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Abstract

Low cost electronics for future high-speed wireless communication and non-invasive
inspection at terahertz frequencies require new materials with advanced mechanical and
electronic properties. Graphene, with its unique combination of flexibility and high carrier
velocity, can provide new opportunities for terahertz electronics. In particular, several
types of power sensors based on graphene have been demonstrated, and found suitable as
fast and sensitive detectors over a wide part of the electromagnetic spectrum. Nevertheless,
the underlying physics for signal detection are not well understood due to the lack of
accurate characterisation methods, which hampers further improvement and optimisation
of graphene-based power sensors. In this thesis, progress on modelling, design, fabrication
and characterisation of terahertz graphene field effect transistor (GFET) detectors is
presented. A major part is devoted to the first steps towards flexible terahertz electronics.

The characterisation and modelling of terahertz GFET detectors from 1 GHz to 1.1
THz are presented. The bias dependence, the scattering parameters and the detector
voltage response were simultaneously accessed. It is shown that the voltage responsivity
can be accurately described using a combination of a quasi-static equivalent circuit model,
and the second-order series expansion terms of the nonlinear dc I − V characteristic. The
video bandwidth, or IF bandwidth, of GFET detectors is estimated from heterodyne
measurements. Moreover, the low-frequency noise of GFET detectors between 1 Hz and 1
MHz is investigated. From this, the room-temperature Hooge parameter of fabricated
GFETs is extracted to be around 2× 10−3. It is found that the thermal noise dominates
above 100 Hz, which sets the necessary switching time to reduce the effect of 1/f noise.

A state-of-the-art GFET detector at 400 GHz, with a maximum measured optical
responsivity of 74 V/W, and a minimum noise-equivalent power of 130 pW/

√
Hz is

demonstrated. It is shown that the detector performance is affected by the quality of the
graphene film and adjacent layers, hence indicating the need to improve the fabrication
process of GFETs.

As a proof of concept, a bendable GFET terahertz detector on a plastic substrate is
demonstrated. The effects of bending strain on dc I − V characteristics, responsivity and
sensitivity are investigated. The detector exhibits a robust performance for tensile strain
of more than 1% corresponding to a bending radius of 7 mm. Finally, a linear array of
terahertz GFET detectors on a flexible substrate for imaging applications is fabricated
and tested. The results show the possibility of realising bendable and curved focal plane
arrays.

In summary, in this work, the combination of improved device models and more
accurate characterisation techniques of terahertz GFET detectors will allow for further
optimisation. It is shown that graphene can open up for flexible terahertz electronics
for future niche applications, such as wearable smart electronics and curved focal plane
imaging.

Keywords: terahertz detectors, graphene, field-effect transistors, flexible electronics,
sensors, arrays, broadband characterisation, scattering parameters.
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Notations

Cgs source-gate capacitance. 9

CG gate capacitance per unit area. 28

L gate length. 18, 28

Pava available input signal power. 17

Pin input signal power. 5

RDS source-drain resistance. 28

RD parasitic drain resistance. 9

RS parasitic source resistance. 9

T temperature. 7

Tgl glass transition temperature. 23, 24

VDir gate voltage of the Dirac point. 28

W gate width. 18, 28

∆U the power of input RF signal. 5

Γ reflection coefficient. 18

α fine structure constant. 10

αH Hooge parameter. 7

~ Planck’s constant. 28

RV detector voltage responsivity. 6, 31

µ carrier mobility. 7, 28

σ electrical conductivity. 12

kB Boltzmann’s constant. 7, 12

n0 residual carrier density of graphene. 28

nG carrier density induced by gate voltage. 28

q electron charge. 28

rds intrinsic source-drain resistance. 9

vF Fermi velocity. 28
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Chapter 1

Introduction

The terahertz (THz) radiation lies between microwaves and the optical region of the
electromagnetic spectrum, often defined as the frequency range from 0.3-10 THz [1].
For long time, astronomical observation [2] has been the main driver for development of
terahertz technology. However, over the past few decades, terahertz science and technology
[3, 4] have being exploited for many applications in biomedical sensing and imaging [5],
noninvasive inspection [6], security screening [7] and wireless communication [8]. Common
to all these systems and instruments is the need to detect and monitor the signal intensity
with a power sensor [9].

The photon energy of the terahertz radiation (hν = 4.1 meV at 1 THz) is relatively low
compared to radiation at much shorter infrared, visible and UV wavelengths. Moreover, the
output power of terahertz transmitters is usually weak due to the difficulty of generating
strong terahertz signals, often referred to as the terahertz gap [10]. For passive sensor
applications, the detector measures the natural emitted power from an object according
to Planck’s law of radiation. In this case, terahertz detectors with high-sensitivity are
particularly important [9]. Superconducting detectors [11] can provide high sensitivity, but
usually operate at cryogenic temperatures with relatively complex cooling systems, whereas
nonlinear semiconductor devices, such as Schottky diodes and transistors, can be used as
fast and sensitive detectors at room temperature. For comparison, the noise equivalent
power (NEP), a figure of merit for sensitivity, of different kinds of terahertz detectors
operating at room temperature is shown in Figure 1.1. The NEP of a zero bias Schottky
diode is reported to be 5− 20 pW/

√
Hz at 600− 900 GHz [12]. Transistor detectors with

a sensitivity in the range of 10− 30 pW/
√

Hz up to 900 GHz have been demonstrated
based on different semiconductors including heterojunction bipolar transistor [13], metal-
oxide semiconductor field-effect transistor (MOSFET) [14] and high-electron-mobility
transistor (HEMT) [15]. However, with the recent rapid expansion of terahertz science
and technology, the existing rigid and bulky solutions are not able to meet the need for
future novel applications, such as wearable smart electronics and Internet of things, which
call for flexible, portable, less expensive and eco-friendly solutions. In the MHz and GHz
frequency range, flexible sensors [16] and communication devices [17] have been embedded
into clothing or other textiles. In 2016, Suzuki et al. demonstrated the first flexible and
wearable terahertz scanner based on carbon nanotubes [18]. However, this technique is
largely limited by the low sensitivity of carbon nanotube detectors. Moreover, there is a
need for large focal plane detector arrays [19] with the ability to integrate and conform to
any surface [20].

Graphene, a two-dimensional material with extraordinary electrical and mechanical
properties [34], is a promising candidate for high-frequency electronics, such as detectors
[35], mixers [36] and modulators [37] in the terahertz frequency range. The recent progress
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Figure 1.1: Terahertz power sensors. A comparison of estimated NEP for GFET detector
in Paper [A, C D, F and G] and reported data in Ref. [21, 22, 23, 15, 24, 25] as well
as other types of detectors: Schottky diode [26, 27], HEMT [28, 29, 30], and MOSFET
[14, 31, 32, 33].

in high-quality and large-area growth of graphene films shows the feasibility of large-
scale fabrication graphene devices on plastic substrates [17, 16]. In 2012, Vicarelli et al.
[22] demonstrated the first exfoliated graphene field-effect transistor (GFET) terahertz
detector on Si/SiO2 substrate, with NEP of 200 nW/

√
Hz and 30 nW/

√
Hz at 300 GHz

for monolayer and bilayer devices, respectively. This work was followed up by Zak et al. in
2014 demonstrating an estimated NEP of 515 pW/

√
Hz at 600 GHz using chemical vapour

deposition (CVD) graphene [21]. By reducing the residual carrier density of graphene, a
400-GHz GFET detector with NEP of 130 pW/

√
Hz is demonstrated in [Paper E]. Using

an antenna-integrated graphene pn-junction, a NEP of 80 pW/
√

Hz is obtained in the
frequency range of 1.8–4.2 THz [38]. Excellent performance has also been achieved by
GFET detectors on SiC substrate [15]. Furthermore, an flexible GFET detector is first
reported in Paper F with NEP below 3 nW/

√
Hz, and the first GFET detector array on

plastic substrate has been demonstrated in Paper G. However, the performance of GFET
detectors is still lower than that of other types of nonlinear semiconductor detectors.

To exploit the full potential of GFET detectors, a better understanding of device
principles and the main limiting factors are important. Many researchers have considered
contributions of plasma wave mixing [22], thermoelectric [39] and bolometric effects [40],
or nonlinearity of the dc I − V characteristics [41], to explain detection mechanisms and
corresponding modelling at terahertz frequencies [42]. However, the lack of accurate
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characterisation techniques at terahertz frequencies has hampered the development of
device models. By accurate and comprehensive on-wafer characterisation and modelling in
Paper A, it shows that GFET direct power detection can be described over a wide frequency
range by the nonlinear carrier transport characteristic obtained at static electrical fields.

In this doctoral thesis, research on modelling, design, fabrication and characterisation
of terahertz detectors based on GFET is presented in the following six chapters. Chapter
2 presents challenges in terahertz detection by comparing different terahertz detection
mechanisms and devices, and provides an overview of flexible electronics, graphene
properties and GFET characteristics. Chapter 3 provides a detailed description of GFET
terahertz detection modelling and the design of antennas and detectors. Chapter 4
describes state-of-the-art processing technologies for high-performance GFET detectors on
both rigid and flexible substrates. Chapter 5 presents the on-wafer measurement setup and
characterisation results of GFET power detectors. Chapter 6 presents the quasi-optical
setup and the characterisation results of antenna-integrated GFET terahertz detectors
and detector arrays. Chapter 7 summarises the results of this thesis and provides a future
outlook.
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Chapter 2

Background

Terahertz detectors [9] are key components for many applications [43, 19]. This chapter
provides an overview of basic operation principles and figures of merit of terahertz direct
power detectors. In addition, different types of detectors will be presented and discussed,
including a more detailed description of FET detectors. Finally, theoretical potential and
practical limitations of GFETs for terahertz detection will be presented.

2.1 Terahertz detectors

Terahertz detectors can be divided into direct and heterodyne detectors. Figures 2.1
(a) and (b) illustrate the basic operations of a direct power detector and a heterodyne
detector. The direct power detector is used to convert a fraction of incoming signal to a
dc voltage or current. The heterodyne detector, often called mixer, is used to translate an
RF signal to intermediate frequency by mixing with another signal. If the RF signal and
LO frequencies are equal, the IF degenerates to dc - a detection process called homodyne
conversion.

Heterodyne 
detector 

DC

RF

LO

IF

Direct 
detector 

RF
t

f

f
fRF

f
fLO

f
fRF-fLO fRF+fLO

f

t

(a)

(b)

Figure 2.1: Basic operations of a direct power detector and a heterodyne detector.

Figure 2.2 shows the relation between the output rectified dc voltage (∆U) and the
power of input RF signal (Pin) of a power detector. At very low input power levels, the
rectified dc voltage is dominated by the noise generated by the detector, which defines
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the noise floor. For a linear, or square law detector, the rectified dc voltage is directly
proportional to the power of input RF signal. With the increase of the input power, the
rectified dc voltage will saturate, which means that the read-out signal no longer increases
linearly with the input power. The difference between the noise floor and the compression
point defines the dynamic range of a power detector.

P
in

 (dBm)

lo
g 

U

noise floor 

saturation

square-law region

Figure 2.2: Illustrating the dynamic range of a power detector.

An important figure of merit is the voltage responsivity (RV), which is defined as the
slope of the rectified dc readout signal versus signal power, and can be defined as

RV =
dU

dPin
≈ ∆U

Pin
. (2.1)

The sensitivity of a power detector, usually expressed by NEP, is an important figure
of merit for characterising the minimum detectable input signal power, which is given by

NEP =

√
SV

RV
. (2.2)

where SV is the noise spectral density.
For many terahertz applications, such as radiometers and passive imaging, signal

power is often very weak and close to the noise floor. The internally generated noise in a
detector is usually caused by random motions of charges. The different physical noise
sources are used to categorise the different type of noise as:

• Thermal noise, also known as Johnson or Nyquist noise, arises from the thermal
agitation of charges inside a conductor. The thermal current noise spectral density
is given by Nyquist’s formula [44],

SI(f) =
4kBT

R
, (2.3)
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where f is the frequency, R is the resistance, kBkB is the Boltzmann’s constant and
T is the temperature.

• Shot noise originates from the discrete nature of the electric charge and the random
emission or capture of carriers [45]. Assuming a Poisson distribution, Schottky was
able to describe the shot noise as,

SI(f) = 2q < I >, (2.4)

where < I > is the average value of the electrical current. With a low or zero-
drain-source bias, the shot noise is negligible. Note that both thermal and shot
noise have their origin in the random motion of charge carriers. Due the frequency
independency, they are called white noise.

• Flicker noise varies inversely with frequency, and is hence often called 1/f noise. In
contrast with other types of intrinsic noise, 1/f noise can originate from different
fluctuation processes either in the charge carrier number (N), mobility (µ), or from
both. A common example is generation-recombination noise causing a low frequency
fluctuation of charge carrier numbers. For electronic devices, the empirical model
by Hooge [46] can be used to describe the spectral density as

SV (f)

V 2
=
SI(f)

I2
=
αH

fN
, (2.5)

where αH is the Hooge parameter which is the most commonly used figure of merit
for 1/f noise. The value of the Hooge parameter can be very different for different
materials and structures [47].

Although the sensitivity and response time are very important figure-of-merits of a
power detector, the ultimate measurement uncertainty of a detector is set by the stability.
The drift will limit the integration time, and thereby the standard deviation of the power
measurement. The stability and accuracy can be characterised by measuring the Allan
variance [48] versus integration time. The variance will improve with integration time
until systematic errors or drift dominates.

Based on different physical phenomena, most terahertz detectors can be classified into
three broad categories, i.e. thermal detectors, photo detectors and nonlinear semiconductor
detectors.

Thermal detectors utilize temperature-dependent physical properties of materials. In
a thermal detector, the incident radiation is absorbed to heat the material, which results
in changes of material properties that used to generate an electrical output. Depending
on different kinds of temperature-dependent physical properties, thermal detectors can be
further sub-divided into three types including:

• Bolometers. For a bolometer, the power of incident radiation is measured by heating
a material which has a temperature-dependent resistance [49]. Bolometers can be
made of different kinds of materials, including superconductors, semiconductors, and
metals. Superconducting and semiconducting bolometers can provide high sensitivity
at cryogenic temperatures [11]. However, the cooling systems are complex and
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expressive. Room-temperature bolometers, thermally isolated on thin membranes
based on VOx, have been shown to operate in a wide frequency range, but with a
typical response time of several milliseconds.

• Pyroelectric detectors. A pyroelectric detector is based on a thin ferroelectric crystal,
e.g. LiTaO3, which has a temperature-dependent dielectric constant. Pyroelectric
detectors are sensitive, typically used at room temperature and have a broad,
flat spectral response across most of the electromagnetic spectrum. The incident
radiation signal for pyroelectric detectors must be chopped or modulated at less
than 100 Hz.

• Calorimetric sensors. A calorimetric sensor is based on measuring the temperature
rise of a well-matched metal film by the resistance change with the absorption of
incident radiation . It is used to measure power over a wide frequency. However, the
response time of calorimetric sensors [50] is usually low, especially with low input
power, and the drift is relatively large.

• Golay cells. A Golay cell is based on thermal absorption in a gas-filled chamber and
a detected change in volume via a displaced mirror in an optical amplifier. Golay
cells work at ambient temperatures and have broad spectral response. In 2009, the
study of Desmaris at al. has shown that the Golay cell promises a bandwidth of 3.5
THz (0.5− 4 THz) [51]. However, they are very slow in the terahertz response and
can not be used for high-speed terahertz detection.

The second class of detectors are photo detectors [52]. A typical example is the
superconductor-insulator-superconductor detector, which operates at cryogenic tempera-
tures with very high sensitivity.

The last class of detectors are nonlinear semiconductor detectors based on different
types of diodes and transistors, such as Schottky-barrier diode [53, 54], backward tunnel
diode [55], heterojunction bipolar transistor [56] and field-effect transistor (FET) [57] (see
details about FET detectors in the next section). The detector responsivity is directly
related to the nonlinearity of I − V characteristics. This type of detector are fast and
operate at room temperature. They are commonly used in both direct power detection
and heterodyne detection systems.

2.2 FET detectors

The use of FETs as direct power detectors was first demonstrated based on GaAs HEMTs
by Krekels et al. in 1992 [58]. The detection of FETs is based on the nonlinear I-V
characteristics of transistors, which leads to a rectification of the RF input signal. As a
result, a dc voltage (or current) response appears between source and drain, being pro-
portional to the RF signal power. Since the mid-90s, development of broadband terahertz
detectors based on FETs has been a target of intensive theoretical and experimental
studies [59, 33, 60, 61]. FET detectors have been successfully implemented in different
material systems including: Si, GaN/AlGaN [62], GaAs/AlGaAs [63].

8



The equivalent circuit of a FET is shown in Figure 2.3. The intrinsic FET, inside the
dashed-line rectangle, is surrounded by external parasitic resistances, i.e. RG, RD and
RS, parasitic capacitances i.e. CPG, CPD and CDS, and parasitic inductances (i.e. LG,
LD and LS). The values of the equivalent circuit elements can be derived from measured
S-parameters through fitting or direct parameter extraction techniques [64, 65, 66].

LG RG LDRD

LS

RS

Cgd

Cgs

ri

CPDCPG CDS

Gate Drain

Source

IDS(VGSi,VDSi)

VGS VDS
VGSi

+

-

+

-

VDSi

Figure 2.3: Equivalent circuit of a FET.

As an important figure of merit for FET and diode detectors, the cut-off frequency of
a FET detector derived by Anderson et al. [41] can be expressed as,

f3dB ≈
1

2πCgs

√
rdsRS

, (2.6)

where rds is the intrinsic source-drain resistance, Cgs is the source-gate capacitance, and
RS is the parasitic source resistances.

2.3 GFET terahertz detectors

Graphene, a two-dimensional sheet of carbon atoms arranged in a honeycomb lattice, was
first produced and identified in 2004, by Andre Geim and Konstantin Novoselov team [34].
In 2010, they were awarded the Nobel Prize in physics for their pioneering research on
graphene. The impressive electrical and mechanical properties of graphene have opened
up new horizons for flexible high-frequency electronics.

Since 2012, Vicarelli et al. demonstrated the first FET terahertz detector [22], much
work has been done in the area of GFET terahertz detection. Although GFET detectors
exhibit lower sensitivity than Schottky diode detectors and HEMT detectors, GFETs have
shown great promise and potential as sensitive terahertz detectors. Furthermore, taking
advantage of graphene with its excellent mechanical properties, GFET are expected to
play an important role in the future development of flexible terahertz technology.

Graphene properties

In 1947, Wallace first analysed the band structure of monolayer graphene by using the
tight-binding approach [67]. The band structure of large-area graphene is shown in Figure

9



2.4. The valence and conduction bands are cone shaped and meet at the Dirac points of
the Brillouin zone. Due to the zero bandgap, the graphene channel cannot be switched
off totally.

Figure 2.4: Graphene band structure.

Carrier mobility and saturation velocity describe the carrier transport in low and
high electric fields, respectively. The linear dispersion relationship close to one of the
Dirac points indicates two-dimensional massless electrons in graphene, which represents
the origin of the superior carrier mobility in ideal graphene. The carrier mobility has
been demonstrated greater than 2×105 cm2/Vs at 5 K in suspended monolayer graphene
fabricated by exfoliation [68]. However, a substrate and a gate dielectric are typically
required in real applications. The presence of charge carrier scattering limits the electron
mean free path and leads to degradation of the mobility, which is a major barrier in the
development progress of graphene based devices. The carrier velocity in graphene at high
fields does not drop as drastically as that in III-V semiconductors [69]. The maximum
values of carrier velocity for graphene devices is approximately 4× 107cm/s, compared
with a value of 2× 107cm/s for GaAs and 107cm/s for silicon.

The mechanical properties of graphene are controlled by the characteristics of ideal
pristine crystal lattices and structural defects (e.g. grain boundaries). Lee et al. conducted
the first systematic experimental analysis of the elastic properties and intrinsic strength
of free-standing monolayer graphene membranes by nanoindentation in an atomic force
microscope (AFM) [70]. The results have shown that Young’s modulus and third-order
elastic stiffness of monolayer graphene is 1.0 TPa and -2.0 TPa, respectively. Brittle
fracture of graphene occurs at a critical stress equal to its intrinsic strength of 130 GPa.
Furthermore, graphene sheets can sustain stretching as large as 20%. These values are
considerably larger than those of all other materials, and stimulate great interest in
applying graphene for various applications.

The optical properties of graphene are determined by direct interband electron transi-
tions that can be modulated by an external gate field [71]. The light transmittance (T )
through free-standing graphene with a universal optical conductance of G0 = e2/4~ can be
derived using Fresnel equations as T = (1 + πα)−2 ≈ 0.977, where α is the fine structure
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constant [72]. Thus, the transition and absorption coefficients of monolayer graphene
are 97% and 2.3%, respectively, which are independent of the wavelength [72]. The
graphene-light interaction is strong. The electron-hole pairs generated by photo-excitation
in graphene can be separated by built-in electric fields of metal/graphene contacts, which
can be used as the basis of graphene photodetectors [73, 74].

Graphene field-effect transistor

Since the field effect in graphene was reported by Novoselov et al. in 2004 [34], considerable
efforts have been devoted to developing high-performance GFETs [75]. A schematic of a
GFET with source, drain, and gate terminals is shown in Figure 2.5.

Figure 2.5: Device schematic of a GFET.

The operation of GFETs relies on controlling the drain current by the gate voltage.
As shown in Figure 2.6, in contrast with MOSFET, both the carrier density and the type
of carriers in the graphene channel are governed by the potential differences between
the channel and the gate, whereas MOSFETs turn off below a certain threshold voltage.
Large positive and negative gate voltages promote an n-type channel and a p-type channel,
respectively, which leads to the two branches of the transfer characteristics separated by
the Dirac point. The position of the Dirac point is defined by charged impurities in the
dielectric and at the interface between the dielectric and the graphene.
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Figure 2.6: MESFET and GFET transfer characteristics.
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Detection mechanisms

Several different mechanisms of GFET terahertz detection have been proposed. These
include the photovoltaic effect, the photo-thermoelectric model and the plasma model:

• The photovoltaic effect is caused by excitation of an electron or other charge
carrier to a higher-energy state. In 2009, V. Ryzhii first theoretically analysed the
graphene bilayer phototransistor for terahertz detection and infrared detection by
the photovoltaic effect [76]. The negative bias of the top gate results in a depletion
in the graphene. This forms the potential barrier for electrons, which controls the
injected electron current from the source to the drain. With terahertz radiation,
the electron-hole pairs are generated in the depleted section. The photo-generated
electrons move out of the depleted section, while the photo-generated holes are
accumulated in the depleted section. This results in lowering of the potential barrier
for the injected electrons, which can enhance the overall photo-detection efficiency.

• The photo-thermoelectric effect is caused by the non-equilibrium distribution of
photo-generated hot carriers in the graphene channel leading to a temperature
gradient, (∆T ). This results in a photo-thermoelectric current expressed as

IPTE =
(S1 − S2)∆T

RDS
, (2.7)

where S1/2 are the thermal coefficients of the two regions with different carrier
densities. Based on the Mott relation, the coefficient in graphene can be expresses
as [77]

S = −π
2k2BT

2q

1

σ

dσ

dEF
, (2.8)

where kB is the Boltzmann’s constant, T is the temperature, and σ the electrical
conductivity. EF = ~νF

√
πn is the Fermi energy of single layer graphene, with ~

the reduced Planck constant, and νF is the Fermi velocity.

• Plasma-wave-assisted mechanism. In 1993, M. Dyakonov and M. Shur [78] proposed
a FET channel which could act as a cavity for plasma waves, and the generation of
plasma waves by an external terahertz source. Consequently, terahertz detection
could be realized by two different operations: i) a strong resonant photoresponse is
predicted in the 2EDG channel when plasma damping rates lower than both the
frequency of input signal and the inverse of the electron transit time; ii) a broadband
terahertz response is observed when the plasma oscillations are overdamped. In the
second case, the photoresponse can be calculated based on the diffusive transport
model [79, 22]. The model predicts a second-order nonlinear response with the RF
signal applied to the gate. This implies that the dc voltage response, is proportional
to the derivative of the channel conductivity (σ) with respect to the gate voltage,
which can be expressed as,

∆U ∝ 1

σ
× dσ

dVG
. (2.9)
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In addition, the electric nonlinear model is widely used in GFET terahertz detection,
which will be discussed in Chapter 3. The accurate modeling is very important to the
development of GFET terahertz detection. This will require detailed investigation of
GFET performance and characteristics, and accurate de-embedding of external circuit
elements over a wide frequency range (or biasing range), which has been done in this
thesis.
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Chapter 3

GFET terahertz detector modelling and
design

In this chapter, a model based on the electrical nonlinearity of GFETs will be analysed and
discussed, and the second-order series expansion terms of the dc I − V will be presented.
In addition, the design guidelines for detectors with better performance will be provided.
Finally, the design and simulation of antennas will be presented, which is important for
optimising the performance of antenna-integrated terahertz detectors.

3.1 Classical nonlinear electrical model for GFET de-
tection

For power sensors, we can assume the RF signal is weak, hence the large signal model can
be described with a Taylor expansion around the dc-bias point [41, 80]. Since the GFET
has two control voltages, the small-signal drain-to-source current (ids) is a function of the
gate-source voltage (vgs) and the drain-source voltage (vds) and can be expressed by the
Taylor series as (limited to 2 orders)

ids(vg, vd) = g1,gsvg + g1,dsvd +
1

2
g2,gsvg

2 +
1

2
g2,dsvd

2 + g2,gs,dsvgvd, (3.1)

The coefficients of the Taylor series at the intrinsic bias point (V GSi, V DSi) obtained from
the derivatives of the drain-source current IDS can be expressed as

gn,m =
∂nIDS

∂V n
GSi

|VDSi, (3.2)

gn,ds =
∂nIDS

∂V n
DSi

|VGSi, (3.3)

g2,gs,ds =
∂2IDS

∂VGSiVDSi
. (3.4)

Upon terahertz irradiation with a frequency of ω,

vg = vTHz cos(ωt), (3.5)

vd = αvTHz cos(ωt+ θ), (3.6)

where α is the amplitude ratio of vd to vg and θ is the phase difference between them.
vTHz is the input terahertz voltage which is determined by the antenna coupling and the
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impedance matching between the GFET and the antenna. Thus, the dc current response
generated by the even-order non-linearity can be expressed as

iTHz =
1

4
(g2,gsvg

2 + 2g2,gs,dsvgvd cos θ + g2,dsvd
2), (3.7)

Second-order Taylor series coefficients, i.e., g2,gs, g2,gs,ds and g2,ds, are calculated from
Equation (3.2-3.4) based on the measured dc I − V characteristics, as shown in Figure
3.1.
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Figure 3.1: g2,gs (a), g2,gs,ds (b) and g2,ds (c) of the detector in Paper A versus VGS for
different drain currents in the range from -0.2 to 0.2 mA with 40 µA steps.

As shown in Figures 3.2 (a) and (b), there are two possible topologies of a GFET
power detector:

• With RF signal applied to the gate, vg is much larger than vd as shown in Paper A,
so the g2,gs term in Equation 3.7 becomes the dominant part with the increase of
the drain bias. When IDS is zero, the RV is not zero as g2,gs due to the contribution
of the g2,gs,ds term.

• With RF signal applied to the drain, vd is much larger than vg [Paper A]. So the
g2,ds term in Equation 3.7 is the dominant part.

For the output voltage measured by a voltmeter, the detector can be modeled as a
current source with an intrinsic source-drain resistance (rds), as shown in Figure 3.3.

Thus the rectified voltage measured between the drain and the source terminals can
be expressed as [81]

vTHz =
iTHzrdsRM

rds +RD +RS +RM
≈ iTHzrds, (3.8)

where RM is the impedance of the voltmeter. The expression is simplified due to the
relatively large value of RM.

The voltage responsivity of the detector can be expressed as

RV =
vTHz

Pava(1− |Sii|2)
(3.9)
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Figure 3.2: Topologies of a GFET detector with a RF signal applied to the gate (a) and
the drain (b).

Figure 3.3: The equivalent readout circuit for a GFET detector.

where Pava is the available input signal power to the detector, and Sii is the complex
reflection coefficientS11 or S22 depending on whether the input signal is applied to the
gate or the drain. This is the maximum voltage responsivity that can be achieved by the
power detector.

Finally, the g2 parameters extracted from the dc I − V characteristics can be used for
modelling the voltage responsivity of detectors.

3.2 Design of GFET power detectors

According to above analysis, with the signal applied to the gate, the response depends on
the g2,gs and g2,gs,ds terms in the drain-biased and unbiased- mode respectively; while with
the signal applied to the drain, the response depends on the gds2 term only. Therefore, the
following approaches can be used to improve the performance of GFET power detectors:

• Increase the g2,gs, g2,gs,ds and g2,ds by reducing the residual carrier density experi-
mentally demonstrated in Paper D.

• Increase the vg and vd by reducing the contact resistance and the gate capacitance.

• Apply the signal at both the gate and the drain ports with 180-degree relative phase
difference.

• Increase g2,gs by increasing the drain biasing with the signal applied to the gate.
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• Design the size of the transistor, i.e. gate width (W ) and gate length (L, to facilitate
a reasonable impedance lever for RF circuit matching.

Note that both the contact resistance and the residual carrier density can be reduced
via modifying the fabrication process [82]. And a lower gate capacitance can be achieved by
reducing the gate length. The input impedance at the gate terminal and the drain terminal
of the GFET in Paper A, were calculated from standard 50-Ω two-port S-parameters
[41, 83], as shown in Figure 3.4. At 300 GHz, the real part of input impedance at the
gate terminal is 70 Ω which is used for the simulation of antennas in the next section.
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Figure 3.4: Real part (a) and imaginary part (b) of input impedance for the GFET in
Paper A.

3.3 Design of planar antennas

For free-space radiation detection and imaging applications, the power detector is usually
integrated with an antenna which can improve coupling efficiency between the antenna
and the incoming radiation.

The input impedance and the directivity are two fundamental parameters of antennas.
Figure 3.5 shows the simulated reflection coefficients of a bowtie antenna with radius
of 180 µm and a dipole antenna with length of 360 µm. The centre working frequency
of both the bow-tie antenna and the dipole antenna is around 300 GHz. The antenna
bandwidth is often defined as the frequency range where the reflection coefficient (Γ) is
less than -10 dB. The bandwidth of the bowtie antenna is around 100 GHz, which is
approximately 2 times of that of the dipole antenna. The bowtie antenna were adopted in
Paper D, F and G, because the bow-tie antenna has better bandwidth than conventional
dipole and patch antennas.

Directivity of an antenna is the ratio of the radiation intensity in a given direction
to isotropic radiation uniformly in all directions. Larger values of directivity imply a
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Figure 3.5: Reflection coefficients of bow-tie and dipole antennas simulated by using CST
with an input impedance of 70 Ω.

more focused antenna. Maximising the directivity will couple more terahertz radiation
into detectors, hence improve the detection performance. The simulated directivity of a
bowtie antenna with radius of 150 µm at 300 GHz is shown in Figure 3.6. The maximum
directivity of single bow-tie antenna is 3 dB, as shown in Figure 3.6 (b). To increasing
the H-plane directivity, two parallel metal strip arrays can be placed beside the antenna
[84], as shown in Figure 3.6 (c). The antenna with optimised directivity is used for the
linear array in Paper G. The maximum directivity increases from 3 dB to 6 dB, as shown
in Figure 3.6 (d).

Furthermore, an efficient method of increasing directivity is using dielectric lenses or
horn antennas. The simulated directivity of a bowtie antenna attach on a hyperhemi-
spherical silicon lens with a radius of 5 mm and an extension thickness of 1.5 mm at 487
GHz is shown in 3.7.
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Figure 3.6: Directivity. ) Layout (a) and the corresponding directivity (b) of a bow-tie
antenna. Layout (c) and the corresponding directivity (d) of a bow-tie antenna coupled
with parallel metal strip arrays. (simulated by using CST).
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Chapter 4

Fabrication of GFET detectors

For high-performance detectors, state-of-the-art fabrication processes are required. In this
chapter, a new fabrication process for GFET detectors on rigid and flexible substrates is
introduced. Moreover, the fabrication techniques with emphasis on properties of three
critical interfaces are discussed. These interfaces include the interface between graphene
and the substrate, the interface between graphene and the metal (ohmic contact), and
the interface between graphene and the gate dielectric.

4.1 Fabrication process flow of GFET detectors

In contrast with silicon technology, current manufacturing processes of graphene devices
still needs improvement. Graphene devices have a strong performance variation depending
on the fabrication techniques. In particular, surface contaminations during the fabrication
process lead to formation of the charged impurities resulting in reduced carrier mobility
and higher residual concentration of the charge carriers, which can largely degrade device
performance and reliability [85].

Figure 4.1 shows the fabrication process flow of GFET detectors optimised with the
aim of achieving graphene with low-resistance ohmic contacts and low residual carrier
concentration, which is required for high-performance detectors. The graphene was
first covered with a Al2O3 layer to reduce contaminations during following processing
steps. This step sets it apart from the previously used fabrication process [21], and
results in a cleaner gate dielectric/graphene interface and, hence, a lower residual carrier
density. Furthermore, the fabrication of the gate dielectric, electrodes and pad contact
are combined into one step, which also improves the device performance. The details of
processing steps shown in Figure 4.1, are listed below.

• Graphene on substrate. The graphene in this work was grown by CVD on copper
foils and transferred onto Si/SiO2 or plastic substrates.

• Protective layer. The protective layer was deposited by repeating a sequence of
depositing 1 nm Al layers and natural oxidizing in air 4 times. The van der Waals
gap between Al and graphene allows oxygen molecules to penetrate deep into the
interface and form a high-quality oxide [86].

• Mesa isolation. The graphene mesa were defined by e-beam lithography. The Al2O3

and the graphene outside the mesa were removed by buffered oxide etchant (BOE)
and oxygen plasma, respectively.
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• Ohmic contact. The source and drain electrodes were patterned by a sequence of
e-beam lithography, Al2O3 etching, Ti/Pd/Au deposition, and lift-off.

• Gate dielectric and gate electrode. After patterning of the gate area by e-beam
lithography, the gate dielectric was deposited by repeating a sequence of depositing
1 nm Al layers and natural oxidizing 6 times. Al/Au gate electrodes were then
formed by using standard deposition and lift-off technology.

Previous fabrication Process

Mesa  isolation

Ohmic contact

Gate dielectric

Gate electrode

Pad contact

Modified fabrication process

Ohmic contact

Gate dielectric and 
electrode, and pad contact

Graphene on substrate

Protective layer

Mesa  isolation

Graphene on substrate

substrategraphene Al2O3 Au

Figure 4.1: Schematics of the fabrication processes optimised for high performance GFET
detectors.

The detailed process parameters for Paper A and F are listed in Appendix A and B,
respectively.

4.2 Graphene growth and transfer

There are three major approaches to obtain high-quality graphene sheets: the scotch
tape method [34], epitaxial growth on SiC substrates [87], and CVD on metal foils [88].
For commercial viability, low-cost and scalable large-area synthesis is necessary. Thus,
mechanical exfoliation using adhesive tapes is clearly not an option. The CVD graphene
can be transferred onto any substrate and integrated into standard complementary metal-
oxide-semiconductor (CMOS) processes, this being a promising candidate for FETs on
bendable substrates. Moreover, CVD growth of graphene may fix issues of cost and
scalability for future commercial flexible circuits and integrated systems. In 2016, X. Xu
has demonstrated an ultrafast growth method of single-crystal graphene with a growth
rate of 60 µm/s [89]. Consequent to growing graphene on copper foils, there has to be
a reliable method for transferring graphene onto substrates. In 2007, Smith et al. have
statistically evaluated the yield of GFETs on a wafer scale, which reveals that device
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failure occurs primarily during the graphene transfer step [90]. CVD graphene transfer
methods can be categorized into dry transfer [91] and wet transfer [92, 93].

In this work, the graphene provided from Graphenea was CVD-grown on copper foils
and wet transferred onto Si/SiO2 [Paper A and Paper D], polyethylene terephthalate
(PET) [Paper E and Paper F ], and polyethylene naphthalate (PEN) [Paper G] substrates.

4.3 Substrates

The material properties of commonly used substrates for GFETs are listed in Table 4.1,
and vary greatly from material to material. The PET and PEN sheets were chosen as the

Table 4.1: Material properties of commonly used substrates for GFETs [94, 95, 96].

Property PEN PET PI PDMS Si

Young’s modulus (MPa) 620 ∼3×103 4×103 0.36-0.87 1.3−1.8× 105 [97]

Density (g/cm3) 1.36 1.38 1.42 0.976 2.329

Relative permittivity (εr) 3.2-3.4 2.9 ∼ 3.5 2.3-2.8 11.9

Glass transition temperature (Tgl) (◦C) 128 81 300-410 N/A N/A

Thermal conductivity (W/mK) 0.15 ∼0.2 ∼ 1 0.15 156

Electrical resistivity (Ωcm ) 1×1015 1×1017 1.5×1017 4×1013 1×104

flexible substrates in Paper F and G respectively for with the following reasons:

• Mechanical property. PET and PEN with high Young’s modulus can tolerate a high
level of strain.

• Chemical compatibility. PET and PEN are insoluble in chemicals used during the
device fabrication, such as BOE and organic solvents for the development of e-beam-
and photo-resists, which is a necessary property for use as a substrate in electronics.

• Low loss tangent. Substrates with low loss tangents are required for the high-
frequency applications.

However, unlike the normal rigid substrates, e.g. Si, GaN, and glass, there are several
limitations affecting the fabrication of devices on PET and PEN:

• Relatively high surface roughness. The theoretical model of van der Waals interaction
[98] predicts that the surface roughness of the substrate can affect the adhesion
of the graphene layers. The study of Ishigami et al has shown that graphene
carrier mobility is limited by scattering caused by substrate surface roughness [99].
SiO2/Si interface roughness plays an important role in the mobility fluctuation
noise in MOSFETs [100]. To understand and characterise the interfacial adhesion
of graphene on substrates, it is essential to characterise the surface roughness. As

23



shown in Figure 4.2, the surface roughness of the PET is considerably greater than
that of the Si/SiO2 (300 µm/300 nm) substrate. Thus, the adhesion of graphene
on PET is potentially less than that on Si/SiO2, which requires development of
more gentle fabrication processes to avoid graphene detachment. Moreover, the
highly uneven surface topography of plastic substrates limits the fine resolution of
lithography.

Figure 4.2: Atomic force microscope (AFM) images of Si/SiO2 substrate (left), and PET
substrate (right).

• Low processing temperature. During exposure to high temperature processes, even
below the glass transition temperatures (Tgl), the sample is subjected to build-in
stress, which has to be minimised. The glass transition temperatures for crystalline
PET and PEN are 81 ◦C [95] and 128 ◦C [101], respectively. Thermally induced
crystallization occurs when the plastic is heated to above Tgl. If the processing
temperature is higher than Tgl, the mismatch in thermal expansion coefficients
between plastic substrates and resists may induce non-negligible film curvatures.
Additionally, it is impossible to decrease the fixed charge density and interface state
density of graphene on plastic substrates by annealing at temperatures as can be
done with silicon substrates.

• Electron radiation Damage. For insulating substrates, charges occurring during
electron-beam lithography (EBL) cannot be appropriately discharged from the
substrates and may distort the structures, as shown in Figure 4.3. This problem can
be eliminated if a conductive layer is applied on the e-beam resist prior to EBL.

4.4 Ohmic contact

To minimise the parasitic resistances in graphene devices, highly conductive ohmic contacts
are necessary [102]. Ohmic resistance can be reduced by using metal with large work
function [103]. In this thesis, palladium (Pd) with work function of around 5.5 eV is
selected for the ohmic contact. Furthermore, metals in contact with monolayer graphene
can shift the Fermi level below the electrodes in graphene. This results in the formation
of an interface dipole layer due to charge transfer because of the low density of states
in graphene. A consequence of this interface dipole formation is the typically observed
asymmetry between the hole and electron contact resistance in graphene devices.
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(a) (b)

Figure 4.3: Optical micrographs of a cross mark on PET substrate after develop without
(a) and with (b) a conductive layer.

4.5 Gate dielectric

To ensure the high performance of terahertz detectors and to reduce leakage current,
a uniform and manufacturable gate dielectric film with good electrical properties is
needed [104, 105]. The SiO2 and the high-κ dielectrics (e.g. Al2O3, HfO2, TiO2, and
ZrO2) developed for conventional rigid electronics generally reveal impressive electronic
performance. However, these dielectric materials can only be used in applications that
require modest flexibility. If large stretchability is necessary, polymeric dielectrics such
as polydimethylsiloxane (PDMS) [106], polymethyl methacrylate (PMMA) [107] or
polyimide (PI) [108] obtained by spin coating, casting or printing at room temperature,
are generally used. In addition, hybrid dielectrics that include both high-κ oxides and
polymers have been demonstrated with excellent mechanical flexibility, large dielectric
constant, and low leakage current [109].

Defect-free graphene is hydrophobic and inert, and there are no dangling bonds on its
surface. Thus, it is difficult to directly deposit polar thin film gate dielectrics (e.g. Al2O3,
HfO2 and SiO2) on graphene. To solve this problem, a thin inert buffer layer or seed layer
followed by atomic layer deposition (ALD) of the main dielectric film [110, 111] is widely
used. However, the properties of the gate dielectric film on graphene are very sensitive to
the growth conditions. Thus, techniques to characterise the electrical properties of the
dielectric film on graphene are very important.

In Paper E, the fabrication and characterisation of parallel-plate capacitor test struc-
tures to evaluate the electrical properties of the dielectric film are presented. The test
structure consists of a metal/dielectric/graphene stack on a PET substrate and requires
only one lithography step for the patterning of the topside metal electrodes. The leakage
current is less than 100 µA/cm2 when the gate voltage is 5 V, which is negligible compared
to drain current in GFETs and photocurrent in GFET terahertz detectors [22]. The
breakdown electric field is about 5 mV/cm, which is similar to reported Al2O3 ALD
films on silicon [112]. The dielectric constant calculated from the measured capacitance
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is approximately 7.6, which is comparable with that of the bulk material. In addition,
the results and analysis in Paper E indicate that the measured loss tangent is governed
mainly by the dielectric loss in Al2O3 and can be associated with charged defects.
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Chapter 5

On-wafer characterisation of GFET de-
tectors

Accurate characterisation of terahertz power detectors is a challenging task. This is
because the high-frequency response is mainly dominated by parasitic coupling and
loss associated with contacts, substrates, and overall layout of the component. In this
chapter, the accurate and comprehensive terahertz on-wafer probe characterisation will
be presented. The method provides accurate calibration of power in close vicinity of the
device under test, and allows simultaneously measurements of the dc I−V characteristics,
the S-parameters, and the GFET detector response from 1 GHz to 1.1 THz. Moreover,
the on-wafer probe characterisation of IF bandwidth and low-frequency noise will be
included.

5.1 DC characterisation

An accurate dc characterisation is essential for modelling, design and fabrication of GFET
detectors. The dc transfer curves of GFETs can be used for the evaluation of residual
carrier concentration, mobility and contact resistance, which are basic device parameters.
Furthermore, based on the nonlinear electrical model, g2 parameters, calculated from dc
I − V characteristics, is necessary for predicting RF detection performance of GFETs.

Figure 5.1 shows a schematic block diagram of a dc characterisation setup for GFETs.
Sourcemeters can provide precision voltage and current sourcing as well as measurement
capabilities.

Figure 5.1: A schematic block diagram of a dc characterisation setup.

Figure 5.2 (a) shows the experimental VDS(VGS,IDS) of the GFET in [Paper A]. The
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dashed lines indicate the values of VDir with different bias. The field-effect mobility
(µ), the residual carrier concentration (n0), and the sum of parasitic source and drain
resistances, can be extracted by fitting the measured source-drain resistance (RDS) to the
drain resistance model [111, 113]:

RDS = RS +RD +
L

Wqµ
√
n20 + n2G

, (5.1)

where L and W are the gate length and width, respectively; and q is the electron charge.
nG is the carrier density induced by the gate voltage, which can be obtained from the
following equation relating the gate capacitance per unit area and the quantum capacitance
of graphene:

VGS − VDir =
qnG
CG

+
~vF
√
πnG
q

, (5.2)

where VDir is the gate voltage of the Dirac point, CG is the gate capacitance per unit
area, vF is the Fermi velocity of graphene, and ~ is the Planck’s constant. Note that the
model is a semi-empirical model with the assumption that graphene transport properties
are dominated by Coulomb scattering [114] and, hence mobility does not depend on the
concentration of charge carriers [85]. Figure 5.2 (b) shows the measured and modelled
drain-source resistance, RDS = V DS/IDS, of the GFET detector in [Paper A] as a function
of VGS at IDS = 10 µA. The asymmetric conductance curves are due to the additional
resistance produced by the p-n junctions between the n-type gated channel and the p-type
ungated regions at positive values of VGS. The extracted parameters are listed in Table
5.1.
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Figure 5.2: (a) 2D color plots of the experimental VDS of the GFET in [Paper A] as a
function of IDS and VGS. (b) The experimental and modelled drain-source resistance of
the GFET detector in [Paper A] as a function of VGS.

28



Table 5.1: Extracted parameters of the detector in [Paper A].

n0 (1011 cm−2) µe (cm2/Vs) µh(cm2/Vs) RS,e +RD,e (Ω) RS,h +RD,h (Ω)

4 4000 5000 1300 1600

5.2 Scattering parameter characterisation

Using the equivalent circuit in Figure 2.3, the values of the equivalent circuit elements
can be derived from measured S-parameters through fitting techniques [64]. For accurate
characterisation of power detectors, it is necessary to know the power loss and the reflected
energy. Overall, S-parameter characterisation is very important to analysis of high-
frequency GFET detection. With the advancements in terahertz ground–signal–ground
(GSG) probes [115], on-wafer S-parameter measurements have been progressively extended
from the microwave to the terahertz frequency range.

Figure 5.3 shows the terahertz on-wafer S-parameter measurement setup. The signal
provided by a vector network analyzer (VNA) with extender modules is applied to the gate
or drain using GSG probes. RF and dc signals are separated by an bias-tee. S-parameters
are measured by the network analyzer under different gate and drain bias conditions.

Figure 5.3: A schematic block diagram of a S-parameter characterisation setup.

For actual transistor two-port parameters from the measurement setup, two important
correction procedures have to be followed:

1. Setup calibration by defining a reference plane for the S-parameter measurements
at the probe tips using a standard 2-port on-wafer calibration technique. For lower
frequencies, a short-open-load-thru (SOLT) procedure is commonly used, and the
calibration kits are often provided by commercial companies. For higher frequency
ranges, the on-wafer calibration is often performed with thru-reflect-line (TRL)
calibration kits that should preferably be designed and fabricated on the same
substrate as the devices under test [116, 117]. TRL calibration kits consist of three
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kinds of standards, i.e., through, short and λ/4 line.

2. On-wafer parasitics characterisation. The parasitic capacitances and inductances
can be extracted from measured S-parameters using open and short de-embedding
structures, respectively [65].

Figure 5.4 shows the measured and modeled S-parameters of the GFET in [Paper A]
at VGS − VDir = −0.2 V and IDS = 0 A in the frequency range of 1 GHz to 67 GHz. The
circuit elements were extracted from the measured GFET two-port S-parameters [118],
and are shown in table 5.2.

S12, S21

S11

S22

Figure 5.4: Experimental and simulated S-parameters of the detector in [Paper A].

Table 5.2: Extracted parameters of the GFET in [Paper A]

L (µm) W (µm) Cgs (fF) Cgd(fF ) CDS (fF) RS/D (Ω) ri (Ω) rds (Ω)

1.2 5 9 9 1 300 1 1400

5.3 RF power detector characterisation

With strong effects of parasitic coupling and losses at high frequencies, accurate char-
acterisation of terahertz power detectors is a challenging task. For accurate power
detector characterisation and for reducing the uncertainty from the setup and devices, it
is important to carry out simultaneous measurements of the dc I − V dependence, the
S-parameters, and the detection performance.
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Figure 5.5 shows a terahertz on-wafer probe direct detection setup for simultaneous
measurements of dc I − V dependence, S-parameters, and GFET detector response over
a wide frequency range. The dc voltage and current are provided and measured by two
sourcemeters. The S-parameters are measured using a VNA and extender modules. The
rectified response between drain and source is measured using a lock-in amplifier.

Figure 5.5: A schematic block diagram of the on-wafer RF detection setup.

Figure 5.6 (a) show the RV versus frequency from 1 GHz to 1.1 THz with the signal
applied to the gate and the drain, respectively. The RV shows 1/f2 dependence at higher
frequencies in agreement with the simulation results. Note that the RV increases at lower
frequencies with the signal applied to the gate because high-impedance mismatch at lower
frequencies may reduce the accuracy of the characterisation. The dash-dot lines indicate
that cut-off frequencies are around 140 GHz and 50 GHz with the signal applied to the
gate and the drain, respectively. Figure 5.6 (b) shows that the measured voltage response
at the given VGS = 0 V is linear with the incident power of the RF signal. The incident
power drives the detector into saturation.

Figure 5.7 (a) and (b) shows the voltage responsivity versus bias of the device with a
300 GHz signal applied to the gate and drain, respectively. With the RF signal applied
to the gate, the RV, at VGS close to the Dirac point(VDir), is proportional to IDS, which
follows the same trend as the g2,gs in Figure 3.1 (a) except that under cold condition.
When IDS is zero, the RV is not at zero as g2,gs, due to the contribution of the g2,gs,ds
term. With the RF signal applied to the drain, the sign of the RV changes from positive
to negative with increasing VGS. As IDS increases, there is a positive shift of the RV

curves with no obvious changes of the maximum of RV, which follows the trend of the
g2,ds exactly. There is a good agreement between experimental and simulation data.

Figure 5.8 (a) and (b) show the maximum absolute values of the experimental and
simulation RV versus IDS with 300 GHz signals applied to the gate and drain, respectively.
With the RF signal applied to the gate, For negative biasing, the maximum value of the
RV increases up to 1.8 kV/W with IDS = −0.2 mA. With the RF signal applied to the
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Figure 5.6: (a) Experimental and simulated voltage responsivity of the detector in [Paper
A] versus frequency. (b) Measured voltage response (black solid squares) of a detector at
1 GHz as a function of the input power. The black square symbols are the experimental
data and the dashed line shows the ideal square law response.
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Figure 5.7: Experimental (symbols) and simulated (solid lines) maximum |RV| of the
detector in [Paper A] versus VGS with a 300 GHz signal applied to the gate (a) and drain
(b).

drain, the maximum of RV is approximately 300 V/W. More detailed analysis of biasing
and frequency dependencies of responsivity is shown in [Paper A].

Overall, the on-wafer characterisation results indicate that the broadband terahertz
response of GFET detectors can be fully described using a combination of a quasi-static
equivalent circuit model, and the second-order series expansion terms of the nonlinear dc
I − V characteristic.
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Figure 5.8: Experimental (symbols) and simulated (solid lines) maximum |RV| of the
detector in [Paper A] versus IDS with a 300 GHz signal applied to the gate (a) and drain
(b).

5.4 IF bandwidth characterisation

The GFETs have shown the potential for high-sensitive and high-speed terahertz detectors
at room temperature. Qin et al. [29] and Generalov et al. [119] have demonstrated GFETs
detectors with IF bandwidthes of 1 GHz and 5 GHz in quasi-optical setups, respectively.
However, these results can be limited by the readout circuits and instruments. The IF
bandwidth of GFETs can be characterized using the experimental setup shown in Figure
5.9. The LO and RF signals provided by extenders are fed to the mixers by GSG probes.
The dc gate bias is provided by a sourcemeter. The IF signals is measured using infinity
probes and a spectrum analyzer.

Figure 5.10 (a) shows the block diagram of the GFET heterodyne detector circuit
in Paper B. Coupled line high-pass filters are implemented at both the LO and RF
ports. The low-pass filter at the IF port consists of a quarter wavelength open stub
and stepped-impedance lines. The dc pass-filter is implemented by a high-impedance
transmission line. Full-wave EM simulations using CST microwave studio were applied
for optimizing layout dimensions.

Figure 5.10 (b) shows the normalized conversion efficiency of GFET heterodyne
detectors versus the IF frequency. The 3-dB IF bandwidth (f3dB), extracted by fitting the
measured CE with CE = CE0 − 20log(fIF/f3dB)2, was found to be around 56 GHz for
the GFET with the gate length of 0.6 µm. The results demonstrate the switching speed
of GFETs detectors, which is important for future applications. Note that conversion loss
(CL) is estimated to be 28 dB at local oscillator power of 13 dBm, which could reduce to
21 dB assuming 2 times lower contact resistance. To compete with other technologies,
further optimisations are needed.
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Figure 5.9: A schematic block diagram of the on-wafer probe characterisation of IF
bandwidth.
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Figure 5.10: Block diagram (a) and normalized conversion efficiency versus IF frequency
at an LO frequency of 220 GHz (b) of the mixer circuit in Paper B.

5.5 Low-frequency noise characterisation

As an important figure of merit of direct power detectors, the NEP is often estimated
based on the voltage responsivity and the thermal noise. However, for GFET detectors,
impurities and other defects introduced during the fabrication process can contribute
to the low-frequency noise [120], which may degrade the detector noise performance. In
Paper C, the low-frequency noise in GFET terahertz detectors has been characterized.
This facilitates finding a low frequency limit of the modulation frequency, above which
the low-frequency noise is negligible. The low-frequency noise spectral density can be
measured using a low-frequency noise analyzer, as shown in Figure 5.11. The noise from
the device is amplified and analyzed using a high-speed digitizer. The SMUs with low
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pass filters are used to apply bias and measure dc I − V characteristics.04 | Keysight | E4727A Advanced Low-Frequency Noise Analyzer - Data Sheet

Different device types require different source and load impedance terminations. The E4727A is 
the only analyzer in the industry to offer 25 impedance values ranging from 0 ohms to 100 MΩ. 
The A-LFNA software is able to judiciously select RSource and RLoad based on device type 
(FET, diode, BJT, etc.) and measured DC characteristics.

The PXI chassis system controller comes equipped with the A-LFNA software integrated with 
WaferPro express, enabling fast and flexible instrument and prober control. Thus, the engineer 
may now automate multi-bias, multi-device DC and noise measurements. Measurement speed 
and accuracy may be adjusted by setting the degree of hardware averaging. The factory 
provided measurement routines offer a rich set of biasing schemes that can be copied and 
modified to suit specific needs.

Figure 5.11: Low-frequency noise measurement topology [Keysight E4727A Advanced
Low-Frequency Noise Analyzer Data Sheet].

Figure 5.13 shows the low-frequency noise spectral density of the GFET detector
in [Paper A], which reveals a 1/f spectral dependence. The 1/f noise is caused by
fluctuations in concentration and/or mobility of carriers in the channel [120], which follow
the Hooge model expressed as the Equation (2.5).
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Figure 5.12: Measured noise spectral density of the GFET in [Paper A].

Figures 5.13 (a) and (b) show the estimated NEP as a function of IDS at the modulation
frequency of 1 kHz with a 300 GHz signal applied to the gate and the drain, respectively.
At low modulation frequencies, the NEP increases with the drain biasing, since 1/f noise
is the main noise of the detector. While at high modulation frequencies NEP decreases
with the current biasing when the THz signal is applied to the gate, which is due to
the increase of responsivity with the drain bias. At 1 kHz modulation frequency, the
minimum NEP of 26 and 24 pW/

√
Hz with 300 GHz signal applied to the gate and the

drain respectively, appears at zero drain basing. The low-frequency noise measurements
indicate the minimum modulation frequency dominated by the thermal noise, which sets
the necessary switching time to reduce the effect of 1/f noise.
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Figure 5.13: Estimated NEP versus VGS of the GFET detector in [Paper A] with a 300
GHz signal applied to the gate (a) and the drain (b).

36



Chapter 6

Antenna-integrated GFET terahertz de-
tectors

This chapter will present the characterisation of antenna-integrated GFET terahertz
detectors including detectors on rigid substrates [Paper D], detectors on flexible substrates
[Paper F] and detector arrays on flexible substrates [Paper G]. In addition, effects of the
graphene quality, the bending strain and the antenna directivity on the performance of
GFET detectors are highlighted.

6.1 Free-space terahertz detection setup

Antenna-integrated detectors and detector arrays are widely used in free-space sensing
and imaging. Terahertz integrated antennas are usually physically small and have a small
effective aperture for receiving the incoming radiation. Therefore, they are often placed
at the focal plane of antennas, lenses or mirrors to increase detection performance. The
commonly used quasi-optical components with very high coupling efficiency include horn
antennas, hyper-hemispherical high-resistivity silicon lenses, plastic plano-convex lenses
and off-axis parabolic mirrors.

Figure 6.1 shows a schematic image of a free-space terahertz detection setup. The
terahertz signal is transmitted by a horn antenna mounted on the waveguide flange of the
extender, focused onto the sample under test by two plastic plano-convex lenses. In order
to reduce the effect of 1/f noise, the rectified detector voltage signal between the drain
and the source is commonly measured using a lock-in amplifier that provides a modulation
frequency to a terahertz transmitter or a chopper. Note that different publications
usually use different setups with different losses and different power calibration tools
and procedures. Therefore, it is difficult to compare detector performance in different
publications.

6.2 GFET detector

Detectors based on antenna-integrated GFETs have shown their potential for wide-band,
high-speed and high-sensitivity room-temperature terahertz detection [22, 29]. However,
graphene devices have a strong performance variation depending on the fabrication
techniques [85]. By means of modifying the previous fabrication process [21], a high-
performance 400-GHz GFET detector on a Si/SiO2 substrate has been demonstrated
in [Paper D]. The detector is based on a GFET integrated with a bow-tie antenna that
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Figure 6.1: A schematic image of a free-space measurement setup of antenna-integrated
detectors.

provides an asymmetric coupling condition between the source and the drain, as shown in
Figure 6.2 (a).

The experimental and simulated voltage responsivity as a function of the gate voltage
is shown in Figure 6.2 (b). The solid line represents the simulated results based on the
electrical nonlinear model described in Chapter 3. The estimated maximum voltage
responsivity and corresponding NEP are 74 V/W and 130 pW/

√
Hz at 400 GHz for

room-temperature operation, respectively. Measurement results show that the values of
the maximum responsivity of different GFET detectors are fitted with a 1/n0 function
with a linear correlation, which provides guidelines for improving the performance of
GFET detectors.
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Figure 6.2: (a) Optical micrograph and (b) experimental (symbols) and simulated (solid
line) voltage responsivity as a function of gate voltage of the GFET detector in [Paper D]
at 400 GHz.
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6.3 GFET detector on flexible substrate

The unique properties of graphene, such as high carrier mobility [68] and saturation
velocity [69], ultra-thin thickness, and outstanding flexibility and stretchability [70], are
attractive properties for flexible high-frequency applications. The first terahertz detector
based on an antenna-integrated GFET on a flexible substrate is demonstrated in [Paper
F], as shown in Figure 6.3.

Figure 6.3: Optical micrograph of the GFET detector on a PET substrate in [Paper F].

To investigate the effect of bending strain on the I − V characteristics and the
detector performance, the set of detectors on the PET substrate was mounted on a
polytetrafluoroethylene (PTFE) Teflon fixture which has a convex cylindrical surface
with the cylinder axis perpendicular to the length of the bow-tie antenna, as shown in
Figure 6.4. In this configuration, the detector was located on the outer surface of the
bent substrate; hence, it experienced tensile strain in the direction perpendicular to the
cylinder axis and corresponding compressive strain along the cylinder axis due to the
Poisson effect.

Figure 6.4: (a) schematic image of the PTFE Teflon fixture in [Paper F] for bending test.
(b) Photograph of the detector in [Paper F] under test with a bending radius of r = 7 mm,
which corresponds to a strain of ε = 1.3%. The inset shows the corresponding side view.

Figures 6.5 (a) and (b) show the voltage responsivity and NEP as a function of gate
voltage of the GFET detector in [Paper F] at 487 GHz with different strains, respectively.
The solid line represents the simulation results without strain based on the electrical
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nonlinear model described in Chapter 3. The detector without strain offers the maximum
voltage responsivity above 2 V/W and corresponding NEP below 3 nW/

√
Hz at 487

GHz for room-temperature operation. Based on the bending test results, the voltage
responsivity exhibits only a small reduction with increasing strain, which is owning to
the excellent mechanical properties of graphene. The effects of bending strain on the
performance of GFET detectors are discussed in detail in [Paper F].
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Figure 6.5: Voltage responsivity (a) and NEP (b) as a functions of gate voltage of the
GFET detector in [Paper F] at 487 GHz with different strains of 0%, 0.9% and 1.3%. The
solid line indicates the modelled results without strain.

6.4 GFET detector array on flexible substrate

The development of high-speed terahertz detectors resulted in flat focal-plane arrays being
successfully implemented in terahertz imaging [121, 19]. Flat focal-plane arrays based on
antenna-coupled direct detectors are demonstrated using semiconductor technologies such
as MOSFET [122, 123], HEMT [63], Schottky diode [30], and heterojunction backward
diode (HBD) [124]. Compared with flat arrays, curved imaging arrays have the advan-
tages of a larger field of view, better image quality, shape-conforming integration, and
simplification of the optical systems. Curved imaging arrays have been demonstrated in
the frequency ranges of visible [125, 126] and near-infrared light [20].

A linear array, based on 300-GHz antenna-integrated GFETs on a PEN substrate,
is demonstrated in [Paper G]. For bending test, the array sample was mounted and
electrically connected to two printed circuit boards (PCBs). Each PCB was attached to
a PTFE Teflon beam mounted in a circular trench of a specially designed and in-house
fabricated PTFE Teflon fixture, as shown in Figure 6.6 (a). The two PCBs could be tilted
by moving the two beams along the circular trench, thus bending the array into a circular
arc in a vertical plane, as shown in Figure 6.6 (b).

Figures 6.7 (a) and (b) show the source–drain conductance and the simulated voltage
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(a) (b)

Figure 6.6: (a) Schematic image of the PTFE Teflon fixture in [Paper G] for bending test.
(b) Photograph of the set of linear arrays in [Paper G] under test for curved configuration
with radius of curvature 13 mm.

responsivity of the 1× 6 pixel detector array as a function of the gate voltage overdrive
from the Dirac point, respectively. The values of conductance for these detectors are in the
range of 0.1− 0.8 mS. Similar electrical characteristics are achieved for individual pixels
in the detector array. The pixel-to-pixel variations can be associated with both inherent
nonuniformities of CVD graphene grown on copper foils, and immature techniques used
for fabrication of GFETs and its interfaces.
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Figure 6.7: (a) Conductance of the pixel detectors as a function of VGS − VDir at VDS = 1
mV. (b) Field-effect factor of the pixel detectors.

Figure 6.8 (a) shows the experimental voltage responsivity as a function of frequency.
The voltage responsivity at 300 GHz is in the range of 20−70 V/W, and the corresponding
NEP is in the range of 0.06− 0.2 nW/

√
Hz (see [Paper G]). The 300-GHz beam profile at

the focal point is shown in Figure 6.8 (b). The profile is nearly Gaussian with a full width
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at half maximum (FWHM) around 3 mm, which is much larger than the diameter of the
bow-tie antenna (dant = 300 µm). The half-power beamwidths of the bow-tie antenna
radiation pattern are observed to be 45◦ and 60◦ for the H- and E-planes respectively,
which are in good agreement with simulation results. Measurements show that the voltage
response for pixels in curved configuration is reduced up to 3 dB due to a decrease of
antenna directivity. The array, as a proof of concept, is still limited in size for real
applications. However, one can believe that large-scale flexible arrays will become a reality
with the advent of graphene growth and GFET fabrication techniques.
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Figure 6.8: (a) Experimental voltage responsivity of the six pixels of the detector array
[Paper G] in flat configuration with incident beam normal to each pixel as a function
of frequency. (b) 300-GHz beam profile at the focal point of the measurement setup in
[Paper G].
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Chapter 7

Conclusions and future outlook

In this thesis work, modelling, fabrication and characterisation of GFET terahertz detectors
were conducted with the aim of developing high-performance detectors for future flexible
terahertz electronics.

The modelling and on-wafer characterisation over a wide frequency range indicate
that the broadband terahertz response of GFET detectors can be fully described using
a combination of a quasi-static equivalent circuit model, and the second-order series
expansion terms of the nonlinear dc I − V characteristic [Paper A]. The method for
characterisation and modelling of GFET detectors developed in this work, can generally
be applied to any types of power detectors based on non-linear devices.

Measurements of IF bandwidth and low-frequency noise of GFET detectors [Paper B
and C] demonstrate the switching speed and 1/f noise characteristics, which is important
for future applications of GFETs detectors.

In addition, this study shows that there are mainly five factors affecting the performance
of GFET detectors: residual carrier density of graphene, intrinsic gate capacitance and
parasitic resistance of transistor, and matching and antenna gain of integrated circuit.
By optimising these factors, the results achieved in this study reveal an improvement in
terms of responsivity and NEP for GFET detectors, approaching the performance of their
semiconductor based counterparts, as shown in Table 7.1.

In the context of these results, advancements in material, design and fabrication
techniques are required for further development and optimisation of terahertz detectors
based on GFETs. In order to reduce the overall contact resistance, the conventional
top-contact design can be replaced by edge-contact with intrinsically lower specific contact
resistivity, resulting in performance improvement of GFET detectors. Typically, there is
a large density of charged impurities and other defects at the interface between graphene
and adjacent dielectrics in GFET structures fabricated by conventional technology. The
two-dimensional hexagonal boron nitride (h-BN) encapsulated GFETs with an ultra-flat
surface free of dangling bonds and charged impurities can be ideal when reducing the
charge carrier scattering, improving the carrier mobility and consequently, improving the
performance of terahertz detectors.

Terahertz detectors based on antenna-integrated GFET on have been first demon-
strated on plastic substrates [Paper F and G]. The effects of bending strain on dc I − V
characteristics and voltage responsivity have been investigated. This is an important step
towards large flexible detector arrays and integrated wearable terahertz sensors, which,
in particular, can become an important part of the Internet of things (IoT). For future
work, it is interesting to investigate potential applications of GFET terahertz detectors on
flexible substrates. Schematic images of a GFET detector array on a plastic substrate and
a hemispherical terahertz electronic eye camera based on the array are shown in Figures
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Table 7.1: Comparison of room-temperature THz detectors.

Technology RV NEP Frequency drain/base bias Ref.

(V/W) (pW/
√

Hz) (GHz)

GFET 1800 1000 300 with Paper A

GFET 300 24 300 without Paper A

GFET 74 130 400 without Paper D

GFET 14 515 600 without Zak, et al. [21]

GFET 0.15 30 300 without Zak, et al. [21]

AlGaN/GaN HEMT 25-31 450-650 without Bauer et al. [61]

AlGaN/GaN HEMT 30-20 700-900 without Qin et al. [15]

Si CMOS 5000 10 300 without Schuster et al. [32]

Si CMOS 1500 15 200 without Ryu et al. [14]

Schottky diode 400-4000 1.5-15 100-900 without Hesler et al. [53]

Schottky diode 250 33 280 with Han et al. [54]

Schottky diode 100 5 100 without Han et al. [127]

SiGe HBT 6121 21 315 with Daghestani et al. [56]

Sb-based HBD 2400 2.14 170 without Rahman et al. [128]

7.1 (a) and (b), respectively. The terahertz camera with simple imaging optics, similar
to the structure of biological eyes, can provide a wide field of view and low aberrations,
which is difficult to achieve using existing technologies on rigid substrates.

(a) (b)

Figure 7.1: Schematic images of a GFET detector array on a plastic substrate (a) and a
hemispherical terahertz electronic eye camera based on the array (b).
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Describing broadband terahertz response of graphene FET detectors by a
classical model

Xinxin Yang, Andrei Vorobiev, Kjell Jeppson, and Jan Stake

IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 2, 2020. DOI:
10.1109/TTHZ.2019.2960678

The accurate and comprehensive on-wafer characterisation of GFET detectors is
demonstrated, which allows for corrections of the impedance mismatch and thereby opens
up possibility for detailed measurements up to terahertz frequencies. It is shown that the
GFET response versus frequency and bias can be well predicted by a nonlinear empirical
model derived from the dc I − V characteristics and the S-parameters.

My contributions: Designed, fabricated, and characterised the devices, analysed the
results and writing of the paper.

Paper B

Wide bandwidth terahertz mixers based on graphene FETs

Xinxin Yang, Andrei Vorobiev, Kjell Jeppson, Jan Stake, Luca Banszerus, Christoph
Stampfer, Martin Otto, and Daniel Neumaier

In 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-
THz), Paris, France, 2019. DOI: 10.1109/IRMMW-THz.2019.8873869

Wide RF and IF bandwidth resistive fundamental terahertz mixers based on graphene
field-effect transistors are demonstrated. In the RF frequency range of 220-487 GHz, the
3-dB IF bandwidth is 32 GHz and 56 GHz for the mixers based on graphene field-effect
transistors with the gate length of 1.2 µm and 0.6 µm, respectively.

My contributions: Designed, fabricated and characterised the devices, analysed the
results and wrote the paper.

Paper C

Low-frequency noise characterisation of graphene FET THz detectors

Xinxin Yang, Andrei Vorobiev, Kjell Jeppson, Jan Stake, Luca Banszerus, Christoph
Stampfer, Martin Otto, and Daniel Neumaier

In 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-
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THz), Nagoya, Japan , 2018. DOI: 10.1109/IRMMW-THz.2018.8510404

The characterisation of the low-frequency noise of graphene field-effect transistor
terahertz detectors in the frequency range from 1 Hz to 1 MHz is presented. The
room-temperature Hooge parameter is extracted to be around 2 × 10−3 . The voltage
responsivity at room-temperature and the corresponding minimum noise equivalent power
at 0.3 THz are estimated to be 11 V/W and 0.2 nW/

√
Hz, respectively, at a modulation

frequency of 333 Hz, which shows comparable results with other detector technologies.

My contributions: Designed, fabricated and characterised the devices, analysed the
results and wrote the paper.

Paper D

A 400-GHz graphene FET detector

Andrey A Generalov, Michael A Andersson, Xinxin Yang, Andrei Vorobiev, Jan Stake

IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 5, pp. 614−616,
July 2017. DOI: 10.1109/TTHZ.2017.2722360

A high-performance antenna integrated graphene field effect transistor detector is
presented. At 400 GHz, the detector reveals a maximum measured optical responsivity
of 74 V/W and a minimum noise-equivalent power of 130 pW/

√
Hz. It is shown, that

the detector responsivity increases with decreasing residual carrier density, which is
an important material parameter defined by concentration of the charged impurities
introduced during the fabrication process.

My contributions: Participated in the fabrication and characterisation, and provided
feedback during the data analysis and paper writing.

Paper E

Test structures for evaluating Al2O3 dielectrics for graphene field effect
transistors on flexible substrates

Xinxin Yang, Marlene Bonmann, Andrei Vorobiev, Kjell Jeppson, and Jan Stake

In 2018 IEEE International Conference on Microelectronic Test Structures (ICMTS),
Austin, TX, USA, 2018, pp. 75-78. DOI: 10.1109/ICMTS.2018.8383768

Parallel-plate capacitor test structures are developed for evaluating the quality of
Al2O3 gate dielectrics grown on graphene for graphene field effect transistors on flexible
substrates. The test structure consists of a metal/dielectric/graphene stack on a PET
substrate and requires only one lithography step for the patterning of the topside metal
electrodes. Results from measurements of leakage current, capacitance and loss tangent
are presented.

My contributions: Designed, fabricated and characterised the devices, and analysed the
results.
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Paper F

A flexible graphene terahertz detector

Xinxin Yang, Andrei Vorobiev, Andrey A. Generalov, Michael A. Andersson, and Jan
Stake
Applied Physics Letters, vol. 111, no. 2, pp. 021102-1−021102-4, July 2017. DOI:
10.1063/1.499 3434

The first flexible THz detector based on a CVD graphene field-effect transistor fab-
ricated on a plastic substrate is presented. We have investigated the effects of bending
strain on DC characteristics, voltage responsivity and NEP of the detector. The results
reveal robust performance of detectors against bending down to radius of 7 mm.

My contributions: Designed, fabricated and characterised the devices, analysed the
results and writing of the paper.

Paper G

A linear-array of 300-GHz antenna integrated GFET detectors on a flexible
substrate

Xinxin Yang, Andrei Vorobiev, Kjell Jeppson, and Jan Stake
Manuscript submitted as a Letter to IEEE Transactions on Terahertz Science and
Technology, February, 2020.

A flexible, 300 GHz, 1×6 linear detector array based on graphene field-effect transistors
and integrated bow-tie antennas is demonstrated. Conservative estimates based on room
temperature measurements at 300 GHz indicate the one pixel detector voltage responsivity
in the range from 20 V/W to 70 V/W, and noise equivalent powers in the range from
0.06 nW/

√
Hz to 0.2 nW/

√
Hz. Measured radiation patterns, showing good agreement

with simulations, reveal half-power beam widths of 45◦ and 60◦ for H- and E-planes,
respectively. Characterisation of the antenna array in a curved configuration shows that
the voltage response is reduced up to 3 dB compared to the flat configuration due to a
decrease of the antenna directivity. We believe that our preliminary results could serve as
an enabling platform for future development of flexible antenna arrays based on GFETs for
curved focal plane imaging, important for wearable sensors and many other applications.

My contributions: Designed, fabricated and characterised the devices, analysed the
results and writing of the paper.
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Appendices

A Fabrication recipe of GFET terahertz detectors on
PET substrates

The fabrication process for devices in paper A, which assumes the CVD graphene is
transferred onto the PET substrate.

1. Protective layer

• Evaporate 1 nm Al, oxidise at room temperature, repeat 2 times.

2. Alignment marks

• Spin coat e-beam resist MCC NANO Copolymer EL10 at 3000 rpm during 60
s for 400 nm thickness.

• Soft bake in oven at 110 oC for 10 min.

• Spin coat e-beam resist AR-P 6200.13 diluted 1:2 in anisole at 3000 rpm during
60 s for 95 nm thickness.

• Soft bake in oven at 110 oC for 10 min.

• Evaporate 20 nm Cr.

• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 10 nA
with a dose of 295 µC/cm2.

• Remove Cr by chromium etchant diluted 1:2 in deionized water, then rinse off
with deionized water, blow-dry by N2.

• Develop AR-P for 45 s in n-Amylacetate, blow-dry by N2.

• Develop copolymer for 2 min in MIBK:IPA 1:1, blow-dry by N2.

• Etch Al2O3 by buffered oxide etch for 10 s, rinse off with deionized water.

• Etch graphene by oxygen plasma at 50 W RF power and 50 mTorr pressure
for 10 s.

• Evaporate 1 nm Ti/ 50 nm Au.

• Lift-off in acetone for 1 h at room temperature, rinse by IPA and deionized
water, N2 blow dry.

3. Mesa isolation

• Spin coat the negative e-beam resist maN 2401 at 3000 rpm during 60 s for
100 nm thickness.

• Soft bake in oven at 110 oC for 3 min.

• Spin coat Espacer 300Z at 1500 rpm during 60 s for 100 nm thickness.
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• Soft bake in oven at 110 oC for 3 min.

• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 2 nA
with a dose of 285 µC/cm2.

• Remove Espacer with deionized water, then rinse off with deionized water.

• Develop for 30 s in MF-CD-26, rinse by deionized water, blow-dry by N2.

• Etch Al2O3 by buffered oxide etch for 10 s, rinse off with deionized water.

• Etch graphene by oxygen plasma at 50 W RF power/ 50 mTorr pressure for
10 s.

• Strip resist in acetone for 1 h at room temperature , rinse by IPA and deionized
water, blow-dry by N2.

4. Ohmic contact

• Spin coat e-beam resist MCC NANO Copolymer EL10 at 3000 rpm during 60
s for 400 nm thickness.

• Soft bake in oven at 110 oC for 10 min.

• Spin coat AR-P 6200.13 resist diluted 1:2 in anisole at 3000 rpm during 60 s
for 95 nm thickness.

• Soft bake in oven at 110 oC for 10 min.

• Evaporate 20 nm Cr.

• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 10 nA
with a dose of 295 µC/cm2.

• Remove Cr by chromium etchant diluted 1:2 in deionized water, then rinse off
with deionized water, blow-dry by N2.

• Develop AR-P for 45 s in n-Amylacetate, blow-dry by N2.

• Develop copolymer for 2 min in MIBK:IPA 1:1, blow-dry by N2.

• Etch Al2O3 by buffered oxide etch for 10 s, rinse off with deionized water.

• Evaporate 1 nm Ti/ 5 nm Pd/ 100 nm Au.

• Lift-off in acetone for 1 h at room temperature, rinse by IPA and deionized
water, blow-dry by N2.

5. Gate dielectric and electrodes

• Spin coat e-beam resist MCC NANO Copolymer EL10 at 3000 rpm during 60
s for 400 nm thickness.

• Soft bake in oven at 110 oC for 10 min.

• Spin coat AR-P 6200.13 resist diluted 1:2 in anisole at 3000 rpm during 60 s
for 95 nm thickness.

• Soft bake in oven at 110 oC for 10 min.

• Evaporate 20 nm Cr.
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• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 10 nA
with a dose of 295 µC/cm2.

• Remove Cr by chromium etchant diluted 1:2 in deionized water, then rinse off
with deionized water, blow-dry by N2.

• Develop AR-P for 45 s in n-Amylacetate, blow-dry by N2.

• Develop copolymer for 2 min in MIBK:IPA 1:1, blow-dry by N2.

• Evaporate 1 nm Al, oxidise at room temperature, repeat 4 times.

• Evaporate 1 nm Ti/ 150 nm Al/ 2 nm Ti/ 150 nm Au.

• Lift-off in acetone for 1 h at room temperature, rinse by IPA and deionized
water, blow-dry by N2.

B Fabrication recipe of GFET terahertz detectors on
Si substrates

The fabrication process for devices in paper A, which assumes the CVD graphene is
transferred onto the Si/SiO2 substrate.

1. Protective layer

• Evaporate 1 nm Al, oxidise at room temperature, repeat 4 times.

2. Alignment marks

• Spin coat e-beam resist MCC NANO Copolymer EL10 at 3000 rpm during 60
s for 400 nm thickness.

• Soft bake on hot-plate at 180 oC for 5 min.

• Spin coat e-beam resist AR-P 6200.13 diluted 1:2 in anisole at 3000 rpm during
60 s for 95 nm thickness.

• Soft bake on hot-plate at 180 oC for 5 min.

• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 10 nA
with a dose of 360 µC/cm2.

• Develop AR-P for 45 s in n-Amylacetate, blow-dry by N2.

• Develop copolymer for 2 min in MIBK:IPA 1:1, blow-dry by N2.

• Etch Al2O3 by buffered oxide etch for 10 s, rinse off with deionized water.

• Etch graphene by oxygen plasma at 50 W RF power and 50 mTorr pressure
for 10 s.

• Evaporate 15 nm Ti/ 50 nm Au.

• Lift-off in acetone for 1 h at room temperature, rinse by IPA and deionized
water, N2 blow dry.

3. Mesa isolation

51



• Spin coat the negative e-beam resist maN 2401 at 3000 rpm during 60 s for
100 nm thickness.

• Soft bake on hot-plate at 110 oC for 1 min.

• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 2 nA
with a dose of 320 µC/cm2.

• Remove Espacer with deionized water, then rinse off with deionized water.

• Develop for 30 s in MF-CD-26, rinse by deionized water, blow-dry by N2.

• Etch Al2O3 by buffered oxide etch for 10 s, rinse off with deionized water.

• Etch graphene by oxygen plasma at 50 W RF power/ 50 mTorr pressure for
10 s.

• Strip resist in acetone for 1 h at room temperature , rinse by IPA and deionized
water, blow-dry by N2.

4. Ohmic contact

• Spin coat e-beam resist MCC NANO Copolymer EL10 at 3000 rpm during 60
s for 400 nm thickness.

• Soft bake on hot-plate at 180 oC for 5 min.

• Spin coat AR-P 6200.13 resist diluted 1:2 in anisole at 3000 rpm during 60 s
for 95 nm thickness.

• Soft bake on hot-plate at 180 oC for 5 min.

• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 10 nA
with a dose of 360 µC/cm2.

• Develop AR-P for 45 s in n-Amylacetate, blow-dry by N2.

• Develop copolymer for 2 min in MIBK:IPA 1:1, blow-dry by N2.

• Etch Al2O3 by buffered oxide etch for 10 s, rinse off with deionized water.

• Evaporate 1 nm Ti/ 5 nm Pd/ 120 nm Au.

• Lift-off in acetone for 1 h at room temperature, rinse by IPA and deionized
water, blow-dry by N2.

5. Gate dielectric and electrodes

• Spin coat e-beam resist MCC NANO Copolymer EL10 at 3000 rpm during 60
s for 400 nm thickness.

• Soft bake on hot-plate at 180 oC for 5 min.

• Spin coat AR-P 6200.13 resist diluted 1:2 in anisole at 3000 rpm during 60 s
for 95 nm thickness.

• Soft bake on hot-plate at 180 oC for 5 min.

• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 10 nA
with a dose of 360 µC/cm2.
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• Develop AR-P for 45 s in n-Amylacetate, blow-dry by N2.

• Develop copolymer for 2 min in MIBK:IPA 1:1, blow-dry by N2.

• Evaporate 1 nm Al, oxidise at room temperature, repeat 6 times.

• Evaporate 1 nm Ti/ 150 nm Al/ 2 nm Ti/ 150 nm Au.

• Lift-off in acetone for 1 h at room temperature, rinse by IPA and deionized
water, blow-dry by N2.

6. Contact pads

• Spin coat e-beam resist MCC NANO Copolymer EL10 at 3000 rpm during 60
s for 400 nm thickness.

• Soft bake on hot-plate at 180 oC for 5 min.

• Spin coat AR-P 6200.13 resist diluted 1:2 in anisole at 3000 rpm during 60 s
for 95 nm thickness.

• Soft bake on hot-plate at 180 oC for 5 min.

• E-beam expose pattern proximity corrected using BEAMER at 100 kV/ 35 nA
with a dose of 360 µC/cm2.

• Develop AR-P for 45 s in n-Amylacetate, blow-dry by N2.

• Develop copolymer for 2 min in MIBK:IPA 1:1, blow-dry by N2.

• Evaporate 20 nm Ti/ 280 nm Au.

• Lift-off in acetone for 1 h at room temperature, rinse by IPA and deionized
water, blow-dry by N2.
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