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1 Abstract 
This paper reports the early findings of an ongoing project aimed at developing new methods to upgrade the 
current maintenance strategies of the civil and transport infrastructure. As part of these new methods, the 
use of Machine Learning (ML) algorithms is being investigated to constitute the core of a new generation of 
more accurate and robust structural health monitoring (SHM) systems for concrete structures.  Unlike most 
of the existing SHM systems, relying on the analysis of the natural frequencies of the structure based on data 
obtained from accelerometers, the present study uses a distributed optic fiber system to monitor the strain 
distribution along steel reinforcing bars. The preliminary results of the study indicate that a semi-supervised 
Deep Autoencoder algorithm (DAE) can successfully quantify the damage attributable to transverse cracks in 
a reinforced concrete beam subjected to three-point loading. Future applications will feature the 
determination of crack locations, early detection of reinforcement corrosion as well as other types of damage 
such as splitting cracks or surface spalling. 

Keywords: structural health monitoring, machine learning, deep autoencoders, anomaly detection, concrete 
structures, distributed optic fiber. 

 

2 Introduction 
Recent advancements in digital technology and 
communications have rendered possible  the use of 
real-time monitoring systems, which constantly 

receive, process and analyze streams of data 
obtained from distributed sensor networks. 
Handling and using big streams of data is a tedious 
task, which has occupied data scientists for the past 
years. One of the most promising tools for handling 
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such tasks is Machine Learning (ML). In recent 
years, thanks to the increase in computational 
capacity of modern computers, a particular sub-
field of ML called Deep Learning (DL) has dominated 
the research arena, since it appears the best-known 
approach to solve prediction and classification tasks 
[1]. DL has successfully been implemented and is 
considered to be the state-of-the-art method in a 
plethora of applications such as image recognition, 
self-driving cars, machine translation, financial time 
series prediction etc. 

A potential application where DL stands out as a 
promising tool is Structural Health Monitoring 
(SHM). SHM is the constant monitoring of structural 
systems to detect, localize and assess irregularities 
and defects. Despite that SHM has been 
successfully implemented in sectors like aerospace 
and automotive industries, its application in the 
transport infrastructure has been hindered by the 
singular nature of civil structures. Current SHM 
systems still rely on deterministic methods, such as 
signal processing and Finite Element Analysis (FEA). 
These techniques, although very practical when 
used by themselves, suffer from two main issues: (i) 
non-robustness to noise and (ii) inflexibility. 
Nevertheless, more recent approaches have 
applied DL techniques in order to optimize the SHM 
procedures, most of them falling under the 
category of object detection (computer vision) and 
multi-feature classification [2] [3], which sometimes 
are non-practical to implement in large scale 
projects. 

This paper explores the possibility of developing an 
anomaly detection system for reinforced concrete 
elements using DL.  The system has been tested on 
RC beams subjected to 3-point bending where 
strains are measured via a distributed optical fiber 
attached to the reinforcement. Subsequently, the 
strain profiles were fed to a Deep Autoencoder 
Network (DAE) with different configurations. The 
results show that, after proper training, the 
network is able to detect the anomalous states of 
the beam by measuring the reconstruction error of 
the preceding observations. 

3 Methodology 

3.1 Deep Autoencoders  

The goal of the current application is to build an 
anomaly detection system. To that end, one of the 
most commonly used neural network architectures 
is the Deep Autoencoder [1](DEA) (Fig. 1). DEA’s fall 
under the category of the semi-supervised ML 
algorithms, which manipulate neural network 
architectures to solve the task of representation 
learning. Its purpose is to reduce the dimensions 
and keep the essential structural information of the 
data, similar to Principal Component Analysis. This 
technique works well when the data is 
multidimensional, and some of the features are 
either correlated or non-uniformly significant.  

 
Figure 1. Example of a Deep Autoencoder Network 

architecture. 

The unique property of DEA’s compared to 
conventional artificial neural networks is that the 
network architecture consists of two parts: the 
encoder and the decoder. The encoder consists of 
sublayers of decreasing node number, “squeezing” 
the initial input 𝑥 into the smallest sublayer, called 
bottleneck or latent-space layer. The number of 
neurons in the bottleneck layer correspond to the 
number of features we want to compress the data 
into. The decoder is the part of the network from 
the bottleneck until the output. The topology of the 
decoder sublayers is a mirror of the encoder. The 
purpose of Autoencoders is to map the input data 
to itself, i.e. minimize the function: 

	𝐽(𝑥, 𝑥&) ≡ 𝐽(𝑥, 𝑔(𝑓(𝑥)))  (1) 

where	𝑥, 𝑥& are the pair of original and reconstructed 
inputs, 𝑔 and 𝑓 are the decoding and encoding 
functions respectively and 	𝐽(𝑥, 𝑥&) is the loss 
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function which must be optimized. In our case we 
use the typical Mean Squared Error (MSE) function 
shown below: 

𝐽(𝑥, 𝑥&) = 	 ‖𝑥 − 𝑥&‖. + 𝜆∑ 𝑤3.4
356   (2) 

where the second addition term is the 𝐿2 
regularizer, which inhibits model overfitting 
without increasing bias significantly. 

The bottleneck architecture inhibits the non-useful 
mapping 𝑔(𝑓(𝑥)) = 	𝑥. The efficiency of the 
network is measured by the reconstruction error 
produced by feeding unseen data of the dataset. 

3.2 Anomaly Detection 

Anomaly detection (also outlier detection) refers to 
a family of techniques that systematically monitor a 
system in order to identify rare items, events or 
observations which raise suspicions by differing 
significantly from the majority of the data [4]. These 
unusual observations quite often indicate either 
that our system has reached an anomalous 
condition or that the newest datapoint is defective, 
both of which should be examined with care. The 
use of DAE’s has become a staple for anomaly 
detection tasks. With proper implementation, it is a 
robust and reliable model. The algorithm is the 
following: 

• Step-1: Examine the data and use an appropriate 
preprocessing scheme. 

• Step-2: Decide which data fall under the normal 
category. 

• Step-3: Train the autoencoder with the normal 
data only, until convergence. 

• Step-4: Feed all the training data into the model 
(training+validation), in order to obtain the 
training reconstruction error. 

• Step-5: Construct a threshold error according to 
some statistic derived from the training 
reconstruction error (a common choice is 𝑇:;< =
	max@∈BCDEFG	𝐽(𝑥, 𝑥&) [5].  

• Step-6: Each sample that has a greater 
reconstruction error than the threshold, is 
characterized as an anomaly. With the total 
reconstruction error profile, we can have a 
sanity check on the efficiency of our network. 

 
Figure 2. Close up view of the optic fiber sensor 
attached to a steel reinforcing bar used in the 

experimental tests. 

4 Current implementation 

4.1 Main concept  

The goal of the current implementation is to 
examine the possibility of using DAE as a monitoring 
system in concrete structures. More specifically, the 
aim is to monitor structures using only 
measurements of reinforcement strains obtained 
from a distributed optic fiber sensor, see Fig. 2.  

The idea is to model the structure using Finite 
Element Analysis (FEA), load it until failure with 
different load cases, gather the features needed for 
the damage estimation and train the model with the 
normal states of each loading case. 

This approach, while reasonable, does not account 
for the unavoidable error existing in all data 
acquired from integrated sensors (imperfect 
application, device noise etc.) nor the inherent 
heterogeneity of concrete.  Since concrete is 
commonly modelled as a homogeneous material in 
FEA, the existing randomness of the material is not 
well captured by conventional FE, thereby 
rendering them divergent from the real structure. 
To tackle this issue, the initial states of the physical 
element were included into the training data. This 
step, which acts as a “calibration”, can be easily 
applied to large scale projects and makes the neural 
network generalize even better. 

 
Figure 3. Tested beam after failure. 



2019 IABSE Congress – The Evolving Metropolis 

September 4-6, 2019, New York City 

4 

Figure 4. On the left, the strain profile of the beam FEA. On the right, the strain profile of one of the tested 
beams. The red dashed line shows until which state the networks were tested on (see 4.1). 

4.2 Set up 

The experimental set up consisted of 6 concrete 
beams with dimensions 90⨯15⨯10cm, reinforced 
with two ∅10mm rebar of B500B steel placed with 
a concrete cover of 25mm. The concrete had a cube 
compressive strength of 60 MPa and a tensile 
splitting strength of 3.5 MPa, both measured at 28 
days. For each beam, only one of the longitudinal 
bars was outfitted with an optic fiber sensor. The 
signal frequency was 1.25 Hz and spatial resolution 
was 0.65 mm. 

The beams were tested to failure under three-point 
loading using a displacement-control setup at 
displacement rate of 1mm/min. Two of the beams 
were loaded monotonically and four were 
subjected to cyclic loading. Stirrups were not 
provided in order to promote shear failure [6], 
which occurred for all of the beams tested, see 
Fig.3. Moreover, the monotonic tests were 
numerically simulated using the commercial FEA 
software DIANA. 

4.3 Training procedure 

The training data consisted of the strain states up to 
until 50% of the total capacity for the results 
obtained from the FEA, whereas only about the first 
15% of the strain states obtained from each 
experiment were used for training (Fig. 4). 

4.4 Preprocessing 

The most crucial part of the implementation is the 
data preprocessing. Feature-wise preprocessing 
such as z-score standardization and min-max 
normalization was discarded. The reason is that for 
the current application all features  𝐹I, 𝑗 = 1,… , 𝑛 
have the same physical meaning (strain at some 
rebar position), thus having the same underlying 
range while the total range of the values will not be 
known beforehand in a real application. 
Consequently, the preprocessing scheme that was 
tested was a row zero mean centering approach 
where each feature for each datapoint is 
transformed as follows: 

𝑥4;N
3I = 𝑥3I − 𝒙P3, 𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛  (3) 

where 𝑚 is the number of observations and 𝒙P3 is the 
mean of all the features in the current observation. 
In common ML applications, this type of 
preprocessing is discouraged, since transforming 
different units with the same device removes a 
great part of relational information. Nevertheless, 
for the reasons discussed above, it is an ideal 
candidate for the current application. 

4.5 Damage classification 

In bridge condition assessment (BCA) a common 
practice to assess the level of existing damage in the 
structure is by creating different criteria or 
thresholds. Accordingly, three damage thresholds 
were created by examining the distribution of the 
strains across the rebar from the analysis: 𝑅U, 𝑅6, 𝑅. 
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which are the small, significant and hazardous 
damage thresholds respectively. Thus, we have: 

𝑅U = 𝑚𝑎𝑥	(𝐸𝑟𝑟) Y1 +
1
2	𝜔[	\ (4) 

𝑅6 = 𝑅U]1 + 𝜆6√𝜔[_ (5) 

𝑅. = 𝑅U]1 + 𝜆.√𝜔[_ (6) 

where: 

𝜔[ = `exp(𝜎&.) − 1  (7) 

𝜎& = 𝜎(log	(𝐸𝑟𝑟))  (8) 

 

with 𝜎 being the standard deviation, and  𝐸𝑟𝑟 is a 
vector with all the training reconstruction errors. 

Intuitively,  𝜔[ is a custom dispersion, fitting the 
current application. It must be noted that the above 
rules were constructed empirically, after trial and 
error, taking into consideration the dispersity of the 
reconstruction error resulting from measurements 
of different noise levels. The coefficient 𝜆6, 𝜆. are 
multipliers that dictate the sensitivity of the system. 
In our application, 𝜆6 = 3 and 𝜆. = 5. In fact, one 
could construct arbitrary levels of damage 𝜆3, 
depending on the significance of the structure. It 
must be noted that the proposed thresholds should 
be used with the training scheme that involves both 
FEA and the initial states data. 

 

Figure 5. Losses and reconstruction errors for beams 2 and 3, subjected to monotonic and cyclic loading, 
respectively.

 

5 Results and Discussion 
Fig. 5 presents the results of the DAE for two of the 
tested beams, one with monotonic and one with 

cyclic loading, in terms of reconstruction error and 
train and validation loss. All the cases studied were 
tested with various random seeds, in order to verify 
the robustness of the results. For all the tested 
beams, the model was able to easily fit the data, 
which was a more cumbersome task before the 
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preprocessing scheme described in 4.4. Moreover, 
in all cases, the damage thresholds classify the 
damage level successfully, though less efficiently in 
the heavily noisy beams. It must be noted that the 
network could capture the states of all the beams, 
regardless of the type of loading applied. 

The Hazardous damage was generally about 70% to 
90% of the beam capacity. However, in all cases, the 
significant damage threshold can efficiently trigger 
an inspection, thereby avoiding the total collapse of 
the concrete element. 

6 Conclusions 
In this research project we have presented the 
possibility of constructing a DML anomaly detection 
model that monitors the damage state of a concrete 
beam, using its strain profile only. The current 
approach was implemented successfully and could 
possibly be extended in a plethora of structures. As 
a future research, more models could be 
investigated, as well as more complex structural 
elements with different load patterns. Verifying the 
effectiveness of the proposed method in various 
structures is an imperative need before a full-scale 
application, which could possible revolutionize the 
field of SHM in bridges. 
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