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Reconciling deviations of real materials from ideal models  
constitutes a central challenge in solid-state science and 
nanotechnology. For many decades, this has motivated 

intense efforts to either mitigate and avoid or control and exploit 
such imperfections. Semiconductor technology, in particular, has 
relied heavily on this paradigm1 through the control of chemical 
doping2, alloy and structural disorder3, radiative and non-radiative 
trap centres4, polymorphism and polydispersity5, as well as strain 
inhomogeneities and local strain relaxation6. In all of these cases,  
a fundamental understanding of the origin and impact of the  
materials’ imperfections has been key to unlocking their techno-
logical potential.

Importantly, as the dimensions of materials approach nanometre 
length scales, enhanced Coulomb interactions between charge car-
riers7 due to quantum confinement1 and reduced dielectric screen-
ing8,9 begin to dominate the optical and electronic response. For 
semiconductors, this leads to the formation of tightly bound elec-
tron–hole pairs, or excitons, and to a significant renormalization of 
the free-particle bandgap1,7. In the context of imperfections, these 
consequences of the electronic interactions imply a fundamentally 
new form of disorder: dielectric disorder. In contrast to the well-
known chemical or structural inhomogeneities associated with 
perturbations within the material, dielectric disorder originates 
entirely from local fluctuations of the environmental permittivity, 
inducing a spatial modulation of the Coulomb interaction. Here, 
we introduce and illustrate the concept of dielectric disorder using 
monolayers of semiconducting transition-metal dichalcogenides 
(TMDCs) and demonstrate its strong impact on the electronic tran-
sitions and exciton propagation. We also provide a framework to 
understand an important mechanism for improved optoelectronic 
properties via the widespread technique of encapsulation in van der 
Waals heterostructures.

Concept of dielectric disorder
An overview of the general concept of dielectric disorder is pre-
sented in Fig. 1. As demonstrated in recent reports, a local change 
in the external dielectric constant εext modifies the exciton states10–13 
and the free-particle bandgap11–14, which allows for non-invasive 
engineering of lateral heterojunctions within the same material12,15. 
With respect to the magnitude of the effective screening, however, 
the external surroundings of real materials are usually far from 
homogeneous. Under most circumstances, it is not reasonable to 
assume that the substrate is atomically flat and chemically pure, 
or that the surface of the material and the interfaces it forms are 
absolutely clean16. Instead, the substrate typically exhibits spatial 
fluctuations of the surface morphology and contains polarizable 
impurities, and the material’s surroundings are at least partially cov-
ered by adsorbates17, as schematically illustrated in Fig. 1a. Although 
these individual imperfections can be associated with a number of 
specific phenomena, they all share one central implication—they 
produce local variations of the external dielectric permittivity, 
indicated by Δεext. Both electron–electron and electron–hole inter-
actions are affected, leading to spatial inhomogeneities of the free-
particle bandgap and exciton binding energies, respectively.

The main influence of the Coulomb interaction on electronic 
excitations is summarized in Fig. 1b for monolayer WS2, a typical 
two-dimensional (2D) semiconductor. The calculations take into 
account the effect of dielectric screening-induced bandgap renor-
malization and numerically evaluate exciton binding energies using 
a modified thin-film potential in the effective mass approxima-
tion8,9,13,18 (see Supplementary Section 7 for details). For excitons, 
the transition energies are presented for the ground and first excited 
states, denoted by their principal quantum numbers of n = 1 and 2, 
respectively. These are plotted as a function of the squared inverse of 
the external dielectric screening constant, in analogy to the analytical  
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form of the exciton Rydberg energy8,9. With decreasing screening, 
the binding energies of the excitons increase and the bandgap shifts 
to higher energies.

Spatial fluctuations of the external screening should therefore 
directly induce local fluctuations of the bandgap and exciton ener-
gies. The consequences are illustrated schematically in Fig. 1c. The 
associated variations of the bandgap Δgap and exciton binding energy 
Δb
X
I

 can be very large, resembling the typical scale of the Coulomb 
effects on the order of hundreds of meV in mono- and few-layer 
TMDCs19. These variations in the excitation energies should then 
appear either as spatially fluctuating peak positions or as charac-
teristic inhomogeneous broadening of the relevant spectroscopic 
transitions if an effective ensemble area is probed. For the absolute 
energy of the exciton ground state, the two effects of the bandgap 
renormalization and exciton binding partially cancel each other 
out19, resulting in a relatively small to moderate inhomogeneous 
broadening of the resonance. In comparison, the excited-state reso-
nances, such as n = 2, follow the external screening-induced varia-
tions of the bandgap to a much larger extent. Their absolute energies 
are strongly affected by the fluctuations of the dielectric screening 
and should thus be subject to increased characteristic inhomoge-
neous broadening.

Exciton spectroscopy and correlation analysis
To experimentally monitor dielectric disorder, we first analyse 
the linewidth statistics of both ground and excited exciton states 
through linear optical reflectance spectroscopy on a large num-
ber of WS2 and WSe2 monolayer samples. The exciton linewidths 
contain information on the inhomogeneous broadening within 
a probed area of about a square micrometre, and the distinctive 
correlations between the ground- and excited-state linewidths are 
used to clarify the underlying mechanism of dielectric disorder. 
The samples are exfoliated from commercially available bulk crys-
tals and deposited on a variety of substrates. The specific details of  
the experimental techniques, sample preparation and analysis are 
discussed in Supplementary Sections 1–3, with a brief description 
in the Methods.

A representative low-temperature reflectance contrast spec-
trum of monolayer WS2 on a fused-silica substrate is presented in 
Fig. 2a. For the case of a monolayer on a transparent substrate, the 
reflectance contrast is roughly proportional to the optical absorp-
tion20. The spectrum is dominated by the exciton n = 1 resonance 
at ~2.1 eV, typical for the intrinsic response of WS2 monolayers 
with negligible unintentional doping19. The signature of the first 
excited state (n = 2) is detected ~160 meV higher in energy. In stark  
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Fig. 1 | Dielectric disorder from spatial fluctuations of the dielectric screening. a, Schematic illustration of the electron–electron and electron–hole 
interaction being affected by environmental screening fluctuations due to the substrate roughness, impurities and adsorbates. b, Theoretically calculated 
energies of the bandgap and exciton states in a WS2 monolayer as a function of inverse squared external dielectric constant. Shaded areas indicate 
fluctuations from variations of the external screening. c, Illustration of the bandgap and exciton energy fluctuations due to dielectric disorder and the 
expected resonance broadening.
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contrast to the prominent ground state, the amplitude of the signal 
from the excited-state peak is extremely small, as further highlighted in  
Fig. 2b. Because the light–matter coupling of the n = 2 transition 
is only about an order of magnitude lower than that of the n = 1 
peak21,22 and is largely unaffected by temperature23, the observed 
dramatic difference in the signal heights is determined by the addi-
tional peak broadening of the excited-state resonance.

Interestingly, the homogeneous linewidths should be roughly  
the same for the ground and excited states due to the comparable 
rates of exciton–phonon scattering24, illustrated by the theoretically 
calculated spectrum obtained from microscopic calculations using 
the semiconductor Bloch equations approach25 and presented in 
Fig. 2a. In particular, relaxation towards the ground state provides 
only a minor contribution to the total scattering rate, similar to the 
behaviour associated with linewidth narrowing of excitons in bulk 
Cu2O with increasing principal quantum number n (ref. 26). The 
conclusion also agrees well with experiments on encapsulated sam-
ples24, where low-temperature linewidths of the n = 2 resonance can 
be as narrow as 3–5 meV, providing the limit for the intra-exciton 
relaxation rates (see Supplementary Section 6 for additional details 
on the experiment and theory).

The observation of spectrally broad excited states in as-exfoliated 
samples is further supported by low-temperature statistics obtained 
from 22 individual WS2 and WSe2 flakes on fused-silica and SiO2/Si 
substrates. The n = 1 and 2 full-width at half-maximum linewidths 
are summarized as a histogram in Fig. 2c. The data are compiled 
from monolayers derived from different bulk crystals and prepared 
in different ways, including direct exfoliation and polymer stamping.  

Nevertheless, the values for the exciton linewidths fall into two 
distinct categories: the ground-state resonance is relatively narrow, 
in the order of 15 ± 5 meV, and the excited state is much broader 
with an average linewidth as large as 78 ± 18 meV in the studied 
sample set. Here, we note that contributions from higher excited 
states should not strongly affect the n = 2 broadening, considering 
the energy separation from the n = 3 state in the order of 60–70 meV 
for non-encapsulated samples27,28. Altogether, such large inhomo-
geneous linewidths of the excited states directly correspond to at 
least comparable fluctuations of the exciton binding energy and the 
bandgap position.

Taking advantage of the characteristic relationship between 
the exciton peak energies with respect to screening, we are able to 
attribute the source of the broadening specifically to fluctuations 
of the dielectric environment. According to the theoretical predic-
tions illustrated in Fig. 1b, the shifts of the n = 1 and 2 peak ener-
gies should be strongly correlated. The ratio of the relative shifts is 
presented in Fig. 3a. Correlations on a similar scale should therefore 
also appear between the resonance linewidths for an ensemble inho-
mogeneously broadened through dielectric disorder. Moreover, the 
ratio is also expected to depend on the average effective screening 
within the area of detection.

To test this prediction experimentally, we fabricated and studied a 
series of WS2 monolayers obtained from the same bulk crystal under 
identical measurement conditions and analysis procedures (see 
Methods and Supplementary Sections 1 and 3 for further details). 
The samples were either directly exfoliated onto polydimethylsilox-
ane (PDMS) films or subsequently stamped onto hexagonal boron 
nitride (hBN) substrates. Optical reflectance measurements were 
then performed at room temperature and under ambient condi-
tions to avoid variations of pressure and unintentional condensates 
during cooling in a cryostat. For a quantitative analysis, we fitted 
and deconvoluted the exciton resonances to separate the inhomoge-
neous linewidth from the homogeneous broadening of ~20 meV in 
WS2 due to the exciton–phonon scattering, as previously discussed25 
and further outlined in Supplementary Section 6.

The results, presented in Fig. 3b, demonstrate a strong corre-
lation of the n = 2 and 1 exciton peak broadening for both sets of 
samples. The ratios obtained from the linear fits are 3.7 ± 0.1 for the 
monolayers on PDMS and 2.2 ± 0.1 for monolayers on hBN, in rea-
sonable agreement with the theoretical expectations shown in Fig. 
3a. In particular, the higher average external screening of the hBN 
substrates indeed leads to a smaller slope of the correlated inho-
mogeneous broadening. We further note that the correlations are 
already present both in the total room-temperature linewidths as 
well as in the low-temperature data (see Supplementary Section 5 
for details).

These observations further allow us to exclude potential  
interpretations of the excited-state broadening as originating from 
alternative sources of disorder, such as doping or strain fluctua-
tions. Strain predominantly leads to changes of the underlying free- 
particle bandstructure29–33. For the studied samples, it would be 
necessary to assume already sizable strain fluctuations on the order 
of 0.25% even to account for the n = 1 broadening. Most impor-
tantly, strain leads to shifts of the exciton ground and excited states  
that are equal in sign and magnitude, within several meV34, in 
stark contrast to our findings of much broader excited states com-
pared to the ground state. Among more subtle effects, strain has 
been recently shown to influence homogeneous linewidths35,36. 
Considering that, the maximum estimated strain fluctuations of 
0.25% would lead only to small additional linewidth changes on the 
order of 2–3 meV (see Supplementary Sections 8 and 9 for more 
details on experimental scenarios where dielectric disorder is either 
dominant or suppressed).

We arrive at similar conclusions for the case of doping density 
fluctuations. Based on the observation of only a weak signature 
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Fig. 2 | Low-temperature exciton linewidth statistics. a, Representative 
reflectance contrast spectrum of a WS2 monolayer on a fused-silica 
substrate at T = 77 K. The result of a microscopic theory calculation, 
including purely homogeneous broadening from radiative and phonon-
assisted scattering, is plotted below the experimental curve for 
comparison. b, Experimental data in the spectral range of the first excited 
state. c, Linewidth statistics of the exciton ground (left) and first excited 
state (right) across 22 monolayer flakes on glass substrates at cryogenic 
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from the charged exciton state in our samples, the average doping 
fluctuations can be estimated to be on the order of 1 × 1012 cm−2 or 
less37–39. In that range, the changes of the n = 1 and 2 optical tran-
sitions would be only a few meV in as-exfoliated WS2 samples39. 
Therefore, we also emphasize that the presented effects are not con-
ceptually related to dipolar disorder40 describing the interactions of 
single carriers with randomly distributed permanent dipoles.

Van der Waals heterostructures and exciton transport
Importantly, dielectric disorder is shown to play a key role in the 
context of artificial van  der Waals heterostructures. To illustrate 
dielectric fluctuations more directly, on optically accessible scales, 
we first chose a specific heterostructure where a WS2 monolayer 
was encapsulated between layers of hBN, yet the particular trans-
fer resulted in pronounced fluctuations on an optically accessible 
micrometre scale, presumably due to varying interlayer contact. 
Using spatial reflectance mapping, we extracted the exciton binding 
and bandgap energies across the sample from the spectral positions 
of the exciton ground- and excited-state resonances (presented in 
Fig. 3c–e). Notably, the absolute energy of the exciton n = 1 tran-
sition shows only small to moderate fluctuations. Much larger 
changes, however, are observed in the n = 1 and 2 peak separations, 
corresponding to pronounced variations of the effective Coulomb 
interaction strength that is characteristic for dielectric disorder 

from local changes of the external dielectric screening. As a conse-
quence, both free-particle bandgap and exciton binding energies 
exhibit prominent and correlated fluctuations across the sample 
(see Supplementary Section 8 for additional details).

On the other hand, a successful encapsulation with good inter-
layer contact typically results in accumulation of the adsorbates 
between the hBN and TMDC layers into hydrophobic pockets, 
leaving behind smooth, homogeneous areas that usually dominate 
the optical response41. It has thus been applied as a key strategy to 
prepare high-quality TMDC samples, following the original work 
on graphene42. The resulting linewidth narrowing43,44 is often gener-
ally ascribed to shielding of the material from the substrate and sur-
face defects. Crucially, we argue that hBN-encapsulation with good 
interlayer contact primarily provides a homogeneous dielectric 
environment. As a consequence, it mitigates the effect of the dielec-
tric disorder otherwise present in as-exfoliated samples and hetero-
structures with varying interlayer distance or trapped impurities.

The impact of this mechanism is directly demonstrated by  
comparing the optical spectra from a bare WS2 monolayer on a  
SiO2 substrate and a flake encapsulated between thin layers of  
hBN, as presented in Fig. 4a,b, respectively. In agreement with 
recent literature45–47, the successful encapsulation leads to an overall 
narrowing of the exciton resonances. Most importantly, however, 
the changes in the n = 2 linewidth by a factor of 20, from almost 
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100 meV to 5 meV, are much larger than the decrease of the n = 1 
broadening (on the order of 10 meV) by a factor of about 2 to 3 
(see Supplementary Section 6 for the WSe2 results). These obser-
vations strongly support the resonance narrowing originating from 
essentially removing the dielectric disorder, strongly decreasing the 
magnitude of free-particle bandgap fluctuations, and thus leading 
to extreme narrowing of the higher excited exciton states in par-
ticular. We further demonstrate that one can also obtain large-area 
(>200 μm2) encapsulated heterostructures with only small varia-
tions of the dielectric screening across several tens of microme-
tres (Supplementary Sections 8 and 9). Finally, we note that, in the 
discussed context, electronic hybridization effects between WS2 
and hBN should be negligible, as recently shown in angle-resolved  
photoemission experiments48.

To illustrate the implications of the studied phenomena for  
exciton transport at room temperature and under ambient condi-
tions, we performed time- and spatially resolved photoluminescence 
measurements on a series of as-exfoliated and hBN-encapsulated 

WS2 samples (see Supplementary Section 10 and ref. 49 for details). 
The latter were preselected for narrow exciton linewidths of both 
ground and excited states observed across relatively large areas 
of many μm2 to ensure successful encapsulation and good inter-
layer contact. Effective exciton diffusion coefficients were directly 
obtained from the time dependence of the emission profiles in 
the linear regime with pump energy densities below 0.1 μJ cm−2. 
The main results are presented as a histogram of measured diffu-
sion coefficients in Fig. 4c. We find that the observed linewidth  
narrowing and mitigation of disorder in hBN-encapsulated samples 
leads to a reproducible, consistent increase of the exciton propaga-
tion efficiency by a factor of about 30. The absolute values of the 
diffusion coefficient in the range of 5–10 cm2 s−1 correspond to 
effective exciton mobilities on the order of 200–400 cm2 V–1 s−1, in 
close agreement with the conclusions from recent observations in  
hBN-encapsulated WSe2 (ref. 50).

Conclusions
Fluctuations of the external dielectric screening εext along the in-
plane coordinates are found to provide characteristic energy scales 
for dielectric disorder Δb

X
I

 and Δgap for the exciton states and free 
carrier bandgap, respectively. Based on the observation of smooth, 
inhomogeneously broadened spectra, an ensemble of much smaller 
regions of variable screening is often probed in optical experiments 
with micrometre spot sizes. The lower limit for the spatial extent of 
dielectric disorder is then given by the exciton radii of several nano-
metres19. Interestingly, even moderate fluctuations of the external 
screening already result in sizable energy scales of the dielectric dis-
order. Calculated characteristic scales for the ground-state exciton 
peak energy and bandgap size are presented in Fig. 4d,e as a func-
tion of the average value of εext and its fluctuations by ±Δεext/2. The 
resulting random variations of the bandgap reach up to 300 meV 
in a reasonable range of the dielectric screening parameters. Those 
of the ground-state exciton transition can be as high as 50 meV. 
These energy scales are sufficiently large to impact both optics and 
transport for a broad range of experimental conditions, including 
elevated temperatures and high carrier densities.

In conclusion, we have introduced the concept of dielectric 
disorder in semiconducting nanostructures using 2D materials 
as prototypical systems. We have presented the consequences of 
random fluctuations of the dielectric environment by monitor-
ing the statistics and correlations of the exciton state energies and 
linewidths from experiments that are in close quantitative agree-
ment with theoretical modelling. The importance of controlling the 
local dielectric homogeneity is further emphasized in the context of 
van der Waals heterostructures, including the capability of the hBN 
encapsulation to essentially remove dielectric disorder, facilitate 
pronounced linewidth narrowing of ground and excited states, and 
enable efficient transport. Overall, the demonstration of an alterna-
tive source of imperfections based entirely on the consequences of 
Coulomb interaction should have profound, direct implications for 
nanotechnology and fundamental materials science.

Online content
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Methods
Sample preparation. The monolayer WS2 and WSe2 samples used to obtain 
the statistics of the exciton linewidths at cryogenic temperatures were 
directly exfoliated from commercially available bulk crystals (obtained from 
2Dsemiconductors and HQgraphene) either onto SiO2/Si or fused-silica substrates. 
No additional processing was applied and the samples were studied in their 
pristine as-exfoliated state. The monolayer WS2 samples for the comparative 
study on PDMS and hBN substrates were also produced from commercially 
available bulk WS2 crystals (obtained from HQgraphene). First, crystals on scotch 
tape were directly exfoliated onto PDMS. Subsequently, samples on hBN were 
fabricated by direct exfoliation of separate hBN and WS2 flakes onto PDMS that 
were then stamped onto graphene-covered fused-silica substrates. The fabrication 
was followed by an annealing step at 120–150 °C for 1–2 h in vacuum. The data 
presented in Fig. 3b in the main text were collected from 38 individual positions 
on seven different WS2 samples on hBN and from 21 individual positions on nine 
samples on PDMS. To obtain hBN-encapsulated samples, thin hBN flakes were 
first exfoliated on PDMS from bulk crystals (provided by T. Taniguchi and K. 
Watanabe, NIMS), stamped on a 100 °C preheated SiO2/Si substrate at ambient 
conditions, and subsequently annealed in high vacuum at 150 °C for 4–5 h. 
Monolayer WS2 or WSe2 flakes, exfoliated on PDMS, were then stamped on top 
of the hBN layers at 70 °C substrate temperature and under ambient conditions. 
Samples with WSe2 were subsequently annealed again in high vacuum at 150 °C 
for 4–5 h, followed by the stamping of a thin hBN layer on top at 70 °C substrate 
temperature. The resulting hBN-WSe2-hBN heterostructure was then annealed 
again in high vacuum at 150 °C for 4–5 h. In the case of WS2, the structure was 
covered by a thin hBN layer without any additional annealing.

Optical spectroscopy. Optical reflectance spectroscopy was performed on 
several set-ups using similar equipment and measurement procedures. In these 
experiments, the light from a spectrally broadband tungsten-halogen lamp 
was focused by a ×40, NA = 0.6 objective onto the sample. The resulting spot 
sizes were typically in the range of one to a few micrometres and the integrated 
incident power on the sample was on the order of several hundreds of nW or 
below. The reflected light was spectrally dispersed in a grating spectrometer and 
subsequently detected by a cooled charge-coupled device (CCD) camera. The 
count accumulation time of an individual frame was usually chosen to be close 
to the saturation threshold of the CCD chip, followed by an integration over tens 
to hundreds of frames to optimize the signal-to-noise ratio. The data in Fig. 3 
were taken at room temperature and under ambient pressure. Spectra collected 
at cryogenic temperature were measured on samples mounted in an optical 
microscopy cryostat cooled either by liquid nitrogen or liquid helium.

Experimental data analysis. The measured reflectance signals were analysed in 
terms of reflectance contrast, defined as relative additional change of the sample 
reflectance with respect to the substrate reference. The peak linewidths were 
extracted from the reflection contrast spectra by appropriate fitting procedures. 
First, a model dielectric function was constructed as a sum of non-radiatively 

broadened Lorentz oscillators, each representing one of the main absorption 
features (see Supplementary Information for details). For the analysis of room-
temperature data in Fig. 3, Faddeeva functions were used to deconvolute 
homogeneous and inhomogeneous broadening contributions. The reflectivity 
of the stack was then calculated using this parameterized dielectric function and 
refractive indices of all other films from the literature, taking into account multi-
layer interference effects via the transfer matrix formalism. Finally, a comparison 
between the measured and calculated reflection spectra was used to optimize 
the parameters of the oscillators in the dielectric function, including oscillator 
strengths, central peak energies and linewidths.

Calculations of exciton and bandgap energies. To describe the effect of the 
environmental dielectric screening on the bandgap and excitons, the monolayer 
was treated as an infinite slab of finite thickness surrounded by a continuum 
dielectric. The screened Coulomb interaction was derived using the method 
of image charges, as elaborated in Supplementary Section 7. The change in 
the bandgap of the monolayer compared to its value in the bulk was evaluated 
as the sum of the self-energy of a hole for the valence band and an electron 
for the conduction band. The Schrödinger equation with an effective mass 
Hamiltonian was solved to calculate the exciton states and their binding energies. 
The eigenfunctions and eigenvalues of the exciton Hamiltonian were found via 
diagonalization in a basis of radial real-space grid points. The results of the above 
calculations depend on the environmentally screened interaction, modifying the 
quasiparticle bandgap, the exciton binding energy and the optical gap defined as 
the peak energy of the exciton ground-state resonance.

Calculations of exciton–phonon scattering. To assess the contributions from 
homogeneous broadening of the ground and excited exciton states on the level of 
microscopic theory, semiconductor Bloch equations were numerically solved in 
the low density limit based on material parameters from ab initio calculations. The 
Coulomb interaction was treated on a Hartree–Fock level where the interaction 
strength was determined by the Rytova–Keldysh potential for 2D films. The 
dielectric susceptibility of the monolayer was expressed in the excitonic basis, 
where the excitonic wavefunctions and the eigen energies were determined by 
the solution of the Wannier equation. Homogeneous linewidths of the exciton 
transitions were microscopically calculated by taking into account radiative 
and phonon-induced dephasing, obtained within a second-order Born–Markov 
approximation for exciton–phonon correlations. Both intra- and intervalley 
scattering processes with acoustic and optical phonons were included for the 
whole excitonic Rydberg series for intra- as well as intervalley excitons. From the 
microscopically calculated susceptibility, the reflectance contrast of the monolayer 
on the fused-silica substrate was obtained. Additional details are presented in 
Supplementary Section 6.

Data availability
All relevant data are available from the authors upon reasonable request.
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