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Abstract
The displacement speed that characterises the self-propagation of isosurfaces of a reaction 
progress variable is of key importance for turbulent premixed reacting flow. The evolution 
equation for the displacement speed was derived in a recent work of Yu and Lipatnikov 
(Phys Rev E 100:013107, 2019a) for the case where the flame is described by a trans-
port equation for single reaction progress variable assuming simple transport and one-step 
chemistry. This equation represents interaction of a number of complex coupled mecha-
nisms related to straining by the velocity field, surface curvature and the scalar gradient. 
The aim of the current work is to provide detailed physical explanations of the displace-
ment speed equation and its various terms, and to provide a new perspective to understand 
the mechanisms responsible for observed variations in the displacement speed. The equa-
tion is then used to analyze the propagation of a statistically planar reaction wave in homo-
geneous isotropic constant-density turbulence using direct numerical simulations. Addi-
tional emphasis is put on retracting surface segments that have a negative displacement 
speed, a phenomenon that commonly occurs at high Karlovitz numbers.

Keywords Turbulent reacting flow · Premixed flame · DNS · Displacement speed

1 Introduction

A turbulent premixed flame is often modeled using a reaction progress variable c which is 
zero and unity on the side of unburned fresh reactants and burned products, respectively. 
The evolution of c is described by the convection-diffusion-reaction equation
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where t, u , � , and � denote time, flow velocity vector, diffusion term, and the reaction rate 
term, respectively. One quantity of particular interest is the displacement speed Sd of the 
scalar field c relative to the local fluid. The displacement speed is controlled by the com-
bined effect of diffusion and reaction and is defined as (Veynante and Vervisch 2002)

In a turbulent reacting flow the displacement speed is defined for any point (x, t) for which 
0 < c(x, t) < 1 . The displacement speed contains information that characterizes the self-
propagation of the local reaction wave. Statistical information on the displacement speed 
can therefore benefit premixed combustion modeling, based on for example the level-set 
(G-equation) formulation (Williams 1985) or the flame surface density (FSD) approach for 
reaction rate closure (Candel and Poinsot 1990). Furthermore, the variation of displace-
ment speed across different zones inside the reaction wave can provide information regard-
ing the changes in the internal wave structure induced by turbulence. Such information 
can be particularly useful when studying heavily disturbed flames characterized by a large 
Karlovitz number (Ka).

Statistical behavior of the displacement speed has been the topic of a number of stud-
ies based on direct numerical simulations (DNS) of various turbulent reacting flows, see 
Gran et al. (1996), Echekki and Chen (1996), Chen and Im (1998), Peters et al. (1998), 
Echekki and Chen (1999), Chakraborty and Cant (2005), Dopazo et  al. (2007), Wang 
et al. (2017), and Luca et al. (2019) and references therein. In the literature the displace-
ment speed is often examined by correlating it with other quantities characterizing the 
flame surface or turbulent reacting flow, e.g. with the local flame curvature (Echekki 
and Chen 1996; Chen and Im 1998; Echekki and Chen 1999; Wang et al. 2017; Luca 
et al. 2019; Chakraborty 2007). It is also common to decompose the displacement speed 
into three component contributions due to reaction, diffusion in the normal direction, 
and tangential diffusion induced by curvature (Chen and Im 1998; Peters et  al. 1998; 
Echekki and Chen 1999). Particular focus has been put on the probability of finding 
locally negative displacement speed (Gran et al. 1996; Echekki and Chen 1996; Peters 
et  al. 1998; Echekki and Chen 1999; Chakraborty and Cant 2005; Wang et  al. 2017; 
Luca et al. 2019; Chakraborty 2007; Sankaran et al. 2015; Cecere et al. 2016; Trisjono 
et al. 2016; Cecere et al. 2018) as well as the sign of the averaged displacement speed. 
While previous studies that compare quantities extracted from DNS data contributed 
significantly to the understanding of turbulence/flame interactions, the mechanism gov-
erning the dynamic evolution of displacement speed is still not well understood. This 
may be attributed to the lack of a quantitative framework describing the evolution of 
displacement speed that advanced analyses may rely on.

To better understand the self propagation of turbulent reaction waves characterized by 
the displacement speed, an evolution equation for Sd conditionally averaged on the reac-
tion progress variable c was recently derived (Yu and Lipatnikov 2019a) for a simplified 
reaction wave. Using this equation, shown as Eq.  (13) below, the temporal evolution of 
the averaged displacement speed can be attributed to the terms on the right hand side (rhs) 
which represent different physical effects. Each term in this equation can be numerically 
extracted from DNS. It was demonstrated (Yu and Lipatnikov 2019a) using several DNS 
cases that the left hand side (lhs) term match well with the sum of all rhs terms even for a 
turbulent case with a high Karlovitz number.

(1)
�c
�t

+ u ⋅ ∇c = � +�,

(2)Sd ≡ (� +�)∕|∇c|.
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The previous paper (Yu and Lipatnikov 2019a) focused on theoretical aspects of the 
equation derivation and its numerical verification. In this work we turn the focus toward the 
physical interpretation of the different terms that appear in the equation. We will examine 
their behaviors in a turbulent reacting wave, both before and after it evolves into statistical 
equilibrium, with particular emphasises on isosurface segments that propagate with nega-
tive displacement speed. As shown later, the displacement speed equation involves some 
high order terms that may lead to numerical complications if multiple factors affecting a 
realistic flame are simultaneously present. We therefore limit this work to a study of con-
stant-density reaction waves where the thermal expansion effect is inhibited. While such 
a study is relevant for fundamental topics such as turbulent mixing in passive scalar, this 
work is also aimed to constitute a basis for future investigation of the displacement speed 
in more complicated cases where additional realistic effects (e.g. combustion heat release, 
multi-step chemistry, complex transport, etc.) can be taken into account. In this regard, 
it is worth remembering that we recently explored the evolution of various measures of 
local flame thickness (e.g. |∇c| or 1∕|∇c| ) conditionally averaged on the reaction progress 
variable c by analyzing DNS data obtained from (i) a constant-density single-reaction wave 
(the same DNS data are considered in the present work), (ii) two single-step-chemistry 
premixed turbulent flames with heat release and density variations, and (iii) two complex-
chemistry premixed turbulent flames (Yu et al. 2019). As shown in the cited paper, see p. 
240, “the major features of the transient evolutions of all thicknesses are similar in differ-
ent (constant density and single-step-chemistry, variable density and single-step chemis-
try, variable density and complex chemistry) cases”. These recent results obtained for the 
conditioned |∇c| and 1∕|∇c| suggest that results obtained for the similarly conditioned Sd in 
this study, i.e. in the simplest case (i), will be relevant not only to constant-density single-
reaction waves, but also to premixed turbulent flames provided that the aforementioned 
limitations of this study are borne in mind.

2  Evolution Equation for Displacement Speed

A brief description will first be given for the derivation of the displacement speed evolu-
tion equation, both in an “averaged” as well as a “local” sense. More details on the deri-
vation can be found in Yu and Lipatnikov (2019a). The explanations that follow will be 
directed toward physical interpretation of equation terms.

For an arbitrary quantity �(x, t) an isosurface-following time derivative operator �
∗

�∗t
 can 

be defined by

The composite velocity vector is defined as

with n ≡ �c∕|∇c| being the normal to the local isosurface. Using these definitions, Eq. (1) 
reduces to �

∗

�∗t
c = 0 , reflecting the fact that c remains constant for any point that follows the 

isosurface.
In a general reacting flow characterized by Eq.  (1), an instantaneous surface-average 

of a quantity � conditioned on the isosurface c(x, t) = ĉ can be defined (Veynante and 
Vervisch 2002) as

(3)
�∗

�∗t
� ≡ �

�t
� + u

∗
⋅ ��.

(4)u
∗ ≡ u − nSd
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Here, ĉ is a reference value of the reaction progress variable on an isosurface, 𝛿(c − ĉ) is 
the Dirac delta function and over-line denotes ensemble and volume averages taken simul-
taneously, i.e., � ≡ limM→∞

1

M

∑M

i=1

1

V
∭

V
�(i)(t, x)dx , where M is the number of realiza-

tions in the ensemble, V is domain volume, and �(i) pertains to the i-th realization.
Note that the Dirac delta function in Eq.  (5) can be removed if the identity 

∭
V
𝜙|∇c|𝛿(c − ĉ)dx = ∬

S|ĉ,t
𝜙ds is used (Maz’ja 1985; Kollmann and Chen 1994; Vervisch 

et al. 1995). This gives

Here, S|ĉ,t is the isosurface defined by c(x, t) = ĉ whose total area is equal to A|ĉ,t ≡ ∬
S|ĉ,t

ds . 
The long-hat operator over any expression represents the ensemble-averaged value, i.e. 
�̂ ≡ limM→∞

1

M

∑M

i=1
�(i) . The rate of change of the total area is related to the stretch rate by 

𝜕
𝜕t
A|ĉ,t = ∬

S|ĉ,t
Kds , or written with surface-average

since the stretch rate, defined as

is well-known (Pope 1988; Candel and Poinsot 1990) to control the rate of change in 
the area (ds) of an infinitesimal element of an iso-scalar surface, i.e. K =

1

ds

�∗

�∗t
ds . Here 

at ≡ ∇ ⋅ u − ninj(�ui∕�xj) is the tangential strain rate. The time derivative of Eq.  (6) can 
now be expanded using the product rule to yield [see Ref. Yu and Lipatnikov (2019a) for a 
more formal derivation]

Equation  (9) can be rewritten to give a general evolution equation for surface-averaged 
value of the quantity �,

which holds on all isosurfaces ĉ ∈ (0, 1) and at time instants and for an arbitrary variable � . 
If � is the displacement speed, Sd , an equation for surface-averaged Sd can then be obtained 
as long as �

∗

�∗t
Sd is known. For this purpose, we assume a general diffusion term of the form 

� =
1

�
� ⋅ (�D�c) and rewrite Eq. (2) as

with � and D being density and diffusivity respectively. Now make the two assumptions 
that �D =constant and that the reaction rate � depends solely on c, which is likely to be 

(5)⟨𝜙⟩
s

��ĉ,t ≡ 𝜙�∇c�𝛿(c − ĉ)
�
�∇c�𝛿(c − ĉ).

(6)�A�ĉ,t⟨𝜙⟩s��ĉ,t =
�

∬S�ĉ,t
𝜙ds.

(7)⟨K⟩
s

��ĉ,t =
1

�A��ĉ,t

𝜕
𝜕t
�A��ĉ,t,

(8)K ≡ at − Sd∇ ⋅ n,

(9)
�⟨�⟩

s

�t
+ ⟨�⟩

s

�Â
�t

∕Â =
̂

∬S

�∗�
�∗t

ds∕Â +
̂

∬S

�Kds∕Â.

(10)
𝜕⟨𝜙⟩

s
�ĉ,t

𝜕t
=
� 𝜕∗

𝜕∗t
𝜙
�

s

���ĉ,t + ⟨𝜙K⟩
s

���ĉ,t − ⟨𝜙⟩
s

���ĉ,t⟨K⟩
s

���ĉ,t,

(11)Sd|∇c| =
1

�
� ⋅ (�D�c) +�.
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valid for low Mach number globally adiabatic unity Lewis number flames. Apply the oper-
ator �

∗

�∗t
 to Eq. (11), to get

because �
∗

�∗t
� =

��
�c

�∗

�∗t
c = 0 . Equation (12) indicates that the isosurface-following rate of 

change in Sd is attributed to two terms T1 and T2 : the term T1 is a contribution from the iso-
surface-following rate of change in |∇c| , or in other words, decreasing/increasing separation 
between neighboring isosurfaces; while the term T2 is due to the isosurface-following rate 
of change in diffusion. We then substitute Eq. (12) into Eq. (10) with � = Sd to get

where the last averaged term is1

which is related to a stretch-rate-induced difference between the time derivative of the iso-
surface-averaged value and the averaged isosurface-following derivative, i.e. 
�
�t
⟨Sd⟩s −

�
�∗

�∗t
Sd

�

s

.

In the appendixes B and C of Ref. Yu and Lipatnikov (2019a) it is shown that the two 
terms in T1 and T2 can be recast into a form containing only spatial derivatives which facili-
tates their extraction from numerical simulations:

Expand u∗ in Eqs. (15, 16) using Eq. (4), then Eq. (12) for �
∗

�∗t
Sd can be re-expressed as

(12)

�∗

�∗t
Sd = −Sd

�∗

�∗t
ln |∇c|

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
T1

+
D

|∇c|
�∗

�∗t
(∇2c)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
T2

,

(13)
𝜕
𝜕t
⟨Sd⟩s

��ĉ,t = ⟨T1⟩s��ĉ,t + ⟨T2⟩s��ĉ,t + ⟨T3⟩
s

��ĉ,t.

(14)⟨T3⟩s
��ĉ,t = ⟨SdK⟩

s

��ĉ,t − ⟨Sd⟩s
��ĉ,t⟨K⟩

s

��ĉ,t,

(15)
�∗

�∗t
(∇2c) = −

�c
�xi

�2u∗
i

�x2
j

− 2
�2c

�xi�xj

�u∗
i

�xj
= −�c ⋅ ∇2

u
∗ − 2∇∇c ∶ ∇u∗,

(16)
�∗

�∗t
ln |∇c| =K − ∇ ⋅ u

∗ = at − ∇ ⋅ u + n ⋅ �Sd.

(17)

�∗

�∗t
Sd =

Tu
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Sd∇ ⋅ u

⏟⏟⏟
Tu0

−Sdat
⏟⏟⏟

Tu1

−Dn ⋅ ∇2
u

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Tu2

−2D
∇∇c

|∇c| ∶ ∇u

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Tu3

+

TSd
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

n ⋅ �Sd +Dn ⋅ ∇2(Sdn) + 2D
∇∇c

|∇c| ∶ ∇(Sdn)

1 In fact, it is possible to define T3 ≡ S
′
d
K

′ with the prime symbol on an arbitrary quantity � denoting the 
fluctuation respective to surface-average, i.e. 𝜙� ≡ 𝜙 − ⟨𝜙⟩

s
�
ĉ,t.
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In Eq. (17), the term Tu comprises all contributions to �∗

�∗t
Sd due to non-stationary flow 

motion, while four of its constituent parts, Tu0 , Tu1 , Tu2 and Tu3 , denote contributions due 
to flow-dilatation, tangential flow strain, velocity diffusion, and the product of c-diffusion 
tensor with velocity strain rate tensor, respectively. In fact the link between Sd and the fluid 
velocity field through dilatation rate has been reported in previous works of Chakraborty 
and Cant (2004), and Chakraborty and Cant (2005). The term TSd in Eq. (17) denotes the 
remaining contribution to �

∗

�∗t
Sd due to non-uniform spatial distribution of Sd . Comparing 

Eq. (12) with Eq. (17) yields

It might be worth noting, that although the definition of Sd by Eq. (2) does not involve 
velocity, the Sd-change following a local isosurface element, �

∗

�∗t
Sd , receives a direct con-

tribution from velocity through the term Tu . To better understand the physical meaning 
of two terms Tu and TSd in Eq. (17), we consider a scenario in a periodic channel starting 
with a perfectly-planar, steady one-dimensional (1D), unstretched reaction wave solution 
imposed on a turbulent flow field with |u| ≠ 0 (for simplicity, we further assume that the 
flow has constant density, this scenario will be adopted in the later results section). The 
term TSd may be viewed as a history contribution to Sd , originating from the velocity field. 
In fact, any later evolved non-zero value of TSd |0<t≤∞ can be traced back in time to an initial 
nonzero value of Tu|t=0 , as compared to a zero valued TSd |t=0 resulting from the initial 1D 
steady wave solution with a constant displacement speed. Therefore, in terms of contribu-
tion to the change of isosurface propagation speed according to Eq. (17), Tu may be under-
stood as an “immediate” contribution exerted by the velocity field through interaction with 
a temporally accumulated non-uniform distribution in Sd . On the other hand, we may con-
sider a second evolution scenario starting from a fully-developed turbulent reaction wave 
with its flow field being forced to stationary yielding zero Tu for t ≥ 0 . Such a setup Sd 
still evolves according to Eq. (17), however, with a single non-zero term TSd . A possible 
solution of such a wave evolution after long enough time is �

�t
Sd|t∞ = 0 and TSd |t∞ = 0 , i.e. 

the wave being “attracted” toward to a planar steady-1D wave solution with a uniform Sd . 
We also note that the terms Tu and TSd defined in (17) do not explicitly involve the density, 
therefore the density variation can only influence the above two terms indirectly, through 
(i) density dependence of the flow field therefore affecting Tu , e.g. the term Tu0 vanishes in 
a constant-density flow, and (ii) historical contribution through TSd.

It might also be of interest to identify the velocity contribution to changes in the “aver-
aged” displacement speed, �

�t
⟨Sd⟩s . This can be achieved by taking into account the addi-

tional velocity contribution in ⟨T3⟩s . Inserting Eq. (8) into Eq. (14), Eq. (13) can then be 
rewritten as

where Nu summarizes all the direct velocity contribution to �
�t
⟨Sd⟩s.

We note here that the above derivations were performed for the simplified case of con-
stant density, but the derivation is also valid in the more general case of �D=const where 

(18)TSd = T1 + T2 − Tu.

(19)

𝜕
𝜕t
⟨Sd⟩s

��ĉ,t = ⟨Tu0 + Tu2 + Tu3⟩
s

��ĉ,t − ⟨Sd⟩s
��ĉ,t⟨at⟩s

��ĉ,t
�����������������������������������������������������

Nu

+
�
TSd − S2

d
∇ ⋅ n

�
s

��ĉ,t + ⟨Sd⟩s
��ĉ,t⟨Sd∇ ⋅ n⟩

s

��ĉ,t
�������������������������������������������������������������

NSd

,
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the density is not required to be constant. When dealing with variable density reacting flow, 
Eq. (1) is often expressed in an equivalent form as

by utilizing the continuity equation �
�t
� + ∇ ⋅ (�u) = 0 . From the perspective of combustion 

modeling it appears more appropriate to treat the composite density-weighted displacement 
speed, (�Sd) , in the rhs of Eq. (20). For instance, in a steady 1D laminar flame with density 
variation (�Sd) is constant in space while Sd is not. The isosurface-following derivative of 
(�Sd) can be calculated as �

∗

�∗t
(�Sd) = Sd

�∗

�∗t
� + � �∗

�∗t
Sd = � �∗

�∗t
Sd by assuming that � is a func-

tion that only depends on c, which is again a reasonable assumption for low Mach num-
ber globally adiabatic unity Lewis number flames. This gives �

∗

�∗t
� =

��
�c

�∗

�∗t
c = 0 and the 

time derivative of averaged (�Sd) simply becomes 𝜕
𝜕t
⟨𝜌Sd⟩s�ĉ,t = 𝜌�ĉ

𝜕
𝜕t
⟨Sd⟩s�ĉ,t . These simple 

relations suggest that the derived Sd-equations can be directly applied to varying-density 
flames by adding a density scaling. Moreover, as the current analysis considers constant-
density conditions, the transport equation of ⟨�Sd⟩s can be obtained by multiplying both 
sides by � . It is worth noting that both ⟨�Sd⟩s and ⟨Sd⟩s are necessary for the FSD-based 
closure of the mean reaction rate and the terms of the FSD transport equation (Chakraborty 
and Cant 2007, 2009). Thus, it is fundamentally important to consider the transport equa-
tions of ⟨Sd⟩s and ⟨�Sd⟩s due to their modelling importance instead of the transport equation 
of instantaneous Sd.

We also want to point out a second route for density variations in flames to affect the 
Sd-evolution; through the thermal-expansion acting on the flow to inflict Tu . Consider the 
aforementioned example 1D steady flame whose velocity field must change across the 
flame. Tu and its three components that involve velocity derivative across flame, Tu0 , Tu2 
and Tu3 , are already non-zero before applying any disturbance. (Note that, in contrast T1 
and T2 are zero in the same example). Moreover when considering the evolution equation 
(13) for average Sd , its three rhs terms ⟨T1⟩s , ⟨T2⟩s and ⟨T3⟩s contains different velocity con-
tributions as ⟨Tu0 + Tu1⟩s , ⟨Tu2 + Tu3⟩s and ⟨Sd⟩s⟨at⟩s − ⟨Tu1⟩s respectively; the thermal-expan-
sion therefore exert a direct influence to term ⟨T1⟩s through the flow dilatation Tu0 , and as 
well as play an indirect modulation of terms ⟨T2⟩s and ⟨T3⟩s . The additional mechanism for 
density variations in flames to affect Sd suggests that care must be taken when extrapolat-
ing results obtained from constant-density cases. At the same time, it is worth noting that 
while various thermal expansion effects were revealed in premixed turbulent flames, the 
latest review articles (Lipatnikov and Chomiak 2010; Sabelnikov and Lipatnikov 2017) do 
not refer to any study that documents a substantial influence of thermal expansion on the 
density-weighted displacement speed (�Sd) . This fact, as well as the recent DNS study (Yu 
et al. 2019) discussed in the end of the previous section, suggest that results obtained from 
a constant-density turbulent reaction wave can be useful for understanding the influence of 
turbulence on a premixed flame.

3  Computational Setup

One goal of the present paper is to use the evolution equations for local and surface-aver-
aged Sd , i.e. Eq. (12) and Eq. (13), to study highly disturbed turbulent reaction waves. For 
this purpose, a representative highly turbulent case (case C in the following) is selected 
from a large DNS database (Yu et  al. 2014, 2015, 2019; Yu and Lipatnikov 2017a, b, 

(20)
�
�t
(�c) + ∇ ⋅ (�uc) = �(� +�) = (�Sd)|∇c|,
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2019b; Elperin et al. 2016; Sabelnikov et al. 2019a, b). In those DNSs, propagation of a 
statistically 1D, initially planar, single-reaction wave in a homogeneous, isotropic, statisti-
cally stationary forced turbulence was simulated in the case of a dynamically passive wave, 
i.e. a wave that does not change the fluid density and viscosity and does therefore not affect 
turbulence. The invoked simplifications allowed us to sample more statistics, as will be 
discussed later, and to investigate a large number of substantially different cases. Moreo-
ver, the simplifications significantly facilitate analysis and interpretation of the DNS data. 
Numerical results reported in the following are relevant largely to constant-density turbu-
lent reacting flows, however those results also provides a basis for further investigation of 
more realistic premixed flames.

3.1  DNS Database

Since the DNS attributes are discussed in detail elsewhere (Yu et  al. 2014, 2015, 2019; 
Yu and Lipatnikov 2017a, b, 2019b; Elperin et al. 2016; Sabelnikov et al. 2019b), we will 
restrict ourselves to a brief summary of the simulations.

The propagation of a single-reaction wave is governed by the equation

where

is the reaction rate, �R is a constant reaction time scale, � = 6 and Ze = 6 in order for the 
rate W to depend on c in a non-linear manner. Equation (21) is a simplified form of Eq. (1) 
with � = D∇2c and � = W.

The wave propagates in a forced, homogeneous and isotropic turbulence described by 
the Navier-Stokes equations

where p is the pressure and the density � and kinematic viscosity � are constants. There-
fore, the flow is not affected by the wave, as mentioned earlier. A function � is used to 
maintain the turbulence intensity by applying energy forcing at low wavenumbers (Lamor-
gese et al. 2005).

The wave evolves in a rectangular box with size of �x × � × � represented using a uni-
form grid of Nx × N × N cubic cells. The boundary conditions are periodic in all directions. 
In other words, when the reaction wave reaches the left boundary ( x = 0 ) of the computa-
tional domain, the reaction wave enters the domain through its right boundary ( x = �x ). 
This method allows greatly improved sampling of statistics by simulating many cycles of 
wave propagation through the computational domain, but the method may only be used 
in the case of � = const and � = const and provided that the mean wave brush thickness is 
smaller than the length of the computational domain. These constraints are satisfied in all 
present simulations.

An initial turbulence field is generated by synthesizing prescribed Fourier waves (Yu 
and Bai 2014) with an initial rms velocity u0 and the integral scale �0 = �∕4 . The initial 

(21)
�c
�t

+ � ⋅ ∇c = D∇2c +W,

(22)W =
1

1 + �
1 − c

�R
exp

[
−
Ze(1 + �)2

�(1 + �c)

]

(23)
��
�t

+ (� ⋅ �)� = −�−1∇p + �∇2
� + � ,
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turbulent Reynolds number Re0 = u0�0∕� can be adjusted by changing the domain width 
� . Subsequently, a non-decaying incompressible turbulent field is obtained by integrating 
Eq. (23). At the same Re0 , turbulent fields characterized by the same rms velocity u� ≈ u0 , 
but different longitudinal integral length scales L11 are generated (Yu and Lipatnikov 
2017a) by appropriately adjusting � following Lamorgese et al. Lamorgese et al. (2005).

The governing equations are solved using an in-house DNS solver (Yu et  al. 2012) 
developed for low Mach number reacting flows.

In the present work, both fully-developed (statistically stationary) and transient reaction 
waves are studied. Simulations are started from the pre-computed laminar-wave profile of 
cL(�) initially ( t = 0 ) released at x0 = �x∕2 and the subsequent evolution of the field c(�, t) 
is simulated by solving Eq. (21). Sampling of the fully-developed statistics starts when a 
statistically stationary state has been reached and sampling is done for a duration of at least 
50 �0

t
 . In order to study transient turbulent reaction waves, several copies of the same pre-

computed laminar-wave profile cL(�) are simultaneously embedded into the turbulent flow 
in M equidistantly separated planar zones centered around xm∕�x = (m − 0.5)∕M , where 
m is an integer number (1≤ m ≤ M =15). Subsequently, evolution of M non-interfering 
transient fields ct

m
(�, t) are simulated by solving M independent Eqs.  (21). The transient 

simulations are run over 2 �0
t
 before being reset. The flow is then populated by M new 

profiles of cL(�m) . The cycle is repeated J times giving an ensemble of J ×M independent 
transient waves. Time-dependent statistics for the time interval of 2�0

t
 is then computed by 

averaging the DNS data over the entire ensemble of c(x, t)-fields.
Different cases are set up by combining one of the forced turbulence fields and a reac-

tion wave characterized by a laminar speed SL and thickness �F = D∕SL . The required reac-
tion time scale �R in Eq. (22) is found through 1D pre-computations of the laminar wave.

Totally 45 cases characterized by the Damköhler number Da = �t∕�F = 0.01-24.7, the 
Karlovitz number Ka = �F∕�� = 0.36-587, u�∕SL = 0.5-90, and L11∕�F = 0.39-12.4 were 
simulated, with a few cases designed to show weak sensitivity of computed results to grid 
resolution, �∕L11 , etc. (Yu and Lipatnikov 2017a). Here, �F = �F∕SL is the wave time scale, 
�t = L11∕u

� and �� = (�∕�)1∕2 are integral and Kolmogorov time scales of the turbulence, 
respectively, and � = 2�SijSij with Sij ≡ (�xjui + �xiuj)∕2 is the dissipation rate averaged 
over the computational domain and for at least 50�0

t
 after turbulence has evolved into statis-

tical stationarity.

3.2  Case Setup

In the present paper, the focus is on the results obtained in a representative highly turbulent 
and well resolved case, whose major characteristics are reported in Table 1 (case C), where 
Pe = u�L11∕D is the turbulent Péclet number and a ratio of �F∕�x characterizes the grid 
resolution in terms on number of grid points per the laminar wave thickness. Moreover, in 
case C, L11∕� = 0.11 , �0

t
∕�t = 2.3 , and �∕�x = 1.1 . Here, � = (�3∕�)1∕4 is the Kolmogorov 

length scale. Figure 1 shows a snapshot with multiple coexisting ct-fields and one cs field in 
case C.

One issue of concern when considering a highly turbulent reaction wave is the appear-
ance of zero-gradient points (Gibson 1968) with |∇c|(x, t) = 0 . Here we should point 
out that zero gradient points have been excluded from the definitions of surface aver-
age in Eq. (5), see Yu and Lipatnikov (2019a), and Yu and Lipatnikov (2019c), however 
certain quantities of interest, e.g. Sd and K , may locally grow unboundedly large in the 
neighborhood of a zero-gradient point, which poses a challenge for numerical calculation 
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of surface-averaged quantities. To explore the eventual influence of such points and their 
neighborhoods on the accuracy of evaluation of various terms in the evolution equation, 
two supplementary 2D cases (case A and B) were designed.

Case A is largely identical to case C, but the turbulent field is replaced with a frozen 
shear flow, i.e. u(x, y, z, t) = −u0 cos(2�y∕�) , v = w = 0 , and the momentum Eq.  (23) is 
not solved. In case A the isosurfaces are only curved, there is no zero-gradient points in the 
computational domain. Characteristics of case A, reported in Table 1, are calculated using 
L11 = �∕2 , u� = u0 , and t� = t� = L11∕u0.

Case B is designed to have a small number of zero-gradient points in the compu-
tational domain. Similarly to case A, case B is also based on a frozen velocity field 
u(x, y, z, t) = u��(x, y) , v(x, y, z, t) = v��(x, y) , w = 0 , and � ⋅ u

�� = 0 . The field u′′ repre-
sents a 2D, zero-mean, spatially fluctuating velocity field generated using a reduced ver-
sion of the method for synthesizing the initial 3D turbulence. Characteristics of case B, 
reported in Table 1, are calculated by analyzing the 2D velocity field ( u0 and L11 ) and using 
�� ≈ �t = L11∕u0 to evaluate Ka. Case B mimics a moderately disturbed reaction wave 
propagating through vortexes and allowing the appearance of zero-gradient points during 
collisions of reaction-waves. Comparison of results computed in cases A (no zero-gradient 
points), B (a few zero-gradient points), and C (no restrictions on appearance of the zero-
gradient points) offers an opportunity to estimate the influence of such points on the accu-
racy of evaluation of various terms appearing in the Sd-evolution equation.

In the two frozen-velocity cases A and B, simulations of multiple transient waves ct are 
performed largely similarly to case C (further details on the difference are discussed in Yu 
and Lipatnikov (2019a)) but the duration of transient sampling is changed from 2�0

t
 to 2�F.

It is worth noting that the transient data not only is of interest in itself because the vast 
majority of premixed turbulent flames are developing flames, as discussed in detail else-
where (Lipatnikov and Chomiak 2002; Lipatnikov 2012), but also offer an opportunity 
to control the following numerical issue. As discussed earlier, in very intense turbulence, 
a scalar isosurface of c(x, t) = ĉ can become very complicated and can contain multiple 
zero-gradient points, close to which a quantity � of interest can be unboundedly large. 
As a result, certain surface-averaged � might be unbounded. Since the transient waves 
ct
m
(x, t) = ĉ begin their evolution from a regular flat initial surface, monitoring evolution 

of (i) isosurfaces of the transient fields ct
m
(x, t) = ĉ and (ii) the relevant surface-averaged 

quantities offer an opportunity to detect any anomaly in the developing surface-averaged 

Fig. 1  A snapshot of several simultaneously-embedded, non-interfering constant-density reaction waves 
propagating cyclically in forced homogeneous turbulence in a fully periodic domain for case C shown in 
table 1 with Ka = 390
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values of various � and to see eventual influence of the zero-gradient points on various 
surface-averaged terms in the derived evolution equations.

4  Results and Discussions

DNS data has been used to examine the evolution equation for surface-averaged Sd , 
Eq.  (13) or an equivalent Eq. (19). These equations should hold for all isosurfaces of 
c(x, t) = ĉ such that ĉ ∈ (0, 1) and at all time instants t. Our interest is first placed on how 
various terms contribute to the change in averaged displacement speed.

In each simulated case (A, B, or C), the following terms were computed: (a) the left 
hand side (lhs) term, i.e. the time derivative of ⟨Sd⟩s , (b) the three rhs terms in Eq. (13), and 
(c) the sum of all the rhs terms, i.e. 

∑
rhs . Note that the lhs term �

�t
⟨Sd⟩s (red dots in all the 

figures) is evaluated by first obtaining the sequence of transient-evolving ⟨Sd⟩s calculated 
at 20 sampled time instants ti = (i2∕200)�∗

F
 for i = (1, .., 20) and then applying a discrete 

approximation of the time derivative.
Figure 2 shows the temporal evolution of these terms normalized using SL∕�2F and con-

ditioned on three values of ĉ representing the preheat zone c(x, t) = 0.1 , a middle zone 
c(x, t) = 0.5 and the reaction zone c(x, t) = 0.88 where W(0.88) = max(W) . For compari-
son of transient statistics between cases, the time t is normalized by �∗

F
 which is set to �F 

in the two cases A and B and �0
t
 ( ≈ �F∕22.5 ) in case C. Figure 3 shows the ĉ-isosurface-

dependence of all terms at three representative time instants: an early instant at 0.045�∗
F
 , 

a middle instant 1.125�∗
F
 , and the fully developed state at t∞ . Furthermore, the averaged 

displacement speed ⟨Sd⟩s is shown in Fig. 4 at similar conditions as those in Figs. 2 and  3.
Figures 2 and 3 show that the difference between �t⟨Sd⟩s and 

∑
rhs is small for all cases 

A-C for almost all isosurfaces and time instants. This fact supports Eq. (13) and also shows 
that all terms have been computed with high enough numerical accuracy.

Before proceeding to a discussion of Eq. (13), one may notice in Fig. 4 that the averaged 
displacement speed is negative in the reaction zone in the high-Ka case C during the tran-
sient wave evolution. Nevertheless, for the fully developed reaction wave in all three cases, 
the averaged displacement speed recovers to be positive throughout all wave zones and its 
value stays slightly above unity, see Fig. 4c. The above observations of opposite signs of 
displacement speed agree quialitatively with DNS data by Chakraborty (2007) who simu-
lated single-step chemistry turbulent flames associated with the thin reaction zone regime 
and reported high probability of finding negative local Sd but positive averaged displace-
ment speed throughout the entire flame brushes.

Table 1  Three representative 
DNS cases

Case �
x

�
N
x

u0

S
L

L11

�
F

�
F

�x
Da Ka Pe

A 8 2048 5 5.3 24 1.07 0.94 27
B 1 1048 2 5.3 24 2.67 0.38 10.6
C 8 2048 60 1.2 24 0.02 390 69.5
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4.1  Trends During Transient Wave Evolution

For temporal evolution of the terms in Eq. (13) one may notice that the early evolution of 
the time derivative term �t⟨Sd⟩s is different in the preheat zone ( ̂c = 0.1 ) than in the reaction 
zone ( ̂c = 0.88 ). In the preheat zone the term �t⟨Sd⟩s rises from an initial zero to a positive 
peak, seen for 0 < t∕𝜏∗

F
≈ 0.3 in Fig. 2a, d for cases A and B, as well as for 0 < t∕𝜏∗

F
≈ 0.1 

for case C in Fig. 2g. On the contrary the term �t⟨Sd⟩s in the reaction zone ĉ = 0.88 drops 
from an initial zero to a negative peak for the same early duration as shown in Fig. 2c, 
f, i. These early trends are further reflected by the negative slope in the profile of �t⟨Sd⟩s 
along ĉ , which is shown at a representative early instant t∕�∗

F
= 0.045 in Fig. 3a, d, g. The 

observed early negative slope in �t⟨Sd⟩s is mainly attributed to the diffusion contribution 
term ⟨T2⟩s ; compare ⟨T2⟩s with �t⟨Sd⟩s in Fig. 2a, d, g.

Among the three time-dependent terms ⟨T1⟩s , ⟨T2⟩s and ⟨T3⟩s shown in Fig. 2, the over-
all temporal evolution of �t⟨Sd⟩s is best mimicked by the diffusion contribution term ⟨T2⟩s , 
even though significant difference between the other two terms always exists at t∞ . The two 
terms ⟨T1⟩s and ⟨T3⟩s tend to develop values of significant magnitude with opposite sign dur-
ing later time of wave evolution, compare the two curves plotted in triangles both in Fig. 2 
for t∕𝜏∗

F
> 0.3 and in Fig. 3. Each of the two terms ⟨T1⟩s and ⟨T3⟩s conditioned at the reaction 

zone ( ̂c = 0.88 ) can even change its sign twice during its evolution, as shown in Fig. 2.i for 
the high Ka case C. Such an oscillating behavior is more clearly observed by comparing 
Fig. 3g–i, which show that the overall slope of the profile ⟨T1⟩s along ĉ at three time instants 
changes from positive to negative and then finally back to positive. Moreover, unlike being 
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Fig. 2  Time dependencies of the lhs term, three individual rhs terms, and sum of all rhs terms from 
Eq. (13). Results obtained for ĉ = 0.1 , ĉ = 0.5 and ĉ = 0.88 are plotted in the left, middle and right columns, 
respectively. Cases A, B, and C are reported in the top, middle, and bottom rows, respectively. Time is 
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a single signed fully-developed ĉ-profile, each of the terms ⟨T1⟩s and ⟨T3⟩s can change its 
sign in the range ĉ ≈ 0.6 − 0.7 , see Fig. 3g, h in high Ka case C at intermediate instants 
t∕�∗

F
= 0.045 or 1.25.

One observation related to the above phenomenon is that the maximum magnitude of 
the variation in all displayed terms during the transient evolution conditioned at the middle 
zone, shown in Fig. 2h for ĉ = 0.5 , is much smaller than the ones conditioned at the two 
other zones, shown in Fig. 2g, i for ĉ = 0.1 and ĉ = 0.88 , respectively. Such observation 
may be related to the fact that in a reference steady laminar wave, the denominator term 
|∇c| in the Sd-definition Eq. (2) attains its largest value at the middle ĉ , which is less prone 
to perturbation than values at two ends of ĉ . For this reason, further conditioned analysis in 
Sect. 4.2.1 will be based on the isosurface at ĉ = 0.5.

Regarding the velocity-contribution to �t⟨Sd⟩s , Fig.  3a, d, g show for three cases A-C 
that the ĉ-profile of Nu at t∕�∗

F
= 0.045 matches well with the one for �t⟨Sd⟩s . The match 

is particularly good for ĉ < 0.3 in cases A and B in which the “effective” evolution time 
t∕�F is significantly shorter than in case C. This reflects a simple fact that it is the nonu-
niform velocity field which kick-starts the initial variation in ⟨Sd⟩s�t=0 and continues for a 
short while to play a major role for the change in ⟨Sd⟩s during early transient wave evolu-
tion. Compared with �t⟨Sd⟩s , the term Nu changes from being larger in the preheat zone 
( ̂c < 0.4 ) to being smaller toward the reaction zone ( ̂c > 0.8 ) in all cases A-C for later 
times ( 1.125�∗

t
≤ t ≤ t∞ ). One interpretation of the observation at t∞ is that, for a hypothet-

ical zero-Nu scenario in which the flow field of a fully developed wave is suddenly changed 
to a uniform flow, the averaged displacement speed ⟨Sd⟩s must respond by decreasing in 
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Fig. 3  The ĉ-dependencies of the lhs term, three individual rhs terms, and sum of all rhs terms from 
Eq. (13), as well as a velocity contribution term N

u
 in Eq. (19) for cases A (top row), B (middle row) and C 

(bottom row). Results computed at t = 0.045�∗
F
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F
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= �
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the preheat zone and increasing in the reaction zone respectively, since �t⟨Sd⟩s = NSd
 and 

its rhs term stores a negative copy of the non-zero valued Nu prior to the imposed veloc-
ity modification. The observed sign-flipping variation of Nu along ĉ is (observed in our 
data, not shown) largely attributed to the component Tu3 which involves a diffusion tensor 
D∇∇c∕|∇c| , which in a 1D flame becomes a normal-diffusion contribution to displacement 
speed (i.e D∇2c∕|∇c| ) and must flip its sign along a monotonic 1D solution of cL(x).

4.2  Trend in Fully Developed Wave

When a reacting wave has evolved into a statistically stationary state, or is fully developed, 
the time derivative of any statistic must be zero. Therefore, for Eq. (13) at t∞ , the lhs term 
as well as the sum of all rhs terms must be zero for all ĉ ∈ (0, 1) . This is clearly seen for 
the three cases A, B and C in Fig. 3c, f, i (blue open circles and red dots). However, each of 
the three individual rhs terms, ⟨T1⟩s , ⟨T2⟩s and ⟨T3⟩s , are not necessarily zero at t∞ . Note that 
⟨K⟩

s
�ĉ,t∞ = 0 according to statistical stationarity and Eq. (7) [confirmed by the data shown 

in Fig. 7 in Ref. Yu and Lipatnikov (2019a)].
In fact, Fig. 3c, f, i show, in the fully developed cases A-C, that ⟨T3⟩s stays negative and 

⟨T1⟩s stays positive for all ĉ . The value of ⟨T2⟩s generally rises with an increase in ĉ , the 
value of ⟨T2⟩s in the reaction zone ( ̂c > 0.8 ) is positive, however in the far upstream preheat 
zone ( ̂c = 0.1 ) its value drops slightly below zero when the reaction wave becomes more 
disturbed by the flow (compare cases A and C). In the two low Ka cases A and B, the max-
imum absolute values of all three (normalized) terms at t∞ across all ĉ stay below 4; in the 
high Ka case C this value significantly increases above 1000. This can be explained by that 
the Kolmogorov eddy should be the dominant cause for change in isosurface movement 
(this will become clear in following discussions when the Ka is used for normalization of 
relevant terms in case C).
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4.2.1  Averages Conditioned at Fast/Slow Isosurfaces

To better understand the causes for changes in the displacement speed we define a Sd - con-
ditioned isosurface-average as

Following a similar procedure as from Eqs. (5) to (6), the average can be re-expressed as

which is related to the average over the entire isosurface by

where an isosurface-conditioned probability density function (pdf) is defined for a quantity 
� by

with pdf(� , |∇c|, c;t, x) being a point-wise joint pdf [see appendix in Ref. Yu and Lipat-
nikov (2019c)] and ns is a normalization constant to enforce ∫ +∞

−∞
pdfs(� )d� = 1.

Figure 5 shows the isosurface-conditioned displacement-speed pdf, i.e. pdfs(Sd)|ĉ,t∞ , and 
the Sd-dependent surface-average of curvature , i.e. [∇ ⋅ n]

s
|Ŝd ,ĉ,t∞ , for three fully-developed 

cases A, B and C on a representative isosurface with ĉ = 0.5 . For reference, raw sampling 
values of curvature ∇ ⋅ n and its isosurface-average, i.e. ⟨∇ ⋅ n⟩

s
�ĉ,t∞ are also shown in Fig. 5. 

Similarly, Fig. 6 shows for three fully-developed cases A-C, the Sd-dependent isosurface-
averages [𝜙]

s
|Ŝd ,ĉ,t∞ for each � ∈ [∇ ⋅ n, T1 + T2, T1, SdK, Tu, Tu1 , Tu2 ] , i.e. for terms rel-

evant to changes in the displacement speed of an isosurface element. The averaged terms 
⟨𝜙⟩

s
�ĉ,t∞ are also plotted in Fig. 6 for reference. Note, that all quantities displayed in the two 

Figs. 5, 6 for the two low-Ka number cases A and B are appropriately normalized based on 
a length unit of laminar flame thickness �F and a velocity unit of laminar flame speed SL . 
However, for the high Ka case C, the normalization was performed using the Kolmogorov 
length scale � ∝ �F∕

√
Ka and the Kolmogorov velocity scale �∕�� ∝ SL

√
Ka to indicate an 

important role played by the Kolmogorov-scale eddies.
Figure 5 shows that, although the curvature averaged over the whole isosurface ⟨∇ ⋅ n⟩

s
 is 

close to zero in all three cases, the Sd-dependent surface-average of curvature [∇ ⋅ n]
s
|Ŝd ,ĉ,t∞ 

deviates from zero and its value generally rises with an increase in Sd , reflecting the 
well-known fact that the displacement speed contains a direct contribution from curva-
ture, e.g. Sd = Sc

d
+ Sn

d
+ SW

d
 with Sc

d
= D∇ ⋅ n (assuming constant D , the rest becomes 

Sn
d
= D∇n∇nc∕|∇c| and SW

d
= �∕|∇c| where ∇n = n ⋅ � ). For cases A and B with a low Ka, 

Fig. 5 show pdfs(Sd) peaked at SL , which indicates that a major part of the isosurface has a 
displacement speed around SL ; there is also a small amount of fast propagating isosurface 
with Sd significantly larger than SL . Those isosurfaces are on average associated with large 
curvature, (cf. [∇ ⋅ n]

s
≫ 𝛿−1

F
 for Sd ≫ SL indicated by black lines in Fig. 5 for cases A and 

B). As shown by the cyan circles in Fig. 5 for case B, for faster propagating isosurfaces at 

(24)[𝜙]
s

||Ŝd ,ĉ,t ≡ 𝜙|∇c|𝛿(c − ĉ)𝛿(Sd − Ŝd)
/
|∇c|𝛿(c − ĉ)𝛿(Sd − Ŝd).

(25)[𝜙]
s

||Ŝd ,ĉ,t =
�

∬S||ĉ,t
𝜙 ⋅ 𝛿(Sd − Ŝd)ds

/ �

∬S||ĉ,t
𝛿(Sd − Ŝd)ds,

(26)⟨𝜙⟩
s

��ĉ,t = ∫
+∞

−∞

pdfs(Sd)
��ĉ,t ⋅ [𝜙]s��Ŝd ,ĉ,tdŜd

(27)pdfs(𝛹 )||ĉ,t ≡ 1

ns �
+∞

0 �V

|∇c| ⋅ pdf(𝛹 , |∇c|, c;t, x)dxd|∇c|,
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larger Sd the curvature values develop a wider spread and can even become negative. Nev-
ertheless Sd is positive due to other contributions to the displacement speed, i.e. Sn

d
 and SW

d
 . 

In all cases, there exist a probability of finding “retreating” isosurface elements that propa-
gate with negative Sd and they are generally associated with negative curvature. The occur-
rence of negative Sd become significant in the high-Ka case C shown by pdfs(Sd) in Fig. 5c. 
As far as the present simulations of negative displacement speed are concerned, these 
results obtained in the simplest case of a constant-density, single-reaction wave are consist-
ent with earlier computations of negative Sd in 2D DNS of complex-chemistry premixed 
turbulent flames (Gran et  al. 1996; Echekki and Chen 1996; Peters et  al. 1998; Echekki 
and Chen 1999; Cecere et al. 2018), 3D DNS of single-step-chemistry premixed turbulent 
flames (Chakraborty and Cant 2005; Chakraborty 2007), and 3D DNS of complex-chem-
istry premixed turbulent flames (Wang et al. 2017; Luca et al. 2019; Sankaran et al. 2015; 
Cecere et al. 2016; Trisjono et al. 2016).

It can be of particular interest to examine various terms contributing to changes in prop-
agating speed of an isosurface element, see Fig. 6. For instance, according to Eq. (12) the 
summation term of T1 + T2 is equal to �∗

�∗t
Sd . Its Sd-conditioned isosurface-average, i.e [

T1 + T2
]
s

|Ŝd means the rate of change in propagating speed averaged for all isosurface ele-
ments propagating at a same speed of Ŝd . Figure 6 shows for three cases A-C a clear trend 
of 
[
T1 + T2

]
s

|Ŝd rise toward larger positive value of Ŝd , which, together with curvature shown 
in Fig. 5, suggests an accelerated advancement of positively curved isosurfaces associated 
with a typical “consumption” scenario of cusps or small fuel pockets surrounded by 
products.

For retreating isosurface with negative Sd , the average 
[
T1 + T2

]
s

 stays negative in cases 
B, suggesting an acceleration of a “quenching” process for a product pocket surrounded by 
fuel. Such a process is more evident at large negative Ŝd for case C in which significant 
amount of product can be transported over to the fuel side due to intensive turbulent mix-
ing. This behaviour is also in agreement with curvature dependence of displacement speed 
reported by previous variable density single-step (Chakraborty 2007; Chakraborty and 
Cant 2004) and detailed chemistry (Echekki and Chen 1996; Peters et al. 1998; Echekki 
and Chen 1999) DNS results.

According to Eq. (26), for any quantity � the two averages [𝜙]
s
|Ŝd and ⟨�⟩

s
 are related by 

a weight of pdfs(Sd) . In the two low-Ka cases A and B shown in Fig.  6, the value of 
⟨T1 + T2⟩s differs significantly from the value of 

[
T1 + T2

]
s

|Ŝd at Ŝd ≈ SL where pdfs(Sd) 
reaches its peak, seen in Fig. 5. This indicates that the combined T1 + T2 term averaged 
over the entire isosurface receives significant contribution from a small amount of 

Fig. 5  Fully-developed pdf
s
(S

d
)|
ĉ,t∞

 , [∇ ⋅ n]
s
|
Ŝ
d
,ĉ,t∞

 and ⟨∇ ⋅ n⟩
s
�
ĉ,t∞

 at ĉ = 0.5 in cases A (left), B (middle) and 
C (right). S

d
 is normalized by S

L
 (A and B) or S

L

√
Ka (C); ∇ ⋅ n is normalized by �−1

F
 (A and B) or �−1

F

√
Ka 

in case C
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fast-propagation isosurfaces having large value of 
[
T1 + T2

]
s

 . For the high-Ka number case 
C, the absolute value of 

[
T1 + T2

]
s

|Ŝd is still large at large positive and negative values of Ŝd , 
however the whole average ⟨T1 + T2⟩s stays small as a result of overall cancellation [
T1 + T2

]
s

 weighted by a pdfs(Sd) which is symmetric around zero.
Figure  6 shows that at ĉ = 0.5 the term 

[
T1
]
s

|Ŝd ,ĉ approximately follows the term [
T1 + T2

]
s

|Ŝd ,ĉ in the three fully developed cases, which can be attributed to a low magnitude 
of ∇2c at ĉ = 0.5 . The term T2 becomes more important near reaction zone ( ̂c > 0.8 ), see 
⟨T2⟩s�ĉ,t∞ in Fig. 3f.

For the high-Ka case C, Fig.  6 shows that 
[
SdK

]
s

|Ŝd ,ĉ,t∞ (equivalent to Ŝd ⋅ [K]
s
|Ŝd ,ĉ,t∞ ) 

stays negative (or positive) for fast-propagating isosurface elements with Sd > 2SL

√
Ka (or 

Sd < −2SL

√
Ka ). This corresponds to a negative value of [K]

s
 , suggesting a net reduction 

in the summed area of fast-propagating isosurfaces. This observation is not in conflict with 
the fact that there is no change in the area of fully-developed isosurfaces (due to statistical 
stationary). The inset in Fig. 6 shows that [K]

s
 , conditioned at the low-speed isosurface ele-

ments with −1 < Ŝd∕(SL

√
Ka) < 1 , changes to become positive for area production of low 

speed isosurfaces.
Now we examine the velocity contribution to the changes of Sd . First, retreating isosur-

faces with a large negative Sd are promoted by the velocity field, as indicated in Fig. 6 by a 
negative 

[
Tu
]
s

 at negative Sd . Compared with aforementioned negative term of 
[
T1 + T2

]
s

 at 
negative Sd , the velocity-contribution term 

[
Tu
]
s

 has a larger magnitude in the small Ka case 
B, and has a smaller magnitude in the large Ka case C. This suggests that the importance of 
the “direct” role played by velocity in creating retreating isosurfaces [compared with its 
“indirect” historic role played through TSd in Eq. (18)] decreases with an increase in Ka. 
Regarding the isosurfaces with large positive Sd (i.e. Sd > 3SL max(

√
Ka, 1) ), the direct 

Fig. 6  Fully-developed [𝜙]
s
|
Ŝ
d
,ĉ,t∞

 , ⟨𝜙⟩
s
�
ĉ,t∞

 at ĉ = 0.5 for each � ∈ [∇ ⋅ n,T1 + T2,T1, SdK,T
u
,T

u1,Tu2] in 
cases A (left), B (middle) and C (right). All � terms are normalized by S2

L
∕�

F
 (A, B) and Ka2S2

L
∕�

F
 (C); 

normalization of S
d
 is same as in Fig. 5
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velocity contribution 
[
Tu
]
s

 stays positive, therefore, also promotes their existence. However, 
in all three cases this direct velocity contribution is small compared to the combined terms [
T1 + T2

]
s

 , or compared to its indirect contribution through TSd.
Furthermore, in the two “turbulent” cases B and C, the aforementioned promotion effect 

to retreating isosurfaces is largely attributed to the term Tu3 , since Tu3 = Tu − Tu1 − Tu2 in 
constant-density wave and the magnitudes of 

[
Tu1

]
s

 and 
[
Tu2

]
s

 are relatively small compared 
to 
[
Tu
]
s

 at large negative Sd , see Fig. 6.

5  Summary and Conclusion

For turbulent premixed reacting flow represented by a simplified transport equation for a 
reaction progress variable, the evolution equation for the displacement speed Sd character-
izing self-propagation of a reaction progress isosurface was derived in a recent work. In 
the present work this equation is analyzed with an emphasis on physical interpretation of 
different factors that affect the displacement speed. Our analysis reveals multiple effects: 
(i) T1 , the isosurface-following rate of change in reaction surface density, (ii) T2 , the iso-
surface-following rate of change due to diffusion, and (iii) T3 , a stretch-rate-induced differ-
ence between averaged isosurface-following derivative and time derivative of the isosur-
face averaged value, and (iv) Tu or Nu , a direct velocity contribution which can be further 
split into multiple components. The analysis was then applied to study averaged statistics 
of displacement speed for a planar reaction wave propagating in homogeneous isotropic 
constant-density turbulence, simulated using a DNS approach. We examine both the tran-
sient process when the initial planar wave is disturbed by turbulence, as well as the fully 
developed wave after all statistics have evolved to a stationary state.

During the transient phase, the surface-averaged displacement speed ⟨Sd⟩s in the reaction 
zone (preheat zone) experiences a significant decrease (increase). Under highly turbulent 
conditions, the transient value of ⟨Sd⟩s in the reaction zone becomes negative. Among the 
three terms ⟨T1⟩s , ⟨T2⟩s and ⟨T3⟩s , the transient trend of �t⟨Sd⟩s is largely resembled by the dif-
fusive term ⟨T2⟩s . The initial variation in ⟨Sd⟩s is promoted by the velocity contribution Nu 
whose sign changes from positive in the preheat zone to negative in the reaction zone.

In the fully developed wave the averaged displacement speed does not change and its 
value stays positive and approximates the laminar wave speed. The fully developed wave 
does yield a zero sum of ⟨T1⟩s + ⟨T2⟩s + ⟨T3⟩s , with ⟨T1⟩s being positive, ⟨T3⟩s negative and a 
⟨T2⟩s having the smallest magnitude in the preheat zone. The trend holds no matter the wave 
evolves in a highly turbulent flow or a simple shear flow.

In a fully developed wave, local analysis of various terms conditioned on a representa-
tive isosurface reveals that there exists significant amount of isosurface elements with 
negative displacement speed in a highly turbulent reaction wave. In such a wave, the mag-
nitude of the terms affecting Sd can be taken to scale with the Kolmogorov velocity and 
length scales. Furthermore, these terms, when averaged over the entire isosurface, can 
deviate significantly from the corresponding averaged values further conditioned on a fast 
or slow speed of Sd . The isosurfaces propagating with a large positive displacement speed 
are associated with small fuel pockets surrounded by products. The propagation of those 
isosurfaces undergoes net acceleration; similarly isosurfaces with net negative displace-
ment speed experience a net negative acceleration. The acceleration process is promoted by 
the direct velocity contribution Tu , mainly through the part of Tu3.
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