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Abstract
The existence of stationary solutions of the Einstein–Vlasov–Maxwell system 
which are axially symmetric but not spherically symmetric is proven by 
means of the implicit function theorem on Banach spaces. The proof relies 
on the methods of Andréasson et al (2014 Commun. Math. Phys. 329 787–
808) where a similar result is obtained for uncharged particles. Among the 
solutions constructed in this article there are rotating and non-rotating ones. 
Static solutions exhibit an electric but no magnetic field. In the case of rotating 
solutions, in addition to the electric field, a purely poloidal magnetic field is 
induced by the particle current. The existence of toroidal components of the 
magnetic field turns out to be not possible in this setting.

Keywords: Einstein–Vlasov–Maxwell system, stationary space-times, 
mathematical general relativity, elliptic PDE’s, implicit function theorem, 
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1. Introduction

1.1. Stationary solutions of the Einstein–Vlasov(–Maxwell) system

The Einstein–Vlasov–Maxwell system (EVM-system) describes an ensemble of charged par-
ticles whose motion is governed by gravity and an electro-magnetic field but which do not 
interact via collisions. Both the space-time curvature and the electro-magnetic field are gener-
ated collectively by the particles themselves. In contrast to the Einstein–Vlasov system, which 
only takes into account gravity, particles described by the EVM-system are not freely falling, 
i.e. their trajectories are not geodesics.

Stationary solutions of the Einstein–Vlasov systems have been studied since the early 
1990’s. In [32] the existence of spherically symmetric, static solutions of the Einstein–Vlasov 
system with matter quantities of compact support is proven. In fact, in spherical symmetry, a 
large variety of different solutions is known, including balls, shells, highly relativistic and not 
highly relativistic solutions [9, 29, 30]. For massless particles, the existence of static, spheri-
cally symmetric solutions is known, too [6]. It is however conjectured that these solutions 
need to be highly relativistic. For charged particles the same variety of different static, spheri-
cally symmetric solutions can be constructed, at least for sufficiently small particle charges 
[5, 37]. In contrast to the Vlasov–Poisson system, where rigorous existence of axisymmetric 
solutions which are not necessarily close to spherically symmetric are known [19], there is 
only little analytical understanding of the stationary solutions of the Einstein–Vlasov system 
beyond spherical symmetry. The only analytical results available are [7, 8] where rotating and 
non-rotating axially symmetric, stationary solutions of the Einstein–Vlasov system are con-
structed as perturbations of spherically symmetric, static solutions. For the case of uncharged 
particles there exist numerical studies, see e.g. [1, 2, 35, 36]. In these studies solutions have 
been constructed numerically that are far from spherical symmetry. Torus-shaped, disc-shaped 
and spindle-shaped solutions have been observed.

1.2. Axially symmetric solutions with the implicit function theorem

In this article the existence of stationary, rotating solutions of the EVM-system is proven by 
means of the implicit function theorem. The proof is a generalisation of [7], where the exis-
tence of rotating, stationary solutions of the Einstein–Vlasov system with uncharged particles 
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is proved, to the case where the particles are charged and hence induce an electro-magnetic 
field. Thereby, to the author’s knowledge, the first existence result for non-spherically sym-
metric solutions of the EVM-system is presented. In the context of kinetic theory this method 
has already been used in [28] to show the existence of stationary, rotating solutions of the 
Vlasov–Poisson system. The idea of this method is to introduce a parameter λ to the system 
which can ‘turn on’ rotation and to perturb the system around a spherically symmetric, static 
solution without rotation. To this end one considers a functional F : X × [−δ, δ] → X , where 
X  is a suitable function space which will contain the solution and [−δ, δ] is the interval in 
which the parameter λ will lie. The operator is constructed such that if F(ζ,λ) = 0 then ζ is 
a collection of functions which constitute a solution of the Vlasov–Poisson system with the 
parameter λ. The solution ζ0, corresponding to λ = 0, is known and we have F(ζ0, 0) = 0. The 
main part of the work consists in showing that the implicit function theorem can be applied. 
Then it follows that to each λ ∈ (−δ, δ) there exists ζλ ∈ X  such that F(ζλ,λ) = 0. This 
collection ζλ of functions consequently solves the Vlasov–Poisson system and this solution 
is axially symmetric but not spherically symmetric. It is in the nature of this method that the 
obtained rotating solutions have small overall angular momentum.

In [8] a similar method with a different set up has been used to show the existence of axially 
but not spherically symmetric, static solutions of the Einstein–Vlasov system. In this context 
it was used that the Vlasov–Poisson system is the non-relativistic limit of the Einstein–Vlasov 
system, in the sense that a solution of the Einstein–Vlasov system converges to a solution of 
the Vlasov–Poisson system if the speed of light c goes to infinity. So besides λ, the speed of 
light c has been introduced to the system as a second parameter. Perturbing off a spherically 
symmetric, static solution of the Vlasov–Poisson system in those two parameters λ and c 
yields an axially but not spherically symmetric, static solution of the Einstein–Vlasov system. 
The deviation from spherical symmetry is small but by a scaling argument the solution can be 
made fully relativistic, i.e. c  =  1. In [7] further technical insights made it possible to include 
rotation into the picture.

Lichtenstein developed a method based on the implicit function theorem to construct rotat-
ing fluid bodies [23, 24] in Newtonian gravity. This approach has later been reformulated in a 
modern mathematical language [22] and improved [21]. In [3, 4] the authors use an implicit 
function argument to construct axially symmetric static and rotating elastic bodies in Einstein 
gravity. In a series of papers of which the last one is [15] the authors construct stationary solu-
tions of the Einstein equations with negative cosmological constant without any symmetries. 
Many different matter models can be included, such as a scalar field, Maxwell, or Yang–Mills.

1.3. Rotating space-times with charged matter

Space-times with rotating, charged matter configurations have been studied in the literature 
by analytical and numerical means, see e.g. [13, 14, 18]. An important motivation for these 
studies is the modelling of rotating stars or neutron stars with a magnetic field. In these articles 
the matter is modelled as a perfect fluid and different shapes of the magnetic field can be 
observed depending on the assumptions on the fluid, like an equation of state or conductiv-
ity properties. For example rotating solutions with no poloidal magnetic field can be con-
structed, see [18]. These works can serve as a source of intuition for the study of rotating 
clouds of Vlasov matter. There is however an important difference. When studying a perfect 
fluid, the Einstein–Euler system (which describes a space-time containing matter of the type 
of a perfect fluid) has to be supplemented by an equation of state which captures the physical 
properties of the fluid under consideration. Depending on the choice of the equation of state, 
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different matter configurations and different electro-magnetic fields can be constructed. For 
Vlasov matter however there is much less variety in the physical properties of the solutions 
that can be obtained. The basic assumptions on the particles’ behaviour and how the energy 
and the angular momentum is distributed among the particles (this is sometimes referred to 
as a microscopic equation of state) already determines the macroscopic character of the solu-
tions. It turns out that rotating solutions of the EVM-system must have a poloidal magnetic 
field but no toroidal magnetic field.

We briefly mention that in the non-relativistic setting a variety of different axially sym-
metric solutions can be constructed explicitly, see for example [12]. A well studied class of 
these solutions are disk solutions which serve as models for disk shaped galaxies and which 
are used to study some physical properties of these galaxies. The so called Morgan & Morgan 
disk solutions, introduced in [26], are important in this context. In [27] the authors construct 
comparable axially symmetric solutions in Newtonian gravity with general relativistic correc-
tions. Surprisingly these general relativistic corrections account for changes of the solutions 
far from the galaxy core—a region where it was expected that Newtonian gravity describes 
the physics well and general relativistic effects do not play a significant role. This observation 
adds to the motivation of studying axially symmetric configurations of collisionless particles 
in the fully general relativistic picture.

1.4. The result and technical difficulties

The present article generalises [7] to the case of charged particles, i.e. solutions of the EVM-
system are constructed by perturbing off a non-trivial, spherically symmetric, static solution 
of the Vlasov–Poisson system. The following theorem is proved.

Theorem. There exist asymptotically flat, stationary solutions of the EVM-system with non-
vanishing particle charge parameter, which are axially symmetric but not spherically sym-
metric. These solutions have no toroidal magnetic field and they have a non-trivial poloidal 
magnetic field if and only if they are not static, i.e. rotating.

It is assumed that the particles are charged with a particle charge q, i.e. an electro-magnetic 
field is included into the framework. A priori this can be done in two different ways. Either 
one considers q as a third (a priori small) parameter which ‘turns on’ charge. In this case one 
still perturbs off a spherically symmetric, static, uncharged solution of the Vlasov–Poisson 
system. The other way is to use the fact that in the non-relativistic limit the Maxwell equa-
tions reduce to the Poisson equation as well and one perturbs around a charged solution of the 
Vlasov–Poisson system. It turns out that the first approach is easier from a technical point of 
view since the operator F  that the implicit function theorem will be applied to is changed only 
insignificantly by the included Maxwell equations. However, the result would be restricted 
to small particle charge parameters q. In the second approach arbitrary values 0 � q < mp  of 
the particle charge parameter can be treated, where mp  denotes the mass of the particles. In 
this case the operator F  has additional terms. In this article the second approach is presented.

In an axially symmetric, static setting the EVM-system reduces to a system of coupled, 
non-linear Poisson equations in different dimensions and a first order PDE. The solution of 
this system consists in a collection of functions which we denote ζ. A solution operator to 
these Poisson equations can be constructed via the Green’s function G of the Laplace operator. 
Schematically one obtains F[ζ] = ζ − G ∗ source[ζ], where ‘∗’ denotes the convolution and 
‘source[ζ]’ schematically denotes the source terms of the Poisson equations which depends 
on the solution functions ζ. Consequently, a necessary condition for F  to be well defined is 
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that G ∗ source[ζ] has at least the same regularity as ζ, i.e. the source terms of these Poisson 
equations need to be sufficiently regular. At this point a difficulty occurs which is new in the 
charged case. It can be illustrated as follows.

After the variable substitution Aϕ = �2a one obtains for the ϕ-component of the electro-
magnetic four potential A the equation

∆5a =
2

1 + h
a∂�h
�

+
2

4π2c2

a∂�ν
�

+ . . . . (1.1)

On the right hand side only some a priori problematic terms are written out explicitly. The 
functions ν  and h are part of the collection ζ of solution functions of the EVM-system. These 
terms are a priori problematic because they are singular at the axis � = 0.

Looking a bit closer one notices that the right member of equation (1.1) is not singular 
if h and ν  are axially symmetric functions of a certain regularity. However, by dividing by 
�  one ‘looses derivatives’. For this reason the function space X  has to be chosen such that 
the individual functions of the collection ζ have an appropriate hierarchy in regularity. For 
equation (1.1) for example one needs that h and ν  are of higher regularity than a such that for 
example G ∗ ∂�h/� has at least the regularity of the function space of a.

This article is a generalisation of [7] and the proof follows the same scheme. Including 
charge into the framework does not only increase the number of equations in the system but it 
also increases significantly the number of terms in each equation. Some of these terms require 
some care in the analysis but clearly not all of them. Still all required properties of the system 
have to be checked term by term. In order to make the presentation more concise this article 
resorts more to shorthands and schematic or symbolic notation than [7, 8].

1.5. Discussion of the result

An important step in the construction of stationary solutions done in this article is exploiting 
that the particle distribution function f  can be expressed in terms of two conserved quantities, 
the particle energy E and the z-component of the angular momentum L. We work with ansatz 
functions of the form

f = φ(E)ψ̃(L),

where φ and ψ̃ are regular functions specified in section 5.
If one aims for constructing solutions to the Einstein–Vlasov system, or the EVM-system, 

which are not spherically symmetric it is natural to include a dependency on the angular 
momentum L into the ansatz for the particle distribution function f . If the distribution func-
tion f  is only a function of E any resulting static solution is spherically symmetric [20]. In a 
certain sense collisionless matter prefers spherically symmetric configurations if no physical 
effect, as for example rotation, accounts for more structure and thus non-spherically symmet-
ric configurations.

For the Vlasov–Poisson system it is known that for all spherically symmetric, time-inde-
pendent solutions the particle distribution function can be written as f = Φ(E, L), i.e. as a 
function which only depends on the particle energy and the angular momentum. This state-
ment is referred to as Jeans’ theorem. For the Einstein–Vlasov system this is not true [34]. 
Consequently, in the axially symmetric setting in particular, the ansatz (5.7) does not represent 
all possible solutions.

All results on the Einstein–Vlasov system in axial symmetry, in particular the numerical 
studies [1, 2, 35, 36], use ansatz functions of the class (5.7). With this class of ansatz functions 
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it turned out to be possible to model many of the observed shapes of galaxies which is an 
indication for that this class is not too restrictive.

Indirectly, the choice of ansatz function determines the properties of the resulting solution 
of the axially symmetric EVM-system. On the other hand, if the ansatz function is not con-
sistent with the laws of Physics, it will not give rise to a non-trivial solution. Physically it is 
very intuitive that the solutions have a poloidal magnetic field if an overall rotation is present, 
since a current of charged particles induces a magnetic field. A non-trivial toroidal magnetic 
field could then only be present if the particles have an overall motion which induces such 
a magnetic field. Such a field would be induced by a particle cloud with a poloidal particle 
current. It is however unclear what mechanism could drive such a poloidal particle current. 
Exploring this possibility would constitute an interesting mathematical question and the study 
of corresponding ansatz functions for the particle distribution function would be a novelty.

The axially symmetric solutions of the EVM-system obtained in this article can be char-
acterised as follows. Since the solutions are obtained essentially by a perturbation argument 
the overall rotation will be small. Furthermore, since the solutions are obtained by perturb-
ing around a solution of the Vlasov–Poisson system which is the non-relativistic limit of the 
EVM-system (i.e. the limit where c → ∞), the parameter c is a priori very large. By a scaling 
argument one obtains solutions with c  =  1. These solutions are then rather not very relativis-
tic, i.e. no very strong local gravitational effects will occur. However, results like [27] suggest 
that studying the fully general relativistic system still entails phenomenological differences, 
as already mentioned above. Moreover, the particle charge parameter of the solutions does not 
need to be small.

The physical interpretation of collisionless, general relativistic, charged particles could be 
electrons or ions in a galactic nebula. Describing a galactic nebula by a slowly rotating solu-
tion of the EVM-system, as constructed in this article, would however be a strong idealisation 
neglecting a lot of structure. The most important contribution of this article is to get a more 
complete mathematical understanding of a whole class of physically relevant, non-linear par-
tial differential equations.

1.6. Outline of the paper

In the next section the EVM-system will be introduced. Then, in section 3, the result of this 
article will be stated in detail and an outline of the proof will be given. The rest of the article is 
devoted to the introduction of the technical setup. In section 4, the EVM-system is formulated 
in axial symmetry and in section 5 the ansatz for the particle distribution function is discussed. 
The remaining sections contain the definition of the relevant objects, i.e. function spaces and 
solution operators, and the proofs of important properties of these operators.

2. The Einstein–Vlasov–Maxwell system

A solution of the EVM-system for particles with mass mp � 0 and charge 0 � q < 1 is a 
Lorentzian metric g ∈ T∗M ⊗ T∗M  defined on a four dimensional manifold M , a particle 
distribution function f ∈ C1(TM ;R+), defined on the tangent bundle of M , and an electro-
magnetic field tensor F ∈ Λ2(TM ) such that the EVM-system,

Gµν =
8π
c4 (Tµν + τµν) , (2.1)

M Thaller Class. Quantum Grav. 37 (2020) 035008



7

Tµν = gµαgνβ
c

mp

∫

Px

f (x, p) pαpβ dvolPx , (2.2)

τµν =
1

4π

(
−1

4
gµνFαβFαβ + FναF α

µ

)
, (2.3)

T( f ) = 0, (2.4)

dF = 0, (2.5)

∇αFαβ = −4πqJβ , Jβ =
1
c

∫

Px

f (x, p) pβdvolPx , (2.6)

is satisfied. Here Gµν  is the Einstein tensor and we choose units such that G  =  1 (G is the 
gravitational constant) but we leave c as parameter in the system.

We give a brief explanation of the involved quantities, consult however e.g. [33] for a 
more detailed introduction to the EVM-system. The particle distribution function f = f (x, p) 
describes the particle number density at a certain point in x ∈ M  with a certain four-momen-
tum p ∈ TxM . The particle number can be obtained via integration. The quantity mp , defined 
by the relation

gµν(x) pµpν = −c2m2
p, x ∈ M , p ∈ TxM (2.7)

is interpreted as the particles’ rest mass. It can be shown that it stays constant along the char-
acteristic curves of the Vlasov equation (2.4). Consequently the particle distribution function 
f  describing an ensemble of particles where all particles have the same rest mass mp  can be 
assumed to be supported on the mass shell Pmp, a seven dimensional submanifold of TM  
which is defined to be

Pmp = {(x, p) ∈ TM : gµν(x) pµpν = −c2m2
p, p is future pointing}. (2.8)

In the remainder of this article we assume mp   =  1 for all particles, and we denote the corre-
sponding mass shell simply by P . The volume form dvolPx on the mass shell fibre Px  over 
x ∈ M  is given by

dvolPx =

√
| det(gµν(x))|

−p0
dp1 ∧ dp2 ∧ dp3, (2.9)

and the transport operator T is given by

T = pµ∂µ +
(

qFγ
µ pµ − Γγ

αβpαpβ
)
∂pγ . (2.10)

It is tangent to any mass shell P  [33].
Assume that we have a solution (g, f , F) of the EVM system and that on M  we have coor-

dinates t, x1, x2, x3, where t is the time coordinate. Assume further that ∂t is a Killing field. 
Then the solution is asymptotically flat if the boundary conditions

lim
|x|→∞

g = η, lim
|x|→∞

f = 0, lim
|x|→∞

F = 0 (2.11)

are satisfied, where η denotes the Minkowski metric.
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3. The result

In this article we prove the following result.

Theorem 3.1. There exist asymptotically flat, stationary solutions (g, f , F) ∈ (T∗M ⊗ T∗M )×  
C1

c(P;R+)× Λ2(M ) of the EVM-system (2.1)–(2.6) with particle charge parameters 
q ∈ [0, 1), which are axially symmetric but not spherically symmetric. Such a solution has no 
toroidal magnetic field and it has a non-trivial poloidal magn etic field if and only if the solu-
tion is not static, i.e. rotating.

Proof. The proof which is given at this place is rather an outline of the proof, the techni-
cal details are given in the subsequent sections. The proof follows the same structure as in 
[7] where the existence of stationary, rotating, axially symmetric solutions is proved for un-
charged particles. Each step is however a bit more involved and some arguments have to be 
formulated differently due to the additional Maxwell equations. We comment on the modifica-
tions in the respective sections.

 Step 1: Elimination of the Vlasov equation. For the particle distribution function we use the 
ansatz f (x, p) = φ(E(x, p))ψ(λ, L(x, p)), see (5.8). So the particle distribution depends only 
on the particle energy E(x, p) and the z-component of the angular momentum L(x, p), see the 
definitions (5.2) and (5.1). Since the quantities E and L are conserved along its characteristics 
the Vlasov equation is automatically satisfied for such an ansatz, see section 5. Furthermore, 
we introduce a parameter λ which ‘turns on’ the dependency of f  on L. This means that if 
λ = 0 then ψ ≡ 1, i.e. for each value of the z-component of the angular momentum there are 
equally many particles.

 Step 2: Reduction of the remaining system.  First we express the EVM-system (2.1)–(2.6) 
in cylindrical coordinates. The assumptions that the solution is asymptotically flat, axially 
symmetric, and time independent yield simplifications of the system of equations. We call 
this simplified system the reduced EVM-system, see definition 6.1 and it is stated in sec-
tion 6, equations  (6.19)–(6.28) where any value of c ∈ (0,∞) is admitted. The solution of 
the reduced EVM-system is determined by the collection ζ = (ν, h, ξ,ω, At, a) ∈ X  of six 
functions, defined in a suitably chosen function space X  (defined in section 7). Proposition 
8.1 states that a solution of the reduced EVM-system with any parameter c can be converted 
into an axially symmetric, stationary solution of the EVM-system with the parameter c  =  1.

 Step 3: Introduction of the solution operator F . A solution of the reduced EVM-system with 
parameters γ := c−2,λ ∈ [0, 1)× (−1, 1) is then obtained as perturbation of a spherically 
symmetric solution of the Vlasov–Poisson system. This spherically symmetric solution of the 
Vlasov–Poisson system we denote by ζ0 ∈ X .
To this end in section 9 an operator F : X × [0, 1)× (−1, 1) → X  with the following proper-
ties is defined. Firstly, a collection of functions ζ ∈ X  is a solution of the reduced EVM-system 
with parameters γ , λ if and only if F[ζ; γ,λ] = 0. (The ‘if’-direction is essential.) Secondly, 
F[ζ0; 0, 0] = 0. In section 10 we show that this operator is well defined. The mentioned prop-
erties are shown in proposition 9.1 and lemma 9.3.

 Step 4: Application of the implicit function theorem. The aim is to apply the implicit function 
theorem on Banach spaces, see for example [16, theorem 15.1]. This theorem implies the 
existence of δ > 0 such that there exists a mapping Z : [0, δ)× (−δ, δ) → X  such that for all 
(γ,λ) ∈ [0, δ)× (−δ, δ) we have

M Thaller Class. Quantum Grav. 37 (2020) 035008
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F(Z(γ,λ); γ,λ) = 0, (3.1)

i.e. Z(γ,λ) is a solution of the reduced EVM-system with parameters γ,λ. This solution 
Z(γ,λ) then gives rise to a solution of the EVM-system with the asserted properties, by 
proposition 8.1.
The implicit function theorem can be applied in this way if the operator F  is con-
tinuous at (ζ0; 0, 0), if its Fréchet derivative L := DF[ζ0; 0, 0] : X → X  at the point 
(ζ0; 0, 0) ∈ X × [0, δ)× (−δ, δ) exists and is continuous, and if this Fréchet derivative L is a 
bijection. These properties are established in section 11. Proposition 12.1 contains the details 
how it is made sure that the boundary conditions for an asymptotically flat solutions are satis-
fied.

 Step 5: Characterisation of the electro-magnetic field. The assertion that the solution com-
prises a poloidal magnetic field if and only if the solution is rotating follows from the structure 
of the reduced EVM-system, see remark 6.2. For the assertion that there is no toroidal magn-
etic field, see lemma 6.3. □ 

4. Axial symmetry

Let xi, i = 1, . . . , n be coordinates on Rn. A function f : Rn → R is axially symmetric around 
the xn-axis if and only if there exists a function f̂ : [0,∞)× R → R such that

f
(
x1, . . . , xn) = f̂

(
�(x1, . . . , xn−1), xn) , (4.1)

where

�(x1, . . . , xn−1) :=
√
(x1)

2
+ · · ·+ (xn−1)

2. (4.2)

By abuse of notation, we will use the same symbol for the original function on R2, f̂  in this 
example, and the induced axially symmetric functions f  on Rn for different dimensions n.

Remark 4.1. At some places in the analysis presented in this article it will be useful to view 
an axially symmetric function f : Rn → R as a function in �  and z defined on R2, by extend-
ing it as an even function to negative values of � . The obtained function on R2 then has the 
same regularity as the axially symmetric function on Rn.

We now introduce a coordinate gauge and the functions in terms of which we will form-
ulate the reduced EVM-system. Consider the four dimensional manifold M  which is assumed 
to be homeomorphic to R4 and which is equipped with the cylindrical coordinates t, � , z, ϕ. A 
stationary Lorentzian metric is characterised by the four time independent, axially symmetric 
functions ν,µ,ω : M → R and H : M → R+. It can be written in the form

g = −c2e
2ν(�,z)

c2 dt2 + e2µ(�,z)d�2 + e2µ(�,z)dz2 + �2H(�, z)2e−
2ν(�,z)

c2 (dϕ− ω(�, z)dt)2 , (4.3)

see [10] for details.
The electro-magnetic field tensor F is given as the exterior derivative of the electro-magn-

etic four potential A ∈ Λ1(M ), i.e. F = dA. With respect to the coordinate co-basis of t, � , z, 
ϕ the electro-magnetic potential A takes the form

A = Atdt + A�d�+ Aϕdϕ+ Azdz. (4.4)
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We assume that all components are time independent and axially symmetric.
In terms of the electro-magnetic field tensor F the electric field E ∈ Λ1(M ) and the magn-

etic field B ∈ Λ1(M ) are defined as follows. The electric field E is defined by the splitting 
F = E ∧ dt + B, where the two form B includes no term with dt. The magnetic field is defined 
by the splitting �F = E − B ∧ dt, where � : Λ2(M ) → Λ2(M ) is the Hodge star operator 
and E  is a two-form with no dt-term. See [17] for details. Define β := ∂zA� − ∂�Az. Then a 
calculation yields that the toroidal magnetic field component Bϕ takes the form

Bϕ = 2ce−2µ�Hβ, (4.5)

and the poloidal magnetic field components, B� and Bz, contain only the t- and the ϕ-comp-
onent of A. In fact a calculation yields

B� = −2e−2ν/c2

c�H

(
c2e4ν/c2

Aϕ,z − �2H2ω(At,z + ωAϕ,z)
)

, (4.6)

Bz =
2e−2ν/c2

c�H

(
c2e4ν/c2

Aϕ,� − �2H2ω(At,� + ωAϕ,�)
)

. (4.7)

Next we introduce the parameter γ = 1
c2  and the orthonormal frame ea = ea

α∂α, α = t, �, z,ϕ,  
where the non-trivial matrix elements are

e0
t = e−γν , e0

ϕ = e−γνω, e1
� = e−µ, e2

z = e−µ, e3
ϕ =

eγν

�H
. (4.8)

The corresponding co-frame reads αa = ea
αdxα, where (ea

α) = (ea
α)−1 (the inverse matrix), 

and via the relation pµ∂µ = vµeµ this frame introduces the new momentum variables 
v0, v1, v2, v3, given by

v0 = eγνpt, v1 = eµp�, v2 = eµpz, v3 = �He−γν ( pϕ − ωpt) . (4.9)

In the remainder of this article we work with the coordinates

t ∈ R, � ∈ [0,∞), ϕ ∈ [0, 2π), z ∈ R, (v0, v1, v2, v3) ∈ R4 (4.10)

on the tangent bundle TM . In these frame coordinates the mass shell relation (2.7) becomes

−c2 = −c2 (v0)2
+
(
v1)2

+
(
v2)2

+
(
v3)2

 (4.11)

and on P  we consequently have

v0 =
√

1 + γ|v|2, where |v| =
√
(v1)

2
+ (v2)

2
+ (v3)

2. (4.12)

5. Ansatz function for the particle distribution

The Vlasov equation (2.4) can be dealt with by the method of characteristics which is now 
described.

Lemma 5.1. The quantities E and L, defined on the tangent bundle TM , by

L := �He−γνv3 − qAϕ, (5.1)

E :=
eγνv0 − 1

γ
+ ω�He−γνv3 + qAt, (5.2)
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are conserved along the characteristic curves of the Vlasov equation, i.e.

TE = 0, TL = 0. (5.3)

Proof. The assertion of this lemma can be shown via a direct calculation and it is moved to 
the appendix. □ 

Remark 5.2. Unlike the uncharged case, in the charged case the characteristic curves of 
the Vlasov equations are not the lifts of the geodesics to TM . Consequently the conserved 
quantities cannot be obtained by g(X, p), where X is a Killing vector field and p  is the canoni-
cal momentum. However, this structure can still be recognised in the present case. If we define

Ẽ := −g(∂t, p), (5.4)

L̃ := g(∂ϕ, p), (5.5)

it turns out that the quantities E and L can be obtained from Ẽ  and L̃ by taking into account a 
suitable correction due to the electro-magnetic field. We have

E = Ẽ − 1
γ
+ qAt, L = L̃ − qAϕ. (5.6)

Corollary 5.1. Every function f : P → R+ which can be expressed as

f (t, �,ϕ, z, v0, v1, v2, v3) = φ(E)ψ̃(L) (5.7)

with some functions φ, ψ̃ ∈ C1(R;R+), solves the Vlasov equation (2.4) and is axially sym-
metric and time independent.

Proof. Since TE = TL = 0 we have by the chain rule Tf = 0. The remaining asserted 
properties of f  are inherited from the metric functions ν , µ, H, and ω . □ 

A more general statement than corollary 5.1 is true, for ansatz functions that do not have 
the product structure (5.7). The corollary is however stated this way because in this article 
only ansatz functions of the form (5.7) are considered.

From now on we work with the ansatz

f (x, v) = φ (E)ψ(λ, L), (5.8)

where E and L are the conserved quantities, given in (5.2) and (5.1), respectively, and λ ∈ [0, 1] 
is the parameter which ‘turns on’ anisotropy in momentum of the particle distribution. The 
functions φ and ψ are assumed to fulfil the assumptions listed below. For an integrable func-
tion U and φ ∈ C1(R; R+), where supp(φ) ⊂ (−∞, E0] for some 0 � E0 < ∞, we define

ρU(r) :=
∫

R3
v

φ

(
|v|2

2
+ U(r)

)
dv1dv2dv3, (5.9)

αU(r) :=
∫

R3
v

φ′
(
|v|2

2
+ U(r)

)
dv1dv2dv3. (5.10)
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We assume that the functions φ and ψ in (5.8) have the following properties.

 (1)  φ ∈ C2(R) and there exists E0  >  0 such that φ(E) = 0 for E � E0  and φ(E) > 0 for 
E  <  E0.

 (2)  The ansatz f (x, v) = φ
( 1

2 |v|
2 + UN(x)

)
, x, v ∈ R3, leads to a compactly sup-

ported, spherically symmetric steady state ( fN , UN) of the Vlasov–Poisson system 
for particles with mass 1  −  q2, i.e. there exists a solution UN ∈ C2(R3), of the equa-
tion ∆UN = 4π(1 − q2)ρN(x), UN(0)  =  0, where we used the shorthand ρN := ρUN. This 
solution is spherically symmetric, UN(x) = UN(|x|), and the support of ρN ∈ C2

c(R3) is 
the closed ball BRN (0) where UN(RN) = E0 and UN(r) < E0 for 0 � r < RN < ∞, and 
UN(r) > E0 for r  >  RN.

 (3)  We have 6 + 4π(1 − q2)r2αN(r) > 0 for all r ∈ [0,∞).
 (4)  ψ ∈ C∞

c (R2) is compactly supported, ψ � 0, ∂Lψ(λ, 0) = 0 for λ ∈ R , and ψ(0, L) = 1 
on an open neighbourhood of the set {L = LN(x, v) | (x, v) ∈ supp( fN)}, where LN := �v3 
is the z-component of the Newtonian angular momentum.

Lemma 5.3. There exist ansatz functions φ ∈ C2
c(R) and ψ ∈ C∞

c ((−1/2, 1/2)× R) sat-
isfying the upper conditions.

Proof. Consider the polytropes φ(E) = [E0 − E]k+ for k ∈ [2, 7/2). Condition (1) is clearly 
satisfied. Condition (2) is also satisfied, see [11, 31].

By the same proof as for [8, lemma 7.1] it can be shown that the third condition is satis-
fied for polytropes with exponent k sufficiently close to 7/2. To this end one uses the equa-
tion ∆UN = 4π(1 − q2)ρN  instead of ∆UN = 4πρN . Then merely the constant 4π has to be 
replaced by 4π(1 − q2) in the proof of [8, lemma 7.1]. It is essential that 1  −  q2  >  0, the 
precise value is however irrelevant for the argument. □ 

6. The reduced system of equations

Before the reduced system of equations is presented some notation and shorthands shall be 
introduced. Partial derivatives ∂�ν , ∂zAϕ, etc will be denoted as ν,�, Aϕ,z, etc. We define the 
functions ξ, h, a by the following changes of variables:

ξ = µ+ γν, (6.1)

H = 1 + h, (6.2)

Aϕ = �2a. (6.3)

Further, we call (ν, h, ξ,ω, At, a) the solution functions and in the remainder of this article we 
will use the shorthand

ζ := (ν, h, ξ,ω, At, a). (6.4)

We do not include the components A� and Az of the four-potential A into the solution functions 
ζ since it will turn out that in the current setting they must vanish everywhere, see lemma 6.3.

In [7, 8], where the existence of axially symmetric solutions of the Einstein–Vlasov system 
with uncharged particles is proven, a reduced system of equations is considered as well. The 
reduced EVM-system presented in the following coincides with the reduced system in [7] if 
the charge parameter q is set to zero. When the Maxwell equations are added to the framework 
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not only the number of equations increases but also the number of terms in the Einstein equa-
tions increases by a multiple. For this reason, below, we are going to introduce source func-
tions to collect these terms. This allows to present the reduced system in a compact way and 
also facilitates the presentation of the subsequent analysis. Moreover, we will introduce mat-
ter functions which basically consist in combinations of components Tµν of the Vlasov part of 
the energy momentum tensor, as in [7].

In the subsequent analysis it will be necessary to show different properties of the matter 
functions and the source functions, like regularity with respect to the coordinates �  and z, 
decay properties, symmetries, or Fréchet differentiability with respect to the solution func-
tions ζ. This means that at some occasions the source functions and the matter functions have 
to be seen as functions of �  and z which are parameterised by the solution functions. At other 
occasions they have to be seen as functions which take both the coordinate �  and the solu-
tion functions ζ (and their derivatives) as arguments. Moreover, for the analysis of the matter 
functions several different integral representations will be necessary. In order to give a clear 
presentation we deem it favourable to resort to symbolic notation in a larger extent than in [7].

Now we define the matter functions. These matter functions depend on the solution func-
tions ν , h, ξ, ω , At, a. At different places in this article we want to see them either as functions 

taking the evaluated solution functions as argument (M(γ,λ)
i  below) or as families of functions 

which are parameterised by the solution functions (Mi[ζ; γ,λ] below) and which only depend 
on (�, z). We define

M(γ,λ)
1 (�, ζ) := 4πe2(ξ−γν)

∫

R3
v

φ(E)ψ(λ, L)
1 + 2γ|v|2√

1 + γ|v|2
d3v, (6.5)

M(γ,λ)
2 (�, ζ) := 8πγ2(1 + h)e2(ξ−γν)

∫

R3
v

φ(E)ψ(λ, L)
(v1)2 + (v2)2
√

1 + γ|v|2
d3v,

 (6.6)

M(γ,λ)
4 (�, ζ) := − 16πγ

�(1 + h)
e2ξ−4γν

∫

R3
v

φ(E)ψ(λ, L)v3 d3v, (6.7)

M(γ,λ)
5 (�, ζ) := 4πqe2ξ−3γν

∫

R3
v

φ(E)ψ(λ, L)

(
e2γν +

γ�(1 + h)ωv3
√

1 + γ|v|2

)
d3v,

 (6.8)

M(γ,λ)
6 (�, ζ) := −4πqγ(1 + h)

�
e2ξ−3γν

∫

R3
v

φ(E)ψ(λ, L)
v3

√
1 + γ|v|2

d3v,

 (6.9)
where d3v = dv1dv2dv3 and E and L are seen as functions of � , ζ and v1, v2, v3, according to 
the formulas (5.2) and (5.1) whereas ξ, ν , h, �  are seen as variables. Moreover let

Mi[ζ; γ,λ](�, z) := M(γ,λ)
i (�, ζ(�, z)), i = 1, 2, 4, 5, 6. (6.10)

We remark that if ψ is even in L, then

M(γ,λ)
4 (�, ζ) = M(γ,λ)

6 (�, ζ) = 0, if ω = 0. (6.11)

This follows immediately since the integrand in M(γ,λ)
4  and M(γ,λ)

6  is antisymmetric in v3.
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In the same spirit as the matter functions we define for γ ∈ [0, 1] the source functions 

g(γ)
i : R19 → R, i = 1, . . . , 6. The source functions take the solution functions ζi, i = 1, . . . , 6 

and their derivatives ζi,� and ζi,z, i = 1, . . . , 6 as separate arguments, i.e. they are considered as 
independent variables. We denote

ζ,� = (ζ1,�, . . . , ζ6,�) = (∂�ζ1, . . . , ∂�ζ6), ζ,z = (ζ1,z, . . . , ζ6,z) = (∂zζ1, . . . , ∂zζ6).

Then the source functions are defined to be

g(γ)1 (�, ζ, ζ,�, ζ,z) := −h,�ν,� + h,zν,z

1 + h
+

�2

2
(1 + h)2e−4γν (ω2

,� + ω2
,z

)

− γ2e−2γν ((At,� + 2ω�a + ω�2a,�)
2 + (At,z + ω�2a,z)

2)

− γ
e2γν

(1 + h)2

(
(2a + �a,�)

2 + �2a2
,z

)
,

 

(6.12)

g(γ)3 (�, ζ, ζ,�, ζ,z) :=
(
(1 + ∂�(�h))2

+ �2h2
,z

)−1

×
(
(1 + ∂�(�h))

×
[�

2
(h�� − hzz) + h,� − γ2(1 + h)�(ν2

,z − ν2
,�)− γ�3(1 + h)3e−4γν(ω2

,� − ω2
,z)
]

+ �h,z

[
∂,�(�h,z) + 2γ2(1 + h)�ν,�ν,z +

1
2
γe−4γν�3(1 + h)3ω,�ω,z

]

− 2γ3e−2γν(1 + h)�2h,z
((

At,� + 2�ωa + �2ωa,�
) (

At,z + �2ωa,z
))

+ γ3e−2νγ(1 + h)�(1 + ∂,�(�h))
((

At,z + �2ωa,z
)2 −

(
At,� + 2�ωa + �2ωa,�

)2
)

+ γ2�3e2γν
(

2
h,z

1 + h
(2aa,z + �a,�a,z) +

(
1 + �

h,�

1 + h

)(
a2

,� − a2
,z

)))
,

 

(6.13)

g(γ)4 (�, ζ, ζ,�, ζ,z) := −
(

3
h,�ω,� + h,zω,z

1 + h
− 4γ(ν,�ω,� + ν,zω,z)

)

+ 4γ2 e2γν

(1 + h)2

(2
�

At,�a + At,�a,� + At,za,z + 4ωa2

+ 2ω�aa,� + ω�2a2
,� + ω�2a2

,z

)
,

 

(6.14)

g(γ)5 (�, ζ, ζ,�, ζ,z)

:= 2γ (ν,�At,� + ν,zAt,z) + 4γω
(
2�ν,�a + �2ν,�A,� + �2ν,za,z

)

− h,�At,� + h,zAt,z

1 + h
− 2ω

2�h,�a + �2h,�a,� + �2h,za,z

1 + h
−

(
2�aω,� + �2a,�ω,� + �2a,zω,z

)
− 2(2ωa + �ωa,�)

− γω�2(1 + h)2e−4γν (ω,�(At,� + 2�ωa + �2ωa,�) + ω,z(At,z + �2ωa,z)
)

,
 

(6.15)

g(γ)
6 (�, ζ, ζ,�, ζ,z) := γ(1 + h)2e−4γν (ω,�(At,� + 2�ωa + �2ωa,�) + ω,z(At,z + �2ωa,z)

)

+

2
�h,�a + h,�a,� + h,za,z

1 + h
+

γ

4π2

(
2
�
ν,�a + ν,�a,� + ν,za,z

)
.

 
(6.16)
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Furthermore we define

gi[ζ; γ](�, z) := g(γ)i (�, ζ(�, z), ζ,�(�, z), ζ,z(�, z)), i = 1, 3, . . . , 6 (6.17)

as families of source functions which depend only on �  and z but which are parameterised by 
the solution functions ζ. Moreover we define the operators

∆n := ∂�� +
n − 2
�

∂� + ∂zz, n = 3, 4, 5. (6.18)

As the notation indicates, these operators correspond to the Laplace operator for axially sym-
metric functions in three, four, and five dimensions. We consider the following boundary value 
problem, consisting in the Einstein equations,

∆3ν(�, z) = g1[ζ; γ](�, z) +M1[ζ; γ,λ](�, z) (6.19)

∆4h(�, z) = M2[ζ; γ,λ](�, z), (6.20)

ξ,�(�, z) = g3[ζ; γ](�, z), (6.21)

∆5ω(�, z) = g4[ζ; γ](�, z) +M4[ζ; γ,λ](�, z), (6.22)

poloidal Maxwell equations,

∆3At(�, z) = g5[ζ; γ](�, z) +M5[ζ; γ,λ](�, z), (6.23)

∆5a(�, z) = g6[ζ; γ](�, z) +M6[ζ; γ,λ](�, z), (6.24)

toroidal Maxwell equations,
(

h,z

1 + h
+ 2(γν,z − ξ,z)

)
(Az,� − A�,z) + ∂z (Az,� − A�,z) = 0, (6.25)

(
1
�
+

h,�

1 + h
+ 2(γν,� − ξ,�)

)
(A�,z − Az,�) + ∂� (A�,z − Az,�) = 0, (6.26)

and the boundary conditions,

lim
|(�,z)|→∞

(|ν|+ |ξ|+ |ω|+ |h|+ |At|+ |A�|+ |Az|+ |a|)(�, z) = 0 (6.27)

at spatial infinity and

ξ(0, z) = ln(1 + h(0, z)), z ∈ R (6.28)

at the centre of symmetry.

Remark 6.1. The connection between equations (6.19)–(6.28) and the EVM-system is ad-
dressed in proposition 8.1.

Remark 6.2. If the ansatz function f = φ(E)ψ(λ, L) for the matter distribution satisfies 
in addition to the conditions listed on page 15 that ψ is even in L, then the equations (6.19)–
(6.28) possess solutions such that ω ≡ a ≡ 0, i.e. static solutions without rotation. Note that 
the corresponding matter functions vanish, see (6.11).

So the equations exhibit the physical connection between rotation and the magnetic field. 
Intuitively one would think of this connection in the following way. If there is no overall rota-
tion, i.e. ω ≡ 0, then there is consequently no electric current and no magnetic field is induced. 
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If there is rotation, however, the moving charges induce a poloidal magnetic field. Inspecting 
equations (6.22) and (6.24), we see that ω ≡ a ≡ 0 is a solution, whereas it is not possible that 
only one of these functions is zero everywhere because they appear mutually as source terms 
in the equation of each other.

Lemma 6.3. For each continuous solution of (6.19)–(6.28) the combination β = A�,z − Az,� 
vanishes everywhere, i.e. there is no toroidal magnetic field. (The toroidal component of the 
magnetic field is given in (4.5)).

Proof. If we consider the quantity β = A�,z − Az,�, then equations  (6.25)–(6.26) read 
∇β = −β∇ (ln(�(1 + h)) + 2(γν + ξ)). This admits the solution

β = Ce−(ln(�(1+h))+2(γν−ξ)). (6.29)

Since −(ln(�(1 + h)) + 2(γν − ξ)) → ∞, as � → 0 we deduce that C  =  0 since otherwise 
the toroidal component of the magnetic field would diverge as � → 0, hence the assumption 
of a regular {� = 0}-axis would be violated. □ 

Taking account for the fact that the magnetic field is purely poloidal, we exclude the corre-
sponding equations (6.25) and (6.26) from our notion of the reduced EVM system, i.e. we 
make the following definition.

Definition 6.1. The reduced EVM-system with parameters γ , λ is defined as equa-
tions (6.19)–(6.24), equipped with the boundary conditions (6.27) and (6.28).

The axially symmetric solutions of the EVM-system which are constructed in this article 
are obtained as perturbations around spherically symmetric solutions of the Vlasov–Poisson 
system. For this reason we discuss the non-relativistic limit of the EVM-system, i.e. the limit 
where γ → 0.

Define for the spherically symmetric steady state of the Vlasov Poisson system for particles 
of mass 1  −  q2 the potential at infinity U∞ by

U∞ := lim
|x|→∞

UN(x). (6.30)

Then by condition (2) on φ we clearly have U∞ > E0 and there exists R ∈ (RN ,∞) such that

UN(r) >
E0 + U∞

2
, for all r > R. (6.31)

(Recall that RN is such that UN(RN) = E0.) It turns out, that in the limit γ → 0, only the equa-
tions (6.19) and (6.23) of the reduced EVM-system remain non-trivial and they reduce to the 
Poisson equations

∆νN = 4πρνN+qAN , (6.32)

∆AN = −4πqρνN+qAN , (6.33)

where we use the notation ρνN+qAN, introduced in (5.9), on the right hand side. See the proof 
of lemma 9.3 for details.

The system (6.32) and (6.33) equipped with the boundary conditions

νN(0) = 0, AN(0) = 0, (6.34)
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and the equation

∆UN = 4π(1 − q2)ρN , UN(0) = 0 (6.35)

are equivalent in the sense that a solution of (6.32) and (6.33) gives rise to a solution of (6.35) 
via UN = νN + qAN and a solution of (6.35) gives rise to a solution of (6.32) and (6.33) via 
νN = (1 − q2)−1UN , AN = −q(1 − q2)−1UN . In lemma 10.7 we will furthermore see that the 
limits ν∞ = lim|x|→∞ ν and A∞ = lim|x|→∞ At exist for any γ ∈ (0,∞) and that in the limit 
γ → 0 there holds A∞ = −qν∞, which is consistent.

We are going to linearise around a solution of the system in the limit (γ,λ) → (0, 0). We 
denote this solution by ζ0, i.e.

ζ0 = (νN , 0, 0, 0, AN , 0). (6.36)

Lemma 6.4. If γ > 0 is sufficiently small, then the matter quantities of a solution ζ of the 
reduced EVM-system are supported within a ball of radius R around the origin.

Proof. The particle energy E converges to the Newtonian particle energy EN, given by

EN :=
|v|2

2
+ νN + ωLN + qAN , LN = �v3 (6.37)

in the non-relativistic limit where γ → 0. Using the expansions ex = 1 + x + . . . and √
1 + x = 1 + 1

2 x + . . . we obtain

E =
eγν

√
1 + γ|v|2 − 1

γ
+ ωL̃ + qAt (6.38)

=
|v|2

2
+ ν +

(
ν2

2
− |v|4

4
+

ν|v|2

2

)
γ + · · ·+ ωL̃ + qAt (6.39)

and since ν → νN , At → AN , ω → 0, we see E → EN as γ → 0 which is the Newtonian par-
ticle energy with potential UN = νN + qAN.

Now, since ‖ν + qAt − UN‖∞ → 0, as γ → 0, there is γ0 > 0 such that for all 0 � γ � γ0 
we have E > ν + qAt > E0 for all |x| > R. □ 

7. The function space of the solution

In this paragraph the function spaces are defined in which a solution ζ = (ν, h, ξ,ω, At, a) of 
the reduced EVM-system will be constructed. In [7, 8] the considered function spaces contain 
axially symmetric functions on R3. Taking account for the fact that the reduced EVM-system 
is formulated as Poisson equations in different dimensions we define the function spaces for 
functions in the according dimensions. Furthermore, for the analysis of the source terms of 
these Poisson equations a hierarchy in regularity among the individual solution functions is 
needed, see lemma 10.5. For this reason the assumed regularity is a bit stronger than in [7].

Let α ∈ (0, 1/2) be a fixed parameter and ZR = {(x1, x2, x3) ∈ R3 : �(x1, x2) � R}. We 
define the following spaces of axially symmetric functions,

X1 := {ν ∈ C3,α(R3) | ν = ν(�, z) = ν(�,−z), and ‖ν‖X1 < ∞}, (7.1)
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X2 := {h ∈ C3,α(R4) | h = h(�, z) = h(�,−z), and ‖h‖X2 < ∞}, (7.2)

X3 := {ξ ∈ C1,α(ZR) | ξ = ξ(�, z) = ξ(�,−z), and ‖ξ‖X3 < ∞}, (7.3)

X4 := {ω ∈ C2,α(R5) |ω = ω(�, z) = ω(�,−z), and ‖ω‖X4 < ∞}, (7.4)

and

X := X1 ×X2 ×X3 ×X4 ×X1 ×X4. (7.5)

Let β ∈ (0, 1) be another fixed parameter. Then the corresponding norms are defined to be

‖ν‖X1 := ‖ν‖C3,α(R3) +
∥∥(1 + |x|)1+β∇ν

∥∥
∞ , (7.6)

‖h‖X2 := ‖h‖C3,α(R4) +
∥∥(1 + |x|)3∇h

∥∥
∞ , (7.7)

‖ξ‖X3 := ‖ξ‖C1,α(ZR), (7.8)

‖ω‖X4 := ‖ω‖C2,α(R5) + ‖(1 + |x|)3ω‖∞ + ‖(1 + |x|)4∇ω‖∞, (7.9)

and

‖ζ‖X := ‖ν‖X1 + ‖h‖X2 + ‖ξ‖X3 + ‖ω‖X4 + ‖At‖X1 + ‖a‖X4 . (7.10)

Finally we define

U := {(ζ, p) ∈ X × [0, δ)× (−δ, δ)) | ‖ζ − ζ0)‖X < δ0}, (7.11)

where δ0 > 0 is sufficiently small such that for all (ζ; γ,λ) ∈ U, we have 1 + h(�, z) > 1/2 
for all (�, z) ∈ [0,∞)× R .

8. Solutions of the reduced system solve the full EVM-system

In this article we construct solutions to the reduced EVM-system (6.19)–(6.28). These solu-
tions to the reduced EVM-system correspond to spherically symmetric, time independent 
solutions of the EVM-system (2.1)–(2.6). The relations between these systems is the subject 
of the following proposition. As already mentioned, this article generalises [7] to the case of 
charged particles and the reduced system treated here coincides with the reduced system con-
sidered in [7] if the charge parameter q is set to zero.

Proposition 8.1. A solution ζ ∈ X  of the reduced EVM-system (6.19)–(6.28) with param-
eters λ, γ  gives rise to a time independent, axially symmetric solution (g, f , A) of the EVM-
system (2.1)–(2.6) where g is of the form (4.3) and f  is of the form (5.8).

Before we prove proposition 8.1 we establish the following scaling law.

Lemma 8.1 (Scaling law). Let (ν, h, ξ,ω, f , At, a) be a solution of the reduced EVM-system 
(2.1)–(2.6) with parameters (λ, c) ∈ (−1, 1)× (0,∞). Then the functions ν̃, h̃, ξ̃, ω̃, f̃ , Ãt, ã, 
given by
(
ν̃(�, z), h̃(�, z), ξ̃(�, z), ω̃(�, z), Ãt(�, z), ã(�, z)

)

=

(
1
c2 ν(c�, cz), h(c�, cz), ξ(c�, cz),ω(c�, cz),

1
c2 At(c�, cz), a(c�, cz)

) 
(8.1)
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and

f̃ (�, z, p�, pz, pϕ) = c3f (c�, cz, cp�, cpz, pϕ) (8.2)

satisfy the reduced EVM-system with parameters (λ, 1).

Proof. We check the laws for At and a. For the other functions, see [7]. For the Laplace 
operator we have the transformation law

∆Ãt(�, z) = (∆At)(c�, cz). (8.3)

Then we use the Maxwell equations (6.23) and (6.24) for At and a, respectively. Note that for 
example

(∇At) (c�, cz) =
1
c
∇(At(c�, cz)) = c∇Ãt(�, z). (8.4)

For the matter function corresponding to At we obtain the expression

M5[ζ; γ,λ](c�, cz)

= −4πqe(2ξ̃−3ν̃)(�,z)
∫

R3
v

f
(
c�, cz, p�(c�, cz, v1), pz(c�, cz, v2), pϕ(c�, cz, v3)

)

×

(
e2ν̃(�,z) +

�(1 + h̃(�, z)ω(�, z)v3)

c
√

1 + γ|v|2

)
dv1dv2dv3

 

(8.5)

and for a we have the matter function

M6[ζ; γ,λ](c�, cz) =
4πq

c
�(1 + h̃(�, z))e(2ξ̃−3ν̃)(�,z)

×
∫

R3
v

f
(
c�, cz, p�(c�, cz, v1), pz(c�, cz, v2), pϕ(c�, cz, v3)

) v3
√

1 + γ|v|2
dv1dv2dv3.

 
(8.6)

Now, applying the change of variables vi → wi = vi/c, i = 1, 2, 3, and using the scaling law 
(8.2) one recovers the original matter functions with f̃  instead of f . □ 

Proof of proposition 8.1. First we describe how the reduced EVM-system can be derived 
from the EVM-system. We start with the equations  (6.19)–(6.22) which—without electro-
magnetic field terms of course—have been considered in [7]. Write down all Einstein equa-
tions  in the coordinates t, �,ϕ, z and take into account the symmetries by substituting the 
ansatz (4.3) for g. Suitable combinations of the Einstein equations yield the equations (6.19)–
(6.22) for ν , h, ξ, and ω . For equation (6.19) take the combination

1
2

(
e2ξ−4γν(Gtt + 2ωGtϕ) +

1
γ
(G�� + Gzz) + e2ξ

(
1

γ�2(1 + h)2 + ω2e−4γν
)

Gϕϕ

)
. (8.7)

For equation (6.20) take (1 + h)(G�� + Gzz), for equation (6.22) take 2e2ξ

�2(1+h)2 (Gtϕ + ωGϕϕ), 

and for equation (6.21) take

(1 + h + �h,�)
(1 + h)�

2
(G�� − Gzz) + �2hz(1 + h)G�z. (8.8)
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It is important to take the right combination of Einstein equations for the method to work and 
we follow [8].

The components Gµν  of the Einstein tensor and the components τµν  of the electro-magn-
etic part of the energy momentum tensor yield the left members and the source functions of 

equations  (6.19)–(6.22). The matter functions M(γ,λ)
i , i = 1, 2, 4 are obtained as explained 

now. First, using the ansatz (5.8) for the particle distribution function f  and the orthonormal 
frame (4.9) one can write the components of the kinetic part Tµν of the energy momentum 
tensor, defined in (2.2), as the integral expression.

Tµν =

∫

R3
v

φ(E)ψ(λ, L)
pµpν√

1 + γ|v|2
dv1dv2dv3. (8.9)

For this formula the mass shell relation (4.12) needs to be used. Furthermore, the variables pµ, 
µ = 0, . . . , 3 can in terms of the frame components v1, v2, v3, be expressed as

p0 = −eγν

γ

√
1 + γ|v|2 − e−γν�(1 + h)ωv3,

p� = eµv1, pz = eµv2, pϕ = e−γν�(1 + h)v3.
 (8.10)

Now taking the corresponding combinations of Tµν and substituting the expressions (8.10) for 
the p -variables one obtains after simplification the matter functions. These matter functions 
coincide with the corresponding matter terms in [7], the only difference consists in the quanti-

ties E and L. The matter quantity M(γ,λ)
3  vanishes due to the symmetry T�� = Tzz.

The equations (6.23) and (6.24) for At and a, respectively, are new with respect to [7] and 
they are obtained by suitable combinations of the Maxwell equation ∇αFαβ = −4πqJβ for 
β = t  and β = ϕ. These combinations are

1
γ

e2ξ∇αFαt − ω�2(1 + h)2e2ξ−4γν (ω∇αFαt −∇αFαϕ) , (8.11)

(1 + h)2e2ξ−4γν (ω∇αFαt −∇αFαϕ) , (8.12)

respectively. The matter functions M(γ,λ)
5  and M(γ,λ)

6  are obtained by taking the respective 
combinations of the components of the matter current Jβ, defined in (2.6). Using the ortho-
normal frame (4.9) it can be written as

Jβ = γ

∫

R3
v

φ(E)ψ(λ, L)
pβ√

1 + γ|v|2
dv1dv2dv3. (8.13)

The variables pµ, µ = 0, . . . , 3, are given in terms of the frame coordinates as

p0 = e−γνv0, p1 = e−µv1, p2 = e−µv2, p3 = e−γνωv0 +
eγν

(1 + h)�
v3.

 (8.14)

So far it has been proved that a solution of the EVM-system implies a solution of the reduced 
EVM-system since the latter one is obtained by linear combinations of certain components 
of the former one. It remains to verify that the converse is also true, i.e. that a solution to the 
reduced EVM-system with parameter c ∈ [1,∞) implies an axially symmetric, time inde-
pendent solution of the EVM-system with c  =  1. First we note that by the scaling laws (lemma 
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8.1) a solution to the reduced EVM-system with c  =  1 can always be obtained. The Maxwell 
equations are already fulfilled since the number of equations has not been reduced. For the 
Einstein equations however the number of equations has been reduced, so situation is less 
clear. We define the quantity

Eµν = Gµν − 8π
c4 (Tµν + τµν) , µ, ν = t, �, z,ϕ. (8.15)

The non-trivial components are Ett, E��, Ezz, Eϕϕ, Etϕ, and E�z. The other components are 
trivially zero since the Einstein tensor vanishes under the symmetry assumptions incorporated 
into the metric ansatz (4.3). It remains to show that the components Ett, E��, Ezz, Eϕϕ, Etϕ, 
and E�z vanish, too. This can be done by using the same argument as given in [7, section 6] 
since the Einstein part of the reduced EVM-system that we are working with consists in the 
same linear combinations of Einstein equations which has been considered in [7]. A subtlety, 
which has to be dealt with, consists in the fact that ξ is only C1,α, whereas Einstein’s equa-
tions are of second order. Since in the present setup ξ has the same regularity as in the setup 
of [7] the arguments of [7] apply however.

Finally, the boundary conditions (6.27) clearly imply the boundary conditions (2.11). □ 

9. Definition of the solution operator F

The equations (6.19), (6.20) and (6.22)–(6.24) of the reduced EVM-system are semi-linear 
Poisson equations. For this reason the solution operators corresponding to these equations are 
basically given in terms of the Greens function of the Laplace operator. If q is set to zero, the 
solution operator introduced here coincides with the solution operator defined in [7].

First, we recall some facts about the Poisson equation. Define for n � 3 the n-dimensional 
Greens function Gn

y(x) of the Laplace operator ∆n by

Gn
y(x) =

1
(n − 2)|Sn−1|

1
|x − y|n−2 , (9.1)

where |Sn−1| is the volume of the (n − 1)-dimensional unit sphere. For later convenience we 
also define

Ĝn
y(x) =

1
(n − 2)|Sn−1|

(
1

|x − y|n−2 − 1
|y|n−2

)
 (9.2)

and the functionals

Gn[ f ](x) :=
∫

Rn
Gn

y(x) f (y) dy and Ĝn[ f ](x) :=
∫

Rn
Ĝn

y(x) f (y) dy. (9.3)

Then, in the sense of distributions, the solution of the Poisson equation  −∆nu = f  for 
f ∈ L1

loc(Rn) on Rn, n � 1 is given by u(x) = Gn[ f ](x), see [25, theorem 6.21].
Now we give the definition of F . To this end we first define the operators Gi : U → Xi, 

i = 1, . . . , 6 (by X5 and X6 we understand X1 and X4, respectively). We define

Gi[ζ; γ,λ] := G3[gi[ζ; γ]] + Ĝ3[Mi[ζ; γ,λ]], i = 1, 5, (9.4)

G2[ζ; γ,λ] := G4[M2[ζ; γ,λ]], (9.5)
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G3[ζ; γ,λ] := ln(1 + h(0, z)) +
∫ �

0
g3[ζ; γ](s, z) ds, (9.6)

Gi[ζ; γ,λ] := G5[gi[ζ; γ] +Mi[ζ; γ,λ]], i = 4, 6. (9.7)

Then we write compactly

G[ζ; γ,λ] := (G1[ζ; γ,λ], . . . ,G6[ζ; γ,λ]). (9.8)

Furthermore we define

F : U → X , (ζ; γ,λ) �→ F[ζ; γ,λ] := ζ −G[ζ; γ,λ]. (9.9)

Lemma 9.1. Let (ζ; γ,λ) ∈ U. Then Gi[ζ; γ,λ] is axially symmetric and even in the xn-
coordinate (also referred to as z-coordinate) for all i = 1, . . . , 6.

Proof. Clearly gi[ζ; γ] and Mi[ζ; γ,λ] are axially symmetric and even in z if ζ is. Consider 
the following prototype term. Let f : Rn → Rn be an axially symmetric function that is even 
in xn  =  z. One can check straight forwardly that Gn[ f ] is axially symmetric and even in z by 
performing and appropriate change of variables in the integral, i.e. we have for A ∈ SO(n − 1)

Gn[ f ](A · (x1, . . . , xn−1)ᵀ,−xn) = Gn[ f ](x). □ 

Remark 9.2. The operators G1 and G5 have been defined such that the Fréchet derivative 
of F  with respect to ν , At, at (ζ0; 0, 0) is zero at (�, z) = 0. Observe the Ĝ  in equation (9.4). 
This property is important in the proof that the Fréchet derivative at (ζ0; 0, 0) is a bijection, 
see lemma 11.1.

Proposition 9.1. Let ζ ∈ X  and (γ,λ) ∈ [0, δ)× (−δ, δ). Then F[ζ; γ,λ] = 0 if and only if 
ζ restricted to {� � 0} is a solution of the reduced EVM-system (6.19)–(6.24) with parameters 
γ , λ.

Proof. The statement is clear for Gi and ζi, i = 1, 2, 4, 5, 6 since by lemma 9.1 these opera-
tors are the solution operators to the semi-linear Poisson equations (6.19), (6.20) and (6.22)–
(6.24). For the operator G3, we observe that differentiation of G3[ζ; γ,λ](�, z) with respect to 
�  directly yields the right hand side of the ξ-equation (6.21). □ 

Lemma 9.3. Recall ζ0 = (νN , 0, 0, 0, AN , 0). We have F[ζ0; 0, 0] = 0.

Proof. We adopt the notation ρN := ρUN, αN := αUN . The Einstein equations (6.20)–(6.22) 
for h, ξ, and ω  are trivially satisfied for ζ = ζ0. So it remains to consider equation (6.19) for 
ν . The source function g1[ζ0; 0, 0] is zero. For the matter function M1 a calculation yields 
M1[ζ0; 0, 0](�, z) = 4πρN(r), where r =

√
�2 + z2 . This is the energy density induced by the 

ansatz (5.8) in the Newtonian case.
We see that the Maxwell equation (6.24) for a is satisfied with γ = 0 and a ≡ ω ≡ h ≡ 0. 

Concerning the Maxwell equation (6.23) for At, we see that it reduces to

∆3At = −4πqρN(r). (9.10)

So UN = νN + qAN solves the Poisson equation

∆UN(r) = 4π(1 − q2)ρN(r). (9.11)
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Note also that we are using the assumption ψ(0, L) = 1. So we actually obtain

UN(r) = G1[ζ0; 0, 0](�, z) + qG5[ζ0; 0, 0](�, z) (9.12)

and the assertion follows. □ 

10. F is well defined

We have to verify that for all (ζ; γ,λ) ∈ U the functions Gi[ζ; γ,λ] satisfy the regularity condi-
tions and the decay behaviour stated in the definition of X , for i = 1, . . . , 6.

Before we prove the regularity properties of G[ζ; γ,λ] we collect a few facts on axially 
symmetric functions, proven in [8] and [7].

Lemma 10.1 (Lemma 7.1 in [7]). Let u : Rn → R be axially symmetric and u(x) = ũ(�, z) 
where ũ : [0,∞)× R → R. Let k ∈ {1, 2, 3} and α ∈ (0, 1). Then

 (1)  u ∈ Ck(Rn) ⇔ ũ ∈ Ck([0,∞)× R) and all derivatives of ũ of order up to k which are of 
odd order in �  vanish for � = 0,

 (2)  u ∈ C0,α(Rn) ⇔ ũ ∈ C0,α([0,∞)× R).

Lemma 10.2 (Lemma 3.2 in [8]). Let ϕ = ϕ(�, z) ∈ C4(R2) be odd in �  and define

ζ(�, z) :=
{
ϕ(�, z)/�, � �= 0,
∂�ϕ(0, z), � = 0. (10.1)

Then ζ ∈ C3(R2) and all derivatives of ζ up to order 3 which are of odd oder in �  vanish for 
� = 0. By abuse of notation, ζ ∈ C3(R3).

Next we establish regularity of the matter functions.

Lemma 10.3. Let (ζ; γ,λ) ∈ U. Then the functions Mi[ζ; γ,λ], i = 1, 2, 4, 5, 6, if extended 
to negative values of �  and thus seen as functions on R2, are even in � .

Proof. That the matter functions are even in �  has already been observed in [7] and the new 

matter functions M(γ,λ)
5  and M(γ,λ)

6  can be treated with the same ideas. We perform in the 
integrals of the formulas (6.5)–(6.9) for the matter functions M(γ,λ)

i , i = 1, 2, 4, 5, 6, a change 
of variables, given by

η =
eγν

√
1 + γ|v|2 − 1

γ
, s = (1 + h)e−γνv3. (10.2)

Let

m(η, h, ν) := (1 + h)e−γν

√
e−2γν(γη + 1)2 − 1

γ
. (10.3)

Then the domain of integration can be parameterised by η ∈ ((eγν − 1)/γ,∞), s ∈ (−m, m). 
Further, for a function g = g(s, η, h, ν, �ω), which will be chosen among the choices

1 + 4γη + 2γ2η2, m2 − s2, s(1 + γη), s, 1 + γη + γω�s,
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we define M(γ,λ) to be the operator which assigns to g the function

M(γ,λ)[g] : R2 ×
(
−1

2
,∞

)
× R3 → R,

(�, ν, h,ω, At, a) �→ M(γ,λ)[g](�, ν, h,ω, At, a)

=

∫ ∞

eγν−1
γ

∫ m(η,h,ν)

−m(η,h,ν)
φ(η + �ωs + qAt)ψ(λ, �s − q�2a) g(s, η, h, ν, �ω) dsdη.

 (10.4)

The range (−1/2,∞) of h is motivated by the definition of the set U of functions that we 

consider. Then the matter functions M(γ,λ)
i  can be written in the form

M(γ,λ)
1 (�, ζ) =

8π2

1 + h
e2ξ−4γνM(γ,λ)

[
2(1 + γη)2 − e2γν] (�, ν, h, At, a), (10.5)

M(γ,λ)
2 (�, ζ) =

16π2γ2

(1 + h)2 e2ξM(γ,λ)
[
m2 − s2] (�, ν, h, At, a), (10.6)

M(γ,λ)
4 (�, ζ) = − 32π2γ

�(1 + h)3 e2ξM(γ,λ)[s(1 + γη)](�, ν, h, At, a), (10.7)

M(γ,λ)
5 (�, ζ) =

8π2q
1 + h

e2(ξ−γν)M(γ,λ) [1 + γη + γω�s] (�, ν, h, At, a), (10.8)

M(γ,λ)
6 (�, ζ) = − 8π2qγ

�(1 + h)
e2(ξ−γν)M(γ,λ)[s](�, ν, h, At, a). (10.9)

Given these representations (10.5)–(10.9) of the matter functions we observe the following fact. 
If g(s, η, h, ν, �ω) is even or odd in s then M(γ,λ)[g](�, ν, h, At, a) is even or odd in � , respec-
tively. To see this we substitute −� for �  in the formula (10.4) for M(γ,λ)[g](�, ν, h,ω, At, a) 
and make then the change of variables s → ŝ = −s. If g is even in s we obtain the same expres-
sion as for ‘+�’, whereas if g is odd in s we obtain its negative.

Then we observe that Mi[ζ; γ,λ] is even in �  for all i ∈ {1, 2, 4, 5, 6}. Consider for example 
M5[ζ; γ,λ], given by

M5[ζ; γ,λ](�, z)

=
8π2q

1 + h(�, z)
e2(ξ−γν)(�,z)M(γ,λ) [1 + γη] (�, ν(�, z), h(�, z), At(�, z), a(�, z))

+
8π2qγω(�, z)�

1 + h(�, z)
e2(ξ−γν)(�,z)M(γ,λ) [s] (�, ν(�, z), h(�, z), At(�, z), a(�, z)).

Here we view ζ ∈ X  as even functions in �, see remark 4.1. By the observation on M(γ,λ) which 
is mentioned above the first term is a product of functions that are even in �. For the second term 
we observe that the fraction is odd in � since it contains � as explicit factor. The second factor is 
also odd in � by the upper observation. So in total the second term is even in �. □ 

Lemma 10.4 (Regularity of the matter functions). Let φ ∈ Cκ
c (R),ψ ∈ C∞

c (R2), and 
γ ∈ [0, 1], λ ∈ [−1/2, 1/2], where κ � 1. Further, let g ∈ Cσ(R5), for σ � 1. Then all partial 
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derivatives up to order min{κ+ 1,σ} of the function M(γ,λ)[g], defined in (10.4), exist and 
are continuous. Furthermore, if

g(s, η, h, ν, �ω)|η=l(s,ν,h) = 0, (10.10)

where l(s, ν, b) is defined as

l(s, ν, h) :=
1
γ

(
eγν

√
1 + γ

s2e2γν

(1 + h)2 − 1

)
, (10.11)

then all partial derivatives up to order min{κ+ 2,σ} of M(γ,λ)[g] exist and are continuous.

Proof. We write down the integral representation (10.4) of M(γ,λ)[g] with respect to the new 
integration variable η̂ := η + �ω + qAt. We obtain

M(γ,λ)[g](�, ν, h,ω, At, a)

=

∫ ∞

−∞

∫ ∞

l(s,ν,h)+�ω+qAt

φ(η̂)ψ(λ, �s − q�2a)g(s, η̂ − �ω − qAt, h, ν, �ω) dη̂ds.

 (10.12)
We write this in a schematic form in order to make the analysis clearer. Let x = (x1, . . . , x6). 
In the following this vector represents (�, ν, h,ω, At, a). We write

M(γ,λ)[g](x) =
∫ ∞

−∞

∫ ∞

�(s,x)
φ(η̂) ψ̂(s, x) ĝ(s, η̂, x) dη̂ds. (10.13)

Where �, ψ̂, and ̂g are defined in the obvious way such that the expressions (10.12) and (10.13) 
agree, i.e.

�(s, x) = l(s, x2, x3) + x1x4 + qx5, (10.14)

ψ̂(s, x) = ψ(λ, x1s − qx2
1x6), (10.15)

ĝ(s, η̂, x) = g(s, η̂ − x1x4 − qx5, x3, x2, x1x4). (10.16)

Note that � ∈ C∞(R3), since l ∈ C∞(R3) already. To see the latter remind that h  >  −1/2 is 
assumed on the domain of M(γ,λ).

We have for i = 1, . . . , 6

∂xi M(γ,λ)[g](x) =
∫ ∞

−∞

∫ ∞

�(s,x)
φ(η̂) ∂xi

(
ψ̂(s, x)ĝ(s, η̂, x)

)
dη̂ds

+

∫ ∞

−∞
φ(�(s, x)) ψ̂(s, x) ĝ(s, �(s, x), x) ∂xi�(s, x) ds.

 

(10.17)

Now we see that each additional derivative ∂xj, j = 1, . . . , 6 leads to a derivative acting on φ, 
unless ĝ(s, �(s, x), x) = 0. In this case, only if there are three or more derivatives, there act one 
or more derivatives on φ. Since ψ̂, � ∈ C∞, and φ and ψ are compactly supported, the regular-
ity of φ and g determines the regularity of M(γ,λ)[g] in the asserted way. □ 

Now we check the regularity properties of G[ζ; γ,λ].

Lemma 10.5. Let (ζ; γ,λ) ∈ U. Then we have G1[ζ; γ,λ],G2[ζ; γ,λ],G5[ζ; γ,λ] ∈ C3,α(R2), 
G3[ζ; γ,λ] ∈ C1,α(ZR), and G4[ζ; γ,λ],G6[ζ; γ,λ] ∈ C2,α(R2).
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Proof. By [25, theorem 10.3] the regularity of the axially symmetric solution functions 
Gi[ζ; γ,λ], i = 1, 2, 4, 5, 6 follows from the regularity of the right members of the semi-linear 
Poisson equations (6.19), (6.20) and (6.22)–(6.24). These right members consist in the source 
functions gi[ζ; γ] and the matter functions Mi[ζ; γ,λ]. This regularity is now established.

We have already observed that all matter functions Mj[ζ; γ,λ], j = 1, 2, 4, 5, 6 and all 
source functions gi[ζ; γ,λ], i = 1, 4, 5, 6, if extended to negative values of �  and thereby seen 
as functions on R2, are even in �  and z. So by lemma 10.1 it suffices to establish the necessary 
regularity in �  and z. We start by analysing the matter functions Mj[ζ; γ,λ], j ∈ {1, 2, 4, 5, 6}. 
By inspection of the formulas (10.5), (10.6) and (10.8) and using lemma 10.4 (which yields 
that all the M(γ,λ)[g] are at least C3 in �  and z), we see that the regularity of M1[ζ; γ,λ], 
M2[ζ; γ,λ], and M5[ζ; γ,λ] is at least that of ξ, i.e. C1,α(R2). In the formulas (10.7) and (10.9) 
for M6[ζ; γ,λ] and M4[ζ; γ,λ], respectively, we have the factors

1
�

M(γ,λ)[s(1 + γη)](�, ν(�, z), h(�, z), At(�, z), a(�, z)), (10.18)

1
�

e2(ξ−γν)M(γ,λ)[s](�, ν, h, At, a). (10.19)

Since, as already observed, M(γ,λ)[g](�, ν(�, z), h(�, z), At(�, z), a(�, z)) is odd in �  if g is odd 
in s lemma 10.2 can be applied and this yields a regularity of C3 in �  and z, so in particular 
C2,α(R2).

The term (10.18) emerged already in the uncharged case treated in [7], the term (10.19) is 
new but similar. In the charged case, there appear some more problematic terms with factors 
�−1 in the source functions g4[ζ; γ,λ] and g6[ζ; γ,λ]. Except for these problematic terms the 
source functions gi[ζ; γ,λ] consist in products, sums, and compositions of functions which are 
at least C1,α (namely the solution functions ζ and their derivatives which are chosen in X ). 
Consequently g1[ζ; γ,λ], g2[ζ; γ,λ], g5[ζ; γ,λ] are already in C1,α(R2). It remains to consider 
the terms with �−1. These terms are

At,�a
�

,
ν,�a
�

,
h,�a
�

. (10.20)

We view At, a, ν , and h now as functions in � , z on R2 that are even in � , see remark 4.1. The 
functions At,�a, ν,�a, and h,�a are odd in �  and in C2,α(R2), so in particular in C2(R2). So, by 
lemma 10.2, the functions (10.20) are in C1(R2) and consequently also in C0,α(R2). This is 
sufficient to prove the asserted regularity.

Finally we consider the operator G3[ζ; γ,λ]. The asserted regularity is easy to see since the 
source function g3[ζ; γ,λ] is obviously sufficiently regular, i.e. C0,α. □ 

Next we check the decay properties of G[ζ; γ,λ]. First we recall a technical lemma.

Lemma 10.6 (Lemma 5.1 in [7]). Let f ∈ C0,α(Rn), n � 3, fulfil |f | � C(1 + |x|)−(n+ε) 
for some constant C  >  0 and ε > 0. Then Gn[ f ] ∈ C2,α(Rn), where Gn[ f ] is defined in (9.3), 
and there exists a constant C̃ > 0 such that for all multi indices σ, |σ| � 2, and for all x ∈ Rn 
we have

|∂σGn[ f ](x)| � C̃
(1 + |x|)n+|σ|−2 . (10.21)

M Thaller Class. Quantum Grav. 37 (2020) 035008



27

Lemma 10.7. Let (ζ; γ,λ) ∈ U. Then, there exists a constant C  >  0 such that for all 
(�, z) ∈ R2, the following bounds hold:

(∂� + ∂z)Gi[ζ; γ,λ](�, z) � C
(

1 +
√

�2 + z2
)−2

, i = 1, 5, (10.22)

(∂� + ∂z)G2[ζ; γ,λ](�, z) � C
(

1 +
√

�2 + z2
)−3

, (10.23)

(∂� + ∂z)Gj[ζ; γ,λ](�, z) � C
(

1 +
√

�2 + z2
)−4

, j = 4, 6, (10.24)

Gj[ζ; γ,λ](�, z) � C
(

1 +
√

�2 + z2
)−3

, j = 4, 6. (10.25)

Furthermore the limits

νγ,λ
∞ := lim

|(�,z)|→∞
G1[ζ; γ,λ](�, z), Aγ,λ

∞ := lim
|(�,z)|→∞

G5[ζ; γ,λ](�, z) (10.26)

exist.

Proof. By lemma 10.6 it suffices to check that the source functions gi[ζ; γ,λ], i = 1, 4, 5, 6 
and the matter functions Mj[ζ; γ,λ], j = 1, 2, 4, 5, 6 have the right decay behaviour. In fact 
the matter functions do not have to be taken into account here, because they are of compact 
support, see lemma 6.4. The source functions have to be investigated term by term. Since these 
terms consist in products of derivatives of the functions ζj, j = 1, . . . , 6, it is easy to see that 
the necessary decay is available.

We illustrate this with the example of g1[ζ; γ,λ]. We have

g1[ζ; γ,λ] = −h,�ν,� + h,zν,z

1 + h
+

�2

2
(1 + h)2e−4γν (ω2

,� + ω2
,z

)

− γ2e−2γν ((At,� + 2ω�a + ω�2a,�)
2 + (At,z + ω�2a,z)

2)

− γ
e2γν

(1 + h)2

(
(2a + �a,�)

2 + �2a2
,z

)
.

 

(10.27)

We consider the first term (h,�ν,�)/(1 + h). Since h ∈ X2, h  >  −1/2 and ν ∈ X1 we have

|h,�(�, z)ν,�(�, z)|
1 + h

� 2

∥∥(1 + |x|)3∇h
∥∥
∞

∥∥(1 + |x|)1+β∇ν
∥∥
∞

(1 + |x|)4+β
�

C

(1 + |x|)4+β
.

 (10.28)
The remaining terms are treated in a similar fashion.

Finally, by inspecting the formula (9.4) for the solution operators G1 and G5 corresponding 
to ν  and At, respectively, we see that

G1[ζ; γ,λ](�, z) +
1

|S2|

∫

R3

M1[ζ; γ,λ](�y, zy)

|y|
dy,

G5[ζ; γ,λ](�, z) +
1

|S2|

∫

R3

M5[ζ; γ,λ](�y, zy)

|y|
dy

decay towards spatial infinity, also by lemma 10.6. □ 
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Remark 10.8. Note that in lemma 10.6 we have seen that for the functions ν  and At the 
decay is improved, form (1 + |x|)−(1+β) to (1  +  |x|)−2, i.e. assuming the weaker decay of 
ν, At ∈ X1 we obtain the stronger decay of G1[ζ; γ,λ], G5[ζ; γ,λ]. This is important in the 
proof that the Fréchet derivative of these components at (ζ0; 0, 0) is a compact operator, which 
in turn plays a role in the proof that this derivative is a bijection, see lemma 11.1 and [8, lemma 
6.2].

All required properties of G[ζ; γ,λ] are now verified, thus the operator F  is well defined.

11. The Fréchet derivative of F

We denote the functions ν , h, ξ, ω , At, a constituting the collection ζ by ζ1, . . . , ζ6, if conve-
nient. The Fréchet derivative of Gi with respect to ζj at (ζ; γ,λ) is a linear operator from Xj  to 
Xi, i, j = 1, . . . , 6. Here and in the remainder of the article by X5 and X6 we mean X1 and X4, 
respectively, since these are the function spaces corresponding to ζ5 and ζ6, respectively. We 
denote the Fréchet derivative by

DζjGi[ζ; γ,λ] : Xj → Xi, δζj �→
(
DζjGi[ζ; γ,λ]

)
δζj. (11.1)

Proposition 11.1. The operators Gi : U → Xi, i = 1, . . . , 6 are continuous and continu-
ously Fréchet differentiable with respect to ν, ξ, h,ω, At, a.

Proof. The operators Gi, i = 1, 2, 4, 5, 6 are of similar structure and we will start by analys-
ing these operators. Schematically one can write these operators as sums of expressions of 
the form

GΦ[ζ; γ,λ](�, z) =
∫

Rn
Gn

y(|�|, 0, . . . , 0, z) Φ(γ,λ)(�(y), ζ(y), ζ,�(y), ζ,z(y)) dy

 (11.2)

where the function Φ(γ,λ) : R19 → R is a placeholder for either g(γ)
i  or M(γ,λ)

i . In order to 
write this in a compact and handy way we define the functional G̃n (which is slightly different 
from Gn, see the definition (9.3) of Gn) by

G̃n

[
Φ(γ,λ), ζ

]
(�, z) :=

∫

Rn
Gn

y(|�|, 0, . . . , 0, z) Φ(γ,λ)(�(y), ζ(y), ζ,�(y), ζ,z(y)) dy.

 (11.3)

We will check now that the Fréchet derivative of GΦ with respect to ζj is given by
(
DζjGΦ[ζ; γ,λ]δζj

)
(�, z)

= G̃n

[(
∂ζjΦ

(γ,λ)δζj

)
+
(
∂ζj,�Φ

(γ,λ) ∂� (δζj)
)
+

(
∂ζj,zΦ

(γ,λ) ∂z (δζj)
)

, ζ
]

.
 (11.4)

So we have to check that
∥∥∥G̃n[Φ

(γ,λ), ζ + δζj]− G̃n[Φ
(γ,λ), ζ]

− G̃n

[(
∂ζjΦ

(γ,λ)δζj

)
+
(
∂ζj,�Φ

(γ,λ) ∂� (δζj)
)
+
(
∂ζj,zΦ

(γ,λ) ∂z (δζj)
)

, ζ
] ∥∥∥

XΦ

= o (‖δζj‖XΦ
) .

 (11.5)
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Here XΦ is the function space corresponding to Φ(γ,λ). I.e. if Φ(γ,λ) is for example M(γ,λ)
1  then 

XΦ is X1. Define m as the number how often functions in XΦ are continuously differentiable, 
i.e. the largest number such that XΦ ⊂ Cm,α. By the standard elliptic estimate [25, theorem 
10.3] and the inclusion Cm+1 ⊂ Cm,α it suffices to check

∑
|σ|�m−1

∥∥∥∥∂σ

(
Φ(γ,λ)(·, ζ + δζj,∇(ζ + δζj))− Φ(γ,λ)(·, ζ,∇ζ)

− ∂ζjΦ
(γ,λ)(·, ζ,∇ζ)δζj − ∂ζj,�Φ

(γ,λ)(·, ζ,∇ζ) ∂� (δζj)

− ∂ζj,zΦ
(γ,λ)(·, ζ,∇ζ) ∂z (δζj)

)∥∥∥∥
∞

� o(‖δζj‖Xi).

 

(11.6)

It turns out that (11.6) holds if the functions Φ(γ,λ) are sufficiently regular, i.e. in Cm to be 

precise. Now, Φ(γ,λ) is either a source function g(γ)
i  or a matter function M(γ,λ)

i . The source 
functions are smooth in all of the variables ζ, ζ,�, and ζ,z, since they involve only the expo-
nential function and addition, multiplication and division by 1  +  h. Note here that 1 + h > 1

2  
if (ζ; γ,λ) ∈ U.

For the matter functions M(γ,λ)
i , i = 1, 2, 4, 5, 6, defined in equations (6.5)–(6.9), we note 

that they do not depend on derivatives of ζ and that the regularity is determined by the func-
tions M(γ,λ)[g] which are all C3 by lemma 10.4 and this is sufficient.

The operator G3 is easier to treat since the expression (9.6) can be expanded explicitly in 
powers of δh, δν , δω, δAt, and δa. Note again that 1  +  h is bounded away from zero for all 
(ζ; γ,λ) ∈ U. □ 

In the next step we calculate the Fréchet derivatives of Gi, i = 1, . . . , 6 and evaluate them 
at (ζ0; 0, 0). The parts of Gi, i = 1, . . . , 6 involving the source functions gi can be expanded 
directly, i.e. we calculate the Fréchet derivative at (ζ0; 0, 0) by replacing gi[ζ; γ](�, z) in the 
integral expressions (9.4)–(9.7) with the ε-derivatives of gi[ζ + εδζj; γ](�, z) evaluated at 
ε = 0 and then at (ζ0; 0, 0). The non-zero derivatives are

[
∂εg1[ζ + εδh; γ](�, z)

∣∣∣
ε=0

]
(ζ;γ,λ)=(ζ0;0,0)

= −(∇UN · ∇δh)(�, z), (11.7)

[
∂εg3[ζ + εδh; γ](�, z)

∣∣∣
ε=0

]
(ζ;γ,λ)=(ζ0;0,0)

=
�

2
(∂��δh − ∂zzδh)(�, z) + ∂�δh(�, z),

 (11.8)
[
∂εg5[ζ + εδh; γ](�, z)

∣∣∣
ε=0

]
(ζ;γ,λ)=(ζ0;0,0)

= −(∇AN · ∇δh)(�, z). (11.9)

The notation here should be interpreted as ζ + εδh = (ν, h + εδh, ξ,ω, At, a). For the parts 
involving the matter functions we use formula (11.4), where Φ(γ,λ) is replaced by the matter 

functions M(γ,λ)
i , i = 1, . . . , 6, given in (6.5)–(6.9). The matter functions M(γ,λ)

i , i = 1, . . . , 6 
depend only on ζ and not on its derivatives.
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First we consider the matter functions

M(γ,λ)
1 (�, ζ) := 4πe2(ξ−γν)

∫

R3
v

φ(E)ψ(λ, L)
1 + 2γ|v|2√

1 + γ|v|2
d3v,

M(γ,λ)
2 (�, ζ) := 8πγ2(1 + h)e2(ξ−γν)

∫

R3
v

φ(E)ψ(λ, L)
(v1)2 + (v2)2
√

1 + γ|v|2
d3v,

M(γ,λ)
4 (�, ζ) := − 16πγ

�(1 + h)
e2ξ

∫

R3
v

φ(E)ψ(λ, L)v3 d3v,

of the Einstein equations, given in (6.5)–(6.7), where d3v = dv1dv2dv3. If one calculates the 

derivative of M(γ,λ)
i (�, ζ), i = 1, 2, 4, with respect to any of the arguments ν, h, ξ,ω, At, a one 

obtains back an expression with the same structure, possibly with the function ∂ζj(φ(E)ψ(λ, L)) 
instead of φ(E)ψ(λ, L) in the integral.

In the limit γ → 0 only the terms where the γ-factors cancel will remain. Thus 

∂ζj M
(γ,λ)
i (�, ζ)|γ=0 = 0 for i = 2, 4, and

∂ξM(γ,λ)
1 (�, ζ)

∣∣∣
γ=0

= 2M1[ζ; γ,λ]
∣∣∣
γ=0

, (11.10)

∂ζj M
(γ,λ)
1 (�, ζ)

∣∣∣
γ=0

= 4πe2(ξ−γν)

∫

R3
v

∂ζj (φ(E)ψ(λ, L))
√

1 + γ|v|2 d3v
∣∣∣
γ=0

,

 (11.11)
where j = 1, 2, 4, 5, 6. Consider now the term ∂ζj(φ(E)ψ(λ, L)) in (11.11). First we observe 
that the assumption ψ(0, L) = 1 implies ∂Lψ(0, L) = 0. This yields already

lim
(γ,λ)→(0,0)

[
∂ζj(φ(E)ψ(λ, L))

]
ζ=ζ0

= lim
(γ,λ)→(0,0)

[
ψ(λ, L)∂ζjφ(E)

]
ζ=ζ0 (11.12)

= lim
(γ,λ)→(0,0)

[
∂ζjφ(E)

]
ζ=ζ0

. (11.13)

If we now set ζ = ζ0 and consider the limit (γ,λ) → (0, 0) only the derivatives with respect 
to ν  and At are non-vanishing. The derivative with respect to a vanishes due to (11.13) and the 
fact that E is independent of a. The derivatives with respect to h, ξ, ω  vanish by symmetry. 
This can be seen as follows. We have

E|ζ=ζ0 =
eγνN

√
1 + γ|v|2 − 1

γ
+ qAN , (11.14)

and therefore

lim
(γ,λ)→(0,0)

φ (E|ζ=ζ0)ψ (λ, L|ζ=ζ0) = φ

(
|v|2

2
+ νN + qAN

)
 (11.15)

where the Newtonian limit (6.38) of the energy and the assumption ψ(0, L) = 1 on ψ has been 
used. Observe that the limit (11.15) is even in v1, v2, v3. Consider next the derivatives

∂hE = �ωe−γνv3, ∂ξE = 0, ∂ωE = �(1 + h)e−γνv3. (11.16)

These derivatives are either zero or odd in v3. Integration over an odd-in-v3 function yields 
zero.
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For the derivatives with respect to ν  and At the same principles apply, however not all terms 

vanish. Consider for example ∂νM(γ,λ)
1 (�, ζ). One obtains

∂νM(γ,λ)
1 (�, ζ) = −8πγe2(ξ−γν)

∫

R3
v

φ(E)ψ(λ, L)
1 + 2γ|v|2√

1 + γ|v|2
d3v

+ 4πe2(ξ−γν)

∫

R3
v

φ(E)′ψ(λ, L)

(
eγν +

γω�(1 + h)v3
√

1 + γ|v|2

)
(
1 + 2γ|v|2

)
d3v

− 4πγ�(1 + h)e2ξ−3γν
∫

R3
v

∂νφ(E)∂Lψ(λ, L)v3 1 + 2γ|v|2√
1 + γ|v|2

d3v.

So the derivatives of the matter function M(γ,λ)
1  of the Einstein equations  which are non-

vanishing at (ζ0; 0, 0) are

∂νM(γ,λ)
1

∣∣∣
(ζ0;0,0)

= 4παN , (11.17)

∂ξM(γ,λ)
1

∣∣∣
(ζ0;0,0)

= 8πρN , (11.18)

∂At M
(γ,λ)
1

∣∣∣
(ζ0;0,0)

= 4πqαN , (11.19)

where ρN  and αN  are defined in (5.9) and (5.10), respectively. Next we consider the matter 
functions

M(γ,λ)
5 (�, ζ) := 4πqe2ξ−3γν

∫

R3
v

φ(E)ψ(λ, L)

(
e2γν +

γ�(1 + h)ωv3
√

1 + γ|v|2

)
d3v,

M(γ,λ)
6 (�, ζ) := −4πqγ�(1 + h)e2ξ−3γν

∫

R3
v

φ(E)ψ(λ, L)
v3

√
1 + γ|v|2

d3v,

of the Maxwell equations in the representations given in (6.8) and (6.9). The first observation 

is that if γ = 0 then all terms but the first one of M(γ,λ)
5  vanish. So we only need to discuss 

the derivatives of

4πqe2ξ−γν

∫

R3
v

φ(E)ψ(λ, L) d3v. (11.20)

By the same reasoning as above we obtain

∂νM(γ,λ)
5

∣∣
(ζ0;0,0) = 4πqαN , (11.21)

∂ξM(γ,λ)
5

∣∣
(ζ0;0,0) = 8πqρN , (11.22)

∂At M
(γ,λ)
5

∣∣
(ζ0;0,0) = 4πq2αN . (11.23)

We denote the Fréchet derivative of F  with respect to ζ, at (ζ0; 0, 0), by L, i.e.

L := DF[ζ0; 0, 0] : X → X ,
δζ �→ L(δζ) = (δν − L1(δν, δh, δξ, δAt), δh, δξ − L3(δh), δω, δAt − L5(δν, δξ, δAt), δa), 

(11.24)
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where

L1(δν, δh, δξ, δAt) = −L
(1)
1 (δν + qδAt)− L

(2)
1 (δξ) + L

(3)
1 (δh), (11.25)

L3(δh) = δh(0, z) +
∫ �

0

( s
2
(∂��δh − ∂zzδh)(s, z) + ∂�δh(s, z)

)
ds, (11.26)

L5(δν, δh, δξ, δAt) = qL(1)
1 (δν + qδAt) + qL(2)

1 (δξ) + qL(3)
5 (δh), (11.27)

where

L
(1)
1 (δu) =

∫

R3

(
1

|x − y|
− 1

|y|

)
αN(|y|)δu(�y, zy) dy, (11.28)

L
(2)
1 (δξ) = 2

∫

R3

(
1

|x − y|
− 1

|y|

)
ρN(|y|)δξ(�y, zy) dy, (11.29)

L
(3)
1 (δh) =

1
4π

∫

R3

1
|x − y|

∇νN(|y|) · ∇(δh)(�y, zy) dy, (11.30)

L
(3)
5 (δh) =

1
4π

∫

R3

1
|x − y|

∇AN(|y|) · ∇(δh)(�y, zy) dy. (11.31)

The shorthands ρN = ρUN and αN = αUN  are defined in (5.9) and (5.10), respectively, 
where UN = νN + qAN, and the functions νN  and AN are defined as the solutions of the system 
(6.32)–(6.33).

Lemma 11.1. L is a bijection.

Proof. First we prove that L is injective. Since L is linear it suffices to show that ker(L) = 0. 
Let δζ ∈ X  such that L(δζ) = 0. From the definition of L in (11.24) we immediately read off 
δh = δω = δa = 0. Consequently L3(δh) = 0 and therefore also δξ = 0. Since δh = δξ = 0 

and thus L(3)
1 (δh) = L

(3)
5 (δh) = L

(2)
1 (δξ) = 0 we can furthermore read off δAt = −qδν . We 

finish the proof of injectivity by showing that δν + qδAt = 0. To simplify notation we denote 
in the following δu = δν + qδAt ∈ X1. Those two identities will then imply (1 − q2)δu = 0 
and therefore δν = 0 and δAt = 0.

Adding the first and q times the fifth component of L(δζ) = 0 yields

δu = −
(
1 − q2)

∫

R3

(
1

|x − y|
− 1

|y|

)
αN(|y|) δu(�y, zy) dy. (11.32)

This is a solution of

∆(δu) =
(
1 − q2)αN δu, (11.33)

(δu)(0) = 0. (11.34)

In [8, section 6] it has been shown that this is the only solution of (11.33) and (11.34), pro-
vided that 6 + 4πr2(1 − q2)αN(r) > 0 which is assumed.
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Next we show that L is surjective. Let b = (b1, . . . , b6) ∈ X  be given. The aim is now to 
construct δζ = (δν, δh, δξ, δω, δAt, δa) ∈ X  such that

L(δζ) = b. (11.35)

By inspecting the formula (11.24) of L we immediately see that we have to choose δh = b2, 
δω = b4, δa = b6. In the third component of (11.35) we obtain

δξ = b3 + L3(δh), (11.36)

which is in X3 since L3(δh) ∈ X3. It remains to construct δν  and δAt. Note first that 
L
(2)
1 (δξ),L(3)

1 (δh),L(3)
5 (δh) ∈ X1 (recall X5 = X1). We add the first component of (11.35) 

and q times the fifth component of (11.35). We obtain

δu −
(
1 − q2)L(1)

1 (δu) = (b1 + qb5)−
(
1 − q2)L(2)

1 (δξ) +
(
L
(3)
1 + q2L

(3)
5

)
(δh). (11.37)

This equation has a solution δu ∈ X1 since the operator L(1)
1  is compact. This has been es-

tablished in [8, lemma 6.2]. Then, considering the first component of (11.35) again, we can 
construct δν  via

δν = b1 − L
(1)
1 (δu)− L

(2)
1 (δξ) + L

(3)
1 (δh). (11.38)

Finally, we obtain δAt via δAt =
1
q (δu − δν). □ 

12. Application of the implicit function theorem

In the preceding sections we have established that the solution operator F  fulfils the assump-
tions of the implicit function theorem for Banach spaces. Now we can prove the following 
proposition.

Proposition 12.1. There exist solutions ζ = (ν, h, ξ,ω, At, a) to the reduced EVM-system 
(6.19)–(6.24) with parameters γ ∈ [0, δ), λ ∈ (−δ, δ) if δ is chosen sufficiently small that sat-
isfy the boundary conditions (6.27) and (6.28).

Proof. The solution ζ = (ν, h, ξ,ω, At, a) exists by virtue of the implicit function theorem. 
The functions ω , ξ, h, and a fulfil the boundary condition

lim
|(�,z)→∞

(|ω|+ |ξ|+ |h|+ |a|) = 0

by construction. For ω  and a see the definition (7.9) of the norm of the space X4. Analogously, 
with lemma 10.6, it follows that h fulfils the boundary condition. By inspecting the structure 
(9.6) of the solution operator G3 one easily sees that the boundary condition

ξ(0, z) = ln(1 + h(0, z)) (12.1)

is satisfied, too. For the boundary condition of ξ at infinity one infers first from (12.1) that 
lim|z|→∞ ξ(0, z) = 0, and then the decay as � → ∞ can be deduced from the decay of the 
integrand of the solution operator G3, see formula (9.6) and [8, proposition 2.3]. The solution 
functions ν , At obtained from the implicit function theorem do however a priori not satisfy 
the boundary condition
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lim
|(�,z)|→∞

(|ν|+ At) = 0

and we define

νγ,λ
∞ := lim

|(�,z)|→∞
|ν|, Aγ,λ

∞ := lim
|(�,z)|→∞

|At|.

A rescaling is necessary. The functions

ν − νγ, λ
∞ , µ+ γνγ,λ

∞ , h, e−γνγ,λ
∞ , e−γνγ,λ

∞ (At − Aγ,λ
∞ ), eγν

γ,λ
∞ a

then fulfil the reduced EVM-system with the boundary conditions which correspond to an 
asymptotically flat solution. □ 
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Appendix

Proof of lemma 5.1. Recall the definition of the transport operator,

T = pµ∂µ +
(

qFγ
µ pµ − Γγ

αβpαpβ
)
∂pγ .

Now it shall be expressed with respect to the frame coordinates (4.9). First we derive the form 
of T with respect to a general orthonormal frame ea = ea

α∂xα (and corresponding co-frame 
αb = eb

βdxβ). Using the definitions

Γγ
αβ = dxγ (∇β∂α) , Γc

ab = αc (∇eb ea) (A.1)

for Γγ
αβ and Γc

ab  one derives the transformation law

Γc
ab = ec

αeb
β∂βea

α + ec
γeb

βea
αΓγ

αβ . (A.2)

Furthermore the change of variables

xµ �→ yµ = xµ, pν �→ va = ea
νpν (A.3)

entails the replacements

∂xµ = ∂yµ + eb
αvb∂µea

α∂va , ∂pν = ea
ν∂va . (A.4)

This yields

T = vaea
α∂α +

(
qFc

ava − Γc
abvavb) ∂vc .

 (A.5)
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In order to obtain the explicit expression for the transport operator T with respect to the frame 
coordinates (4.10) we apply the transformation laws (A.2) and (A.4) to the frame (4.8), where 
the Christoffel symbols

Γγ
αβ =

1
2

gγδ (∂αgβδ + ∂βgδα − ∂δgαβ) (A.6)

are calculated from the ansatz (4.3) for the metric. The transport operator is then explicitly 
given by

T = v0e−γν∂t + e−µ(v1∂� + v2∂z) +

(
v0e−γνω + v3 eγν

�H

)
∂ϕ

− qe−µ− ν

c2
(
(At,� + ωAϕ,�) Ω

V
01 + (At,z + ωAϕ,z) Ω

V
02

)

+
q
�H

e−µ+ ν

c2
(
Aϕ,�Ω

V
13 + Aϕ,zΩ

V
23

)
+ qe−2µ (A�,z − Az,�) Ω

V
21

+ e−µ v3

c2

(
ν,�Ω

V
13 + ν,zΩ

V
23

)
− e−µv0 (ν,�Ω

V
01 + ν,zΩ

V
02

)
+ e−µ

(
v2µ,� − v1µ,z

)
ΩV

21

+ e−µ v3

H

(
H,�Ω

V
31 + H,zΩ

V
32

)
+

v3

�
e−µΩV

31 − e−µ−2 ν

c2 �Hv3 (ω,�Ω
V
01 + ω,zΩ

V
02

)

where we use the shorthands

ΩV
ij := vi∂v j − v j∂vi , ΩV

0i :=
vi

c2 ∂v0 + v0∂vi . (A.7)

Now, the transport operator can be applied to the quantities

L = �He−γνv3 − qAϕ,

E =
eγνv0 − 1

γ
+ ω�He−γνv3 + qAt,

where we note that E only depends on the variables � , z, v0, and v3, and L only depends on the 
variables � , z, and v3. □ 
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