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Abstract
A method for estimation of rubber bushing stiffness parameters is presented. Four individual rubber bushings, mounted in
a car rear subframe are considered. A traditional model of the bushing elements using a generalised spring model, known
as a CBUSH element in Nastran, is compared to a geometrically more realistic approach where the bushing is modelled
with solid elements and a linear elastic material model. Each bushing is mass loaded to better reveal the bushing’s dynamic
behaviour in a lower frequency range of interest. In an initial step, the overall subframe model is updated towards test data. In
a second step, the bushing parameters are updated. Three nominally identical components are used to investigate the spread
between the identified parameters. The model updating procedure is based on frequency responses and equalised damping.
The undamped behaviour at frequencies below 300 Hz are considered. To quantify the parameter uncertainty, with respect
to measurement noise for each individual, an uncertainty quantification procedure is proposed, using a linear-in-parameters
surrogate model with bootstrapping.

Keywords Model updating · Uncertainty quantification · Variability · Bushing models · Generalised spring element ·
Solid modelling

Introduction

In the automotive industry, rubber bushings are commonly
used passive damping devices to suppress vibrations
between components [29]. One such example is the
assembly of a rear subframe to the body-in-white (BIW),
which are connected through rubber bushings, e.g. see
Bylin et al. [9] for such an application. The finite element
(FE) method [6] is usually used to analyse such assembled
structures, for which accurate models with proper model
parameter settings are required. Furthermore, for connected
structures, a good damping estimation can be important
in the assembly’s predictive capabilities. The damping is
usually not modelled based on first principles due to its
complexity. Rather, it can be estimated from test data in
calibration of FE models [15]. It is therefore of interest
to update FE models towards experimentally obtained
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data from vibration tests [14], so that the FE model
parameters can be identified, but also to obtain the damping
characteristics of the structure. However, in the automotive
industry, many nominally identical cars are built. Hence,
using one parameter setting to analyse a whole population of
cars can lead to faulty predictions if the spread between the
nominally identical components is large. Then, it becomes
important to understand which component properties are
causing the spread and how large the variability is. Bushings
being partly constructed from rubber materials will, to a
large extent, share rubber’s properties, known to exhibit
potentially large variation between samples [29]. It is
therefore natural to assume that the largest variation in the
rear subframe stem from the rubber in the bushings. Hence,
a method to identify the rubber stiffness is of particular
interest.

Various methods exist for estimation of dynamic
stiffness of rubber bushings, only some are mentioned
here. Hydraulic testing is many times used to estimate
the dynamic stiffness in translational degrees-of-freedom
(DOFs). However, stiffness around rotational DOFs are
usually not measured, but estimated, e.g. see [28, 46].
In previous research, vibration testing has been used to
estimate rubber’s dynamic stiffness, e.g. see Kari [31] and
Ooi and Ripin [42]. Meggitt et al. [39] proposed an in
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situ method for estimating the dynamic stiffness of resilient
elements using a substructuring approach. This approach
was further investigated by Haeussler et al. in [26]. The
substructuring approaches allow for estimating the dynamic
stiffness of rotational DOFs, which can be especially
important for higher frequency analysis. However, the use of
rotational DOFs in coupling has been found to be important
in experimental analytical dynamic synthesis also in the
low-frequency range, e.g. see Bylin et al. [9].

In this paper, an FE model updating approach is taken to
the bushing parameter estimation problem. This approach
can also estimate the rotational stiffness components. Three
nominally identical rear subframes of a Volvo XC90 (2015)
are considered. The rear subframe is important from a
vibration perspective of the assembled car as it connects the
suspension link arms to the BIW. Therefore, there is interest
in investigating the effect of the subframe variability on the
system response in an assembly of the subframe and the
BIW. Before component variability is propagated through
the assembly a better understanding of the components
can be necessary, validating the system assembly for a
few parameter configurations. To this end, quantifying the
overall variability between the three subframes, and also
the variability between the bushing stiffness of the three
components is a first step in such an analysis. In this
approach, two variants of the FE model are updated. The
subframe is first updated towards vibration data of each
component, to minimise the subframe deviation to test data.
Then, in a second step, the bushing stiffness parameters are
updated towards test data, assuming that the fixture, in this
case the main body of the subframe, is modelled correctly.
To increase the bushing parameter identifiability in test data,
the bushings are mass loaded, effectively bringing many
modes with strong bushing deformation down in frequency
where they can be clearly identified and easier analysed.
Hence, two experimental configurations are considered for
each component, and two variants of the FE model created,
with and without mass loaded bushings.

Traditionally, bushings are modelled with generalised
spring elements (known as a CBUSH element in Nastran).
It is of interest to investigate how well the frequency
response is predicted with a generalised spring element
model compared to a more geometrically realistic solid
model of the bushings. Such a study is performed here,
where the model fit is compared to test data for the two
types of bushing models. However, to simplify the analysis
of the solid model, an isotropic linear elastic material model
is assumed for the rubber in the bushing which Jones [29]
states is sufficient for small strains, narrow frequency
ranges and when no temperature variation is present. The
model assumptions are further explained in “Solid Bushing
Model”. Note that the generalised spring element allows
for frequency dependency to be incorporated easily in the

model, however this has not been investigated. Furthermore,
damping is also easily introduced in the generalised spring
element, but is not modelled in the FE models, mainly
due to limitations in the calibration procedure explained
below, but also due to its complexity for the remaining
structure modelled with shell and solid elements. Instead,
for both bushing models, mapped modal damping identified
from experiments is used, assumed to be sufficient for this
application.

FE model updating is a vast field, with many different
approaches, e.g. see Friswell and Mottershead [15] for an
overview of methods. Recently, stochastic methods have
been proposed to the model updating problem, e.g. see
Mares et al. [35], Mottershead et al. [41] and Govers and
Link [23]. Beck and Katafygiotis [7] proposed a Bayesian
approach to the model updating problem. In addition,
perturbation methods have also been developed, e.g. see
Mottershead et al. [40]. Non-probabilistic methods can be
useful when little information is available, e.g. a fuzzy-
interval method is presented by Haag et al. [25] and an info-
gap approach by Ben-Haim [8]. A review of probabilistic
and non-probabilistic uncertainty quantification methods
for model updating can be found in Simoen et al. [43].
In this paper, an FE model updating procedure proposed
by Abrahamsson and Kammer [3] is used. Successful
results have been obtained in previous studies using this
method on various structures, e.g. see [1, 2, 13, 16, 21,
33]. In the calibration procedure, a parametrised surrogate
model of the FE model around the nominal parameter
setting is first created. The calibration procedure then
seeks to obtain a calibrated parameter setting minimising
the deviation between the FE model’s frequency response
functions (FRFs) and the experimentally identified model’s
FRFs. Normalised damping is imposed on both models
to circumvent the mode pairing problem. It was found
in Abrahamsson and Kammer [3] that a relatively high
damping yields a smooth deviation metric. However, a
consequence of the introduction of equalised damping
is that no damping parameters can be updated. Using
FRFs with equalised damping has several advantages over
modal based approaches. Modally dense models with mode
crossings can be handled without any need for mode
matching. Also, applying mode matching metrics to the
possibly noise and error corrupted test modes is avoided.
Consequently, model updating in the mid-frequency range is
possible, see [3] for more details. To increase the confidence
in the estimated parameters an uncertainty quantification
(UQ) procedure has been proposed for the above FE
model updating method by Vakilzadeh et al. [44]. That
method, however, is not always feasible for large test
data sets. Therefore, another method is proposed here,
based on creating a linear-in-parameters surrogate model,
at the calibrated parameter setting, which is used together
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with bootstrap data sampling to quantify the influence
of measurement noise on the identified parameters. The
FRF based approach also has advantages for the UQ step
over modal approaches. The parameter uncertainties can
be quantified with respect to the noise in the raw FRFs.
Therefore, no intermediate step is necessary to quantify the
modal parameter uncertainties first.

A brief review of the model updating theory is presented
in “Finite Element Model Updating Theory”, with a section
describing the linear-in-parameters UQ method. In “Finite
Element Models”, the FE models are presented along
with the parameter selection. Section “Experimental Modal
Analysis” describes the vibration testing procedure and
system identification. The results are presented in “Results”
and in Conclusion” the paper is concluded.

Finite Element Model Updating Theory

The deterministic model updating procedure used here has
been developed by Abrahamsson and Kammer [3], and will
be briefly restated. A stochastic variant was proposed by
Vakilzadeh et al. [44]. However, it has been observed that for
very large data sets, not uncommon for test data consisting
of FRFs, the stochastic updating procedure is not always
feasible. Therefore, a new method is proposed here, using a
linear-in-parameters surrogate model, described in “Model
Parameter Uncertainty Quantification”.

The model updating problem can be formulated as a
minimisation problem in which a parameter setting p̂

minimising the deviation between the experimental FRFs
HX(ωk) ∈ C

ny×nu and FE FRFs H FE(ωk) ∈ C
ny×nu is

sought, for k = 1, . . . , K discrete frequencies ωk ∈ [ω, ω].
Here ω and ω denote the lower and upper frequency of
interest, respectively, and ny and nu denote the number of
outputs and inputs, respectively. Below, the notation H k �
H (ωk) will be used for brevity. For the UQ problem, an
estimate of the probability distribution, or commonly only
the first and second moments, of the model parameters is
sought, with respect to experimental data. Following the
expansion in, e.g. [32, 44], the experimental FRF matrix can
be expressed for each frequency as

HX
k = HR

k + NO
k = H FE

k + NM
k + NO

k � H FE
k + NG

k (1)

where HR
k denote the true frequency response of the real

structure and NO
k denote the measurement noise. The true

system can be expressed in terms of a possibly inaccurate
FE model H FE

k and a model prediction error NM
k . The

model error and noise can be grouped into a term called the
observed prediction error NG

k . It is assumed that NG
ij (ωk),

for i = 1, . . . , ny and j = 1, . . . , nu, can be modelled
as independent, zero mean, circularly complex normally

distributed random variables with variance σ 2
ij . Validating

that assumption through very many tests is beyond the scope
of this paper.

The calibration procedure can be divided in roughly
four equally important steps. Collecting vibration test data,
system identification, deterministic calibration to find the
calibrated parameter setting p∗ and a UQ step to asses the
parameter uncertainty with respect to measurement noise
and errors. The vibration test data acquisition and system
identification steps are described in detail in “Experimental
Modal Analysis”.

Deterministic Model Updating Procedure

The third step in the calibration procedure consists of a
deterministic calibration procedure to find p∗ from the
nominal FE model parameter setting p0. Here, the identified

model’s FRFs with equalised damping H̃
ID
k are used as

test data. With equalised damping between the FE model
and test data, it is possible to circumvent the issue of
mode pairing during the calibration process. Using the
identified model, the frequency response can be evaluated
at any frequency, and so the calibration can be made
more computationally efficient. In [3] the authors propose
choosing a few frequencies per half-band-width of the
eigenmodes. The calibration procedure is defined as a
constrained, to the parameter set P, minimisation of a log
least squares function

p∗ = arg min
p∈P

1

N

K∑
k=1

εH
k (p)εk(p) (2a)

εk(p) = log10

(
vec

(
H FE

k (p)
))

−log10

(
vec

(
H̃

ID
k

))
(2b)

The deviation metric εk(p) is set-up to be smooth and
not discriminate against deviations at frequencies where
the structural response is small. The motivation behind
the particular deviation metric is further explained in
Abrahamsson and Kammer [3]. Here H FE(p) represents
the FE model, at parameter setting p, the superscript ·H

denote the conjugate transpose and vec(·) stands for the
vectorisation operation in which a matrix is transformed into
a vector by stacking its columns. The deviation metric is
scaled with the number of total data points N = nynuK . To
minimise the non-linear least squares function in Eq. 2, the
Levenberg-Marquardt optimisation algorithm [4, 34, 36] is
used. Many start parameter settings are used, generated by
the Latin hypercube sampling technique [37], from which
p∗ is selected from the best calibration outcome. After the
calibration, a mode pairing algorithm [47] is used to map
the experimental damping to the correct FE model modes.

The calibration procedure utilises the mass and stiffness
matrices formed from an FE representation of the structure
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of interest. The equations of motion of the considered
mechanically vibrating systems can be written as [11]

Mq̈(t) + V q̇(t) + Kq(t) = f (t) (3)

where the dot notation is used for time differentiation
and M ∈ R

m×m represent the positive definite mass
matrix and V ∈ R

m×m and K ∈ R
m×m represent

the positive semi-definite viscous damping and stiffness
matrices, respectively. The general displacement vector is
denoted by q(t) and the external force vector by f (t).
Explicit time dependence is dropped from here on. A first-
order equivalent system for acceleration outputs y of Eq. 3
can be obtained by forming the state vector x = [qT, q̇T]T

such that

ẋ = Ax + Bu (4a)

y = Cx + Du (4b)

with A ∈ R
n×n the system matrix, B ∈ R

n×nu the input
matrix, C ∈ R

ny×n the output matrix and D ∈ R
ny×nu

the direct throughput matrix. Here, y represents the system
acceleration outputs and the load vector f in Eq. 3 is
related to the system input vector u with the Boolean
transformation matrix U as f = Uu. The system matrices
are then

A =
[

0 I

−M−1K −M−1V

]
(5a)

B =
[

0
M−1U

]
(5b)

where C and D are formed appropriately so that linear
combinations of the system states x and inputs u form the
system acceleration outputs y. Here, I is the identity matrix
of appropriate dimension. The quadruple

�FE = {A, B, C, D} (6)

denotes the state-space system built from the FE model.
The transfer function matrix H FE

k at frequency ωk of the FE
model can be computed as

H FE
k = C(iωkI − A)−1B + D (7)

with the imaginary number i2 = −1.
To avoid mode pairing and to regularise the deviation

metric Abrahamsson and Kammer [3] proposed to impose
a damping equalisation on the experimentally identified
system �ID, and the FE system �FE. To this end, the
experimentally identified system �ID is diagonalised by a
similarity transformation [22] using the eigenvector matrix
X of the eigenvalue problem

AIDX = X�ID = Xdiag
(
λID

1 , . . . , λID
r . . . , λID

n

)
(8)

where �ID is the diagonal eigenvalue matrix, with λID
r

the r:th complex eigenvalue. For small damping values the
relative damping ξ ID

r is

ξ ID
r = − Re

(
λID

r

)
∣∣Im (

λID
r

)∣∣ (9)

with |·| the absolute value and Re (·) and Im (·) the real
and imaginary part of a complex number, respectively. In
the damping equalisation step, the modal damping is set to
a fixed value for all modes, i.e ξ ID

r = ξ0∀r . A new state-
space system with equalised damping is denoted with the
quadruple set

�̃
ID =

{
�̃

ID
, X−1BID, CIDX, DID

}
(10)

with the associated FRF matrix H̃
ID
k . The eigenvalues λ̃ID

r

in the state matrix �̃
ID

for r = 1, . . . , n are

λ̃ID
r =

{
Im

(
λID

r

)
(−ξ0 + i) ∀ Im

(
λID

r

)
> 0

Im
(
λID

r

)
(ξ0 + i) ∀ Im

(
λID

r

)
< 0

(11)

For the FE model with given mass M and stiffness
K matrices it is possible to impose the same level of
relative damping by forming the modal viscous damping as
described in [11]

V = 2ξ0MT diag (�1, . . . , �m) T TM (12)

where diag (�1, . . . , �m) is the diagonal matrix of eigen-
frequencies and T the mass normalised eigenvector matrix
from the undamped eigenvalue problem of the system in
Eq. 3

KT = MT diag
(
�2

1, . . . , �
2
m

)
(13)

Usually full FE models are too expensive to solve at
each parameter setting in an optimisation procedure.
Therefore, parametrically reduced-order models must be
constructed. The parametrised mass and stiffness matrices
can be expressed as M = M (p) and K = K(p). In
the implementation, the parameters are normalised. The
physical parameter vector p ∈ R

P×1 is related to a
normalised parameter vector p̄ and some fixed non-zero
nominal parameter p0 so that p = p0 ◦ (1 + p̄) holds [3],
with ◦ the Hadamard product. Here P denotes the number
of parameters. The eigenvector matrix T 0 at the nominal
parameter setting, computed as in Eq. 13, is used as a
reduction basis and is kept constant during the calibration
procedure. Using the coordinate transformation q = T 0z

and pre-multiplying Eq. 3 by T T
0 the reduced mass and

stiffness matrices at any parameter setting p are given by

M̄(p) = T T
0 M(p)T 0 (14a)

K̄(p) = T T
0 K(p)T 0 (14b)
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At the nominal parameter setting p0, the reduced mass and
stiffness matrices are represented by M0 and K0. Gradients
of the reduced mass and stiffness matrices are computed as

M̄ ,s = T T
0

(
∂M(p)

∂ps

∣∣∣
p=p0

)
T 0 (15a)

K̄ ,s = T T
0

(
∂K(p)

∂ps

∣∣∣
p=p0

)
T 0 (15b)

for the s:th calibration parameter. From the first-order
expansions of the Taylor series of the reduced mass and
stiffness matrices about po it is possible to form a surrogate
model that is linear in the parameters

M̃(p) = M̄0 +
P∑

s=1

(
ps − ps,0

)
M̄ ,s (16a)

K̃(p) = K̄0 +
P∑

s=1

(
ps − ps,0

)
K̄ ,s (16b)

Here, ps,0 is the s:th parameter at the nominal parameter set-
ting. The parametrised state-space matrices with equalised

damping, forming the system �̃
FE

(p), can be computed
analogously to Eq. 5b with the parametrised equalised vis-
cous damping matrix computed as in Eq. 12. Then, the

parametrised FE FRFs H̃
FE
k (p) at some frequency ωk , used

in the calibration procedure, can be computed as in Eq. 7

from the state-space matrix quadruple �̃
FE

(p).

Model Parameter Uncertainty Quantification

From the deterministic calibration procedure, a best
parameter configuration p∗ is obtained, with respect to

the identified and equalised damping model �̃
ID

. From
a decision-making perspective it is important to asses
the uncertainties in the obtained parameters so that
confidence in the predictions can be obtained. Therefore,
the last step considers the parameter uncertainties, in
which a new surrogate model is computed around the
calibrated parameter configuration p∗. In [44] an undamped
Gauss-Newton optimisation procedure [4] was proposed

together with bootstrapping [27] to estimate the parameter
uncertainties. However, for large data sets that procedure
can be computationally infeasible. Therefore, a less
computationally intensive method is proposed here, based
on a first-order Taylor expansion. As such, it is assumed to
work well for small parameter variations.

Consider the following deviation metric computed at the
parameter configuration p, for the K frequencies, as

γ (p) =
⎡
⎢⎣

vec
(
H FE

1 (p) − HX
1

)
...

vec
(
H FE

K (p) − HX
K

)

⎤
⎥⎦ (17)

for which a linear-in-parameters model takes the form

γ (p) = E(p − p∗) + γ (p∗) (18)

where the data matrix is

E =
[
∂γ (p)

∂p1

∣∣∣
p=p∗ , . . . ,

∂γ (p)

∂ps

∣∣∣
p=p∗ , . . . ,

∂γ (p)

∂pP

∣∣∣
p=p∗

]

(19)

Bootstrapping is used to estimate the parameter uncertain-
ties, which is cheap given the linear-in-parameters model.

A bootstrap parameter setting for b = 1, . . . , nb is found
as

pb = E+
b γ b (20)

where ·+ denote the Moore-Penrose inverse [22]. The
procedure works by drawing nb random datasets γ b and
Eb with replacement from the original data sets γ and E,
respectively. See Hastie et al. [27] for a detailed explanation
of the re-sampling procedure. Thus, nb vectors of parameter
values pb are obtained, from which the expected value can
be computed as

p̂ = E
[
pb

] = 1

nb

nb∑
b=1

pb (21)

and the variance as

Var
[
pb

] = 1

nb − 1

nb∑
b=1

(
pb − E

[
pb

])2 (22)

Fig. 1 FE model of the rear
subframe (a) top view and (b)
bottom view. Circular markings
indicate positions of
accelerometers measuring
normal to the surface and the
rectangular marking indicate the
force input location (normal to
the surface) with a direct
accelerometer configuration
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Fig. 2 Representative subframe
model. To the left (a) thickness
parameters and to the right (b)
stiffness parameters

Finite Element Models

The rear subframe FE model with generalised spring
element and solid bushing models is described here. Also,
the FE model with mass loaded bushings is described.
Both FE model configurations have free-free boundary
conditions, to represent the experimental data as much as
possible. In both configurations, dissipation in the updated
models is modelled with modal damping identified from
experimental data, assumed sufficient for this application.

Rear Subframe

The rear subframe FE model, seen in Fig. 1, is built
up of mainly 3-noded and 4-noded Mindlin-Reissner
plate elements and solid elements. The mesh size is
approximately 5 mm, resulting in a total of 420324 DOFs
for the subframe model with generalised spring elements.
In the same figure, the sensor locations are also shown with
circles, and excitation locations with a grey square, further
described in “Rear Subframe”. In Fig. 2, the subframe
parametrisation is indicated. The first seven parameters

are thickness parameters corresponding to subcomponents
of the subframe. The last three parameters are Young’s
modulus parameters of the marked subcomponents. Note
that, thickness parameters 1 to 4 are mainly used because
it was assumed that the bushing models did not correctly
represent the bushing mass. Therefore, these parameters are
used as surrogate parameters to control the mass distribution
at the extremities of the model. Parameter 7 (thickness) and
8 (Young’s modulus) are related to the same subcomponent,
which actively contributed to the dynamics of many modes.
The nominal parameter settings can be found in Table 1.

Mass Loaded Bushings

The subframe model with generalised spring elements and
mass loaded bushings consist of 475554 DOFs. The only
addition in this model compared to the subframe model is
the extra quasi-rigid bodies attached to the four bushings.
In Fig. 3, the FE model with generalised spring elements
and mass loaded bushings is shown. The sensor locations
are also shown. The four excitation positions are marked
with grey squares (located at the very corners of the

Table 1 Parameter values of the rear subframe FE model with generalised spring element bushings, see Fig. 2. COV [%] in parenthesis

p FEN FEC
1 FEC

2 FEC
3 FEUQ

1 FEUQ
2 FEUQ

3

Shell thickness [mm]

1 1.40 2.50 2.50 2.50 2.50(0.00) 2.50(0.00) 2.50(0.00)

2 1.40 2.85 3.24 2.56 2.85(1.34) 3.26(1.55) 2.56(1.72)

3 1.40 4.29 3.82 3.28 4.41(0.92) 3.91(1.00) 3.37(0.91)

4 1.40 2.48 2.67 2.40 2.51(0.70) 2.71(0.96) 2.42(0.43)

5 2.00 1.88 1.92 1.79 1.90(0.56) 1.92(0.60) 1.81(0.23)

6 2.00 2.44 2.26 2.23 2.45(0.73) 2.29(0.68) 2.24(0.55)

7 1.80 1.60 1.63 1.58 1.60(0.44) 1.61(0.69) 1.56(1.23)

Young’s modulus [GPa]

8 210.00 229.89 222.10 239.10 230.51(0.41) 224.86(0.53) 242.35(0.83)

9 210.00 167.84 170.80 196.29 167.35(0.22) 170.73(0.30) 194.54(0.39)

10 210.00 187.25 187.32 187.76 188.18(0.16) 188.33(0.15) 188.63(0.11)
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Fig. 3 FE model of the rear
subframe with mass loaded
bushings (a) front view and (b)
rear view. Circular markings
indicate positions of
accelerometers measuring
normal to the corner surfaces
and rectangular markings
indicate the force input locations
(normal to the corner surfaces)

Fig. 4 Mass loaded rear
subframe models. To the left (a)
the model with generalised
spring element bushings and to
the right (b) the model with solid
bushing models. Notice that the
front and rear solid bushings are
not geometrically identical in
(b), also shown in Fig. 5

Fig. 5 Cross-section of the front
(a) and rear (b) FE models of the
bushings. Plastic parts in light
grey, aluminium part in mid grey
and rubber part in dark grey

Fig. 6 To the left (a)
experimental set up of the rear
subframe and to the right (b)
experimental set up of subframe
with mass loaded bushings
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quasi-rigid bodies). Three orthogonal inputs per excitation
location were used. For each output, marked with white
circles, a triaxial accelerometer was used. This is further
described in “Mass Loaded Bushings”. Note that the two
front bushings are nominally identical, as are the two rear
bushings. Therefore, the mass loading is different for two
bushings of the same type, to as much as possible avoid
mode multiplicity.

In Fig. 4a, the generalised spring elements used to
model the rubber bushings are numbered. Note that, one
generalised spring element is indicated with each marking
in that figure. Every generalised spring element has six
dynamic stiffness parameters, three translational and three
rotational. Hence, 24 dynamic stiffness parameters can be
updated in this model.

Solid BushingModel

A subframe with bushings modelled with solid elements
from the bushing geometry is considered as well. This
subframe FE model has 622578 DOFs, and the mass loaded
variant has 681474 DOFs. This is considerably more DOFs
compared to the generalised bushing model. In Fig. 4b, a
cut-through view of the solid bushing models is shown.
A more detailed cross-section view of the solid bushings
can be seen in Fig. 5. The area in dark grey indicates
the rubber material which is parametrised. The light grey
areas are plastic parts, one of which is enclosed in the
rubber, and the other outside. In mid grey (in the middle of
the bushings) is a hollow aluminium cylinder. The plastic
and aluminium parts are not parametrised. Rubber can be
characterised as a viscoelastic material, see Jones [29]. It
is known that rubber’s Young’s modulus is frequency and
temperature-dependent, again see Jones [29], which is also
shown in Cunningham and Ivey [12] for some specific
rubber materials. Here, small strains are assumed and
non-linear effects are considered negligible. Temperature
effects are also disregarded. It is furthermore assumed that
the frequency range of interest is small enough for the
Young’s modulus to be considered frequency independent.
Therefore, the rubber is modelled with solid elements
and an isotropic linear material model, which according
to Jones [29] is sufficient under the above-mentioned
assumptions. Note that, only the Young’s modulus of the
rubber is parametrised in the four bushings, dark grey area
in Fig. 5. Furthermore, while the rubber is modelled as an
isotropic material, the geometry of the whole bushing will
allow the bushing to have different stiffness in different
directions. Hence, four stiffness parameters can be varied in
this model. This is significantly fewer parameters compared
to the model with generalised spring element bushings,
which allowed for 24 stiffness parameters.

Experimental Modal Analysis

Vibration tests have been performed on three rear subframes
of the Volvo XC90 (2015) with and without mass loaded
bushings. Identical procedures were used for all three
components. Calibration of sensors, data acquisition and
FRF estimation were performed using the open-source
toolbox abraDAQ [17]. The rear subframe without mass
loading is shown in Fig. 6a and with mass loaded bushings
in Fig. 6b. The components were hung in long thin high-
strength lines attached to helical springs on a supporting
steel structure. Five support modes were all below 2 Hz,
while a support bouncing mode was just under 5 Hz,
i.e. the quasi rigid body modes were well under the first
flexible mode of the component in both configurations
(approximately 75 and 40 Hz without and with mass loaded
bushings, respectively).

Rear Subframe

The rear subframe FE model was used in pre-test
planning to find good sensor locations. A total of 170
candidate sensor locations were selected, from which 20
uniaxial sensor locations were found for the 20 first
flexible modes using the expansion effective independence
method [30] with an added gramian rejection step for
rejection of locations with similar modal information
[19]. In addition, six more accelerometer locations were
added for visualisation purposes. Also, an additional 10
triaxial sensors were placed on the 6 bushings. However,
these sensors were not used in system identification or
calibration. The sensor locations can be seen in Fig. 1. The
input location, see Fig. 1, was selected based on shaker
attachment convenience. An accelerometer was placed on
the opposite side (from the shaker) of the sheet metal to
obtain a direct accelerance.

Two types of accelerometers were used, 10 triaxial
PCB Piezotronic type 356A03 weighing 1 gramme each
and 26 uniaxial PCB Piezotronic type PCB 352C22/NC
weighing 0.5 grammes each. The uniaxial accelerometers
were attached with synthetic wax while the triaxial
accelerometers were glued. The accelerometer masses were
included in the FE models. The shaker used in the vibration
test was of Ling Dynamic Systems make and of type V201,
with a metallic stinger approximately 5 mm in length, as
recommended by Ewins [14]. The excitation force was
measured with a Brüel & Kjær force sensor of type 8203
with an IEPE converter 2647B, attached to the component
through a stinger attachment plate which was glued and
had a mass of around 0.2 grammes. The force sensor and
stinger attachment plate masses were not modelled in the FE
model.
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Two excitation methods were used, and in both tests,
a sampling rate of 20 kHz was used. Periodic chirp
tests at various amplitudes were performed to assess the
linearity of the system to obtain proper excitation loads.
A frequency range from 20 to 800 Hz was used. The
calibration data was collected with a stepped sine excitation
signal with 10 simultaneous sinusoidal components. For
such an excitation signal, test data is collected reasonably
fast and the measurement noise is kept minimal to reduce
the influence on the estimated parameters in the model
updating procedure. After the system reached stationary, the
frequency responses were estimated from data collected in
25 consecutive instances. A frequency range from 60 to
500 Hz was selected with 3000 frequency lines. The
frequency lines were selected based on the improved
frequency selection method [45] for system identification
with N4SID [38].

An identified system is necessary for the calibration
procedure. A recently proposed state-space system identifi-
cation method using residual states is used for this purpose
[18, 20]. For single-input multi-output systems, as consid-
ered here, only one re-estimation of the system input and
output matrices is necessary, according to [24]. The 26
uniaxial accelerometers were used for system identifica-
tion, calibration and validation. System identification was
performed on data from 60 to 400 Hz with 15 in-band
modes, and 2 higher frequency residual modes. This pro-
duced a system that accurately predicted both resonance and
antiresonance behaviour. In Fig. 1 calibration channels are
represented by white circles, and validation channels with
dark circles. Note that the direct accelerance channel 14
was used for validation. Approximately two-thirds of the
channels were used for calibration.

Mass Loaded Bushings

Experiments on the mass loaded subframe were conducted
as well. Here 12 triaxial accelerometers were used,
placed according to Fig. 3. FE modes were analysed and
accelerometers placed so that all modes could be observed.
Input locations are also shown in Fig. 3, where three
orthogonal inputs per location were used. Hence, a total of
12 inputs on the four different bushings were obtained. As
obvious from the results, this was enough to control local
modes in each bushing below 300 Hz.

The accelerometers used were of Brüel & Kjær make
and type 4524-B, weighing 4.4 grammes, and attached with
synthetic wax. A modal hammer of PCB make and type
086C01 was used for excitation with a hard plastic tip. Soft
silicon buds were placed on the structure to mechanically
filter out high-frequency force components, and also allow
for better hit repeatability. A sample rate of 10 kHz was
used, with a fade time of 10 s and a cut-off frequency at

500 Hz, which resulted in approximately 0.1 Hz frequency
stepping. However, to reduce the computational time for
system identification, the frequency content was filtered so
that approximately 0.5 Hz frequency stepping was obtained.
The FRFs were estimated from the average response from
3 repeated hits. The mass of the accelerometers was not
included in the FE model.

The same system identification procedure was used here
as for the rear subframe [18, 20]. The data is multi-input
multi-output and therefore a few (typically four) iterations
of the system input and output matrices were necessary to
reach convergence of the least squares loss function. One-
third of the data was used for validation, all outputs for
inputs in the y-direction (see Fig. 3), resulting in one input
per bushing. Roughly two-thirds of the channels were used
for system identification and calibration, inputs in the x and
z directions, with all outputs except for outputs in the y-
direction for triaxial accelerometers at locations 5, 9, 11
and 12, see Fig. 3. System identification was performed
on data from 40 to 340 Hz with 28 in-band modes,
and 16 high-frequency residual modes. This produced an
identified system that accurately predicted both resonance
and antiresonance behaviour.

Results

Here, the calibration results are presented for the rear
subframe without and with mass loaded boundaries for
the case with bushings modelled with generalised spring
elements. A calibration with solid bushing elements for
the mass loaded case is also presented. The experimental
model is denoted EX while the finite element model is
denoted FE, and the three components with numbers 1, 2
and 3. The nominal model is indicated with a superscript
N, the three updated FE models with a superscript C, and
the uncertainty quantification models with superscript UQ.
Note that often both a subscript and superscript are used
indicating a comparison between an FE model and one
experimental model.

Multiple Rear Subframes

The subframe model was updated from frequency data
ranging from 60 to 265 Hz. In that range, 8 flexible modes
were present for all three subframes. A 0.5% equalised
damping was used with 4 frequency lines per half-band-
width. The order of the reduced linear-in-parameters model
was based on 50 modes. 1000 Latin hypercube samples
were used to obtain good starting points for calibration
minimisations. From these samples, 11 random starts,
including the nominal parameter setting, were used in the
optimisation.
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Fig. 7 Relative difference for
calibrated and mean of
bootstrapping parameter settings
(relative the nominal parameter
setting) for the rear subframe
with generalised spring element
bushings

Table 2 Rear subframe mass
[kg] (FE model with
generalised spring element
bushings)

EX1 EX2 EX3 FEN FEC
1 FEC

2 FEC
3

26.71 26.70 26.80 26.14 27.08 27.01 26.67

Table 3 Rear subframe
eigenfrequencies [Hz] (FE
model with generalised spring
element bushings)

EX1 EX2 EX3 FEN FEC
1 FEC

2 FEC
3

1 75.97 75.88 76.82 80.78 76.04 75.89 76.78

2 155.82 153.33 160.45 159.57 156.17 155.33 159.53

3 191.80 191.34 193.07 201.19 191.42 191.14 193.44

4 194.24 193.71 195.26 205.19 193.15 192.53 195.35

5 204.21 203.85 204.97 210.19 204.15 203.32 205.25

6 207.08 205.34 210.85 221.61 206.30 205.22 209.74

7 240.15 238.77 241.01 254.19 239.48 238.38 240.67

8 250.61 251.45 258.47 265.05 254.24 253.46 256.44

Fig. 8 Absolute difference in
eigenfrequency for the nominal
and calibrated rear subframe
with generalised spring element
bushings (relative the
experimentally identified
eigenfrequencies)

Fig. 9 MAC for first eight
modes of the nominal (top) and
calibrated (bottom) rear
subframe with generalised
spring element bushings.
Subframe 1 to the left, 2 middle
and 3 right. FE model along
abscissa and experimental
model along ordinate axes
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Table 4 Deviation metric
(defined in Eq. 2b) for the rear
subframe model with
generalised spring element
bushings

FEN
1 FEN

2 FEN
3 FEC

1 FEC
2 FEC

3

Calibration 1.31 1.39 1.10 0.33 0.34 0.29

Validation 1.59 1.44 1.57 0.64 0.46 0.69

The nominal and updated rear subframe parameter values
are shown in Table 1. See Fig. 2 for parametrisation. The
parameters were allowed to vary up to 40% from the nominal
setting, apart from parameters 2 to 4 which were allowed to
take any value. Note that parameter 1 is fixed, mainly due
to high dependence on parameter 2. It was also manually
updated from 1.4 mm to 2.5 mm. This was done to compen-
sate for the generalised spring element bushing model,
which had less mass than the solid bushing model. However,
parameters 2 to 4 were updated, mainly because it was found
that the mass distribution had a large influence on modes 3
and 4, and 5 and 6. Note that the Young’s modulus values
are mainly used as surrogate parameters as the more likely
cause of stiffness variation is due to uncertain geometry
variation that is more natural but harder to parametrise.

In Fig. 7, the relative parameter change in relation to the
nominal parameters is shown for the calibration and UQ
parameter configurations. It can be seen that both calibration
and UQ outcomes show similar change, and also that the
Young’s modulus parameters show small relative change. The
thickness parameters on the other hand show a large change
compared to the nominal setting. They also indicate a larger
variation. It is also noted in Table 1 that the coefficient of
variation (COV) is larger for the thickness parameters.

In Table 2, the masses of the real subframes as measured
by a scale and the masses of the nominal and updated FE
models are shown. It can be seen that the mass was too low
in the nominal model, at most 2.5% difference. However,
in the calibrated models it is too high, but less than 1.4%
difference for all three components.

In Table 3, the eigenfrequencies for the first eight flexible
modes are shown. Figure 8 shows the absolute differences in

eigenfrequency between the nominal FE model and exper-
imentally identified models, and the updated FE models
and experimentally identified models. Note that modes 2, 6,
7 and 8 show the most variation. For example, mode 7 of
the nominal FE model shows an error exceeding 10 Hz, for
all three subframes. The variation in the updated models is
significantly lowered, indicating that the calibrated models
match their experimental counterpart better.

Figure 9 shows the modal assurance criterion (MAC)
matrix [5]. The top row shows the MAC matrix between the
nominal and experimental models, while the bottom rows
shows the updated counterpart. Note that all three updated
models manage to correct the two mode shifts present in the
nominal model.

In Table 4, the deviation metric from Eq. 2b is shown for
the nominal and calibrated models with the same level of equa-
lised damping. It can be observed that a significant reduction
is achieved for both calibration and validation data,
although slightly less for the validation data. Note that the
deviation is also larger for the nominal model for validation
data.

Figure 10 shows one example of an FRF, in this case for out-
put 10 (see Fig. 1). For this FRF the nominal model’s devi-
ation metric (defined in Eq. 2b) is 1.23 and the calibrated
model’s deviation metric is 0.29, with mapped damping.

Multiple Rear Subframes with Mass Loaded
Bushings

The subframe model with mass loaded bushings was updated
using frequency data from 40 to 265 Hz. In that range, 26
flexible modes were present for all three subframes and a

Fig. 10 FRF for output 10 (see
Fig. 1) of rear subframe 2 with
generalised spring element
bushings
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Table 5 Stiffness [N/mm]
parameter values of the
generalised spring element
models for the mass loaded
subframe model, see Fig. 4.
COV [%] in parenthesis

p FEN FEC
1 FEC

2 FEC
3 FEUQ

1 FEUQ
2 FEUQ

3

1 2260 2551 2653 2676 2463(0.34) 2566(0.34) 2671(0.39)

2 8330 12366 14662 13301 12487(1.24) 16020(1.93) 8539(2.08)

3 1520 2298 2217 2340 2419(0.53) 2281(0.58) 2394(0.46)

4 3.30e6 4.47e6 4.48e6 4.64e6 4.43e6(0.37) 4.39e6(0.29) 4.63e6(0.28)

5 9.30e5 1.39e6 1.36e6 1.40e6 1.35e6(0.35) 1.32e6(0.34) 1.38e6(0.18)

6 1.80e6 1.55e6 1.45e6 1.51e6 1.55e6(0.27) 1.46e6(0.31) 1.52e6(0.23)

7 2260 2621 2476 2796 2431(0.46) 2284(0.53) 2763(0.55)

8 8330 9557 8340 9176 10754(1.10) 9099(1.06) 11969(0.92)

9 1520 2406 2438 2651 2333(0.28) 2366(0.23) 2527(0.39)

10 3.30e6 4.45e6 4.41e6 5.02e6 4.30e6(0.21) 4.33e6(0.27) 4.83e6(0.23)

11 9.30e5 1.33e6 1.36e6 1.47e6 1.31e6(0.15) 1.34e6(0.22) 1.47e6(0.12)

12 1.80e6 1.31e6 1.25e6 1.42e6 1.28e6(0.13) 1.27e6(0.12) 1.41e6(0.02)

13 5900 7080 7080 7080 7080(0.00) 7080(0.00) 7080(0.00)

14 6100 8540 8540 8540 8540(0.00) 8540(0.00) 8540(0.00)

15 1530 2619 2413 2282 2589(0.35) 2558(0.38) 2215(0.59)

16 2.40e6 3.83e6 3.66e6 3.38e6 3.79e6(0.15) 3.57e6(0.17) 3.29e6(0.19)

17 2.40e6 3.20e6 3.06e6 2.84e6 3.14e6(0.11) 2.98e6(0.09) 2.79e6(0.10)

18 1.75e6 1.11e6 1.09e6 9.82e5 1.12e6(0.16) 1.10e6(0.23) 9.61e5(0.06)

19 5900 7080 7080 7080 7080(0.00) 7080(0.00) 7080(0.00)

20 6100 14253 14139 10940 13938(2.01) 11667(1.88) 10578(1.17)

21 1530 2686 2697 2501 2399(0.96) 2452(0.65) 2478(1.12)

22 2.40e6 3.79e6 3.57e6 3.40e6 3.76e6(0.23) 3.47e6(0.27) 3.36e6(0.20)

23 2.40e6 3.28e6 3.14e6 2.79e6 3.17e6(0.18) 3.05e6(0.19) 2.78e6(0.11)

24 1.75e6 1.18e6 1.08e6 1.00e6 1.17e6(0.19) 1.07e6(0.14) 9.88e5(0.14)

reduced linear-in-parameters model of order 70 was used.
The rotational stiffness parameters of the bushings were
first found in an calibration with 3% equalised damping,
6 frequency lines per half-band-width and 100 random
starts. In the final calibration, all parameters were free,
apart from parameters 13, 14 and 19 that were fixed
due to low identifiability. For the final calibration, a 2%
equalised damping was used with 6 frequency lines per half-
band-width. The nominal parameter setting together with
5 selected samples, out of 2000 Latin hypercube samples,
were used in the optimisation procedure.

The nominal and updated rear subframe parameter values
are shown in Table 5. In that table, the first group of 6

parameters represent bushing 1 as seen in Fig. 4a. The next
group of 6 parameters represent bushing 2, the third group
bushing 3 and fourth group bushing 4. The six parameters
for each bushing are organised with stiffness in x, y and z
first and then with rotational stiffness around x, y and z. The
parameters related to the bushings were allowed to vary up
to 150% from the nominal setting to reflect the uncertainty
level of the bushing properties. The nominal values of the
bushing rubber material are estimated from a separate test at
100 Hz and large strain. Therefore, for the relatively small
strains in this calibration test, and large frequency range
covered, it is reasonable to suspect clear variation from the
nominal values.

Fig. 11 Relative difference for
calibrated and mean of
bootstrapping parameter settings
(relative the nominal parameter
setting) for the mass loaded rear
subframe with generalised
spring element bushings
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Table 6 Mass loaded subframe
eigenfrequencies [Hz] with
generalised spring element
bushings

EX1 EX2 EX3 FEN FEC
1 FEC

2 FEC
3

1 41.98 41.57 42.18 35.38 42.80 42.29 42.97

2 52.07 51.89 52.73 47.36 52.76 52.69 53.00

3 56.63 56.94 58.58 53.32 57.36 57.87 59.68

4 64.18 62.97 60.68 56.82 65.59 64.37 61.44

5 69.74 67.80 66.32 58.61 70.76 68.93 67.44

6 72.56 72.56 73.90 64.49 73.95 73.94 75.10

7 85.59 83.52 80.87 76.49 87.79 85.88 83.07

8 93.86 90.47 87.37 77.73 95.85 93.79 90.59

9 95.49 95.69 101.60 86.68 99.00 98.61 104.20

10 112.56 108.61 106.12 112.25 111.22 109.46 106.61

11 118.20 117.61 117.23 115.31 119.33 116.77 115.28

12 123.17 122.73 121.98 120.46 121.81 121.42 122.02

13 128.83 127.35 127.81 137.39 129.57 127.29 128.01

14 128.96 128.72 127.95 139.50 130.71 128.91 129.39

15 145.55 145.13 146.47 141.14 146.72 146.32 146.71

16 152.36 150.93 146.92 149.25 153.15 152.04 149.20

17 158.49 152.98 156.18 152.14 158.63 157.30 156.99

18 164.77 164.48 171.50 166.70 165.81 162.64 172.07

19 171.73 171.36 171.91 173.32 171.41 170.30 172.27

20 179.31 177.16 181.79 185.63 178.47 177.00 180.45

21 190.24 189.76 190.94 191.52 192.11 191.01 192.79

22 198.35 198.20 200.69 195.15 198.89 198.10 201.43

23 215.32 214.82 217.11 197.50 217.73 217.83 216.74

24 227.52 225.25 224.54 208.48 227.67 224.69 223.42

25 230.51 228.49 230.47 219.84 228.88 226.96 232.04

26 253.08 252.36 253.24 228.53 248.43 245.68 250.22

Fig. 12 Absolute difference in
eigenfrequency for the nominal
and calibrated mass loaded rear
subframe with generalised
spring element bushings
(relative the experimentally
identified eigenfrequencies)

Fig. 13 MAC for the nominal
(top) and calibrated (bottom)
mass loaded rear subframe with
generalised spring element
bushings. Subframe 1 to the left,
2 middle and 3 right. FE model
along abscissa and experimental
model along ordinate axes
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Table 7 Deviation metric (defined as in Eq. 2b) for the mass loaded
rear subframe model with generalised spring element bushings

FEN
1 FEN

2 FEN
3 FEC

1 FEC
2 FEC

3

Calibration 1.35 1.35 1.38 0.35 0.38 0.35

Validation 1.31 1.36 1.37 0.34 0.42 0.35

Figure 11 shows the relative parameter change in relation
to the nominal parameters for the calibration and UQ
parameters configurations. Note that results are mostly
consistent for each parameter for the three subframe
individuals. The rotational stiffness around the z-axis
(parameters 6, 12, 18 and 24) show a decrease in stiffness
up to 45% while all other parameters show an increase
in stiffness. Note that the dynamic stiffness in x and y
directions (parameters 1, 2, 7, 8, 13, 14, 19 and 20) show the
largest variation between bushings and subframes. For those
parameters the reported COV was also largest, see Table 5.

Table 6 shows the eigenfrequencies for the first 26
flexible modes. Figure 12 shows the absolute difference
in eigenfrequencies between the nominal and updated FE
models and the experimentally identified models. The diffe-
rences are significantly lowered, indicating that the cali-
brated models match their experimental counterpart better.

In Fig. 13, a set of MAC matrices are shown. The
top row shows the MAC matrices between the nominal
and experimental models, while the bottom rows shows
the updated counterpart. The nominal model show very
poor MAC correlation towards all three subframes. The
calibrated models essentially capture all 26 modes well. The
mode switch for models FE1 and FE3 are mainly due to the
very close modes in test data, i.e. for FE1 it is at 128.83
Hz and at 128.96 Hz, and for FE3 it is at 171.50 Hz and
at 171.91 Hz. It was found that changing eigenvalue solver
could cause the mode switch.

Table 7 shows the deviation metric from Eq. 2b for the nom-
inal and calibrated models with the same level of equalised
damping. It can be observed that a significant reduction is
achieved for both calibration and validation data.

Table 8 Young’s modulus [MPa] parameter values of the solid bushing
model for the mass loaded rear subframe model, see Fig. 4. COV [%]
in parenthesis

p FEN FEC
3 FEUQ

3

1 5.00 4.18 4.21(0.26)

2 5.00 4.66 4.68(0.29)

3 5.00 2.71 2.73(0.10)

4 5.00 2.81 2.85(0.10)

Figure 14 shows an example of an FRF, in this case for
input at location 1 in the z direction and output at location
5 in z direction (see Fig. 3). The nominal deviation metric
(defined in Eq. 2b) for this channel is 1.72, and for the
calibrated model with mapped damping it is 0.27.

Comparison with Solid BushingModel

The subframe model with solid bushing elements was
calibrated using the same calibration settings as the
subframe with generalised spring elements. However,
only one calibration step was sufficient as only four
parameters were calibrated. Here, a Poisson’s ration of
0.49 was used, which is judged to be a reasonably
realistic value for the rubber material in the bushing,
see Cardarelli [10]. The calibrated result from only one
model is shown, as the solid model cannot capture the
local bushing dynamics as well as the generalised spring
element model. In Table 8, the parameter settings are
shown. Note that the two rear bushings, corresponding
to parameters 1 and 2, obtain calibrated values that are
relatively close, which is reasonable. Also, the two front
bushings, corresponding to parameters 3 and 4, show similar
values. The mean value of the UQ is here close to the
calibrated counterpart, and the COV is low. The nominal
and calibrated Young’s modulus values are reasonable
for rubber materials, see Cardarelli [10]. In Table 9,
the eigenfrequencies are shown. Figure 15 shows the
relative difference in eigenfrequencies for the nominal and

Fig. 14 FRF of mass loaded
rear subframe 2 with generalised
spring element bushings for
input at location 1 in the z-
direction and output at location
5 in z-direction (see Fig. 3)
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Table 9 Mass loaded subframe
eigenfrequencies [Hz] with
solid bushing model

EX3 FEN FEC
3

1 42.18 47.51 43.93
2 52.73 54.90 53.20
3 58.58 64.64 62.35
4 60.68 79.65 65.31
5 66.32 83.69 67.36
6 73.90 86.34 73.81
7 80.87 106.10 85.38
8 87.37 106.58 88.48
9 101.60 107.75 92.29
10 106.12 113.39 97.79
11 117.23 119.57 103.33
12 121.98 127.89 118.89
13 127.81 134.00 123.23
14 127.95 142.74 124.05
15 146.47 144.53 134.52
16 146.92 157.16 139.54
17 156.18 160.05 149.86
18 171.50 168.64 160.26
19 171.91 178.39 166.51
20 181.79 193.17 183.31
21 190.94 197.81 189.83
22 200.69 215.43 211.83
23 217.11 240.46 216.47
24 224.54 252.22 222.75
25 230.47 264.15 249.67
26 253.24 274.50 256.66

Fig. 15 Absolute difference in
eigenfrequency for the nominal
and calibrated mass loaded rear
subframe with solid bushing
model (relative the
experimentally identified
eigenfrequencies)

Fig. 16 MAC for nominal (left)
and calibrated (right) mass
loaded subframe with solid
bushing model. FE model along
abscissa and experimental
model along ordinate axes
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Table 10 Deviation metric (defined as in Eq. 2b) for the mass loaded
rear subframe model with solid bushing model

FEN
3 FEC

3

Calibration 1.53 0.90

Validation 1.68 1.05

calibrated models (relative the experimentally identified
eigenfrequencies). Note that modes 9, 10, 11, 15, 17 and 18
of the updated model have a larger error compared to the
nominal model. The MAC values are shown in Fig. 16. It
can be seen that a slight improvement is achieved for the
first few modes only. Table 10 shows the deviation metric
from Eq. 2b for the nominal and calibrated models with the
same level of equalised damping.

Conclusion

A model updating procedure using damping equalisation
has been successfully used to update the overall model of
a rear subframe and find optimal bushing parameters, for
three nominally identical subframes. An uncertainty quan-
tification procedure using a linear-in-parameters surrogate
model was introduced to assess the parameter uncertainties
with respect to measurement noise and errors. Two bushing
models have been compared, the generalised spring ele-
ment and a more geometrically realistic solid model. The
spring element model has six individual dynamic stiffness
and therefore larger freedom to adapt to test data. That
larger freedom is found necessary to obtain a good fit. The
solid bushing model, for which the rubber was modelled
with a linear elastic material model, shows poorer correla-
tion with experimental data, and could not capture the many
local bushing modes. It is possible that the material model
is too simple or that the rubber material properties are not
uniform. The overall subframe dynamics showed smaller
variation in eigenfrequencies, compared to the bushings,
which is expected. The largest variation was found in the
translational stiffness. However, these parameters were also
most uncertain, indicating that test data is not informative
enough for these parameters to be updated accurately. The
updated parameters for the three components were consis-
tent and physically realistic. In conclusion, the simple mass
loading considered here seem most effective for estimating
rotational dynamic stiffness parameters, which are usually
not measured by separate procedures. They are, therefore,
often considered to be the most uncertain parameters.
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