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MITTAG–LEFFLER EULER INTEGRATOR FOR A STOCHASTIC
FRACTIONAL ORDER EQUATION WITH ADDITIVE NOISE∗

MIHÁLY KOVÁCS† , STIG LARSSON‡ , AND FARDIN SAEDPANAH§

Abstract. Motivated by fractional derivative models in viscoelasticity, a class of semilinear
stochastic Volterra integro-differential equations, and their deterministic counterparts, are consid-
ered. A generalized exponential Euler method, named here the Mittag–Leffler Euler integrator, is
used for the temporal discretization, while the spatial discretization is performed by the spectral
Galerkin method. The temporal rate of strong convergence is found to be (almost) twice com-
pared to when the backward Euler method is used together with a convolution quadrature for time
discretization. Numerical experiments that validate the theory are presented.
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1. Introduction. We study the numerical approximation of a class of semilinear
Volterra integro-differential equations in a real, separable, infinite-dimensional Hilbert
space H of the form

du(t) +

∫ t

0

b(t− s)Au(s) dsdt = F (u(t)) dt+ dW (t), t ∈ (0, T ]; u(0) = u0,(1.1)

where A is a self-adjoint, positive definite, not necessarily bounded, operator on the
Hilbert space H, W is an H-valued Wiener process with covariance operator Q,
F : H → H is a nonlinear operator, b is a locally integrable scalar kernel, and u0 is
an H-valued random variable. Our main example of b is the Riesz kernel

b(t) =
tα−1

Γ(α)
, 0 < α < 1,(1.2)

where Γ(α) =
∫∞

0
tα−1e−t dt is the gamma function.

By introducing the fractional integral of order α denoted by Jα0 (see, for example,
[18]) as

(Jα0 g)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s) ds, 0 < α < 1,

(1.1) becomes a fractional order equation of the form

du(t) + Jα0 (Au)(t) dt = F (u(t)) dt+ dW (t), t ∈ (0, T ]; u(0) = u0.(1.3)
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We note that the present framework applies also to slightly more general kernels,
which have similar smoothing effects, such as the tempered Riesz kernel

b(t) =
1

Γ(α)
tα−1e−ηt, 0 < α < 1, η ≥ 0,(1.4)

and even to certain kernels with finite smoothness; see Remark 1 for further discussion.
Recalling that 0 < α < 1 in (1.2), we denote henceforth

ρ = α+ 1, 1 < ρ < 2,(1.5)

so that b(t) = tρ−2/Γ(ρ− 1).
We motivate our main example (1.3) by a model from linear viscoelasticity; for

more examples see, e.g., [16, 20] and references therein. In one spatial dimension,
considering the class of viscoelastic materials which exhibit a simple power-law creep,
the evolution equation that describes the response variable w (chosen among the field
variables: displacement, stress, the strain, or the particle velocity) is given by

w(x, t) = w(x, 0+) + twt(x, 0+) +
c

Γ(ρ)

∫ t

0

(t− s)ρ−1wxx(x, s) ds, 1 < ρ < 2;

see, for example, [16]. Assuming that wt(x, 0+) = 0 and that w is continuous at
t = 0+ with w(x, 0+) = w0(x), one arrives at the Cauchy problem

wt(x, t) =
c

Γ(ρ− 1)

∫ t

0

(t− s)ρ−2wxx(x, s) ds; w(x, 0) = w0(x).

With α = ρ− 1 and c = 1 we get

wt(x, t) = Jα0 (wxx(x, ·))(t); w(x, 0) = w0(x).

Now, if w is chosen to be the particle velocity, and f represents a nonlinear, external
viscous force, which is perturbed by Gaussian noise ξ̇, then the equation for the
particle velocity reads as

wt(x, t) = Jα0 (wxx(x, ·))(t) + f(w(x, t)) + ξ̇(x, t); w(x, 0) = w0(x).(1.6)

Considering the equation on an interval [0, L] and supplementing the equation with
nonslip boundary conditions, we arrive at a special instance of (1.3), with H =
L2(0, L), A being the Dirichlet Laplacian inH and F the Nemytskij operator F (v)(·) =
f(v(·)). We remark that, without the noise and f , (1.6) is often referred to as a frac-
tional wave equation.

We note that when the kernel b in (1.1) is smooth, e.g., exponential kernels, these
equations reveal a hyperbolic behavior, whereas for weakly singular kernels, e.g., the
Riesz kernel (1.2), they exhibit certain parabolic features.

The literature on numerical methods for stochastic PDEs, such as stochastic par-
abolic and hyperbolic PDEs, is mature. In some works, by using exponential inte-
grators [8], the strong rate of convergence has been improved for the stochastic heat
equation (see, e.g., [4, 14, 23]) and for the stochastic wave equation (see, e.g., [2] and
the references therein). The drawback of the exponential integrators for stochastic
PDEs is that the eigenfunctions of the operator A and of the covariance operator Q
of the noise must coincide and must be known explicitly, so that the scheme can be
implemented.
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68 MIHÁLY KOVÁCS, STIG LARSSON, AND FARDIN SAEDPANAH

However, the literature on numerical analysis of stochastic Volterra equations is
more scarce, containing only [1, 11, 12] and a few recent papers specifically for the
fractional stochastic heat equation (where there is a derivative in front of Jα0 in (1.3)),
based on a convolution quadrature; see, for example, [6, 7].

Here, we study a full discretization of (1.1), as well as its deterministic coun-
terpart, i.e., the special case when W = 0. We use a generalized exponential Euler
method, named here the Mittag–Leffler Euler integrator, for the temporal discretiza-
tion. Full discretization is then formulated by the spectral Galerkin method for spatial
discretization.

As is the case for stochastic equations with no memory effects, the time integration
is based on the mild formulation of the equation. However, there is a major difference,
namely, the solution operator in our case does not have the semigroup property and
hence the integrator uses the approximate solution from all previous time levels, not
just from the current one, in order to advance to the next time level. This phenomenon
is of course present in the convolution quadrature setting as well and makes the error
analysis more difficult compared to the memoryless case.

The main novelty in this work is the introduction of a new temporal discretization
method for (1.1) and its error analysis. The analysis of the spatial discretisation is
more or less standard. In particular, we prove that the strong rate of temporal
convergence is (almost) twice the rate of the Euler method combined with Lubich’s
convolution quadrature of order 1 [1]. As a consequence, for trace-class noise, we
recover (almost) the optimal rate 1 in time.

When H = L2(D), where D ⊂ Rd is a bounded domain, with appropriately
smooth boundary, the framework presented here allows for a general class of Nemytskij
operators F when d = 1, 2, 3, with some restriction on ρ when d = 3. For space-time
white noise we must have d = 1, while for colored noise d > 1 is allowed.

The outline of the paper is as follows. In section 2, we introduce notation and
the abstract framework, state our main assumptions, and present some preliminary
results on the solution of (1.1). In section 3, we introduce the numerical scheme
(3.7) and, in Theorem 1, we state and prove our main result on the order of strong
convergence. In section 4, we discuss the implementation of the scheme and present
some numerical experiments to illustrate the theory. Throughout the paper C denotes
a generic constant that may have different values at different occurrences, but its value
is independent of the discretization parameters.

2. Preliminaries.

2.1. The abstract setting. Let H be a real, separable, infinite-dimensional
Hilbert space with inner product (·, ·) and norm ‖ · ‖ and let A be a self-adjoint,
positive definite, not necessarily bounded operator in H with compact inverse. An
important example is H = L2(D) and A = −∆ with homogeneous Dirichlet boundary
conditions. Let {(λk, ϕk)}∞k=1 be the eigenpairs of A, i.e.,

Aϕk = λkϕk, k ∈ N.(2.1)

It is known that 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · with limk→∞ λk = ∞ and the
eigenvectors {ϕk}∞k=1 form an orthonormal basis for H. We introduce the fractional
order spaces

Ḣν := dom
(
A
ν
2

)
, ‖v‖2ν :=

∥∥A ν
2 v
∥∥2

=

∞∑
k=1

λνk(v, ϕk)2, ν ∈ R, v ∈ Ḣν .
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Let L = L(H) denote the space of all bounded linear operators on H. We also
consider the space of Hilbert–Schmidt operators, that is, the space of all operators
T ∈ L for which

‖T‖2HS =

∞∑
k=1

‖Tϕk‖2 <∞.

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space, (Ft)t∈[0,T ] being a normal

filtration, with Bochner spaces Lp(Ω;H) = Lp
(
(Ω,F ,P);H

)
, p ≥ 2. We let Q ∈ L be

a self-adjoint, positive semidefinite operator and H0 = Q
1
2 (H) be the Hilbert space

with the inner product 〈u, v〉H0
= 〈Q− 1

2u,Q−
1
2 v〉, where Q−

1
2 denotes the pseudoin-

verse of Q
1
2 , when it is not injective, and Q

1
2 is the unique positive semidefinite

square root of Q. By L0
2 = L0

2(H) we denote the space of Hilbert–Schmidt operators

H0 → H. Thus, ‖T‖L0
2

= ‖TQ 1
2 ‖HS < ∞, for T ∈ L0

2. Then we let W be Q-Wiener
process in H with respect to (Ω,F , (Ft)t∈[0,T ],P). We recall the Itô isometry,∥∥∥∥∫ t

0

φ(s) dW (s)

∥∥∥∥
L2(Ω;H)

=

∥∥∥∥∥
(∫ t

0

∥∥φ(s)
∥∥2

L0
2

ds

) 1
2

∥∥∥∥∥
L2(Ω;R)

,(2.2)

and the Burkholder–Davis–Gundy inequality, for p ≥ 2,∥∥∥∥∥
∫ t

0

φ(s) dW (s)

∥∥∥∥∥
Lp(Ω;H)

≤ Cp

∥∥∥∥∥
(∫ t

0

∥∥φ(s)
∥∥2

L0
2

ds

) 1
2
∥∥∥∥∥
Lp(Ω;R)

,(2.3)

for strongly measurable functions φ : [0, T ]→ L0
2 [5].

We recall from (1.5) that ρ = α+ 1, ρ ∈ (1, 2), α ∈ (0, 1).

Assumption 1. We quantify the regularity of the noise by β ∈ (0, 1
ρ ] through the

assumption that there is a constant B such that∥∥∥∥A β− 1
ρ

2

∥∥∥∥
L0

2

=

∥∥∥∥A β− 1
ρ

2 Q
1
2

∥∥∥∥
HS

≤ B.(2.4)

Trace class noise, that is, when Tr(Q) = ‖Q 1
2 ‖2HS < ∞, corresponds to β = 1

ρ .

When A = −∆ is the Dirichlet Laplacian, we may take Q = A−s with s ≥ 0. Then
(2.4) is satisfied with β < s+ 1

ρ −
d
2 , because λj ≈ j

2
d as j →∞. We note that s = 0

corresponds to space-time white noise Q = I, and in this case, d = 1 and β < 1
ρ −

1
2 .

2.2. The linear deterministic problem. We assume that there exists a
strongly continuous family {S(t)}t≥0 of bounded linear operators on H such that
the function u(t) = S(t)u0, u0 ∈ H, is the unique solution of

u(t) +A

∫ t

0

B(t− s)u(s) ds = u0, t ≥ 0,

with B(t) =
∫ t

0
b(s) ds. When t → u(t) = S(t)u0 is differentiable for t > 0, then u is

the unique solution of

u̇(t) +A

∫ t

0

b(t− s)u(s) ds = 0, t > 0; u(0) = u0.
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70 MIHÁLY KOVÁCS, STIG LARSSON, AND FARDIN SAEDPANAH

We refer to the monograph [20] for a comprehensive theory of resolvent families for
Volterra equations. An important feature of the resolvent family {S(t)}t≥0 is that
it does not have the semigroup property; that is, S(t + s) 6= S(t)S(s). This is the
mathematical reflection of the fact that the solution possesses a nontrivial memory. In
our special setting, using the spectral decomposition of A, an explicit representation
of S(t) is given by the Fourier series

S(t)v =

∞∑
k=1

sk(t)(v, ϕk)ϕk,(2.5)

where the functions sk(t) are the solutions of

ṡk(t) + λk

∫ t

0

b(t− s)sk(s) ds = 0, t > 0; sk(0) = 1.(2.6)

Next, we collect our precise assumptions on the resolvent family {S(t)}t≥0.

Assumption 2. We assume that the resolvent family {S(t)}t≥0 is strongly contin-
uously differentiable for t > 0 and enjoys the following smoothing properties: There
is M such that for t > 0, we have

‖AsS(t)‖L ≤Mt−sρ, s ∈
[
0,

1

ρ

]
,(2.7)

‖AsṠ(t)‖L ≤Mt−sρ−1, s ∈
[
0,

1

ρ

]
,(2.8)

‖A−sṠ(t)‖L ≤Mtsρ−1, s ∈ [0, 1].(2.9)

Remark 1. These are verified in [17, Theorem 5.5] for the Riesz kernel and in [3,
Lemma A.4] for more general kernels. We note that for the Riesz kernel (1.2), which is
our main example, estimates (2.7) and (2.8) hold also for s ∈ [0, 1] (see [17, Theorem
5.5]), but we do not need this extended range of s for the present analysis. A more
general class of kernels b for which (2.7)–(2.9) are satisfied is the class of 4-monotone
kernels such that 0 6= b ∈ L1,loc(R+), limt→∞ b(t) = 0, with

ρ := 1 +
2

π
sup

{
|arg b̂(z)| : Re z > 0

}
∈ (1, 2),

and b̂(z) ≤ Cz1−ρ for z > 1, where this latter condition may be substituted by the
condition ‖b‖L1(0,t) ≤ Ctρ−1, t ∈ (0, 1); see [3, Remark 3.8 and Lemma A.4]. In

particular, b does not have to be analytic. (Here b̂ denotes the Laplace transform
of b.)

2.3. Well-posedness of the semilinear stochastic problem. The mild
solution of the semilinear stochastic equation (1.1) is an adapted H-valued stochastic
process, u(t), such that, for t ∈ [0, T ], P-almost surely,

u(t) = S(t)u0 +

∫ t

0

S(t− s)F (u(s)) ds+

∫ t

0

S(t− s) dW (s).(2.10)

Assumption 3. In addition to the singularity exponent ρ = α + 1 ∈ (1, 2) from
(1.2) and the regularity parameter β ∈ (0, 1

ρ ] in (2.4), we assume that there are

δ ∈ [1, 2
ρ ), γ ∈ [0, β), η ∈ [1, 2

ρ ), and a constant L > 0, such that
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‖F (u)‖ ≤ L(1 + ‖u‖), ‖F ′(u)v‖ ≤ L‖v‖, u, v ∈ H,(2.11)

‖F ′(u)v‖−δ ≤ L(1 + ‖u‖γ)‖v‖−γ , u ∈ Ḣγ , v ∈ Ḣ−γ ,(2.12)

‖F ′′(u)(v1, v2)‖−η ≤ L‖v1‖‖v2‖, v1, v2 ∈ H.(2.13)

Our main example is H = L2(D) with D ⊂ Rd a bounded domain with appropri-
ately smooth boundary, and A = −∆, the negative of the Dirichlet Laplacian. Here
F can be taken to be a Nemytskij operator defined by F (u)(x) = f(u(x)), where
f : R → R is a smooth function with bounded derivatives of orders 1 and 2. Then
(2.11) clearly holds and (2.13) is satisfied with η > d/2 because of Sobolev’s inequal-
ity. The additional assumption η < 2

ρ puts a restriction on ρ, namely, 1 < ρ < 4/d.

For (2.12) we refer to Lemma 4.4 in [22], which can be extended from d = 1 to d ≤ 3,
again in case δ > d/2 and thus 1 < ρ < 4/d.

Lemma 1. Suppose that Assumption 1, (2.7) from Assumption 2, and (2.11) from
Assumption 3 hold. Let p ≥ 2, and assume ‖u0‖Lp(Ω;Ḣγ) ≤ K. Then, there is a

unique mild solution u ∈ C([0, T ];Lp(Ω;H)) of (2.10). Furthermore, for a constant
C = C(B,K,L,M, T, β, γ, ρ, p),

sup
t∈[0,T ]

‖u(t)‖Lp(Ω;Ḣγ) ≤ C.(2.14)

Proof. The existence and uniqueness of a mild solution u ∈ C([0, T ];Lp(Ω;H)) of
(2.10) can be proved, even only under assumption (2.11), via a standard Banach fixed
point argument using (2.4) and (2.7); see, for example, the proof of [3, Theorem 3.3].
Therefore,

‖u(t)‖Lp(Ω;H) ≤ C, t ∈ [0, T ],(2.15)

which is (2.14) with γ = 0. For γ ∈ (0, β), using (2.10), we have

‖u(t)‖Lp(Ω;Ḣγ) ≤ ‖S(t)‖L‖u0‖Lp(Ω;Ḣγ)

+

∫ t

0

‖A
γ
2 S(t− s)‖L‖F (u(s))‖Lp(Ω;H) ds

+
∥∥∥ ∫ t

0

A
γ
2 S(t− s) dW (s)

∥∥∥
Lp(Ω;H)

.

By using (2.7) with s = 0, (2.7), (2.11), (2.3), and (2.15), we obtain

‖u(t)‖Lp(Ω;Ḣγ) ≤ ‖u0‖Lp(Ω;Ḣγ) + L

∫ t

0

‖A
γ
2 S(t− s)‖L

(
1 + ‖u(s)‖Lp(Ω;H)

)
ds

+ Cp

∥∥∥∥∥
(∫ t

0

‖A
γ
2 S(t− s)Q 1

2 ‖2HS ds

) 1
2

∥∥∥∥∥
Lp(Ω;R)

≤ C + C

∫ t

0

(t− s)−
γρ
2 ds

+ Cp

∥∥∥∥A β− 1
ρ

2 Q
1
2

∥∥∥∥
HS

(∫ t

0

∥∥∥∥A (γ−β)+ 1
ρ

2 S(t− s)
∥∥∥∥2

ds

) 1
2

.

By using (2.4) and (2.7) again, we have

‖u(t)‖Lp(Ω;Ḣγ) ≤ C +BC

(∫ t

0

(t− s)−1+(β−γ)ρ ds

) 1
2

,

where the integral is finite, since (β − γ)ρ ∈ (0, 1). This completes the proof.
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Remark 2. In the deterministic case, i.e., when W = 0, by following the proof of
Lemma 1, it is straightforward to prove that, assuming u0 ∈ Ḣ2γ for some γ ∈ [0, 1

ρ ),
we have the regularity estimate

sup
t∈[0,T ]

‖u(t)‖Ḣ2γ ≤ C.(2.16)

3. Full discretization. In this section we formulate a fully discrete method for
approximation of (1.1). We use the spectral Galerkin method for spatial discretiza-
tion in combination with a time discretization based on an exponential Euler type
method. We refer to the proposed time discretization method as the Mittag–Leffler
Euler integrator (MLEI) since the solution operator can be represented using the
Mittag–Leffler function, in case the convolution kernel b is the Riesz kernel as in our
main example (1.3). We give more details in section 4, where numerical examples are
presented.

Let 0 = t0 < t1 < · · · < tM = T be a uniform partition of the time interval [0, T ],
with time step ∆t = tm+1 − tm, m = 0, 1, . . . ,M − 1. Then, for m = 0, 1, . . . ,M , by
using the variation of constants formula (2.10), we have

u(tm) = S(tm)u0 +

∫ tm

0

S(tm − σ)F (u(σ)) dσ +

∫ tm

0

S(tm − σ) dW (σ)

= S(tm)u0 +

m−1∑
j=0

∫ tj+1

tj

S(tm − σ)F (u(σ)) dσ +

∫ tm

0

S(tm − σ) dW (σ),

(3.1)

Following the idea of exponential integrators, we formulate the MLEI as

Um = S(tm)u0 +

m−1∑
j=0

∫ tj+1

tj

S(tm − σ) dσ F (Uj) +

∫ tm

0

S(tm − σ) dW (σ),(3.2)

where Uj ≈ u(tj), j = 0, 1, . . . ,M , and where the convolution containing the nonlin-
ear term is approximated but the linear terms, including the stochastic convolution
integral, are computed exactly; see section 4 for details.

For spatial discretization, we define finite-dimensional subspaces HN of H by
HN = span{ϕ1, ϕ2, . . . , ϕN}, where {ϕk}∞k=1 are the eigenvectors of A, (2.1). Then
we define the projector

PN : H → HN , PNv =

N∑
k=1

(v, ϕk)ϕk, v ∈ H.(3.3)

We also define the operator

AN : HN → HN , AN = APN ,(3.4)

which generates a family of resolvent operators {SN (t)}t≥0 in HN . It is known that

SN (t)PN = S(t)PN ,(3.5)

‖A−ν(I − PN )‖ = sup
k≥N+1

λ−νk = λ−νN+1, ν ≥ 0.(3.6)

The representation of SN , similar to (2.5), is given by

SN (t)v =

N∑
k=1

sk(t)(v, ϕk)ϕk.
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Therefore, the smoothing properties (2.7)–(2.9) also hold for SN with constants inde-
pendent of N .

Hence, the fully discrete approximation of (1.1), based on the temporal approxi-
mation (3.2), is given by

UNm = SN (tm)PNu0 +

m−1∑
j=0

∫ tj+1

tj

SN (tm − σ) dσPNF
(
UNj
)

+

∫ tm

0

SN (tm − σ)PN dW (σ),

(3.7)

with initial value UN0 = PNu0. Now we state and prove the main theorem, which
shows the strong rate of convergence.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold and ‖u0‖L4(Ω;Ḣγ) ≤ K.

Then, for a constant C = C(B,K,L, T, β, ρ, γ), we have

sup
tm∈[0,T ]

‖u(tm)− UNm ‖L2(Ω;H) ≤ C
(
λ
− γ2
N + ∆tγρ

)
.

Proof. By subtracting (3.7) from (3.1), we get

u(tm)− UNm = S(tm)u0 − SN (tm)PNu0

+

m−1∑
j=0

∫ tj+1

tj

{
S(tm − σ)F (u(σ))− SN (tm − σ)PNF

(
UNj
)}

dσ

+

∫ tm

0

{
S(tm − σ)− SN (tm − σ)PN

}
dW (σ).

By recalling (3.5) and taking norms, we obtain∥∥u(tm)− UNm
∥∥
L2(Ω;H)

≤ ‖S(tm)(I − PN )u0‖L2(Ω;H)

+

∥∥∥∥∫ tm

0

S(tm − σ)(I − PN )F (u(σ)) dσ

∥∥∥∥
L2(Ω;H)

+

∥∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PN
(
F (u(σ))− F (UNj )

)
dσ

∥∥∥∥∥∥
L2(Ω;H)

+

∥∥∥∥∫ tm

0

S(tm − σ)(I − PN ) dW (σ)

∥∥∥∥
L2(Ω;H)

=

4∑
l=1

Il.

(3.8)

We note that I1, I2, and I4 correspond to the spatial discretization error, while I3
corresponds to the temporal error.

1. Spatial error. The estimate of I1 is a consequence of (2.7) with s = 0 and
(3.6), as

I1 ≤ ‖S(tm)‖L‖A−
γ
2 (I − PN )A

γ
2 u0‖L2(Ω;H)

≤ Cλ−
γ
2

N+1‖u0‖L2(Ω;Ḣγ) ≤ Cλ
− γ2
N+1.

(3.9)

D
ow

nl
oa

de
d 

01
/1

4/
20

 to
 1

29
.1

6.
14

0.
12

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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For I2, by using (2.7) and (3.6), we have

I2 ≤
∫ tm

0

‖AγS(tm − σ)‖L

× ‖A−γ(I − PN )‖L‖F (u(σ))‖L2(Ω;H) dσ

≤ C
∫ tm

0

(tm − σ)−γρλ−γN+1‖F (u(σ))‖L2(Ω;H) dσ ≤ Cλ−γN+1,

(3.10)

where we recall that γρ < 1 and use (2.11) and (2.14) with p = 2, γ = 0.
Now we estimate I4. Using the Itô isometry (2.2), we have

I4 ≤

∥∥∥∥∥
(∫ tm

0

∥∥∥S(tm − σ)(I − PN )Q
1
2

∥∥∥2

HS
dσ

) 1
2

∥∥∥∥∥
≤
∥∥∥∥A β− 1

ρ
2 Q

1
2

∥∥∥∥
HS

‖A−
γ
2 (I − PN )‖L

(∫ tm

0

∥∥∥∥A (γ−β)+ 1
ρ

2 S(tm − σ)

∥∥∥∥2

HS

dσ

) 1
2

,

which, by (2.7), (3.6), and since (β − γ)ρ ∈ (0, 1), implies

I4 ≤ Cλ
− γ2
N+1

∥∥∥∥A β− 1
ρ

2 Q
1
2

∥∥∥∥
HS

(∫ tm

0

(tm − σ)−1+(β−γ)ρ dσ

) 1
2

≤ Cλ−
γ
2

N+1.

(3.11)

2. Temporal error. Here we estimate I3, i.e.,

I3 =

∥∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PN
(
F (u(σ))− F

(
UNj
) )

dσ

∥∥∥∥∥∥
L2(Ω;H)

.

We use the Taylor expansion

F (u(σ)) = F (u(tj)) + F ′(u(tj))
(
u(σ)− u(tj)

)
+RF,j(σ),

where the remainder is

RF,j(σ) =

∫ 1

0

F ′′
(
u(tj) + γ

(
u(σ)− u(tj)

))(
u(σ)− u(tj), u(σ)− u(tj)

)
(1− γ) dγ,

to get

I3 ≤

∥∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PN
(
F (u(tj))− F

(
UNj
))

dσ

∥∥∥∥∥∥
L2(Ω;H)

+

∥∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNF ′(u(tj))
(
u(σ)− u(tj)

)
dσ

∥∥∥∥∥∥
L2(Ω;H)

+

∥∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNRF,j(σ) dσ

∥∥∥∥∥∥
L2(Ω;H)
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By substituting u(σ) and u(tj) from the variation of constants formula (2.10) in the
second term, we have

I3 ≤
7∑
l=1

I3,l,(3.12)

where

I3,1 =

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PN
(
F (u(tj))− F

(
UNj
))

dσ

∥∥∥∥∥
L2(Ω;H)

,

I3,2 =

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNF ′(u(tj))
(
S(σ)− S(tj)

)
u0 dσ

∥∥∥∥∥
L2(Ω;H)

,

I3,3 =

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNF ′(u(tj))

∫ σ

tj

S(σ − τ)F (u(τ)) dτ dσ

∥∥∥∥∥
L2(Ω;H)

,

I3,4 =

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNF ′(u(tj))

×
∫ tj

0

(
S(σ − τ)− S(tj − τ)

)
F (u(τ)) dτ dσ

∥∥∥∥∥
L2(Ω;H)

,

I3,5 =

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNF ′(u(tj))

∫ σ

tj

S(σ − τ) dW (τ) dσ

∥∥∥∥∥
L2(Ω;H)

,

I3,6 =

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNF ′(u(tj))

×
∫ tj

0

(
S(σ − τ)− S(tj − τ)

)
dW (τ) dσ

∥∥∥∥∥
L2(Ω;H)

,

and

I3,7 =

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNRF,j(σ) dσ

∥∥∥∥∥
L2(Ω;H)

.

First, using (2.11) and (2.7) with s = 0, we have

I3,1 ≤ML∆t

m−1∑
j=0

∥∥u(tj)− UNj
∥∥
L2(Ω;H)

.(3.13)

To estimate I3,2, we have

I3,2 ≤
m−1∑
j=0

∫ tj+1

tj

∥∥∥A δ
2S(tm − σ)

∥∥∥
L

∥∥∥A− δ2F ′(u(tj))
(
S(σ)− S(tj)

)
u0

∥∥∥
L2(Ω;H)

dσ

=

m−1∑
j=0

∫ tj+1

tj

∥∥∥A δ
2S(tm − σ)

∥∥∥
L

∥∥∥∥∥A− δ2F ′(u(tj))

∫ σ

tj

Ṡ(τ)u0 dτ

∥∥∥∥∥
L2(Ω;H)

dσ,
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76 MIHÁLY KOVÁCS, STIG LARSSON, AND FARDIN SAEDPANAH

so that, using (2.12), (2.7), and (2.14) with p = 4, we obtain

I3,2 ≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

(
1 + ‖u(tj)‖L4(Ω;Ḣγ)

)
×

∥∥∥∥∥
∥∥∥∥∥
∫ σ

tj

Ṡ(τ)u0 dτ

∥∥∥∥∥
−γ

∥∥∥∥∥
L4(Ω;R)

dσ

≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

∥∥∥∥∥
∫ σ

tj

∥∥A−γ Ṡ(τ)A
γ
2 u0 dτ

∥∥∥∥∥∥∥
L4(Ω;R)

dσ.

Now, by (2.9), we have

I3,2 ≤ C‖u0‖L4(Ω;Ḣγ)

m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

∫ σ

tj

τγρ−1 dτ dσ

≤ C

γρ

(
tγρj+1 − t

γρ
j

)m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2 dσ ≤ C

(
tγρj+1 − t

γρ
j

)
,

and, since γρ ∈ (0, 1), we consequently have

I3,2 ≤ C∆tγρ.(3.14)

Now we estimate I3,3 in (3.12). Using (2.11) and (2.7) with s = 0, we have

I3,3 ≤
m−1∑
j=0

∫ tj+1

tj

‖S(tm − σ)‖L

∥∥∥∥∥F ′(u(tj))

∫ σ

tj

S(σ − τ)F (u(τ)) dτ

∥∥∥∥∥
L2(Ω;H)

dσ

≤ L
m−1∑
j=0

∫ tj+1

tj

‖S(tm − σ)‖L
∫ σ

tj

‖S(σ − τ)‖L‖F (u(τ))
∥∥
L2(Ω;H)

dτ dσ

≤ C
m−1∑
j=0

∫ tj+1

tj

∫ σ

tj

(
1 + ‖u(τ)‖L2(Ω;H)

)
dτ dσ,

which, by (2.14) with p = 2, γ = 0, implies

I3,3 ≤ C∆t.(3.15)

To estimate I3,4 in (3.12), we have

I3,4 ≤
m−1∑
j=0

∫ tj+1

tj

∥∥∥A δ
2S(tm − σ)

∥∥∥
L

×

∥∥∥∥∥A− δ2F ′(u(tj))

∫ tj

0

(
S(σ − τ)− S(tj − τ)

)
F (u(τ)) dτ

∥∥∥∥∥
L2(Ω;H)

dσ

=

m−1∑
j=0

∫ tj+1

tj

∥∥∥A δ
2S(tm − σ)

∥∥∥
L

×

∥∥∥∥∥
∥∥∥∥∥A− δ2F ′(u(tj))

∫ tj

0

∫ σ

tj

Ṡ(θ − τ) dθ F (u(τ)) dτ

∥∥∥∥∥
∥∥∥∥∥
L2(Ω;R)

dσ,
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which, in view of (2.7), (2.12), and (2.14) with p = 2, implies

I3,4 ≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

×

∥∥∥∥∥
∥∥∥∥∥
∫ tj

0

∫ σ

tj

A−
γ
2 Ṡ(θ − τ) dθ F (u(τ)) dτ

∥∥∥∥∥
∥∥∥∥∥
L4(Ω;R)

dσ

≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

×
∫ tj

0

∫ σ

tj

∥∥A− γ2 Ṡ(θ − τ)
∥∥
L dθ

∥∥F (u(τ))
∥∥
L4(Ω;H)

dτ dσ.

Now, by (2.9) and (2.11), we have

I3,4 ≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

×
∫ tj

0

∫ σ

tj

(θ − τ)
γρ
2 −1 dθ

(
1 + ‖u(τ)‖L4(Ω;H)

)
dτ dσ,

which, together with (2.14) with p = 4, γ = 0, implies

I3,4 ≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

∫ tj

0

∫ σ

tj

(θ − τ)
γρ
2 −1 dθ dτ dσ.

Then, computing the double integral as∫ tj

0

∫ σ

tj

(θ − τ)
γρ
2 −1 dθ dτ =

∫ σ

tj

∫ tj

0

(θ − τ)
γρ
2 −1 dτ dθ

=
2

γρ

∫ σ

tj

(
θ
γρ
2 − (θ − tj)

γρ
2

)
dθ ≤ 2

γρ
t
γρ
2
j ∆t,

due to γρ
2 ∈ (0, 1

2 ), we conclude the estimate

I3,4 ≤ C∆t.(3.16)

We now estimate the terms in (3.12), which are affected by the noise. For I3,5,
using the fact that the expected value of independent processes is zero, and then the
Cauchy–Schwarz inequality, we have

I2
3,5 = E

∥∥∥∥∥
m−1∑
j=0

∫ tj+1

tj

S(tm − σ)PNF ′(u(tj))

∫ σ

tj

S(σ − τ) dW (τ) dσ

∥∥∥∥∥
2

=

m−1∑
j=0

E

∥∥∥∥∥
∫ tj+1

tj

∫ σ

tj

S(tm − σ)PNF ′(u(tj))S(σ − τ) dW (τ) dσ

∥∥∥∥∥
2

≤ ∆t

m−1∑
j=0

∫ tj+1

tj

E

∥∥∥∥∥
∫ σ

tj

S(tm − σ)PNF ′(u(tj))S(σ − τ) dW (τ)

∥∥∥∥∥
2

dσ.
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Then, by the Itô isometry (2.2), (2.11) and (2.14) with p = 2, γ = 0, we have

I2
3,5 ≤ ∆t

m−1∑
j=0

∫ tj+1

tj

∫ σ

tj

∥∥∥S(tm − σ)PNF ′(u(tj))S(σ − τ)Q
1
2

∥∥∥2

HS
dτ dσ

≤ C∆t

∥∥∥∥A β− 1
ρ

2 Q
1
2

∥∥∥∥2

HS

m−1∑
j=0

∫ tj+1

tj

∫ σ

tj

∥∥∥S(tm − σ)
∥∥∥2

L

∥∥∥∥∥A−β+ 1
ρ

2 S(σ − τ)

∥∥∥∥∥
2

L

dτ dσ.

Now, using (2.4) and (2.7), we obtain

I2
3,5 ≤ C∆t

m−1∑
j=0

∫ tj+1

tj

∫ σ

tj

(σ − τ)βρ−1 dτ dσ ≤ C∆t1+βρ,

and therefore, we conclude the estimate

I3,5 ≤ C∆t
1+βρ

2 .(3.17)

Now we estimate I3,6. To this end, having

I3,6 ≤
m−1∑
j=0

∫ tj+1

tj

∥∥∥A δ
2S(tm − σ)

∥∥∥
L

×

∥∥∥∥∥A− δ2F ′(u(tj))

∫ tj

0

(
S(σ − τ)− S(tj − τ)

)
dW (τ)

∥∥∥∥∥
L2(Ω;H)

dσ

=

m−1∑
j=0

∫ tj+1

tj

∥∥∥A δ
2S(tm − σ)

∥∥∥
L

×

∥∥∥∥∥
∥∥∥∥A− δ2F ′(u(tj))

∫ tj

0

∫ σ

tj

Ṡ(θ − τ) dθ dW (τ)

∥∥∥∥
∥∥∥∥∥
L2(Ω;H)

dσ,

and using (2.7) and (2.12), we obtain

I3,6 ≤ C

(
1 + sup

t∈[0,T ]

‖u(t)‖L4(Ω;Ḣγ)

)

×
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

∥∥∥∥∥
∫ tj

0

∫ σ

tj

A−
γ
2 Ṡ(θ − τ) dθ dW (τ)

∥∥∥∥∥
L4(Ω;H)

dσ.

Then, by (2.14) with p = 4 and the Burkholder–Davis–Gundy inequality (2.3),

I3,6 ≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

×

∥∥∥∥∥
∫ tj

0

∥∥∥∥∥
∫ σ

tj

A−
γ
2 Ṡ(θ − τ) dθ Q

1
2

∥∥∥∥∥
2

HS

dτ

 1
2 ∥∥∥∥∥

L4(Ω;R)

dσ

≤ C
∥∥∥∥A β− 1

ρ
2 Q

1
2

∥∥∥∥
HS

m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

×

∥∥∥∥∥∥∥
∫ tj

0

(∫ σ

tj

∥∥∥∥A−(γ+β)+ 1
ρ

2 Ṡ(θ − τ)

∥∥∥∥
L

dθ

)2

dτ

 1
2

∥∥∥∥∥∥∥ ,
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which, using (2.4) and (2.9), implies

I3,6 ≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
δρ
2

∥∥∥∥∥∥∥
∫ tj

0

(∫ σ

tj

(θ − τ)
(γ+β)ρ

2 − 3
2 dθ

)2

dτ

 1
2

∥∥∥∥∥∥∥ .
From this and∫ tj

0

(∫ σ

tj

(θ − τ)
(γ+β)ρ

2 − 3
2 dθ

)2

dτ

= C

∫ tj

0

(
(σ − τ)γρ−

1
2 +

(β−γ)ρ
2 − (tj − τ)γρ−

1
2 +

(β−γ)ρ
2

)2

dτ

= C

∫ tj

0

(
(σ − τ)γρ(σ − τ)−

1
2 +

(β−γ)ρ
2 − (tj − τ)γρ(tj − τ)−

1
2 +

(β−γ)ρ
2

)2

dτ

≤ C
∫ tj

0

(
(σ − τ)γρ(tj − τ)−

1
2 +

(β−γ)ρ
2 − (tj − τ)γρ(tj − τ)−

1
2 +

(β−γ)ρ
2

)2

dτ

= C

∫ tj

0

(tj − τ)−1+(β−γ)ρ
(

(σ − τ)γρ − (tj − τ)γρ
)2

dτ

≤ C∆t2γρ
∫ tj

0

(tj − τ)−1+(β−γ)ρ dτ

= Ct
(β−γ)ρ
j ∆t2γρ,

we conclude the estimate

I3,6 ≤ C∆tγρ.(3.18)

To estimate I3,7, the last term in (3.12), we have

I3,7 ≤
m−1∑
j=0

∫ tj+1

tj

∥∥∥A η
2 S(tm − σ)

∥∥∥
L

∥∥∥∥∥∥A− η2RF,j(σ)
∥∥∥∥∥∥

L2(Ω;H)
dσ.

By (2.7) and (2.13), this implies

I3,7 ≤ C
m−1∑
j=0

∫ tj+1

tj

(tm − σ)−
ηρ
2 ‖u(σ)− u(tj)‖2L4(Ω;H) dσ,

which, considering the fact that [1, Proposition 3.2]

‖u(σ)− u(tj)‖L4(Ω;H) ≤ C(σ − tj)
γρ
2 ,

we conclude the estimate

I3,7 ≤ C∆tγρ.(3.19)

Finally, inserting (3.9)–(3.11) and (3.13)–(3.19) into (3.12), we have

∥∥u(tm)− UNm
∥∥
L2(Ω;H)

≤ C
(

∆tγρ + λ
− γ2
N+1

)
+ C∆t

m−1∑
j=0

‖u(tj)− Uj‖L2(Ω;H),

which, by the discrete Gronwall lemma, completes the proof.
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Remark 3. We note that the temporal strong rate of convergence is (almost)
twice the rate of the backward Euler method combined with the first order Lubich
convolution quadrature used in [1, 11]. In particular, when Q is of trace class we
almost recover the deterministic order O(∆t) in time (cf. Remark 4).

Remark 4. For the deterministic form of the model problem (1.1), i.e., with W =
0, the rate is therefore O

(
∆t + λ−γN+1

)
), as expected. Indeed, recalling (3.9) and

Remark 2, we have

I1 ≤ ‖S(tm)‖L‖A−γ(I − PN )Aγu0‖ ≤ Cλ−γN+1‖u0‖2γ .

We also recall (3.10), for which we have, in this case,

I2 ≤ Cλ−γN+1(1 + ‖u0‖).

Remark 5. To avoid the restrictive assumption that one has access to the eigen-
values and eigenfunctions of A, in theory, one may discretize (1.1) in space by other
means, such as the finite element method. Indeed, when A is minus the Dirichlet
Laplacian in L2(D), then one has nonsmooth data error estimates for the finite ele-
ment method, at least for the main example (1.3) (see [15]), and the error analysis in
the present paper can be performed with a slight increase in technicality using these
nonsmooth data estimates. However, the corresponding algorithm would be difficult
to implement in practice. Indeed, if Sh denotes the finite element approximation of
S, where h is the finite element mesh size, one would have to simulate a Gaussian
random variable with covariance operator∫ tn

0

Sh(t)PhQPhSh(t) dt

which, even in the simplest case Q = I, is not practically feasible unless one has
access to the eigenvalues and eigenfunctions of the discrete Laplacian Ah. Therefore,
we have chosen to analyze the spectral Galerkin method for which the scheme is easily
implementable, but even in this case, this is true only when A and Q commute.

Remark 6. The feasibility of the proposed numerical scheme relies heavily on
whether one knows the scalar functions sk from (2.6). This is the case for the Riesz
kernel (see section 4) or for the tempered Riesz kernel, but in general this leads to the
additional difficulty of solving (2.6), for example, by numerically inverting a Laplace
transform.

4. Numerical implementation. In this section we present the explicit form of
the solution of (2.6) in terms of the Mittag–Leffler functions. Then, we illustrate the
temporal strong order of convergence, to confirm the proposed rate in Theorem 1.

4.1. Explicit representation of the solution. First, we derive an explicit
representation of the resolvent family in terms of the Mittag–Leffler functions when b
is the Riesz kernel.

Recall that the one parameter Mittag–Leffler function Ea(z), a > 0, is defined as

Ea(z) =

∞∑
k=0

zk

Γ(ak + 1)
, z ∈ C,

where obviously E1(z) = exp(z). By taking the Laplace transform of (2.6), when

b(t) = tρ−2/Γ(ρ− 1), we have b̂(z) = z1−ρ and

ŝk(z) =
1

z + λkz1−ρ =
zρ−1

zρ + λk
,
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which implies

sk(t) = Eρ(−λktρ).

Thus, the resolvent family is given by

S(t)v =

∞∑
k=1

Eρ(−λktρ)(v, ϕk)ϕk.

To explain the computer implementation of the fully discrete method (3.7), we
note that

SN (tm) =

N∑
k=1

Eρ(−tρmλk)(v, ϕk)ϕk.

Suppose that Q has the same eigenfunctions as A, so that Qv =
∑∞
k=1 µk(v, ϕk)ϕk.

Then, for each time step m = 1, . . . ,M , the approximation UNm defined by (3.7) is

given by UNm =
∑N
k=1 U

N
m,kϕk, where for k = 1, . . . , N ,

UNm,k = Eρ (−λktρm)u0,k +

m−1∑
j=0

∫ tj+1

tj

Eρ(−λk(tm − σ)ρ) dσ Fk
(
UNj
)

+

∫ tm

0

Eρ(−λk(tm − σ)ρ)µ
1
2

k dβk(σ)

(4.1)

and where u0,k = (u0, ϕk), Fk(·) = (F (·), ϕk), and βk, k = 1, . . . , N , are mutually
independent standard Brownian motions.

We note that the integrals of the Mittag–Leffler functions are computable, e.g.,
by means of a simple quadrature, say the trapezoidal method. For evaluating the
Mittag–Leffler function we use mlf.m from [19]. What one has to be careful with is
how to simulate, for fixed k, the random variables

O(tm) :=

∫ tm

0

Eρ(−λk(tm − σ)ρ)µ
1
2

k dβk(σ), m = 1, . . . ,M.

Observe that the RM -valued random variable

N := (O(t1), . . . ,O(tM ))

is a 0-mean Gaussian random variable with covariance matrix

(M)i,j =

∫ min(ti,tj)

0

Eρ(−λk(ti − σ)ρ)Eρ(−λk(tj − σ)ρ)µk dσ.

Thus N = Lξ, where LLT = M , and ξ is an RM -valued random variable with
independent standard Gaussian coordinates. This difficulty does not arise in the
memoryless case as there one can exploit the semigroup property of the solution
operator. In that case one only has to simulate the independent Gaussian random

variables ξi :=
∫ ti
ti−1

exp(−λk(ti−σ))µ
1
2

k dβk(σ), i = 1, . . . ,M , and then take O(tm) =∑m
i=1 exp(−λk(tm − ti))ξi, m = 1, . . . ,M .
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4.2. Numerical experiments. Since the main contribution of this paper is
the temporal approximation, we only present a simplified numerical experiment with
uncoupled eigenmodes. More precisely, let u =

∑∞
k=1 ukϕk and define the nonlinear

operator

F (u) =

∞∑
k=1

f(uk)ϕk.(4.2)

We simulate various coordinates of the numerical approximation; that is, we simulate
the random variables UNM,k in (4.1) for various values of k, with µk = 1 and λk = k2π2

being the eigenvalues of the Dirichlet Laplacian in one dimension on D = [0, 1].
Since we are simulating scalar problems, the noise is trace class and we expect

the rate of convergence of the MLEI to be almost 1 according to the theory. We
also compare the performance of the MLEI to the backward Euler based convolution
quadrature (BE) proposed and analyzed in [11, 12] in the linear case and in [1] in
the semilinear setting. For BE the theory in [1] predicts a strong rate of almost 0.5
for trace class noise, although the conditions on f there are somewhat different to
the present setting and hence the rate could be higher for smooth additive noise. In
fact, in the scalar case we have ‖AtQ1/2‖HS = λtk < ∞ for any t so that we have
smoothness of any order. But when λk is large, this quantity is also large, making the
error constant large, and then we do not expect to see a higher rate than corresponding
to t = 0; that is, the trace class noise case (this is seen in Figure 1). This also explains
why, for smaller λk, we might occasionally observe a better rate than 0.5 for BE (see
Figure 2 with λ2). Nevertheless, in all experiments the MLEI outperforms BE by far
and we experimentally see rate 1 for MLEI in all experiments.

We use 100 sample paths in all experiments. The computed solution is compared
to a reference solution with much smaller mesh size. We use the functions f(u) =
sin(u) and f(u) = 5(1 − u)/(1 + u2) and different values ρ = 1.2 and ρ = 1.75 (and
for Figure 3 also ρ = 1.5); the first being closer to the heat equation with solutions
dying out quickly (Figure 4), while the latter produces a more pronounced wave
phenomenon (Figure 5). For functions with larger Lipschitz constant, such as f(u) =
100(1− u)/(1 + u2), we still get similar convergence behavior as shown in Figure 3.

The figure legends and captions explain the settings for the various experiments.
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Fig. 1. Comparison of BE and MLEI temporal rate of convergence with f(u) = sin(u), ρ = 1.2
and ρ = 1.75, and λ30 = 900π2.
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Fig. 2. Comparison of BE and MLEI temporal rate of convergence with f(u) = sin(u) and
λ2 = 4π2, respectively, λ10 = 100π2. Left: with ρ = 1.2. Right: ρ = 1.75.
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Fig. 3. Temporal rate of convergence for MLEI with f(u) = 5(1−u)/(1 +u2), ρ = 1.2, 1.5, and
1.75, and λ2 = 4π2.
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Fig. 4. Solution behavior with f(u) = sin(u), ρ = 1.2, and λ10 = 100π2.
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Fig. 5. Solution behavior with f(u) = sin(u), ρ = 1.75, and λ10 = 100π2.
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