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COMPLETELY BOUNDED MAPS AND INVARIANT

SUBSPACES

M. ALAGHMANDAN, I. G. TODOROV, AND L. TUROWSKA

Abstract. We provide a description of certain invariance properties of
completely bounded bimodule maps in terms of their symbols. If G is a
locally compact quantum group, we characterise the completely bounded

L
∞(G)′-bimodule maps that send C0(Ĝ) into L

∞(Ĝ) in terms of the
properties of the corresponding elements of the normal Haagerup tensor
product L

∞(G) ⊗σ h L
∞(G). As a consequence, we obtain an intrinsic

characterisation of the normal completely bounded L
∞(G)′-bimodule

maps that leave L
∞(Ĝ) invariant, extending and unifying results, for-

mulated in the current literature separately for the commutative and
the co-commutative cases.

1. Introduction

LetM be a von Neumann algebra, acting on a Hilbert spaceH, with com-
mutant M′. The normal Haagerup tensor product M⊗σ hM was introduced
by E. G. Effros and A. Kishimoto in [9], where it was shown that to each of
its element χ there corresponds, in a canonical way, a completely bounded
M′-bimodule map Φχ on the space B(H) of all bounded linear operators
on H. Let us call χ the symbol of the map Φχ. The transformation Φχ is
in addition weak* continuous precisely when χ belongs to the, smaller, ex-
tended Haagerup tensor product M⊗ehM, introduced by U. Haagerup [12].
The present paper is concerned with the question of how specific invariant
subspace properties of the map Φχ are reflected in its symbol χ.

As a first motivation, we single out Herz-Schur multipliers of the Fourier
algebra A(G) of a locally compact group G, introduced by J. de Canniere
and U. Haagerup [7]. These objects have played a prominent role in opera-
tor algebra theory, in particular in the study of approximation properties of
the von Neumann algebra VN(G) and the reduced group C*-algebra C∗

r (G)
of G [6, 13, 17]. The numerous applications they have found were facili-
tated to a great extent by the description, due to J. E. Gilbert and to M.
Bożejko and G. Fendler [5], which identifies them with a part of the Schur
multipliers on the direct product G × G. Recall that the space of Schur
multipliers [12, 21, 22, 26] coincides with the extended Haagerup tensor
product L∞(G) ⊗eh L

∞(G), where L∞(G) is identified with the algebra of
operators of multiplication by essentially bounded functions on G, acting
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on the Hilbert space L2(G). Herz-Schur multipliers can be identified with
those completely bounded weak* continuous L∞(G)-bimodule maps that
leave VN(G) invariant. As L∞(G) ⊗eh L

∞(G) can be naturally embedded
in L∞(G × G), a natural problem, addressed in [24] and [20], is that of
characterising the functions ϕ : G×G→ C that are symbols of Herz-Schur
multipliers.

Exchanging the roles of L∞(G) and VN(G), one may consider the space of
completely bounded weak* continuous VN(G)′-bimodule maps on B(L2(G)).
Since VN(G)⊗eh VN(G) naturally embeds in VN(G×G), to each such map
there corresponds canonically an element of the Neumann algebra VN(G×
G). Those such maps that leave L∞(G) invariant were characterised by M.
Neufang [19] (see also [20]) as arising in a canonical fashion from bounded
complex measures on G. In [1], under the restriction that G be weakly
amenable, we provided an intrinsic characterisation of the symbols from
VN(G)⊗eh VN(G) whose maps leave L∞(G) invariant, showing that, when
viewed as elements of VN(G×G), they are precisely those supported, in the
sense of P. Eymard [11], on the anti-diagonal of G.

The invariance properties in the two cases described above were placed
in the same context in [15], where the authors showed that, if G is a locally
compact quantum group with underlying von Neumann algebra L∞(G) and

a dual quantum group Ĝ with underlying von Neumann algebra L∞(Ĝ), the
completely bounded weak* continuous L∞(G)′-bimodule maps that leave

L∞(Ĝ) invariant correspond in a canonical fashion to the completely bounded

left multipliers of the predual L1(Ĝ) of L∞(Ĝ) (we direct the reader to [15]
for the definitions and further details). However, the problem of charac-
terising intrinsically the elements of L∞(G) ⊗eh L

∞(G) which are symbols

of maps leaving the von Neumann algebra L∞(Ĝ) invariant, has not been
addressed in the literature.

One of the main aims of the present paper is to exhibit such a characteri-
sation. We unify results in the literature that are currently stated in the two
extreme cases – for commutative and co-commutative locally compact quan-
tum groups – arriving at a condition that captures both simultaneously. In
fact, our results go beyond this aim, as we are able to drop the requirement
of weak* continuity, and characterise intrinsically those elements of the nor-
mal Haagerup tensor product L∞(G)⊗σ hL

∞(G) that give rise to completely
bounded (but not necessarily weak* continuous) maps on B(L2(G)) sending

the reduced C*-algebra C0(Ĝ) of Ĝ into L∞(Ĝ).
Specialising to the case of co-commutative quantum groups, we obtain a

generalisation of our previous results from [1], removing the assumption of
weak amenability imposed therein. On the other hand, specialising to the
case of commutative quantum groups, we obtain the first, to the best of our
knowledge, rigorous characterisation of the Schur multipliers ϕ : G×G → C

whose corresponding map on B(L2(G)) leaves VN(G) invariant, in terms of
the function ϕ alone; the result states that this happens if and only if, for
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every r ∈ G, the equality ϕ(sr, tr) = ϕ(s, t) holds for marginally almost all
(s, t) ∈ G×G.

Our main result in the setting of quantum groups, Theorem 3.1, is ob-
tained as a consequence of a more general statement (Theorem 2.3) that
expresses invariance properties of completely bounded bimodule maps in
terms of their symbol. This general viewpoint is presented in Section 2,
after obtaining some preparatory results. It is applied, in Section 3, to the
case of locally compact quantum groups, while Sections 4 and 5 contain the
further applications to co-commutative and commutative quantum groups,
respectively.

We finish this section by setting basic notation. We denote by B(H)
the algebra of all bounded linear operators acing on a Hilbert space H.
If M ⊆ B(H) is a von Neumann algebra, we let M∗ denote its predual,
consisting of all normal functionals on M, and equip it with the operator
space structure arising from its natural embedding into M∗. We denote
by CBM(B(H)) (resp. CBσM(B(H))) the operator space of all completely
bounded (resp. weak* continuous, or normal, completely bounded) M-
bimodule maps on B(H). The algebraic tensor product of vector spaces X
and Y is denoted by X ⊙ Y, the space of all n by n matrices – by Mn, and
the tensor product X ⊙ Mn is written as Mn(X ) and identified with the
space of all n by n matrices with entries in X . If X and Y are operator
spaces, we denote by X ⊗h Y the Haagerup tensor product of X and Y, and
by X⊗̂Y their operator projective tensor product. If X and Y are moreover
dual operator spaces, X⊗̄Y stands for their weak* spatial tensor product.
If ϕ : X × Y → Z (where Z is another operator space) and n,m ∈ N, we
let ϕ(m,n) : Mn(X ) × Mm(Y) → Mnm(Z) be the ampliation of ϕ, given by

ϕ(m,n)((xi,j), (yp,q)) = (ϕ(xi,j , yp,q)i,p,j,q. The identity operator is denoted
by 1, and we let M ⊗ 1 = {a ⊗ 1 : a ∈ M}; it will be clear from the
context on which Hilbert space 1 acts. We will use throughout the paper
basic results from operator space theory, and we refer the reader to the
monographs [3, 10, 21, 22] for the necessary background.

2. A characterisation of invariance

Let X and Y be dual operator spaces and Bilσ(X ,Y) be the operator
space of all normal (i.e. separately weak* continuous) completely bounded
bilinear forms on X × Y. The normal Haagerup tensor product [3, 9] of X
and Y is the operator space dual of Bilσ(X ,Y):

X ⊗σ h Y
def
= Bilσ(X ,Y)

∗.

It is characterised by the following universal property: for every dual op-
erator space Z and every normal completely bounded bilinear map φ :
X × Y → Z, there exists a (unique) normal completely bounded lineari-

sation φ̃ : X ⊗σ h Y → Z. It is easy to see that the normal Haagerup tensor
product is functorial: if X1 and Y1 are dual operator spaces and φ : X → X1
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and ψ : Y → Y1 are normal completely bounded maps then there exists a
(unique) normal completely bounded map φ ⊗ ψ : X ⊗σ h Y → X1 ⊗σ h Y1

such that

(1) (φ⊗ ψ)(a⊗ b) = φ(a)⊗ ψ(b), a ∈ X , b ∈ Y.

Let M be a von Neumann algebra acting on a Hilbert space H. There
exists a canonical complete isometry, that is also a weak* homeomorphism,
from M⊗σ hM onto the space CBM′(B(H)) of all completely bounded M′-
bimodule maps on B(H) [9]. For χ ∈ M⊗σ h M, we let Φχ : B(H) → B(H)
be its corresponding map; we have that

(2) Φa⊗b(x) = axb, x ∈ B(H), a, b ∈ M.

We call χ the symbol of Φχ. If ξ, η ∈ H, x ∈ B(H) and Fx,ξ,η : M×M → C

is the (normal completely bounded) bilinear form given by Fx,ξ,η(a, b) =
〈axbξ, η〉, then [9, (2.5)]

〈χ,Fx,ξ,η〉 = 〈Φχ(x)ξ, η〉, χ ∈ M⊗σ h M.

It follows that the map χ→ Φχ is continuous when M⊗σ h M is equipped
with its weak* topology and CBM′(B(H)) – with the point-weak operator
topology.

Recall that the extended Haagerup tensor product M ⊗eh M [10] coin-
cides with the weak* Haagerup tensor product M ⊗w∗ h M [4], and can
be canonically identified with the operator space CBσM′(B(H)) of all nor-
mal completely bounded M′-bimodule maps on B(H): for each element
χ ∈ M⊗eh M, there exist families (ai)i∈I, (bi)i∈I ⊆ M such that the series
∑

i∈I aia
∗
i and

∑

i∈I b
∗
i bi are weak* convergent and the corresponding map

Φχ : B(H) → B(H) is given by

Φχ(x) =
∑

i∈I

aixbi, x ∈ B(H),

where the series converges in the weak* topology of B(H). We write χ ∼
∑

i∈I ai ⊗ bi.
Note that the canonical inclusion M⊗eh M ⊆ M ⊗σ h M is completely

isometric. If N ⊆ B(H) is a(nother) von Neumann algebra, we let

CBσ,NM′ (B(H)) = {Φ ∈ CBσM′(B(H)) : Φ(N ) ⊆ N}.

Let H be a Hilbert space, M ⊆ B(H) be a von Neumann algebra and

f, g ∈ M∗. By the functoriality of the weak* spatial tensor product, Lf
def
=

f ⊗ id and Rg
def
= id⊗g are well-defined normal completely bounded maps

from M⊗̄M into M; note that

Lf (a⊗ b) = f(a)b and Rg(a⊗ b) = g(b)a, a, b ∈ M,

‖Lf‖cb = ‖f‖ and ‖Rg‖cb = ‖g‖ (see [27]). By the functoriality of the
normal Haagerup tensor product,

Lf ⊗Rg : (M⊗̄M)⊗σh (M⊗̄M) → M⊗σ h M
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is a weak* continuous completely bounded map (see [10]).
Let m : M×M → M denote operator multiplication. The mapm extends

uniquely to a weak* continuous completely contractive map (denoted in the
same way) m : M⊗σh M → M [10]. We let m∗ : M∗ → M∗ ⊗eh M∗ be its
predual.

Lemma 2.1. For every ψ ∈ (M⊗̄M)⊗σh (M⊗̄M) there exists (a unique)
T (ψ) ∈ M⊗̄M⊗̄M such that

〈T (ψ), f ⊗ ω ⊗ g〉 = 〈m((Lf ⊗Rg)(ψ)), ω〉, f, g, ω ∈ M∗.

Moreover, the map

T : (M⊗̄M)⊗σh (M⊗̄M) → M⊗̄M⊗̄M

is linear, contractive and weak*-continuous, and

(3) T (χ1 ⊗ χ2) = (χ1 ⊗ 1)(1 ⊗ χ2)

for all χ1, χ2 ∈ M⊗̄M.

Proof. Let ψ ∈ (M⊗̄M) ⊗σh (M⊗̄M) and Fψ : M∗ ×M∗ ×M∗ → C be
the trilinear map given by

(4) Fψ(f, ω, g) = 〈m((Lf ⊗Rg)(ψ)), ω〉, f, g, ω ∈ M∗.

Let X = (fi,j)i,j ∈ Mn(M∗), Y = (gk,l)k,l ∈ Mm(M∗), and

LX : M⊗̄M →Mn(M), RY : M⊗̄M →Mm(M)

be the maps given by

LX(χ) = (Lfi,j (χ))i,j , RY (χ) = (Rgk,l(χ))k,l, χ ∈ M⊗̄M.

Standard arguments show that LX and RY are completely bounded and

‖LX‖cb ≤ ‖X‖Mn(M∗), ‖RY ‖cb ≤ ‖Y ‖Mm(M∗).

By [10, p. 149], the map

LX ⊗RY : (M⊗̄M)⊗σh (M⊗̄M) → Mn(M)⊗σh Mm(M)

is completely bounded with ‖LX ⊗RY ‖cb ≤ ‖X‖Mn(M∗)‖Y ‖Mm(M∗).
By [10, Theorem 6.1], the canonical shuffle map

Sσ : Mn(M)⊗σh Mm(M) = (M⊗̄Mn)⊗σh (M⊗̄Mm)

→ (M⊗σh M)⊗̄(Mn ⊗σh Mm)

is a complete contraction. Since the minimal norm is dominated by the
Haagerup norm, we have, on the other hand, that the map

θ : Mn ⊗σh Mm = Mn ⊗h Mm → Mnm

is a complete contraction. It follows that the canonical map

τ : Mn(M)⊗σh Mm(M) → Mnm(M⊗σh M),
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induced by Sσ and θ, is a complete contraction. Therefore, for each p ∈ N

and Z = (ωs,t)s,t ∈ Mp(M∗), we have

‖F
(m,n,p)
ψ (X,Y,Z)‖Mmnp

= ‖〈((Lfi,j ⊗Rgk,l)(ψ),m
(p)
∗ (ωs,t)〉‖Mmnp

≤ ‖((Lfi,j ⊗Rgk,l)(ψ))i,j,k,l‖Mnm(M⊗σhM)‖(m∗(ωs,t))s,t‖Mp(M∗⊗ehM∗)

≤ ‖(LX ⊗RY )(ψ)‖Mn(M)⊗σhMm(M)‖Z‖ ≤ ‖ψ‖‖X‖‖Y ‖‖Z‖.

Thus, the map Fψ is a completely bounded trilinear form onM∗×M∗×M∗,
with

(5) ‖Fψ‖cb ≤ ‖ψ‖.

It therefore linearises to a bounded linear functional on M∗⊗̂M∗⊗̂M∗,
which we denote again by Fψ. Since (M∗⊗̂M∗⊗̂M∗)

∗ ≡ M⊗̄M⊗̄M, there
exists T (ψ) ∈ M⊗̄M⊗̄M such that

(6) Fψ(w) = 〈T (ψ), w〉, w ∈ M∗⊗̂M∗⊗̂M∗.

By (5),

‖T (ψ)‖ = sup{|〈T (ψ), w〉| : ‖w‖ ≤ 1} = sup{‖Fψ(w)‖ : ‖w‖ ≤ 1}

= ‖Fψ‖ ≤ ‖ψ‖.

The uniqueness of T (ψ) follows from the density of M∗ ⊙ M∗ ⊙ M∗ in
M∗⊗̂M∗⊗̂M∗.

We show that T is weak* continuous. To this end, for each element w of
M∗⊗̂M∗⊗̂M∗, define a linear functional Ew on (M⊗̄M)⊗σh (M⊗̄M) by

Ew(ψ) = 〈T (ψ), w〉, ψ ∈ (M⊗̄M)⊗σh (M⊗̄M).

It clearly suffices to prove that Ew is weak* continuous, for each w. By [23, p
75], it suffices to show that the kernel of Ew is weak* closed which, by virtue
of the Krein-Shmulian Theorem [23, p 152], is equivalent to the fact that the
intersection of ker(Ew) with every norm closed ball of (M⊗̄M)⊗σh (M⊗̄M)
is weak* closed.

Fix w ∈ M∗⊗̂M∗⊗̂M∗. Let C > 0, ψ ∈ (M⊗̄M) ⊗σh (M⊗̄M) and
(ψα)α∈A be a net in ker(Ew) that converges to ψ in the weak* topology,
such that ‖ψα‖ ≤ C, α ∈ A. Fix ǫ > 0. Let w0 ∈ M∗ ⊙M∗ ⊙M∗ be such
that ‖w−w0‖ < ǫ/3C. By the weak* continuity of Lf ⊗Rg and m, (4) and
(6) imply that there exists α0 ∈ A such that

|Ew0
(ψα)− Ew0

(ψ)| = |Fψα
(w0)− Fψ(w0)| < ǫ/3, α ≥ α0.

An ǫ/3-argument now implies that

|Ew(ψ)| = |Ew(ψα)− Ew(ψ)| = |Fψα
(w)− Fψ(w)| < ǫ, α ≥ α0.

It follows that Ew(ψ) = 0 and the weak* continuity of T is established.
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Finally, we show (3). Assume first that χ1 = a⊗ b and χ2 = c⊗ d where
a, b, c, d ∈ M. Then

〈m ((Lf ⊗Rg)(χ1 ⊗ χ2)) , ω〉 = 〈m(Lf (χ1)⊗Rg(χ2)), ω〉

= 〈Lf (χ1)Rg(χ2), ω〉

= f(a)g(d) 〈bc, ω〉

= 〈a⊗ bc⊗ d, f ⊗ ω ⊗ g〉

= 〈(χ1 ⊗ 1)(1⊗ χ2), f ⊗ ω ⊗ g〉,

giving T (χ1⊗χ2) = (χ1⊗1)(1⊗χ2). By linearity, the equality holds for any
χ1, χ2 in the algebraic tensor product M⊙M. As T is weak* continuous
and the multiplication in M⊗̄M⊗̄M is separately weak* continuous, we
obtain the equality (3) for any χ1, χ2 ∈ M⊗̄M. �

Remark. Intuitively, the map T from Lemma 2.1 “multiplies the two
middle variables” in the four-term tensor product, leaving the outer variables
intact, thus producing a three-variable element.

Let H be a Hilbert space, and M and N be von Neumann algebras acting
on H. We fix for the rest of the section a unitary operator W ∈ B(H)⊗̄N
(resp. V ∈ N⊗̄B(H)), and define maps

ΓW : M → B(H ⊗H) and Γ′
V : M → B(H ⊗H)

by letting

(7) ΓW (a) =W ∗(1⊗ a)W and Γ′
V (b) = V (b⊗ 1)V ∗.

Clearly, ΓW and Γ′
V are normal completely bounded maps; thus, there exists

a normal completely bounded map

ΓW ⊗ Γ′
V : M⊗σ h M → (B(H)⊗̄B(H))⊗σ h (B(H)⊗̄B(H))

such that

(ΓW ⊗ Γ′
V )(a⊗ b) = ΓW (a)⊗ Γ′

V (b), a, b ∈ M.

For an operator T ∈ B(H ⊗H), let T1,2 = T ⊗ 1 and T2,3 = 1⊗ T . Recall
that, for χ ∈ M ⊗σ h M, we denote by Φχ the corresponding completely
bounded mapping on B(H).

Lemma 2.2. Let H be a Hilbert space, M and N be von Neumann algebras
acting on H, χ ∈ M ⊗σ h M, W ∈ B(H)⊗̄N , V ∈ N⊗̄B(H) be unitary
operators, and f, g ∈ B(H)∗. Then

(8) (f⊗ id⊗g)(W1,2(T ◦(ΓW ⊗Γ′
V )(χ))V2,3) = Φχ((f⊗ id)(W )(id⊗g)(V )).

Proof. Assume first that χ = a⊗ b, where a, b ∈ M. Using Lemma 2.1, we
have

T ◦ (ΓW ⊗ Γ′
V )(χ) = T (ΓW (a)⊗ Γ′

V (b))

= T ((W ∗(1⊗ a)W )⊗ (V (b⊗ 1)V ∗))

= W ∗
1,2(1⊗ a⊗ 1)W1,2V2,3(1⊗ b⊗ 1)V ∗

2,3.
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Hence

W1,2(T ◦ (ΓW ⊗ Γ′
V )(χ))V2,3 = (1⊗ a⊗ 1)W1,2V2,3(1⊗ b⊗ 1).

Thus, in order to establish (8), it suffices to show that, whenever T ∈
B(H)⊗̄N and S ∈ N⊗̄B(H), we have

(9) (f ⊗ id⊗g)((1⊗a⊗ 1)T1,2S2,3(1⊗ b⊗ 1)) = Φχ((f ⊗ id)(T )(id⊗g)(S)).

To this end, assume first that T = T1 ⊗ T2 and S = S1 ⊗ S2, where T1, S2 ∈
B(H) and T2, S1 ∈ N . Then

(f ⊗ id⊗g)((1 ⊗ a⊗ 1)T1,2S2,3(1⊗ b⊗ 1))

= (f ⊗ id⊗g)((1 ⊗ a⊗ 1)(T1 ⊗ T2S1 ⊗ S2)(1⊗ b⊗ 1))

= (f ⊗ id⊗g)(T1 ⊗ Φχ(T2S1)⊗ S2)

= f(T1)g(S2)Φχ(T2S1) = Φχ((f ⊗ id)(T )(id⊗g)(S)).

By linearity, (9) holds true if T (resp. S) belongs to the algebraic tensor
product B(H) ⊙ N (resp. N ⊙ B(H)). Equation (9) now follows from the
weak* continuity of Φχ.

By linearity, (8) holds whenever χ is an element of the algebraic tensor
product M ⊙ M. Now assume that χ ∈ M ⊗σ h M is arbitrary. Let
(χα)α∈A ⊆ M ⊙ M be a net converging to χ in the weak* topology of
M⊗σ h M. Then

Φχα((f ⊗ id)(W )(id⊗g)(V )) →WOT
α∈A Φχ((f ⊗ id)(W )(id⊗g)(V )).

On the other hand, the weak* continuity of one-sided operator multiplication
and that of the maps ΓW ⊗ Γ′

V , T and f ⊗ id⊗g imply that

(f ⊗ id⊗g)(W1,2(T ◦ (ΓW ⊗ Γ′
V )(χα))V2,3) →

w∗

α∈A

(f ⊗ id⊗g)(W1,2(T ◦ (ΓW ⊗ Γ′
V )(χ))V2,3).

Identity (8) now follows. �

Let

A(W,V ) = [Lf (W )Rg(V ) : f, g ∈ B(H)∗]
‖·‖

;

we call A(W,V ) the reduced operator space of the pair (W,V ). The assump-
tions W ∈ B(H)⊗̄N and V ∈ N⊗̄B(H) imply that A(W,V ) is a (norm
closed) subspace of N .

Theorem 2.3. Let H be a Hilbert space, M and N be von Neumann alge-
bras acting on H, χ ∈ M ⊗σ h M, and W ∈ B(H)⊗̄N , V ∈ N⊗̄B(H) be
unitary operators. The following are equivalent:

(i) Φχ(A(W,V )) ⊆ N ;
(ii) T ◦ (ΓW ⊗ Γ′

V )(χ) ∈ B(H)⊗̄N⊗̄B(H).

Proof. (i)⇒(ii) By Lemma 2.2,

(f ⊗ id⊗g)(W1,2(T ◦ (ΓW ⊗ Γ′
V )(χ))V2,3) ∈ N
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for all f, g ∈ B(H)∗. It follows from [27] that

W1,2(T ◦ (ΓW ⊗ Γ′
V )(χ))V2,3 ∈ B(H)⊗̄N⊗̄B(H).

Thus,

T ◦ (ΓW ⊗ Γ′
V )(χ) ∈ B(H)⊗̄N⊗̄B(H).

(ii)⇒(i) is immediate from Lemma 2.2. �

3. Applications to locally compact quantum groups

We refer the reader to [18, 28] (see also [15]) for background on (von Neu-
mann algebraic) locally compact quantum groups. In the sequel, we recall
only those elements of the theory that will be essential for the statements
and the proofs of our results. A locally compact quantum group is a quadru-
ple G = (L∞(G),Γ, ϕ, ψ), where L∞(G) is a von Neumann algebra equipped
with a co-associative co-multiplication Γ : L∞(G) → L∞(G)⊗̄L∞(G), and ϕ
and ψ are (normal faithful semifinite) left and right Haar weights on L∞(G),
respectively. The left Haar weight induces an inner product

(10) 〈x, y〉ϕ = ϕ(y∗x)

on the subspace Rϕ = {x ∈ L∞(G) : ϕ(x∗x) <∞}. We let L2(G, ϕ) denote
the completion of Rϕ with respect to the norm induced by (10). We define
the Hilbert space L2(G, ψ) in a similar way.

Let W ∈ B(L2(G, ϕ) ⊗ L2(G, ϕ)) (resp. V ∈ B(L2(G, ψ) ⊗ L2(G, ψ))) be
the left (resp. right) fundamental unitary associated with G and note (see
(7)) that

Γ = ΓW = Γ′
V .

Let L1(G) be the predual of L∞(G). The pre-adjoint of Γ induces an asso-
ciative completely contractive multiplication ∗ on L1(G) by letting

f1 ∗ f2 = (f1 ⊗ f2) ◦ Γ.

The left regular representation λ : L1(G) → B(L2(G, ϕ)) is defined by

(11) λ(f) = Lf (W );

note that λ is an injective completely contractive algebra homomorphism.

We have that L∞(Ĝ)
def
= {λ(f) : f ∈ L1(G)}

′′

is the von Neumann algebra

associated to the dual quantum group Ĝ of G. If Σ is the flip operator on
L2(G, ϕ)⊗ L2(G, ϕ) and Ŵ = ΣW ∗Σ, its co-multiplication Γ̂ is given by

Γ̂(x̂) = Ŵ ∗(1⊗ x̂)Ŵ , x̂ ∈ L∞(Ĝ).

The norm closure

C0(Ĝ)
def
= {λ(f) : f ∈ L1(G)}

is referred to as the reduced C*-algebra associated with Ĝ.
Analogously, the right regular representation ρ : L1(G) → B(L2(G, ψ)) is

given by

ρ(g) = Rg(V ), g ∈ L1(G);
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note that ρ is an injective completely contractive algebra homomorphism.
We have that L∞(Ĝ′) = {ρ(g) : g ∈ L1(G)}

′′

is the von Neumann algebra

associated with a quantum group denoted Ĝ′. We note that L∞(Ĝ′) =

L∞(Ĝ)′, W ∈ L∞(G)⊗̄L∞(Ĝ) and V ∈ L∞(Ĝ′)⊗̄L∞(G).
Let

Γop : L∞(G) → L∞(G)⊗̄L∞(G)

be the map given by Γop(x) = (σ ◦ Γ)(x), where

(12) σ : L∞(G)⊗̄L∞(G) → L∞(G)⊗̄L∞(G), σ(T ) = ΣTΣ,

is the flip. Note that Γop = Γ′
Ŵ
. It is known that L2(G, ϕ) and L2(G, ψ)

can be canonically identified; we use L2(G) for this Hilbert space in the rest
of this paper.

Theorem 3.1. Let G be a locally compact quantum group and χ ∈ L∞(G)⊗σ h

L∞(G). The following are equivalent:

(i) Φχ(C0(Ĝ)) ⊆ L∞(Ĝ);
(ii) T ◦ (Γ⊗ Γop)(χ) ∈ L∞(G)⊗̄1⊗̄L∞(G).

Proof. Note that, if f, g ∈ L1(G) then (f⊗id)(W ) = λ(f) and (id⊗g)(Ŵ ) =
λ(g). Thus,

A(W, Ŵ ) = [λ(f)λ(g) : f, g ∈ L1(G)]
‖·‖

and hence, by equation [14, 2.5], AW,Ŵ = C0(Ĝ).

By Theorem 2.3, condition (i) is equivalent to the condition

T ◦ (Γ⊗ Γop)(χ) ∈ B(L2(G))⊗̄L∞(Ĝ)⊗̄B(L2(G)).

On the other hand, by Lemma 2.1,

T ◦ (Γ⊗ Γop)(χ) ∈ L∞(G)⊗̄L∞(G)⊗̄L∞(G).

Since L∞(Ĝ) ∩ L∞(G) = C1, we conclude by [27] and Theorem 2.3 that (i)
and (ii) are equivalent. �

Corollary 3.2. Let G be a locally compact quantum group and suppose that
χ ∈ L∞(G)⊗eh L

∞(G). The following are equivalent:

(i) Φχ(L
∞(Ĝ)) ⊆ L∞(Ĝ);

(ii) T ◦ (Γ⊗ Γop)(χ) ∈ L∞(G)⊗̄1⊗̄L∞(G).

Proof. The statement follows from Theorem 3.1, the weak* continuity of Φχ
and the fact that C0(Ĝ) is weak* dense in L∞(Ĝ). �

4. The co-commutative case

In this section, we specialise the results from Section 3 to co-commutative
locally compact quantum groups G [18]. Let G be a locally compact group
equipped with left Haar measure. We thus consider the case where L∞(G)
coincides with the von Neumann algebra VN(G) of G, acting on the Hilbert
space L2(G). We have that C0(G) is equal to the reduced groups C*-algebra
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C∗
r (G) of G. We denote by λ (resp. ρ) the left (resp. right) regular repre-

sentation of G on L2(G). Using the canonical identification

(13) VN(G)⊗̄VN(G) ≡ VN(G×G),

we have that the co-multiplication Γ : VN(G) → VN(G×G) is given by

Γ(λ(s)) = λ(s)⊗ λ(s), s ∈ G.

In this case, L1(G) coincides with the Fourier algebra A(G) of G. We refer
the reader to [11] for the basic concepts and results from Abstract Harmonic
Analysis that will be used in this section, but note here that A(G) consists
of (complex valued) continuous functions on G vanishing at infinity, the
operation is point-wise, and its Gelfand spectrum can be homeomorphically
identified with G.

Note that, in the case under consideration, L∞(Ĝ) coincides with L∞(G),
which we hereafter view as the von Neumann algebra of operators on L2(G)
of multiplication by the corresponding essentially bounded functions. Un-
der this identification, C0(Ĝ) coincides with the subalgebra C0(G) of all
continuous functions vanishing at infinity.

Equation (13) allows us to identify the predual A(G×G) of VN(G ×G)
with the operator projective tensor product A(G)⊗̂A(G). Note that the pre-
adjoint of Γ is the associative multiplication map mA : A(G)⊗̂A(G) → A(G)
given by mA(f ⊗ g) = fg.

We set

Ah(G) = A(G) ⊗h A(G) and Aeh(G) = A(G) ⊗eh A(G);

note that there is a completely isometric inclusion Ah(G) ⊆ Aeh(G) [10].
We have completely isometric identifications

Ah(G)
∗ = VN(G)⊗eh VN(G) and Aeh(G)

∗ = VN(G)⊗σ h VN(G).

In [1], Aeh(G) (resp. Ah(G)) was identified with a completely contractive
Banach algebra of separately (resp. jointly) continuous complex-valued func-
tions on G × G, equipped with pointwise multiplication; specifically, the
function, corresponding to an element v ∈ Aeh(G) is (denoted in the same
fashion and) given by

v(s, t) = 〈λs ⊗ λt, v〉, s, t ∈ G.

Note that Ah(G) is a regular (semi-simple) Banach algebra whose Gelfand
spectrum can be homeomorphically identified with G×G.

Recall that the multiplication map m : VN(G)×VN(G) → VN(G) (given
by m(S, T ) = ST ) extends uniquely to a weak* continuous completely con-
tractive map (denoted in the same fashion)m : VN(G)⊗σhVN(G) → VN(G).
If m∗ : A(G) → A(G)⊗eh A(G) is the pre-adjoint of m then

m∗(f)(s, t) = f(st), f ∈ A(G), s, t ∈ G.
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M. Daws has shown [8] that, if f ∈ A(G) thenm∗(f) belongs to the algebra
M cbAh(G) of completely bounded multipliers [1] of Ah(G); in particular,

m∗(f)u ∈ Ah(G), whenever u ∈ Ah(G).

Moreover,

(14) m∗ : A(G) →M cbAh(G)

is completely contractive (we refer the reader to [8, Theorem 9.2] and the
remark after its proof).

Theorem 3.1 specialises in the case under consideration to the follow-
ing result, providing a characterisation of the completely bounded maps on
B(L2(G)) that are not necessarily normal and which map C0(G) into L

∞(G).

Corollary 4.1. Let G be a locally compact group and χ ∈ VN(G) ⊗σ h

VN(G). The following are equivalent:
(i) Φχ(C0(G)) ⊆ L∞(G);
(ii) T ◦ (Γ⊗ Γop)(χ) ∈ VN(G)⊗̄1⊗̄VN(G).

If χ ∈ VN(G) ⊗σ h VN(G) and v ∈ Aeh(G), we let v · χ be the (unique)
element of VN(G) ⊗σ h VN(G) such that

〈v · χ,w〉 = 〈χ, vw〉, w ∈ Aeh(G).

If χ ∈ VN(G) ⊗eh VN(G) and v ∈ Ah(G) then v · χ denotes the similarly
defined element of VN(G)⊗eh VN(G). If χ ∈ VN(G)⊗eh VN(G), we denote
by suppeh(χ) the support of χ when the latter is viewed as a functional on
Ah(G); thus,

supp eh(χ) = {z ∈ G×G : v ∈ Ah(G), v(z) 6= 0 =⇒ v · χ 6= 0}

(see [11] and [16]). Let p : VN(G)⊗σ h VN(G) → VN(G) ⊗eh VN(G) be the
natural projection given by p(χ) = χ|Ah(G) (or, equivalently, the dual of the
inclusion map Ah(G) → Aeh(G)), and define suppσ(χ) = suppeh(p(χ)).

If E ⊆ G×G is a closed set, let

Jh(E) = {u ∈ Ah(G) : u has compact support, disjoint from E}
‖·‖
,

and write Jh(E)⊥,eh (resp. Jh(E)⊥,σ) for its annihilator in VN(G)⊗ehVN(G)
(resp. VN(G) ⊗σ h VN(G)). It is well-known that

(15) Jh(E)⊥,eh = {χ ∈ VN(G)⊗eh VN(G) : supp eh(χ) ⊆ E};

the following, similar, description of Jh(E)⊥,σ is straightforward from the
definitions.

Remark 4.2. Let E be a closed subset of G×G. Then

Jh(E)⊥,σ = {χ ∈ VN(G) ⊗σ h VN(G) : supp σ(χ) ⊆ E}.

Let

∇ = {(s, s−1) : s ∈ G}
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be the anti-diagonal of G×G. Recall the flip σ : VN(G×G) → VN(G×G)
defined in (12) and note that

(id⊗σ)
(

a⊗ b⊗ c
)

= a⊗ c⊗ b, a, b, c ∈ VN(G).

In condition (iii) of the next theorem, we identify VN(G)⊗eh VN(G) with a
subspace of VN(G×G) (see [4, Corollary 3.8]).

Theorem 4.3. Let χ ∈ VN(G)⊗σ h VN(G). The following are equivalent:
(i) T ◦ (Γ⊗ Γ)(χ) ∈ VN(G)⊗̄1⊗̄VN(G);
(ii) suppσ(χ) ⊆ ∇.

If χ ∈ VN(G) ⊗eh VN(G) then these conditions are also equivalent to
(iii) T ◦ (Γ⊗ Γ)(χ) = (id⊗σ)

(

χ⊗ 1
)

.

Proof. Assume that χ = λs ⊗ λt, where s, t ∈ G. For f, g, ω ∈ A(G), using
Lemma 2.1, we obtain

〈T ◦ (Γ⊗ Γ)(χ), f ⊗ ω ⊗ g〉 = 〈T (λs ⊗ λs ⊗ λt ⊗ λt), f ⊗ ω ⊗ g〉

= 〈λs ⊗ λst ⊗ λt, f ⊗ ω ⊗ g〉

= f(s)ω(st)g(t) = f(s)m∗(ω)(s, t)g(t)

= 〈λs ⊗ λt,m∗(ω)(f ⊗ g)〉

= 〈χ,m∗(ω)(f ⊗ g)〉

= 〈m∗(ω) · χ, f ⊗ g〉.

It is easy to see that the linear span of {λs ⊗ λt : s, t ∈ G} is weak*
dense in VN(G) ⊗σ h VN(G). Further, since the map ψ → m∗(ω) · ψ on
VN(G)⊗σ h VN(G) is weak* continuous, we have that

(16) 〈T ◦ (Γ⊗ Γ)(χ), f ⊗ ω ⊗ g〉 = 〈m∗(ω) · χ, f ⊗ g〉,

for all χ ∈ VN(G) ⊗σ h VN(G) and all f, g, ω ∈ A(G).

(i)⇒(ii) By assumption, there exists ϕ ∈ VN(G)⊗̄VN(G) such that

T ◦ (Γ⊗ Γ)(χ) = (id⊗σ)(ϕ⊗ 1).

Thus, if f, g, ω ∈ A(G) then (16) implies

(17) 〈m∗(ω) · χ, f ⊗ g〉 = 〈(id⊗σ)(ϕ⊗ 1), f ⊗ ω ⊗ g〉 = 〈ω(e)ϕ, f ⊗ g〉.

Fix (s, t) ∈ G × G such that st 6= e. Let f, g ∈ A(G) be such that
f(s)g(t) 6= 0. Choose ω1, ω2 ∈ A(G) such that ω1(e) = ω2(e) but ω1(st) 6=
ω2(st). Thus,

(18) (m∗(ω1)−m∗(ω2))(f ⊗ g)(s, t) 6= 0.

By (17), for all f0, g0 ∈ A(G), we have

〈(m∗(ω1)−m∗(ω2))(f ⊗ g) · χ, f0 ⊗ g0〉

= 〈(m∗(ω1)−m∗(ω2)) · χ, (ff0)⊗ (gg0)〉

= 〈(ω1(e)− ω2(e))ϕ, (ff0)⊗ (gg0)〉 = 0.
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We have that (m∗(ω1)−m∗(ω2))(f ⊗ g) ∈ Ah(G) and hence

〈(m∗(ω1)−m∗(ω2))(f ⊗ g) · p(χ), f0 ⊗ g0〉 = 0.

Since A(G) ⊙A(G) is dense in Ah(G), we conclude that

(m∗(ω1)−m∗(ω2))(f ⊗ g) · p(χ) = 0.

In view of (18), this shows that (s, t) 6∈ suppeh(p(χ)), and thus suppσ(χ) ⊆
∇.

(ii)⇒(i) Assume that suppσ(χ) ⊆ ∇. By Remark 4.2,

〈p(χ), u〉 = 0 for any u ∈ Ah(G)∩ Cc(G×G) with supp(u) ∩ ∇ = ∅.

Let u ∈ Ah(G)∩ Cc(G×G). Choose h ∈ A(G) that takes the value 1 on the
(compact) set {st : (s, t) ∈ suppu} ∪ {e}. Since {e} is a set of synthesis for
A(G), for every ω ∈ A(G) with ω(e) = 1, there exists hn ∈ A(G) ∩ Cc(G),
n ∈ N, vanishing on a neighbourhood of {e}, such that

‖ω − h− hn‖A(G) →n→∞ 0.

Since m∗ is a complete contraction from A(G) into M cbAh(G) [8], we have
that m∗(ω − h− hn) ∈M cbAh(G) and

‖m∗(ω − h− hn)u‖h ≤ ‖ω − h− hn‖A(G)‖u‖h →n→∞ 0.

Since supp(m∗(hn)u) ∩ ∇ = ∅, we have that 〈p(χ),m∗(hn)u〉 = 0. On the
other hand, m∗(h)u = u and hence

〈p(χ), (m∗(ω)− 1)u〉 = 〈p(χ), (m∗(ω)−m∗(h))u〉

= 〈p(χ), (m∗(ω − h− hn)u〉 →n→∞ 0,

i.e. 〈p(χ), (m∗(ω)− 1)u〉 = 0. In particular, since m∗(ω)(f ⊗ g) ∈ Ah(G), we
obtain

〈χ,m∗(ω)(f ⊗ g)〉 = 〈p(χ),m∗(ω)(f ⊗ g)〉 = 〈p(χ), f ⊗ g〉 = 〈χ, f ⊗ g〉

for all f , g ∈ A(G) ∩ Cc(G). Using (16), we obtain that, if f, g, ω ∈ A(G)
then

〈(f ⊗ id⊗g)(T ◦ (Γ⊗ Γ)(χ)), ω〉 = 〈T ◦ (Γ⊗ Γ)(χ), f ⊗ ω ⊗ g〉

= ω(e)〈χ, f ⊗ g〉 = 〈〈χ, f ⊗ g〉1, ω〉.

Thus,

(19) (f ⊗ id⊗g)(T ◦ (Γ⊗ Γ)(χ)) = 〈χ, f ⊗ g〉1, f, g ∈ A(G).

It follows that T ◦ (Γ⊗ Γ)(χ)) ∈ VN(G)⊗̄1⊗̄VN(G).
Now suppose that χ ∈ VN(G) ⊗eh VN(G). In this case, (19) can be

rewritten as

〈T ◦ (Γ⊗ Γ)(χ), f ⊗ ω ⊗ g〉 = 〈(id⊗σ)
(

χ⊗ 1
)

, f ⊗ ω ⊗ g〉,

completing the proof. �

In the next corollary, M(G) denotes the Banach algebra of all complex
Borel measures on G. The equivalence (i)⇔(ii) extends [1, Theorem 6.10].
The integral in (iii) is understood in the weak sense.



COMPLETELY BOUNDED MAPS AND INVARIANT SUBSPACES 15

Corollary 4.4. Let χ ∈ VN(G)⊗eh VN(G). The following are equivalent

(i) Φχ ∈ CB
σ,L∞(G)
VN(G)′ (B(L2(G)));

(ii) suppχ ⊆ ∇;
(iii) there exists µ ∈ M(G) such that Φχ(x) =

∫

G λsxλ
∗
sdµ(s), x ∈

B(L2(G)).

Proof. The equivalence (i)⇔(ii) follows from Corollary 3.2 and Theorem 4.3,
while the equivalence (i)⇔(iii) was proved in [19]. �

5. The commutative case

In this section, we specialise the results from Section 3 to commutative
locally compact quantum groups G. Thus, fixing a second countable lo-
cally compact group G, we have that L∞(G) = L∞(G), C0(G) = C0(G),

L∞(Ĝ) = VN(G) and C0(Ĝ) = C∗
r (G). We identify the tensor product

L∞(G)⊗̄L∞(G) with the von Neumann algebra L∞(G×G) in the canonical
way. It is readily verified that the flip σ : L∞(G×G) → L∞(G×G) is given
by

(20) σ(h)(s, t) = h(t, s), for almost all (s, t) ∈ G×G, h ∈ L∞(G ×G),

while the co-multiplication Γ : L∞(G) → L∞(G×G) – by

(21) Γ(a)(s, t) = a(st), for almost all (s, t) ∈ G×G, a ∈ L∞(G).

It follows that Γop : L∞(G) → L∞(G×G) is given by

(22) Γop(a)(s, t) = a(ts), for almost all (s, t) ∈ G×G, a ∈ L∞(G).

Note that the predual of L∞(G) is (completely) isometric to L1(G) and the
pre-adjoint of Γ is the usual convolution product:

(f ∗ g)(t) =

∫

f(s)g(s−1t)dt, t ∈ G, f, g ∈ L1(G).

Theorem 3.1 specialises in the case under consideration to the follow-
ing result, providing a characterisation of the completely bounded maps on
B(L2(G)) that are not necessarily normal and which map C∗

r (G) into VN(G).

Corollary 5.1. Let χ ∈ L∞(G)⊗σ h L
∞(G). The following are equivalent:

(i) Φχ(C
∗
r (G)) ⊆ VN(G);

(ii) T ◦ (Γ⊗ Γop)(χ) ∈ L∞(G)⊗̄1⊗̄L∞(G).

In the rest of this subsection, we restrict our attention to the case where
the elements χ from Corollary 5.1 belong to the extended Haagerup tensor
product L∞(G)⊗ehL

∞(G). Those are precisely the elements χ ∈ L∞(G)⊗σ h

L∞(G), for which the corresponding map Φχ is (L∞(G)-bimodular and)
weak* continuous, and are widely known in the literature as Schur multipli-
ers.

Set V∞(G) = L∞(G) ⊗eh L
∞(G) and note that V∞(G) = (L1(G) ⊗h

L1(G))∗, up to a complete isometry. Let χ ∈ V∞(G) and assume that
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χ ∼
∑∞

i=1 ai ⊗ bi, where (ai)i∈N and (bi)i∈N in L∞(G) are sequences such
that

esssup
s∈G

∞
∑

i=1

|ai(s)|
2 <∞ and esssup

t∈G

∞
∑

i=1

|bi(t)|
2 <∞

[4]. We identify χ with the essentially bounded function (denoted in the
same way) χ : G×G→ C, given by

(23) χ(s, t) =
∞
∑

i=1

ai(s)bi(t), s, t ∈ G,

and thus consider V∞(G) as a subspace of L∞(G×G).
Given a function ϕ : G ×G → C and r ∈ G, let ϕr : G × G → C be the

function given by ϕr(s, t) = ϕ(sr, tr).

Lemma 5.2. Let χ ∈ V∞(G) and r ∈ G. Then χr ∈ V∞(G) and

Φχr(T ) = ρrΦχ(ρ
∗
rTρr)ρ

∗
r , T ∈ B(L2(G)).

Proof. For a ∈ L∞(G) let ar ∈ L∞(G) be given by ar(s) = a(sr), s ∈ G.
A direct verification shows that ρrMaρ

∗
r = Mar . Clearly, if χ ∼

∑∞
i=1 ai ⊗

bi then χr(s, t) =
∑∞

i=1(ai)r(s)(bi)r(t), for almost all (s, t). Now, if T ∈
B(L2(G)) then

ρrΦχ(ρ
∗
rTρr)ρ

∗
r =

∞
∑

i=1

(ρrMaiρ
∗
r)T (ρrMbiρ

∗
r)

=

∞
∑

i=1

M(ai)rTM(bi)r = Φχr(T ).

�

Recall that, if X is a measure space and X × X is equipped with the
product measure, a measurable subset E ⊆ X ×X is called marginally null
[2] if there exists a null set M ⊆ X such that E ⊆ (M ×X) ∪ (X ×M). If
w1, w2 : X ×X → C are measurable functions, we say that w1 and w2 are
equal marginally almost everywhere (m.a.e.) if the set {(x, y) : w1(x, y) 6=
w2(x, y)} is marginally null. We note that if χ ∈ V∞(G) then the function χ
is well-defined up to a marginally null subset of G×G and that it completely
determines the corresponding map Φχ (see [25]).

In the proof of the following lemma, given an element of L∞(G×G), we
choose any representative of its equivalence class, and denote it still by the
same symbol.

Lemma 5.3. Let χ ∈ V∞(G×G). The function χ̃ : G×G×G→ C, given
by

χ̃(s, r, t) = χ(s, r, r, t), s, r, t ∈ G,

is a well-defined element of L∞(G×G×G).
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Proof. For a measurable function c : Z → R, where Z is a measure space,
and a positive real number δ, let Ec(δ) = {z ∈ Z : c(z) > δ}.

Suppose that χ = a⊗ b, where a, b ∈ L∞(G×G). In order to show that χ̃
is measurable in this case, it suffices to assume that a ≥ 0 and b ≥ 0. Then

Eχ̃(δ) = ∪λ∈Q+{(s, r, t) : (s, r) ∈ Ea(λ) and (r, t) ∈ Eb(δ/λ)}.

If F ⊆ G ×G is a set, setting F r = {s ∈ G : (s, r) ∈ F} and Fr = {t ∈ G :
(r, t) ∈ F}, we have

{(s, t) : (s, r, t) ∈ Eχ̃(δ)} = ∪λ∈Q+(Ea(λ)
r ×G) ∩ (G× Eb(δ/λ)r),

for each r ∈ G. It follows that χ̃ is a measurable function, when G×G×G
is equipped with product measure.

For a general χ ∈ V∞(G×G), write χ ∼
∑∞

i=1 ai⊗ bi and let M be a null
subset of G×G such that

∞
∑

i=1

|ai(s, t)|
2 < C and

∞
∑

i=1

|bi(s, t)|
2 < C whenever (s, t) 6∈M.

Set χn =
∑n

i=1 ai ⊗ bi, n ∈ N. It is clear that

χ̃(s, r, t) = lim
n→∞

χ̃n(s, r, t), (s, r, t) 6∈ (M ×G) ∪ (G×M).

It follows from the previous paragraph that χ̃ is measurable.
Let

∑∞
i=1 ai⊗ bi and

∑∞
j=1 cj ⊗ dj be two w*-representations of the same

element χ ∈ V∞(G × G). Then the corresponding functions on G × G ×
G×G, let us call them temporarily χ1 and χ2, are equal marginally almost
everywhere on (G × G) × (G × G) (see [25] for details). Let M ⊆ G × G
be a null set such that χ1(s, r, p, t) = χ2(s, r, p, t) whenever ((s, r), (p, t)) 6∈
(M × (G×G)) ∪ ((G×G)×M). Then χ1(s, r, r, t) = χ2(s, r, r, t) whenever
(s, r) 6∈M and (r, t) 6∈M , that is, whenever (s, r, t) 6∈ (M×G)∪(G×M). It
follows that the function χ̃ is a well-defined element of L∞(G×G×G). �

Lemma 5.4. Let G be a second countable locally compact group and χ ∈
V∞(G×G). Then T (χ) = χ̃.

Proof. For ω, f , g ∈ L1(G), we have

〈T (χ), f ⊗ ω ⊗ h〉 = 〈m((Lf ⊗Rg)(χ)), ω〉.

Suppose that (ai)i∈N, (bi)i∈N ∈ L∞(G×G) and C > 0 are such that

∞
∑

i=1

|ai(s, t)|
2 < C and

∞
∑

i=1

|bi(s, t)|
2 < C for almost all (s, t)

and χ ∼
∑∞

i=1 ai ⊗ bi.
Let χn =

∑n
i=1 ai ⊗ bi, n ∈ N. It is easy to see that

Lf (ai)(r) =

∫

G
ai(s, r)f(s)ds and Rg(bi)(r) =

∫

G
bi(r, t)g(t)dt
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and hence
(24)

〈m((Lf ⊗Rg)(χn)), ω〉 =

∫

G

∫

G×G

n
∑

i=1

ai(s, r)bi(r, t)f(s)ω(r)g(t)ds dt dr.

By [10, p. 147], χn →n→∞ χ in the weak* topology of L∞(G × G) ⊗σ h

L∞(G×G); hence the left hand side of (24) converges to 〈m((Lf⊗Rg)(χ)), ω〉.
On the other hand, χn →n→∞ χ marginally almost everywhere on (G ×

G)× (G×G). Similarly to the proof of Lemma 5.3, we see that χ̃n →n→∞ χ̃
almost everywhere on G×G×G. Moreover,

|χ̃n(s, r, t)| ≤

(

n
∑

i=1

|ai(s, r)|
2

)1/2( n
∑

i=1

|bi(r, t)|
2

)1/2

< C,

for almost all (s, r, t) ∈ G×G×G, and hence Lebesgue’s Dominated Con-
vergence Theorem implies that the right hand side of (24) converges to

∫

G

∫

G×G
χ̃(s, r, t)f(s)ω(r)g(t)dsdtdr.

Thus,

〈T (χ), f ⊗ ω ⊗ g〉 = 〈χ̃, f ⊗ ω ⊗ g〉,

and the proof is complete. �

Lemma 5.5. Let χ ∈ V∞(G) and χ̂ : G×G×G×G→ C be the function
given by χ̂(s, r, p, t) = χ(sr, tp). Then χ̂ ∈ V∞(G×G) and

(25) (Γ⊗ Γop)(χ) = χ̂, m.a.e. on (G×G)× (G×G).

Proof. Suppose that χ ∼
∑∞

i=1 ai ⊗ bi is a w*-representation of χ. By the
functoriality of the weak* Haagerup tensor product, Γ⊗Γop is a well-defined
map from V∞(G) into V∞(G×G) and

(Γ⊗ Γop)(χ) ∼
∞
∑

i=1

Γ(ai)⊗ Γop(bi)

(see [4, p 136]). However,

n
∑

i=1

Γ(ai)⊗ Γop(bi) →n→∞ χ̂, m.a.e. on (G×G)× (G×G).

In fact, there is a null set M ⊆ G such that
n
∑

i=1

ai(sr)bi(tp) →n→∞

∞
∑

i=1

ai(sr)bi(tp)

whenever (sr, tp) /∈ (M × G) ∪ (G ×M). Letting M ♯ = {(s, r) : sr ∈ M}
and M ♭ = {(p, t) : tp ∈ M}, we have the convergence whenever (s, r, p, t) /∈
(M ♯ × (G × G)) ∪ (G × G) ×M ♭. We finally note that M ♯ and M ♭ have
measure zero. The conclusion follows. �
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Set

V∞
inv(G) = {χ ∈ V∞(G) : χr = χ a.e., for all r ∈ G}

(see [25] and [24]).

Theorem 5.6. Let G be a second countable locally compact group and χ ∈
V∞(G). The following are equivalent:

(i) Φχ(VN(G)) ⊆ VN(G);
(ii) T ◦ (Γ⊗ Γop)(χ) ∈ L∞(G)⊗̄1⊗̄L∞(G);
(iii) T ◦ (Γ⊗ Γop(χ)) = (id⊗σ)

(

χ⊗ 1
)

;
(iv) χ ∈ V∞

inv(G).

Proof. (i)⇔(ii) follows from Corollary 5.1 and the weak* continuity of Φχ.
(ii)⇒(iv) By Lemmas 5.4 and 5.5,

(26) T ◦ (Γ⊗ Γop(χ))(s, r, t) = (Γ⊗ Γop)(χ)(s, r, r, t) = χr(s, t),

for almost all (s, r, t) ∈ G×G×G. Thus, there exist a null set M ⊆ G and
a function ϕ ∈ L∞(G×G) such that

χr = ϕ a.e., if r 6∈M.

Let ξ, ξ0, η, η0 ∈ L2(G) and write ξη∗ for the rank one operator on L2(G)
given by (ξη∗)(ζ) = 〈ζ, η〉ξ. By Lemma 5.2, ϕ ∈ V∞(G) and, whenever
r 6∈M , we have

〈Φϕ(ξη
∗)ξ0, η0〉 = 〈ρrΦχ(ρ

∗
r(ξη

∗)ρr)ρ
∗
rξ0, η0〉

= 〈Φχ((ρ
∗
rξ)(ρ

∗
rη)

∗)ρ∗rξ0, ρ
∗
rη0〉.

Since the right regular representation is strongly continuous, the map from
G into B(L2(G)), sending r to (ρ∗rξ)(ρ

∗
rη)

∗, is norm continuous. Since the
family {(ρ∗rξ)(ρ

∗
rη)

∗ : r ∈ G} is uniformly bounded, we have that the map

r → 〈Φχ((ρ
∗
rξ)(ρ

∗
rη)

∗)ρ∗rξ0, ρ
∗
rη0〉

is continuous. Now Lemma 5.2 implies that

〈Φϕ(ξη
∗)ξ0, η0〉 = 〈Φχr(ξη

∗)ξ0, η0〉, r ∈ G,

which shows that χr = ϕ almost everywhere for every r ∈ G; in particular,
ϕ = χ almost everywhere, and (iv) is established.

(iv)⇒(iii) By (20),

(27) (id⊗σ)(χ⊗ 1)(s, r, t) = χ(s, t), for almost all (s, r, t) ∈ G×G×G,

and the claim now follows from (26).
(iii)⇒(ii) follows from (27). �
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[11] P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math.

France 92 (1964), 181-236.
[12] U. Haagerup, Decomposition of completely bounded maps on operator algebras, un-

published manuscript.
[13] U. Haagerup and J. Kraus, Approximation properties for group C*-algebras and

group von Neumann algebras, Trans. Amer. Math. Soc. 344 (1994), no. 2, 667-699.
[14] Z. Hu, M. Neufang and Z.-J. Ruan, Completely bounded multipliers over locally

compact quantum groups, Proc. London Math. Soc. (3) 103 (2011), 1-39.
[15] M. Junge, M. Neufang and Z.-J. Ruan, A representation theorem for locally com-

pact quantum groups, Internat. J. Math. 20 (2009) 377-400.
[16] Y. Katznelson, An introduction to harmonic analysis, Cambridge University Press,

2004.
[17] S. Knudby, The weak Haagerup property, preprint, arXiv 1401.7541.

[18] J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Scient. Ècole
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