,
which describes the dynamics of the two sub-populations, (see
Equation (2), Methods).

The neighborhood size n also plays a substantial role in
determining the number and stability of equilibria, as it shifts the
phase boundaries that separate the stable strategies determined by
β and σ. Increasing the neighborhood size favors defectors and
decreasing it favors cooperation (Fig. 1e, f). Trajectories of the
population dynamics in the deterministic limit unveil the
existence of monomorphic and polymorphic strategies, and
how these change by modulating the relative values of β and σ
(Fig. 1g–j). These modulations give rise to different hallmark
examples of frequency-dependent selection.

In Fig. 1e, f, we give explicit examples of the possible phase
diagrams that indicate whether polymorphic equilibria exist and
are stable. For fixed neighborhood size, baseline growth rates and
cost, these phase diagrams are uniquely determined by the two
payoff parameters β and σ. Increasing the neighborhood size
reduces the chances of observing a stable all-C. On the other
hand, increasing the neighborhood size can increase the
parameter range for which we can expect bi-stable evolutionary
dynamics (unstable polymorphism). Changes in neighborhood
size can critically alter the range of benefit parameters that allow
for a stable equilibrium where cooperators and defectors coexist.
For example, a stable polymorphic equilibrium can be expected if
β is an order of magnitude larger than the parameter σ, in which
case the net growth rate advantage of cooperators is either non-
monotonic, or decreases as the abundance of cooperators
increases.
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Public goods form determines stability and number of equili-
bria. If the cost of cooperation is exorbitantly high, the all-D state
is generally the only ESS. Since defectors do not carry a cost, they
always fare better in the absence of any measurable public good
effect. The stability of the all-D equilibrium is independent of the
functional form of the growth rates and depends solely on whe-
ther defectors have a higher overall intrinsic growth rate than
cooperators. In contrast, the stability of the all-C state depends
critically on the functional form of the intrinsic growth rates. If
rC > rD for all frequencies of cooperators in the population, then
all-C is the ESS. A polymorphic ESS with a mix of C and D
becomes possible when the ratio of respective growth rates is
equal to the ratio of death rates rC/rD= δC/δD for some frequency
of cooperators. We label the fraction of cooperators in an equi-
librium polymorphic state y*, and the total population size in this
state Y*. When all baseline growth and death rates are the same
(αC= αD and δC= δD), Y* is largest in the all-C state. A full linear
stability analysis is presented in Supplementary Methods 4.

Next, let us analyze the number of possible polymorphic
equilibria. We show that for the “almost identical” public good
functions (rC=ArD, for some constant A > 0) there can only be
one internal equilibrium. The same holds for public good
functions that are “always better” in terms of differential returns
from the public good, e.g., a cooperator benefits more when

another cooperator is added to the neighborhood, r′CðyÞ>r′DðyÞ.
Our choice of sigmoidal public good functions Equation (4), can
have a maximum of two polymorphic equilibria. For details, see
Supplementary Methods 4.2.

Modulation of neighborhood-size drives state-switching. One
internal equilibrium is typically unstable and the other is stable.
The stability properties of internal equilibria critically depend on
the neighborhood size n. This means that saddle-node and
transcritical bifurcations28 are possible in which the neighbor-
hood size n acts as the bifurcation parameter (Fig. 2). The
parameter β can also control such bifurcations.

The growth rates can be non-monotonic functions of the
fraction of C in the population. Then, an unstable and a stable
polymorphic state can coalesce and annihilate each other at a
critical value of neighborhood size. This is known as a saddle-
node bifurcation and occurs without affecting the stability of the
monomorphic states. Saddle-node bifurcations tend to co-occur
with rather sharp transitions between no benefit (due to low
numbers of cooperators) to a maximal benefit. Such sharp
transitions can be observed for strong frequency-dependent
selection (large values of β). In Fig. 2a, b we show an example of
β > σ leading to a non-monotonic growth rate differential, which
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Fig. 1 Non-linear growth rate and neighborhood size determine the direction of selection in both stochastic and deterministic public goods population
dynamics. a Schematic of the eco-evolutionary model, in which cooperators cells (type C) provide a public good-like growth factor (GF) at a cost, which
benefits both cooperators and defectors (type D) within a defined neighborhood of n cells, resembling an effective diffusion range of the public good. b β
modulates the frequency-dependent effect, σ modulates a frequency-independent (background) effect, and we show examples of nonlinear selection
functions that determine the frequency-dependent selection effect on the intrinsic growth rates, (10) with n= 8, σ= β/2, β= 2 (red) and β= 8 (black).
c, d Stochastic simulations (200 independent trajectories with n= 15, K= 1000, α= 1.0/day, κ= 0.5/day, and c: σ= 2, β= 5, leading to coexistence, and
d: σ= 3, β= 2, leading to alternative stable states). The green solid lines indicate the mean field dynamics Equations (2) and (4). In d we see that
stochastic branching is possible, which corresponds to competing stable states–a few stochastic runs made it past the threshold needed to observe long-
term coexistence. e, f Phase diagrams of the co-evolutionary dynamics for three different neighborhood sizes (given in the panels). Smaller neighborhood
sizes favor producer cells (white areas). Circles with letters indicate the positions in parameter space used in the following panels. g–j Stream plots (thin
arrows) and example trajectories (thick arrows) of logistic co-evolution (Equations (2) and (4)). The particular parameter settings of the previous panels
are marked within their respective phase diagrams. We used: σ= 2.0, β= 2.0, n= 5, leading to dominance of the producers (g); σ= 1.0, β= 0.25, n= 5
(h), leading to dominance of the free-riders; σ= 1.5, β= 1.0, n= 10 (i), leading to unstable polymorphism (bi-stability); σ= 0.5, β= 4.0, n= 10 (j), leading
to stable polymorphism (coexistence). In all panels we used αC,D= 1.0/day, δC,D= 0.05/day, κ= 0.1/day, and K= 100
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creates a saddle-node bifurcation controlled by the neighborhood
size. The stochastic dynamics in this case exhibit a large region of
long-term coexistence before large neighborhood sizes favor D
(Fig. 2c).

In contrast, for β < σ, we observe monotonically increasing
growth rate differences, leading to unstable coexistence. This
pattern leads to a transcritical bifurcation (Fig. 2d, e) where the
resulting ESSs are alternative stable states of all-C or all-D.
Correspondingly, the stochastic dynamics (Fig. 2f) shows a sharp
transition from all-C to all-D with increasing n, with little room
for long-term coexistence. In this parameter regime, for n= 10,
we see that about 10% of the stochastic simulations lead to
coexistence, which is also corroborated by the example trajec-
tories shown in Fig. 1d.

Model integration with in vitro cancer cell growth kinetics. The
case β > σ is of particular interest as it can lead to stable and
unstable internal coexistence points due to non-monotonicity in
growth rate differences. Public good functions that influence
population growth rates in a non-monotonic fashion have been
proposed in the context of bacterial, yeast and pancreatic cancer cell

monolayers, and were subsequently measured empirically in an
in vitro context14. However, a concise numerical and statistical
interpretation of this data was not included. With our model, we
can in part close this gap and recapitulate the intriguing frequency-
dependent cancer cell growth patterns measured by Archetti et al.14

They established that IGF-II (insulin-like growth factor 2) can act as
a nonlinear public good that comes at a specific cost to cooperators
(IGF-II producer cells). In the context of freely available nutrients
(Fetal Bovine Serum; FBS), the benefit of producing the public good
declines with increasing concentration of FBS (Fig. 3a, see also
Fig. 3c in reference14). To estimate realistic values of β and σ, we
used data from cellular in vitro competition experiments using the
population growth and expansion of IGF-II producer cells (coop-
erators) and non-producer cells (defectors). The actual neighbor-
hood size was not measured or estimated for these experiments.
Therefore, in fitting our model to this data, we considered neigh-
borhood size to be independent and identically distributed between
n= 4 (nearest neighbors in 2D) and n= 40 cells. For each value of
n and for each experimental setting (percent FBS in the medium),
we fit our mathematical modeling framework to the cellular growth
data (see Supplementary Methods 5), to estimate values for β and σ.
Our estimated values of β ranged from 1.5 to 6 (Fig. 3b), and values
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Fig. 2 The nonlinear public goods function influences growth rate differences and long-term stable states. a–c For β > σ, differences in intrinsic growth rates
can have a maximum at a fraction of cooperators between 0 and 1. The number and positions of equilibria then critically depends on neighborhood size,
and saddle-node bifurcations are possible. These patterns are also reflected in the individual-based model, revealing large regions of coexistence (shown in
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K = 1000. Stochastic simulation results were obtain from 200 independent simulations started from 90 C and 10 D cells
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of σ from 0 to 3 (Fig. 3c). For example, in the context of 5% FBS in
the background medium, we observed median values of β= 3.67
and σ= 1.87. In our model, these parameter values would predict
an unstable polymorphic equilibrium near y*= 0.235, and a stable
polymorphic equilibrium near y*= 0.784 (Fig. 3d). These estimates
depend on the distribution of values of n, which highlights the need
in future studies to devote more effort into determining the distance
over which a public good spreads. This statistical analysis shows
that our model framework is capable of explaining the evolutionary
dynamics of cellular games with nonlinear public goods and con-
firms that cancer cell lines can exhibit non-monotonic growth rates
which favor local coexistence if the background nutrients are suf-
ficiently sparse (β > σ).

Type-dependent neighborhood sizes. Cooperators may experi-
ence a different neighborhood size, nC, than defectors, nD, for
example through aggregation effects29, or by altering their local
interaction topology30. In such cases, defectors could fare better
from unconditional interactions with as many cooperators as
possible. Thus, with mechanisms that promote increases in
neighborhood size at a cost smaller than the cost of cooperation,
one could see adaptation toward strategy-dependent neighbor-
hood sizes. Thus, we examined how strategy-specific neighbor-
hood sizes influence coexistence, the ESSs, and the eco-
evolutionary dynamics of Equation (2). We assumed that coop-
erators interact with other individuals within their specific

neighborhood of size nC, and that defectors interact within nD.
Under these additional assumptions, we examined under which
conditions a small population of cooperators can invade a resi-
dent population of defectors. The relation nC < nD favors coex-
istence, which can be seen in the different bifurcation patterns in
Fig. 4. When both C and D experience the same neighborhood
size, then small sizes favor all-C and larger neighborhood sizes
favor all-D. For a sufficiently small nC, cooperators can invade.
For a sufficiently high nD, defectors can invade. Hence nC � nD
reduces the likelihood that all-D and/or all-C will be an ESS, and
increases the likelihood of ESS coexistence. It should be noted
that it could be difficult to argue in favor of differences in nC and
nD in isotropically diffusing growth factors. However, realistic
spatial environments, such as a three-dimensional solid tumor
with anisotropic collagen patterns could realistically present such
a scenario31.

Fluctuations in the neighborhood size influence coexistence.
Here, we are interested in how feedbacks between total popula-
tion size and neighborhood size influence the ESS of C and D. To
address these questions we devised a compartmentalized version
of the eco-evolutionary growth model of Equation (2). Instead of
exogenously fixing neighborhood sizes and performing averaging
over neighborhood compositions, we let the total population
size influence neighborhood sizes by dividing the population into
N compartments. The total population Y, can then be randomly
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distributed across these compartments, resulting in a multinomial
distribution of neighborhood sizes with a mean of Y/N. The
public good is now produced and shared locally among a sto-
chastically sampled number of neighbors. Here, the number of
compartments acts as a surrogate for the inverse of an effective
neighborhood size, which is an emergent quantity. This stochastic
mixing of the population was performed numerically according to
a multinomial sampling process (see Supplementary Methods 6).
Hence the interaction neighborhood for each strategy type was a
stochastic variable determined by the number of compartments
and the total population size. A schematic of the compartment-
based dynamics is given in Fig. 5a. Of critical importance to the
dynamics of this model is the time between the mixing steps (see
Supplementary Figures 1–3).

In the compartment approach, we observed that cooperators
survived above a threshold number of compartments N, and that
cooperators would become the ESS above a critical value Ncrit.
Depending on the values of β and σ, coexistence of cooperators
and defectors was possible. We observed the equivalent of a
transcritical bifurcation (switching of stable states), controlled by
an increasing number of compartments (Fig. 5b), as well as the
equivalent of a saddle-node bifurcation (Fig. 5c) with stable
coexistence at intermediate number of compartments.
We defined the critical number of compartments such that above
Ncrit all-C would be stable. Figure 5d shows how Ncrit depends on
the nonlinear public goods benefit parameters. Notably, if we did
not re-initialize the population when changing the number of
compartments, we could observe a strong hysteresis pattern
(Fig. 5e) as predicted by the transcritical bifurcation (compare to
Fig. 2e).

We used a mean-field approach to estimate Ncrit. Instead of
using a distribution for the individuals among the N compart-
ments, we let each compartment have the expected value, Y/N.
We then determined the number of compartments above which
all-D becomes unstable and is no longer an ESS. Although this
approach misses some important numerical and stochastic
fluctuations, it recovers the general trend of the behavior of Ncrit

(Fig. 5f), which shows non-monotonic behavior as a function of
β. For small but increasing β, Ncrit decreases monotonically, but
then assumes a minimal value at intermediate selection strength.
For very strong frequency-dependent selection (large β), Ncrit

increases asymptotically toward Y*. These findings highlight the
dynamical feedbacks between population dynamics, neighbor-
hood size, and frequency-dependent effects. These feedbacks also
point to how measurements of population densities and

interaction distances could determine an effective neighborhood
size.

Discussion
In summary, we modeled both density and frequency-dependent
effects in the context of a non-linear public goods game that is
effective within a neighborhood. There is a critical role for
neighborhood size, which describes the group of individuals that
are close enough together to benefit from the public good. Our
results demonstrate the following. First, smaller neighborhood
sizes favor cooperators and increase the likelihood that all-C is an
ESS. Second, a linear relationship between the frequency of C in
the neighborhood and the overall value of the public good per-
mits two global ESSs, which are either globally all-D or globally
all-C, without the possibility of coexistence or alternate stable
states. Third, a nonlinear, sigmoidal relationship between the
public good and the frequency of C allows for multiple stable
ESSs. Such nonlinearity was previously measured in cancer cell
dynamics14, and we made use of their experimental findings to
validate our modeling framework. Fourth, under alternate stable
states we observe saddle-node and transcritical bifurcations and
hysteresis. Last, feedback of population size on neighborhood size
and/or strategy-dependent neighborhood sizes can increase the
likelihood of coexistence between C and D. These results from the
deterministic approach are corroborated by results obtained from
simulations of a corresponding individual-based stochastic
model.

Individual-based stochastic models have the benefit that they
allow us to estimate extinction probabilities and distributions of the
time to extinction. Notably, such systems have often been examined
in the fixed population size scenario32–34. Recent expansions have
focused on emergent phenomena in populations of fluctuating size
or coevolutionary feedback35,36. These approaches also show that
multi-level37 or multi-player38 population games deserve more
attention in the context of fluctuation-driven phenomena. These
problems are of interest since population size fluctuations
are related to the maintenance of cooperation, extinction delay, or
other counterintuitive selection effects24,39–41, especially in the
context of neighborhood-size dependent access to shared resources.

The number of individuals comprising a neighborhood may be
influenced by the total size of the population42. In this way,
population dynamics can feedback in to the neighborhood size. If
neighborhood size increases with population density, then density
feedbacks can result in the coexistence of cooperators and
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defectors. As a consequence, an all-C world promotes a higher
population size than an all-D, as it also allows a higher carrying
capacity24. With a feedback on neighborhood size, an all-C
population promotes a higher neighborhood size which, in turn,
favors the invasion of defectors. Similarly, an all-D population
promotes smaller neighborhood sizes that facilitate the ability of
cooperators to invade. Density feedbacks have been shown to
influence the ESS in games of spite43 and producer-scrounger
games44. However, if the public good is an essential nutrient
secreted by a protist or cancer cell, then it may only provide
resources for a fixed number of others, regardless of distance from
the producer. Hence, there may be little feedback at all. In many

cellular interactions, we can expect that a fixed number of nearby
neighbors become the beneficiaries of a producer.

Linear public good games do not allow for saddle-node
bifurcations, and consequently all-C or all-D are globally stable
ESSs, unless there are density-feedbacks as discussed above. We
here show that a nonlinear relationship between the public good
and the frequency of producers permits bifurcations and hys-
teresis between alternative equilibria. We considered a sigmoidal
relationship between benefit and cooperator frequency, which can
favor coexistence because increasing returns at low fractions of
cooperators act in their favor, whereas diminishing returns
toward high fractions of cooperators favors defectors. We have
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observed that there are often maximally two interior equilibria,
one will always be unstable and the other representing the stable
coexistence of cooperators and defectors. With a different non-
linear relationship, such as a Michaelis–Menten (Hill) function15

(see also Supplementary Methods 4.2), there could be up to five
interior equilibria.

The multi-player snowdrift game provides another form of
public goods game in which players receive a fixed benefit that is
not influenced by the frequency of cooperators. Rather, it is the
cost that is shared among the cooperators. Hence the cost of
cooperating declines with the frequency of cooperators. In our
game, it is the opposite. Cooperators bear a fixed cost and it is the
benefit that is distributed based on the frequency of cooperators.
A similar analysis could be applied to the snowdrift game as we
have done here.

Whether it be cancer or other ecological public good games in
nature, our results suggest new ways to manipulate the para-
meters of public good population games. Cancer cells may engage
in public goods games in a manner that make the disease more
devastating and harder to treat16,17. Cells produce signals that
promote vasculature, or signal other cells, which can produce
vasculature (e.g., vascular endothelial growth factor, VEGF).
Then, the recruitment of blood vessels provides a benefit to the
producer but also to any cells within some neighborhood of these
new vessels. In such systems, however, it is unclear whether
there is a significant cost to cooperation. It may be possible to
create therapies that incentivize the population game in a manner
that shifts the equilibrium towards defectors, for instance by
decreasing the benefit of the public good. This approach may
have demonstrable value in bicarbonate therapy, which is a
means of neutralizing the low pH created by glycolytic cancer
cells45. Increasing neighborhood size provides an intriguing, yet
hitherto unappreciated therapeutic opportunity. Perhaps by
increasing the diffusion rate of molecules (including VEGF)
within the tumor, the provider cells would experience less of a
self-benefit and defectors would perceive a higher benefit. Such
manipulations could then achieve control, e.g. of pests or tumors,
or promote polymorphism and diversity, e.g. of endangered or
valuable species, or maintain cooperative sub-populations.

Methods
We consider the dynamics of a population that consists of two sub-populations.
Producer cells, C (cooperators) produce a public good at a cost and consume it to
gain a benefit. Free-rider cells, D (defectors), consume available public good, but do
not produce nor incur a cost. We assume that the total population can grow
towards a maximal load, or carrying capacity, which introduces a global density-
dependent effect. Proliferation and death events are described by the following
process

C�!rC EK C þ C ð1aÞ

D�!rD EK Dþ D ð1bÞ

C�!δC ; ð1cÞ

D�!δD ; ð1dÞ

where the birth rates rC,D EK incorporate global density dependence via the factor
EK= 1− (C+D)/K that is multiplied to the growth rates rC,D (for details, see
Supplementary Equation (S2) in Supplementary Methods 1.1). The death rates δC,D
are assumed to be constant. These reactions describe a stochastic individual-based
process for which it is possible to derive a mean field dynamical system (see
Supplementary Methods 1.2). In the deterministic limit, the densities of coopera-
tors C and defectors D are given by xC and xD, and their dynamics are described by

the system

dxC
dt

¼ rC 1� xC þ xD
K

� �
xC � δC xC ; ð2aÞ

dxD
dt

¼ rD 1� xC þ xD
K

� �
xD � δD xD: ð2bÞ

We are interested in cases where the intrinsic growth rates depend on the
frequency of cooperators y= xC/(xC+ xD). There could also be coevolution at the
level of K35,46, which in turn would influence the dynamics differently and is
beyond the scope of this manuscript (see comment in the Supplementary Meth-
ods 3.2). Here we seek to quantify the impact of available public good on the
growth rates, knowing that production can incur a cost on C (Fig. 1a).

To calculate how C and D benefit from public good consider that the public good
is a local commodity consumed by all within a neighborhood of n cells, for example
a growth factor produced by C. Thus, we have to account for all possibilities to
select up to n cooperators. If the fraction of producer cells is y, we can obtain the
following expected numbers of producer cells of any C or D

NC ¼ 1
n
1þ ðn� 1Þy½ �; ð3aÞ

ND ¼ 1
n
ðn� 1Þy: ð3bÞ

These values result from hypergeometric sampling n− 1 times with a probability
y to pick C, assuming that the population is sufficiently large. The expected values
NC,D can then be used to calculate expected growth rates. As we discuss in the
Supplementary Methods 1.4 and 2, the use of the hypergeometric distribution to
generate a neighborhood and calculate growth rates leads to negligible changes in
the dynamics for sufficiently large populations. In the difference between NC and
ND we see that cooperators might experience an increased benefit, especially if n is
small, as they are able to benefit from their own public good.

The benefit to each member of a neighborhood may increase nonlinearly with
the frequency of cooperators14,25,47. One could observe steep increases of fitness at
low frequencies of cooperators, followed by a saturation effect in fitness once the
fraction of cooperators crosses a threshold. Such a sigmoidal, or s-shaped fitness
curve can be described using a parameter β that modulates frequency-dependence,
and a parameter σ that modulates frequency-independence (background). The
inflection point where benefit increase is maximal is then given by σ/β. For y < σ/β,
additional cooperators create synergies. For y > σ/β, we see diminishing returns.
Including the cost for cooperation, κ, we can now write the frequency-dependent
intrinsic growth rates as

rC ¼ αC
1þ eσ

1þ eσ�βNC
� κ; ð4aÞ

rD ¼ αD
1þ eσ

1þ eσ�βND :
ð4bÞ

For a sketch of these sigmoidal growth rates, see Fig. 1b. Without any frequency-
dependent benefit, β= 0, we obtain the intrinsic growth rates rC= αC− κ and rD
= αD. For a very small β one can linearize the intrinsic growth rates rD= αC(1+
NC(β))− κ, and rD= αD(1+ND(β)). Linear relationships between benefits and the
amount of the public good have frequently been used recently24,48–50. For math-
ematical convenience we here chosen to implement intrinsic growth rates as a
function of the expected number of cooperators. Instead, one can simulate the full
stochastic dynamics in relation to the mean field model, or chose to average over
group compositions at a different point. These changes are mostly quantitative,
impacting only the location of bifurcations in the phase diagrams, the morphology
remains the same.

Our mean field approach averages group compositions before calculating the
non-linear benefits to the growth rates, which reflects the fully stochastic dynamics
rather well (shown in Fig. 1c, d). In addition, one can ask how the complex
structure of equilibria of the deterministic system, as modulated by the parameters
β and σ (Fig. 1e–j), is altered by changing the assumptions that led to NC,D and rC,D.
In Supplementary Figure 4, we show that these changes can be expected to be
minimal.

We also explored fluctuations in neighborhood size. Implementing fluctuations
in neighborhood size removes undesired effects when calculating expected growth
rates: instead of considering n as an exogenous parameter, we defined a fixed
number N of compartments among which all cells are randomly distributed to
form neighborhoods. By creating compartments (patches), these local patches
become the neighborhoods observed by the cells within, averaging is not applied. In
this way, neighborhood sizes vary according to a multinomial distribution with a
mean of (xC+ xD)/N. To simulate this, we ran a dynamic loop of two steps. First,
we evaluated the outcome of a public goods game and logistic growth within each
compartment for a fixed amount of time Δt, according to Equation (2) with ni and
yi in compartment i. Second, we modeled neighborhood assembly by pooling
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individuals from all compartments and re-distributing them randomly among
compartments.

We used the approaches described here to examine how the nonlinear growth
rates and neighborhood size changes determine the number and stability properties
of equilibria (ESSs) of the deterministic system, corroborated by results of the
individual-based approach and the compartment approach. All mathematical and
computational methods and proofs are detailed further in the Supplementary
Information.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
The simulation data and code used in this study are available in the nonlinearPGG
repository at https://github.com/MathOnco/nonlinearPGG.
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