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Abstract— This paper describes a method to calculate sets
of safe initial conditions for polytopic linear systems subject to
slowly-varying unobservable disturbances. Such sets are called
admissible sets; invariant sets are admissible but admissible
sets are not necessarily invariant. By examining conditions for
admissible sets of this particular system class, we prove that
admissible sets can be calculated by only considering a special
property that we call the λ-proximal-contraction property at the
vertices of the set that bounds the slowly-varying disturbances.
An academic example is used to illustrate how to apply the
method, and a discussion follows that summarizes the main
points.

I. INTRODUCTION

Set invariance has been a research topic within the control
community for at least five decades [1]. It can be used
to analyze safety properties of dynamical systems and to
synthesize robust controllers [2], [3], [4], [5]. The techniques
are attractive for safety critical applications, but their worst-
case nature can lead to conservative restrictions on the
applications’ operational domains.

Provided a dynamical-system description of a safety ap-
plication, it is natural to search for the largest set of initial
states whose state trajectories never violate safety constraints.
If no additional information is provided for parameters and
disturbances than their bounds, then the Maximal Robust
Positive Invariant (MRPI) set is the largest set that respects
the safety-critical constraints (see Definition 5). However,
in many practical problems for safety-critical systems the
derived system description provides more information about
parameters and disturbances than only their bounds.

To exemplify, external signals that act on a control system
may have a priori known properties which limit their rate of
change. In applications for autonomous cars, examples of this
include (but are not limited to) self-aligning wheel torques
and road-banking angles. Even if the signal can be measured,
the sensor may not provide high enough integrity from a
safety-critical perspective to consider the signal observable.
Robust invariance cannot directly take a priori information
such as bounded rates of change into consideration. And to
model the signal as a state-dependent disturbance, as in [6],
is not very useful if it is not observable.
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The insight that the MRPI set may not always be the
most suitable representation of an admissible set is the
main motivation for analyzing admissible sets for slowly-
varying systems in [7]. Slowness is there captured in the
model by including a bound on the rate of change of a
scalar parameter, and the authors state an algorithm that
produces admissible sets that are supersets of the correspond-
ing MRPI sets. One drawback of that algorithm, however,
lies in its computational complexity when applied to higher-
dimensional slowly-varying parameters. In this paper, we
derive properties of polytopic linear systems with slowly-
varying disturbances that enables an alternative way to calcu-
late admissible sets, that can be significantly less demanding
than applying the algorithm from [7].

II. PRELIMINARIES

A. Notation

The symbol R denotes the set of reals; Z, Z+ and Z++

are the integers, non-negative integers and positive integers,
respectively; Rn is the set of real-valued n-vectors, and
Rm×n is the set of real m × n matrices; Ii0,...,in denotes
the index set

{
(ij + `)nj=0,`∈{0,1}

}
. We denote matrices with

capital letters (e.g., A, B), vectors and scalars with lowercase
letters (e.g., x, w, p), elements of vectors by the use of
subscripts (e.g., xi), and sets by calligraphic letters (e.g.,
X , W , C). Logical expressions are written in prenex normal
form when quantifiers are used.

B. System with slowly-varying disturbances

We herein focus on systems of the form

x(k + 1) = Ax(k) +Bw(k) +Dp(k), (1)

where x(k) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, w(k) ∈
W ⊆ Rm, and D ∈ Rn×`. To start off, we let ` = 1.
Without loss of generality we assume p ∈ P = [0, 1]
and that its rate of change is known to be bounded by
∀k ∈ Z |p(k + 1)− p(k)| ≤ ε. For the sake of a clearer
presentation, we assume that 1/ε is an integer, and for
the purpose of calculating admissible sets we divide the
parameter interval into N overlapping subintervals,

Pi = [pi, pi+2] ⊆ P, (2a)

pi+1 − pi = ε, p0 = 0, pN+1 = 1, (2b)

for i = 0, . . . , N − 1. The partition is illustrated in Figure 1.
The subintervals are ordered and their union equals the
parameter interval.
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Fig. 1. Illustration of the intervals and notations introduced in (2). Each
subinterval has length 2ε, each overlap has length ε, and the union of the
subintervals is identical to the whole parameter interval.

C. Useful definitions

Definition 1 (Constraint set): A set that outlines safety-
critical constraints in the state space is said to be a constraint
set, and we denote this by X .

Definition 2 (One-step robust backward-reachable set):
For system (1), the one-step robust backward-reachable set
to the set S is defined as Pre(S,W,P) = {x ∈ Rn : ∀w ∈
W, ∀p ∈ P, Ax+Bw +Dp ∈ S}.
For brevity we will write Prei(S) as shorthand for
Pre(S,W,Pi).

Definition 3 (k-step robust backward-reachable set):
For a given set S, we define the k-step robust backward-
reachable set Kk(S,W,P) of system (1) as the recursion

Kj(S,W,P) = Pre(Kj−1(S,W,P),W,P),

K0(S,W,P) = S, j = 1, . . . , k.
This way to define the k-step robust backward-reachable set
differs from how it is defined in for example [8], while it is
aligned with the treatment of controllability in [1].

Definition 4 (RPI set): A set O ⊆ X is said to be robust
positive invariant (RPI) for system (1) if x(k) ∈ O ⇒ x(k+
1) ∈ O.
If only subinterval Pi is considered, we denote the corre-
sponding set by Oi.

Definition 5 (MRPI set): A set O∞ ⊆ X is said to be
maximal robust positive invariant (MRPI) for system (1) if
it is RPI and contains all RPI sets.
If only subinterval Pi is considered, we denote the corre-
sponding MRPI set by Oi∞.

Definition 6 (λ-contractive RPI set): We say that the set
S is a λ-contractive robust positive invariant set for sys-
tem (1) if x(k) ∈ S ⇒ x(k + 1) ∈ λS for some λ ∈ [0, 1].

Definition 7 (λ-MRPI set): A set Cλ is is said to be max-
imal λ-contractive robust positive invariant (λ-MRPI) for
system (1) if it is λ-contractive RPI and contains all λ-
contractive RPI sets for the system.
If only subinterval Pi is considered, we denote the corre-
sponding λ-MRPI set by Ciλ.

Definition 8 (Safe initial condition): We say that an ini-
tial condition is a safe initial condition if x(0) ∈ X implies
x(k) ∈ X for all k ∈ Z+.

Definition 9 (Admissible set): A set of safe initial condi-
tions is called an admissible set.

Definition 10 (λ-proximal-contraction property): We say
that the λ-MRPI set Ciλ satisfies the λ-proximal-contraction
property if λCiλ ⊆

⋂i+1
j=i−1 C

j
λ.

In other words, a λ-MRPI set Ciλ that satisfies the λ-
proximal-contraction property ensures that if x(k) ∈ Ciλ and
p(k) ∈ Pi, then x(k + 1) ∈ Ci−1λ and x(k + 1) ∈ Ci+1

λ .

D. A conceptual algorithm

One way way to find the MRPI set for a system on the
form (1) is to apply Algorithm 1.

Algorithm 1 Calculation of MRPI set.
Input: g, X , W , P
Here, g is a system on the form (1), and the constraint set
X is compact.
Output: O∞ (the MRPI set)

let Ω0 ← X , k ← 0
repeat

Ωk+1 ← Pre(Ωk,W,P) ∩ X
k ← k + 1

until Ωk ⊇ Ωk−1
O∞ ← Ωk
return O∞

Variants of this algorithm is often referred to as a principal
way to calculate MRPI sets, and it is also implemented in
software such as the Multi-Parametric Toolbox (MPT) [9].
It should be remarked for later that this algorithm produces
the sequence of sets Ωk =

⋂k
j=0Kk(X ,W,P).

III. ADMISSIBLE SETS FOR THE SYSTEM

With the goal to calculate admissible sets, we now go on
to derive properties of system (1) that, step by step, takes us
to the main result of this contribution.

A. Some properties of the system

Lemma 1: A set Si is λ-MRPI for system (1) (for a
particular subinterval Pi) if and only if it is MRPI for
x(k + 1) = λ−1

(
Ax(k) +Bw(k) +Dp

)
.

Proof: See Lemma 4.28 and Lemma 4.29 in [1].
Lemma 2: If Ciλ, i = 0, . . . , N−1, are nonempty and sat-

isfy the λ-proximal-contraction property, then an admissible
set for system (1) is

⋂N−1
i=0 Ciλ.

Proof: If x(0) ∈ ⋂N−1i=0 Ciλ, then for any initial value
p(0) ∈ Pi for the parameter, x(0) lies in the invariant
set Ciλ. For all future values of k, x(k) will lie in Cj(k)λ

when p(k) ∈ Pj(k), j(k) ∈ {0, . . . , N − 1}, due to the
λ-proximal-contraction property. Hence, the state trajectory
cannot leave X , and therefore respects the safety constraints.

Lemma 3: Let X be a polyhedron. Then the hyperplanes
that define Ωik when using Algorithm 1 lie between the
corresponding hyperplanes for Ω0

k and ΩN−1k .
Proof: If H = {x ∈ Rn : Hx ≤ h} represents a

halfspace in X , then the corresponding halfspaces generated
by the algorithm for interval Pi can be represented as

Kk =
{
x ∈ Rn : HAkx ≤ h−H∑k−1

j=0 A
jBw∗j

−H∑k−1
j=0 A

jDp∗j − piH
∑k−1
j=0 A

jD
}
,

(3)



where {w∗j } is the sequence of worst-case disturbances that
moves the hyperplane towards the origin, and {p∗j} is the
sequence of worst-case parameter values that moves the
hyperplane towards the origin within the interval P0. The
extreme values for the right hand side of the inequality
(i.e., that determines the distance from the origin to the
hyperplane) occur for i = 0 and i = N − 1. Hence the
result follows.

Corollary 1: Let nki denote the shortest (normal) vector
from the origin to the hyperplane that defines the halfspace
Kk(H,W,Pi). Then,

nki =
i

N − 1
nkN−1 +

(
1− i

N − 1

)
nk0 ,

which in turn implies
∥∥nki+1 − nki

∥∥ =
∥∥nk1 − nk0∥∥ for i =

0, . . . , N − 2.
Proof: This is seen by inspecting Equation (3).

The property stated in Corollary 1 is illustrated in Figure 2.
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Fig. 2. Corollary 1 says that the distance between nki+1 and nki is the
same for i = 0, . . . , N − 2. Either nk0 or nkN−1 lies closest to the origin
for the general case.

Lemma 4: Assume for some λ ∈ [0, 1] that C0λ and CN−1λ

are nonempty. Then, Ciλ is nonempty with C0λ ∩ CN−1λ ⊆ Ciλ,
for i = 0, . . . , N − 1.

Proof: By Lemma 1, the λ-MRPI set, Ciλ, is the
MRPI set for the system x(k + 1) = 1

λ

(
Ax(k) + Bw(k) +

pD
)
, p ∈ Pi, and it holds for this system that Ciλ =⋂∞

k=0Kk(X ,W,Pi). By Lemma 3, the hyperplanes that
define Kk(X ,W,Pi) lie between the corresponding hyper-
planes that define Kk(X ,W,P0) and Kk(X ,W,PN−1).
Therefore, C0λ ∩ CN−1λ =

⋂∞
k=0

(
Kk(X ,W,P0) ∩

Kk(X ,W,PN−1)
)
⊆ Ciλ =

⋂∞
k=0Kk(X ,W,Pi).

Corollary 2: With the assumptions stated in Lemma 4 it
holds that C0λ ∩ CN−1λ ⊆ ⋂N−1i=0 Ciλ.

Lemma 5: That Ciλ for some i ∈ {1, . . . , N − 2} sat-
isfies the λ-proximal-contractive property is equivalent to∥∥nk1 − nk0∥∥ ≤ (1 − λ)

∥∥nki ∥∥ for all k ∈ Z++. That C0λ
and CN−1λ both satisfy the λ-proximal-contractive property
is equivalent to

∥∥nk1 − nk0∥∥ ≤ (1− λ) min(
∥∥nk0∥∥ ,∥∥nkN−1∥∥)

for all k ∈ Z++.
Proof: For the first part, the property is equivalent to

λ
∥∥nki ∥∥ ≤ ∥∥nki±1∥∥⇔ ∥∥nki ∥∥− λ ∥∥nki ∥∥ ≥ ∥∥nki ∥∥− ∥∥nki±1∥∥⇔

(1 − λ)
∥∥nki ∥∥ ≥ ∥∥nki±1 − nki ∥∥ =

∥∥nk1 − nk0∥∥, where the
last equivalence step follows since one of

∥∥nki±1∥∥ − ∥∥nki ∥∥

is positive and both have the same magnitude according
to Corollary 1. The second part can be proved using the
same technique while also accounting for which of

∥∥nk0∥∥
and

∥∥nkN−1∥∥ has the largest magnitude.
Lemma 6: Assume that C0λ and CN−1λ are nonempty and

satisfy the λ-proximal-contraction property. Then, Ciλ is
nonempty for i = 0, . . . , N − 1, and they all satisfy the
λ-proximal-contraction property.

Proof: Existence follows from Lemma 4. Lemma 5
implies

∥∥nk1 − nk0∥∥ ≤ (1 − λ) min(
∥∥nk0∥∥ ,∥∥nkN−1∥∥) ≤ (1 −

λ)
∥∥nki ∥∥ for all k, which implies Ciλ satisfies the λ-proximal-

contraction property for i = 0, . . . , N − 1.

B. Main result

We have now arrived at the main result of this contribution.
Theorem 1: If C0λ and CN−1λ are nonempty and satisfy the

λ-proximal-contraction property, then an admissible set for
system (1) is the intersection C0λ ∩ CN−1λ .

Proof: We need to show that the conditions in Lemma 2
hold. To this end, combine Lemma 6 and Corollary 2.

C. Polytopic linear systems

It is straightforward to verify that all derived results hold
for polytopic linear systems; that is, systems of the form
x(k + 1) = A(k)x(k) +B(k)w(k) +D(k)p(k), where

A(k) ∈ A = {A :
∑κ
i=1 µiAi,

∑κ
i=1 µi = 1, µi ≥ 0} ;

B(k) ∈ B = {B :
∑κ
i=1 µiBi,

∑κ
i=1 µi = 1, µi ≥ 0} ;

D(k) ∈ D = {D :
∑κ
i=1 µiDi,

∑κ
i=1 µi = 1, µi ≥ 0} .

D. The multidimensional case

Many practical systems are subject to more than one
slowly-varying exogenous disturbance. To extend the results
to this case, we consider the system

x(k + 1) = Ax(k) +Bw(k) +Dp(k),

= Ax(k) +Bw(k) +
∑`
i=1D

(i)pi(k),
(4)

where D =
[
D(1) · · · D(`)

]
, p =

[
p1 · · · p`

]T
,

D(i) ∈ Rn and pi ∈ P(i) = [0, 1] for i = 1, . . . , ` are inde-
pendent scalar parameters subject to |pi(k + 1)− pi(k)| ≤
εi. The parameter is now bounded by a hypercube, P =
P(1)×· · ·×P(`). Each subinterval becomes a subhypercube,
as illustrated for the two-dimensional case in Figure 3. For
simplicity we still refer to them as subintervals.

The nomenclature for the high-dimensional case aug-
ments the scalar case to multi-indexed subscripts for the
subintervals and corresponding contractive sets, Pi1,...,i` and
Ci1,...,i`λ , where ij range from 0 to Nj − 1 for j = 1, . . . , `.
The MRPI sets related to each subinterval are denoted by
Oi1,...,i`∞ .

Definition 11 (λ-proximal-contraction property): The set
Ci1,...,i`λ is said to satisfy the λ-proximal-contraction property
if

λCi1,...,i`λ ⊆
i1+1⋂

j1=i1−1
· · ·

i`+1⋂
j`=i`−1

Cj1,j2,...,j`λ . (5)

Definition 11 is a generalization of Definition 10. If the state
lies inside a set with the λ-proximal-contraction property its
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Fig. 3. Subintervals are subhypercubes in higher dimensions, here
illustrated in two dimensions. To check if C3,4λ satisfies the λ-proximal-
contraction property one can calculate Ci1,i2λ for all neighboring subinter-
vals and then determine if (5) holds.

successor will lie inside the corresponding λ-contractive sets
for the neighboring subintervals.

Theorem 1 is straightforward to generalize to the high-
dimensional case:

Corollary 3: Assume that Ci1,...,i`λ satisfies the λ-
proximal-contraction property for ij ∈ {0, N − 1}, for
j = 1, . . . , `. Then,

⋂
i1∈{0,N1−1} · · ·

⋂
i`∈{0,N`−1} C

i1,...,i`
λ

is an admissible set.
A straightforward proof of this can be made using the same
ideas as for the one-dimensional case, but is here omitted in
favor of brevity. The usefulness of Corollary 3 is illustrated
by a hypothetical example in Figure 4.
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Fig. 4. Illustration of the consequence of Corollary 3. For higher-
dimensional disturbances that are slowly varying, it suffices to check the
λ-proximal-contraction property for Ci1,i2,i3λ that correspond to the subin-
tervals at the vertices of the set that bounds the slowly-varying disturbance.
For the example in the picture this requires 8 such calculations. Without
the insights gained by Theorem 1 and Corollary 3 one would require 103

such calculations for this example to calculate an admissible set. Problems
in higher dimensions and more densely gridded intervals (small ε) adds to
the usefulness of the result.

IV. NUMERICAL EXAMPLES

A. Unobservable reference signal

To illustrate how Corollary 3 may be used in practice,
consider the problem of finding an admissible set for a simple
control system subject to a safety-critical model-following
constraint. The system is depicted in Figure 5. The plant is
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z+(Km−1)

reference model
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Fig. 5. Control system with model-following requirement. In general,
a two-degrees of freedom controller is preferred to separate disturbance
attenuation and reference following, but for this example a one-degree of
freedom controller makes the admissible set possible to visualize in two
dimensions.

modeled as an uncertain constant, ∀k K(k) ∈ [0.9, 1.1], and
the reference model uses Km = 1. The reference input, r,
and the disturbance, v, cannot be determined beforehand, but
it is known that

∀k ∈ Z, r(k) ∈ [−1, 1], |r(k + 1)− r(k)| ≤ 0.1,

∀k ∈ Z, v(k) ∈ [−1, 1], |v(k + 1)− v(k)| ≤ 0.1.
(6)

The measurement noise, wm, is subject to ∀k ∈ Z, wm(k) ∈
[−0.01, 0.01]. The safety-critical model-following require-
ment is assumed to be ∀k ∈ Z, |ym(k)− y(k)| ≤ 0.5.

Writing the system on the form (4), with x1 = ym and
x2 = y, yields[
x1(k + 1)
x2(k + 1)

]
=

[
1−Km 0

0 1−K

]
︸ ︷︷ ︸

A

[
x1(k)
x2(k)

]

+

[
0 0
−K K

]
︸ ︷︷ ︸

B

w(k) +

[
Km 0
K K − 1

]
︸ ︷︷ ︸

D

[
p(0)

p(1)

]
,

where we introduced w =
[
wm ṽ

]T
and ṽ(k) = v(k) −

v(k−1). It follows thatW = {w : |w1| ≤ 0.01, |w2| ≤ 0.1}
and X = {x : |x1 − x2| ≤ 0.5}. No invariant sets exist for
this system.

By knowledge of the bounded rates of change, we select
p(0) = r and p(1) = v and divide the interval space into a 20-
by-20 grid with 19 × 19 overlapping subintervals of width
0.2 in each dimension. Interval Pi1,i2 corresponds to r ∈
[−1+0.1i1,−0.8+0.1i1] and v ∈ [−1+0.1i2,−0.8+0.1i2]
for i1 = 0, . . . , 19, i2 = 0, . . . , 19.

To apply Corollary 3 we need to determine sets for
the subintervals at the vertices of P that satisfy the λ-
proximal-contraction property. To that end, we try λ =
0.5 and find the MRPI set for the system x(k + 1) =
λ−1

(
Ax(k) + Bw(k) + Dp(k)

)
, p ∈ Pi0,i1 for (i0, i1) ∈

I0,0 = {(0, 0), (0, 1), (1, 0), (1, 1)}. This returns the sets
Ci0,i1 for (i0, i1) ∈ I0,0. For their intersection we then
evaluate if Pre

(⋂
(i0,i1)∈I0,0 Ci0,i1

)
∈ Ci0,i1 , (i0, i1) ∈

I0,0 to determine if C0,0 satisfies the λ-proximal-contraction
property. The same procedure is repeated for the index sets
I0,N−2, IN−2,0, and IN−2,N−2.



The λ-contractive sets turn out to satisfy the λ-proximal-
contraction property for the example, so Corollary 3 applies.
The admissible set is thus the intersection of these four
λ-proximal-contraction sets. Numerically, the set can be
represented as S = {x : |x1 − x2| ≤ 0.5, |x2| ≤ 1.79}. The
set is depicted in Figure 6. We remark that that the same set
is returned by the algorithm presented in [7].

−2 0 2
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Fig. 6. Admissible set for the numerical example where the reference is
treated as unobservable.

B. Observable reference signal

A reference signal for a control system is typically not
unobservable. Let use therefore examine how an observable
reference can be taken into consideration when calculating
the admissible set and how the results may change.

Equation (6) is a model of the reference signal. It can
alternatively be formulated as

∀k ∈ Z, r(k + 1) = r(k) + r′(k),

r(k) ∈ [−1, 1], r′(k) ∈ [−0.1, 0.1],
(7)

where r′ is then treated as an exogenous disturbance.
It is not straightforward to fit model (7) into a framework

for calculating invariant sets. The variable r cannot be
bounded by including it in the constraint set, since the
marginally stable model implies that the bound is reachable
by the disturbance. In addition, invariant-set algorithms can
only return nonempty invariant sets if the system is asymp-
totically stable (when disturbances are neglected). Hence, the
simple model (7) is insufficient.

a
z−b

bounding
model

1
z−1

feedback

K

plant

Km

z+(Km−1)

reference model

r′ r + u

+

v = p(0)

+ y

−

−

wm

+

+

ym

+

ym − y

Fig. 7. System when bounding model is used to represent the reference
signal. Compare with Figure 5.

To account for the simple model while also having a
chance to find invariant sets, we apply a model where noise
goes through an asymptotically stable filter, such as in [10].
With a first-order filter this becomes r(k + 1) = ar(k) +
br′(k), r′(k) ∈ [−1, 1]. Figure 7 depicts the reference model

in a modified block diagram. The parameters a and b need
to be chosen appropriately to account for the simple model.
A natural restriction is to choose a and b such that the filter
is asymptotically stable and such that the maximum rate of
change equals its bound when the reference signal equals
its bound. With the numerical bounds for this example this
leads to |a| < 1, b = 0.1 + (1− |a|). Hence, a can be seen
as a design variable for the filter that trades off between the
maximum rate of change and the maximum value for the
state variable. Figure 8 depicts two choices for a.

r

k

1

10

Fig. 8. A one-sided interpretation of modeling observable slowly-varying
disturbances as first-order filtered bounded noise. The gray area corresponds
to the simple model (7), while the two step responses illustrate two choices
for a that takes the simple model into account; a = 0.3 (solid) and a = 0.9
(dashed).

Writing the modified system on the form (4), now with
x1 = ym, x2 = y, and x3 = r yieldsx1(k + 1)
x2(k + 1)
r(k + 1)

 =

1−Km 0 Km

0 1−K K
0 0 a


︸ ︷︷ ︸

A

x1(k)
x2(k)
r(k)



+

 0 0 0
−K K 0

0 0 b


︸ ︷︷ ︸

B

w(k) +

 0
K − 1

0


︸ ︷︷ ︸

D

p(0),

where we consider the two choices a = 0.3 and a = 0.9 in
the calculations that follow (for comparison), and where w =[
wm ṽ r′

]T
, ṽ(k) = v(k)−v(k−1). The disturbance set

becomes W = {w : |w1| ≤ 0.01, |w2| ≤ 0.1, |w3| ≤ 1},
and the constraint set is X = {x : |x1 − x2| ≤ 0.5}. No
invariant sets exist for this system.

By knowledge of the bounded rates of change, we select
p(0) = v and divide the interval into 19 subintervals, each of
width 0.2. Interval Pi corresponds to v ∈ [−1+0.1i,−0.8+
0.1i] for i = 0, . . . , 19. To apply Corollary 3, we need to be
careful with our choice of λ. Due to the limited contraction
for the reference model it is not possible to choose λ = 0.5
this time. Instead we choose λ = 0.9 and find the MRPI set
for the system x(k + 1) = λ−1

(
Ax(k) +Bw(k) +Dp(k)

)
,

p ∈ Pi, for i = I0 = {0, 1}. This returns the sets C0 and C1.
For their intersection we then evaluate if Pre

(⋂
i∈I0 Ci

)
∈

Ci, i ∈ I0, to determine if C0 satisfies the λ-proximal-
contraction property. The same procedure is repeated for the
index set IN−2.

It turns out that the λ-contractive sets do not satisfy the
λ-proximal-contraction property with a = 0.3 while they do



for a = 0.9. The reason for why a = 0.3 does not work
is because the rate of change for that model is too high
(see Figure 8). So Corollary 2 only applies for a = 0.9.
With a = 0.9, the admissible set is the intersection of these
sets and the set that describes the original knowledge that
r ∈ [−1, 1] from the simple model (7). Numerically, the set
can be represented as

S = {x : |x1 − x2| ≤ 0.5, |x2 − r| ≤ 2.79 |r| ≤ 1} .
The set is depicted in Figure 9. Note by the lower-left plot
that the intersections of sets for constant references when
projected onto the x1–x2 space becomes the set in Figure 6.

−2 0 2
−1

0

1

y

r

−4−2 0 2 4
−2

0
2

−1

0

1

ymy

r

−4 −2 0 2 4

−2

0

2

ym

y

−4 −2 0 2 4
−1

0

1

ym

r

Fig. 9. Admissible set (from four different points of view) for the numerical
example where the reference is treated as observable and modeled as a first-
order filtered disturbance. Note the similarity with Figure 6; the lines in the
lower-left plot at x2 = ±1.79 correspond to intersections of slices with the
reference held constant. This is in essence what is done by the first method
that finds the set in Figure 6.

C. Discussion

While unobservable disturbances justify the method, the
above example illustrates how also slowly-varying observ-
able disturbances can be dealt with in at least two ways for
the calculation of admissible sets. The reference is modeled
as a slowly-varying parameter in the first example, while
it is modeled as a state variable in the second example
by augmenting the system with a bounding model. Both
methods lead to similar results for the considered system.

We argue, however, that the first method is applicable
for more general problems than the second. Consider for
example an additional safety-constraint of |y| ≤ 2 for the
system. The first method has no problem to return the same
admissible set after this constraint is added, while the second
method fails to find an admissible set.

V. SUMMARY AND CONCLUSIONS

Motivated by safety-critical control applications with
slowly-varying parameters, the authors have in [7] developed
a method to find admissible sets of initial conditions. The
initial conditions are admissible in the sense that trajectories
starting in the set are guaranteed to never leave the constraint
set.

This contribution focuses on systems with slowly-varying
additive disturbances, which is a subclass of the system
class considered in [7]. By dividing the range of the
slowly-varying parameter into equidistant subintervals, the λ-
proximal-contraction property was introduced to derive con-
ditions for admissible sets as intersections of λ-contractive
sets that satisfy the property. A linear relation between dis-
tances to hyperplanes that define the k-step robust backward-
reachable set was examined to realize that one only needs
to find sets with this property at the vertices of the set of
slowly-varying disturbances.

The method was derived for the scalar case and then ex-
tended to linear polytopic systems and the multidimensional
case without significant effort. For a particular choice of λ,
there is no a-priori guarantee that the method will find a
set, but problem-specific intuition can help to make qualified
guesses.

While the examples in Section IV were inspired by real-
life safety-critical control problems, they are here adapted
to make them easy to follow and to highlight the outlined
method to find admissible sets. The method is most justified
for unobservable disturbances, but the examples also show
how observable slowly-varying disturbances can either be
treated as unobservable or modeled as filtered noise, at
the gain of removing slowly-varying disturbances but at
the expense of introducing additional state variables. The
calculations were carried out with Matlab using standard
algorithms implemented by the authors.
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