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DRIFT-PRESERVING NUMERICAL INTEGRATORS FOR STOCHASTIC

HAMILTONIAN SYSTEMS

CHUCHU CHEN, DAVID COHEN, RAFFAELE D’AMBROSIO, AND ANNIKA LANG

Abstract. The paper deals with numerical discretizations of separable nonlinear Hamilton-
ian systems with additive noise. For such problems, the expected value of the total energy,
along the exact solution, drifts linearly with time. We present and analyze a time integrator
having the same property for all times. Furthermore, strong and weak convergence of the
numerical scheme along with efficient multilevel Monte Carlo estimators are studied. Fi-
nally, extensive numerical experiments illustrate the performance of the proposed numerical
scheme.
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1. Introduction

Hamiltonian systems are universally used as mathematical models to describe the dynamical evolu-
tion of physical systems in science and engineering. If the Hamiltonian is not explicitly time dependent,
then its value is constant along exact trajectories of the problem. This constant equals the total energy
of the system.

The recent years have seen a lot of research activities in the design and numerical analysis of energy-
preserving numerical integrators for deterministic Hamiltonian systems, see for instance [3, 4, 7, 13,
21, 22, 29, 31, 35, 36, 33, 37, 41] and references therein.

This research has naturally come to the realm of stochastic differential equations (SDEs). Indeed,
many publications on energy-preserving numerical integration of stochastic (canonical) Hamiltonian
systems have lately appeared. Without being too exhaustive, we mention [8, 12, 19, 28] as well as the
works [27, 42, 9] on invariant preserving schemes. Observe, that such extensions describe Hamiltonian
motions perturbed by a multiplicative white noise in the sense of Stratonovich. In some sense, this
respects the geometric structure of the phase space. Hence one also has conservation of the Hamiltonian
(along any realizations). The derivation of energy-preserving schemes in the Stratonovich setting
follows without too much effort from already existing deterministic energy-preserving schemes. This is
due to the fact that most of the geometrical features underlying deterministic Hamiltonian mechanics
are preserved in the Stratonovich setting. This is not the case in the Itô framework considered here.

An alternative to the above Stratonovich setting is to add a random term to the deterministic
Hamiltonian in an additive way. One can then show that the expected value of the Hamiltonian
(along the exact trajectories) now drifts linearly with time, leading to a so called trace formula, see
for instance the work [40] in the case of a linear stochastic oscillator. To the best of our knowledge,
drift-preserving numerical schemes for such a problem have only been theoretically studied in the case
of quadratic Hamiltonians [6, 5, 10, 17, 15, 26, 40, 39] and in the case of linear stochastic partial
differential equations [1, 2, 11, 14, 38]. For instance, recent contributions in structure-preserving
numerics for stochastic problems have addressed conservation properties of stochastic Runge–Kutta
methods applied to stochastic Hamiltonian problems of Itô type [5, 6]. In particular, proper stochastic
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perturbations of symplectic Runge–Kutta methods have been investigated as drift-preserving schemes.
However, these methods seem particularly effective only for linear problems, while, in the nonlinear
case, the drift is not accurately preserved in time. Moreover, in the case of additive noise, the more the
amplitude of the stochastic term increases, the more the accuracy of the drift preservation deteriorates
(see, for instance, Table 1 in [5]). Hence, this evidence reveals a gap in the existing literature that
requires ad hoc numerical methods, effective in preserving the drift in the expected Hamiltonian also
for the nonlinear case. Closing this gap is the main purpose of this article.

In the present publication, we develop and analyze drift-preserving schemes for stochastic separable
Hamiltonian systems, not necessarily quadratic, driven by an additive Brownian motion. In particular,
we propose a novel numerical scheme that exactly satisfies the trace formula for the expected value
of the Hamiltonian for all times (Section 2). In addition, under general assumptions, we show mean-
square and weak convergence of the newly proposed numerical scheme in Sections 3 and 4 to give
a complete picture of its properties. We show that both errors converge with order 1 and that the
weak order is in general not twice the strong order in this specific case. On top of that, in Section 4
we introduce Monte Carlo and multilevel Monte Carlo estimators for the given numerical scheme and
derive their convergence properties along with their computational costs. The main properties of the
proposed time integrators are then numerically illustrated in Section 5.

2. Presentation of the drift-preserving scheme

Let T ą 0, d be a fixed positive integer, pΩ,F ,Pq be a probability space with a normal filtration
pFtqtPr0,T s, and let W : r0, T s ˆ Ω Ñ R

d be a standard pFtqtPr0,T s-Brownian motion with continuous
sample paths on pΩ,F ,Pq.

For a positive integer m and a smooth potential V : Rm Ñ R, let us consider the separable Hamil-
tonian

Hpp, qq “ 1

2

m
ÿ

j“1

p2j ` V pqq.

Consider now the following corresponding stochastic Hamiltonian system with additive noise

dqptq “ ∇pHppptq, qptqqdt “ pptqdt
dpptq “ ´∇qHppptq, qptqqdt ` ΣdW ptq “ ´V 1pqptqqdt` ΣdW ptq.(1)

Here, the constant matrix Σ P R
mˆd has entries denoted by σij . In addition, we assume that the

initial values pp0, q0q of the above SDE have finite energy in expectation, i. e., ErHpp0, q0qs ă `8.
This setting covers, for instance, the following examples: the Hamiltonian considered in [5] (where the
matrix Σ is diagonal), the linear stochastic oscillator from [40], various Hamiltonians studied in [34,
Chap. 4].

Remark 1. In general, most results from the present publication could be extended to the case of
a separable Hamiltonian system with additive martingale Lévy noise. Extension to the case of a
multiplicative (Itô) noise would lead to a trace formula for the energy that depends on qt (when the
matrix Σ depends only on qt). This would correspond to the extra term appearing when converting
between Stratonovich and Itô stochastic integrals.

Using Itô’s lemma, one gets the trace formula for the energy of the above problem (see for instance
[5]):

(2) E rHppptq, qptqqs “ E rHpp0, q0qs ` 1

2
Tr

`

ΣJΣ
˘

t,

for all times t ą 0.
We now want to design a numerical scheme having the same property. The idea we aim to present

is inspired by the deterministic energy-preserving schemes from the literature (see [13, 22, 37] and
references therein), able to provide the exact conservation of the energy of a given mechanical system.
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Energy-preserving methods represent a follow-up of the classical results on geometric numerical inte-
gration relying on the employ of symplectic Runge–Kutta methods, projection methods and nearly
preserving integrators (see the comprehensive monograph [23] and references therein). In the gen-
eral setting of deterministic B-series methods, a general proof for the existence of energy-preserving
methods was given in [18] and practical examples of methods were first developed in [37].

We propose the following time integrator for problem (1), which is shown in Theorem 3 to be a
drift-preserving integrator for all times,

Ψn`1 “ pn ` Σ∆Wn ´ h

2

ż 1

0

V 1pqn ` shΨn`1qds,

qn`1 “ qn ` hΨn`1,

pn`1 “ pn ` Σ∆Wn ´ h

ż 1

0

V 1pqn ` shΨn`1qds,

(3)

where h ą 0 is the stepsize of the numerical scheme and ∆Wn are Wiener increments. Observe that
the deterministic integral above needs to be computed exactly (as in the deterministic setting). This
is not a problem for polynomial potentials V for instance. We also observe that, as it happens for
deterministic energy-preserving methods, the numerical scheme (3) only requires the evaluation to
the vector field of problem (1) in selected points, without requiring additional projection steps for the
exact conservation of the trace formula (2), that would inflate the computational cost of the procedure.

We would like to remark that the proposed drift-preserving scheme is not the only possibility to get
a time integrator that exactly satisfy a trace formula for the energy for all times. Another possibility
could be to use a splitting strategy. This idea is currently under investigation in [16], see also Section 5
below.

Remark 2. Since the proposed numerical scheme is implicit, we present two possible ways of showing
its solvability.

To show the solvability of the drift-preserving scheme (3), we use the fixed point theorem. Assuming
that V 1pxq is globally Lipschitz continuous, we define the function

F pψq “ pn ` Σ∆Wn ´ h

2

ż 1

0

V 1pqn ` shψqds.

The solvability of the numerical integrator (3) is thus equivalent to showing that the function F is a
contractive mapping. Since

F pψ1q ´ F pψ2q “ ´h

2

ż 1

0

´

V 1pqn ` shψ1q ´ V 1pqn ` shψ2q
¯

ds,

then

|F pψ1q ´ F pψ2q| ď h

2

ż 1

0

ˇ

ˇ

ˇ
V 1pqn ` shψ1q ´ V 1pqn ` shψ2q

ˇ

ˇ

ˇ
ds

ď h2

4
L|ψ1 ´ ψ2|.

Therefore, there exists an h˚ “
b

4

L
such that for all h ă h˚, F is a contractive mapping.

If V P C2, we could also use the implicit function theorem instead. Indeed, let us define

Gpψ, h,∆Wnq “ ψ ´ pn ´ Σ∆Wn ` h

2

ż 1

0

V 1pqn ` shψqds.

Then the solvability of ψ for sufficiently small h is equivalent in showing that
ˇ

ˇ

ˇ
∇ψGpψ, h,∆Wnq

ˇ

ˇ

ˇ

h“0

ˇ

ˇ

ˇ
‰ 0.
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In fact

∇ψGpψ, h,∆Wnq “ Id ` h2

2

ż 1

0

sV 2pqn ` shψqds,

so that
ˇ

ˇ

ˇ
∇ψGpψ, h,∆Wnq

ˇ

ˇ

ˇ

h“0

ˇ

ˇ

ˇ
“ |Id| “ 1 ‰ 0.

By the implicit function theorem, we can thus conclude that for sufficiently small h, ψ is solvable.

We next show that the numerical scheme (3) satisfies, for all times, the same trace formula for the
energy as the exact solution to the SDE (1), i. e., that it is a drift-preserving integrator.

Theorem 3. Assume that V P C1. Consider the numerical discretization of the stochastic Hamiltonian

system with additive noise (1) by the drift-preserving numerical scheme (3). Then the expected energy

satisfies the following trace formula

(4) E rHppn, qnqs “ E rHpp0, q0qs ` 1

2
Tr

`

ΣJΣ
˘

tn

for all discrete times tn “ nh, where n P N. Observe that h is an arbitrary step size which is sufficiently

small for the implicit numerical scheme to be solvable.

Proof. Before we start, let us for convenience introduce the notation

Int “
ż 1

0

V 1pqn ` shΨn`1qds.

Using the definitions of the Hamiltonian, of the numerical scheme and a Taylor expansion for the
potential V yields

E rHppn`1, qn`1qs “ E

„

1

2
pJ
n`1pn`1 ` V pqn`1q



“ E

„

1

2
ppn ` Σ∆Wn ´ hIntqJ ppn ` Σ∆Wn ´ hIntq ` V pqnq ` hΨJ

n`1Int



.

By the definition of the numerical scheme and properties of the Wiener increments, one obtains further

E rHppn`1, qn`1qs “ E

„

1

2

´

pJ
npn ´ hpJ

n Int ` pΣ∆WnqJ pΣ∆Wnq ´ hpΣ∆WnqJInt ´ hIntJpn

´hIntJΣ∆Wn ` h2IntJInt
¯

`V pqnq ` hpJ
n Int ` hpΣ∆WnqJInt ´ h2

2
IntJInt



.

Due to cancellations and thanks to properties of the Wiener increments, the expression above simplifies
to

ErHppn`1, qn`1qs “ E

„

1

2
pJ
npn ` V pqnq



` 1

2
Tr

`

ΣJΣ
˘

h

“ ErHppn, qnqs ` 1

2
Tr

`

ΣJΣ
˘

h.

A recursion now completes the proof. �

The above result can also be seen as a longtime weak convergence result and provides a longtime
stability result (in a certain sense) for the drift-preserving numerical scheme (3). Already in the case
of a quadratic Hamiltonian, such trace formulas are not valid for classical numerical schemes for SDEs,
as seen in [40] for instance and in the numerical experiments provided in Section 5.
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3. Mean-square convergence analysis

In this section, we assume that V 1 is a globally Lipschitz continuous function and consider a com-
pact time interval r0, T s. Then from the standard analysis of SDEs, see for instance [30, Theo-
rems 4.5.3 and 4.5.4], we known that for all t, s P r0, T s one has

E
“

|pptq|2 ` |qptq|2
‰

ď C,

E
“

|qptq ´ qpsq|2
‰

ď C|t ´ s|2,
E
“

|pptq ´ ppsq|2
‰

ď C|t ´ s|,

where the constant C may depend on the coefficients of the SDE (1) and its initial values.
We now state the result on the mean-square convergence of the drift-preserving integrator (3).

Theorem 4. Consider the stochastic Hamiltonian problem with additive noise (1) on a fixed time

interval r0, T s and the drift-preserving integrator (3). Assume that the potential V 1 is globally Lipschitz

continuous. Then, there exists h˚ ą 0 such that for all 0 ă h ď h˚, the numerical scheme converges

with order 1 in mean-square, i. e.,

`

E
“

|qptnq ´ qn|2
‰˘1{2 `

`

E
“

|pptnq ´ pn|2
‰˘1{2 ď Ch,

where the constant C may depend on the initial data, the end time T , and the coefficients of (1), but
is independent of h and n for n “ 1, . . . , N . Here, N is an integer such that Nh “ T .

Proof. We base the proof of this result on Milstein’s fundamental convergence theorem, see [34, The-
orem 1.1] and first consider one step in the approximation of the numerical scheme (3), starting from
the point pp, qq at time t “ 0 to pp, qq at time t “ h:

ψ “ p` ΣW phq ´ h

2

ż 1

0

V 1pq ` shψqds,

q “ q ` hψ,

p “ p` ΣW phq ´ h

ż 1

0

V 1pq ` shψqds.

(5)

Let us introduce a similar notation for the exact solution of (1) starting from the point pp, qq at time
t “ 0 to ppphq, qphqq at time t “ h:

pphq “p ´
ż h

0

V 1pqptqqdt ` ΣW phq,

qphq “q `
ż h

0

pptqdt “ q `
ż h

0

”

p´
ż t

0

V 1pqpsqqds` ΣW ptq
ı

dt

“q ` h
”

p ´ 1

h

ż h

0

ż t

0

V 1pqpsqqds dt` 1

h
Σ

ż h

0

W ptqdt
ı

“q ` hψphq.

(6)

Finally, we define the local errors eq
loc

“ qphq ´ q and ep
loc

“ pphq ´ p. In order to use Milstein’s
fundamental convergence theorem in our situation, one has to show that

|E req
loc

s| “ Oph2q,
`

E
“

|eq
loc

|2
‰˘1{2 “ Oph3{2q,(7)

|E rep
loc

s| “ Oph2q,
`

E
“

|ep
loc

|2
‰˘1{2 “ Oph3{2q.(8)
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It turns out that, due to the particular form of (1), we actually achieve better rates for the second
term in (8). Using (5) and (6), we obtain

e
q
loc

“ hpψphq ´ ψq

“
´

Σ

ż h

0

W ptqdt ´ hΣW phq
¯

´
´

ż h

0

ż t

0

V 1pqpsqqds dt´ h2

2

ż 1

0

V 1pq ` shψqds
¯

“ e
q,1
loc

´ e
q,2
loc
.

Noting that

hW phq “
ż h

0

W ptqdt`
ż h

0

t dW ptq,

one gets that

e
q,1
loc

“ ´Σ

ż h

0

t dW ptq.

Hence by the property of Itô integral, we have

E

”

e
q,1
loc

ı

“ 0

and

E

„

ˇ

ˇ

ˇ
e
q,1
loc

ˇ

ˇ

ˇ

2


“ E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

Σ

ż h

0

t dW ptq
ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl “
m
ÿ

i“1

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

j“1

σij

ż h

0

t dWjptq
ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl “
m
ÿ

i“1

d
ÿ

j“1

pσijq2
ż h

0

t2 dt “ h3

3
|Σ|2F ,

where |¨|F denotes the Frobenius norm of a matrix. For the term e
q,2
loc

, using Hölder’s inequality and
the linear growth condition on V 1, we obtain

E

„

ˇ

ˇ

ˇ
e
q,2
loc

ˇ

ˇ

ˇ

2


ď 2E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż h

0

ż t

0

V 1pqpsqqds dt
ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ` 2E

«

ˇ

ˇ

ˇ

ˇ

h2

2

ż 1

0

V 1pq ` shψqds
ˇ

ˇ

ˇ

ˇ

2
ff

ď C1h

ż h

0

t

ż t

0

E
“

|V 1pqpsqq|2
‰

ds dt` C2h
4

ż 1

0

E
“

|q ` shψ|2
‰

ds

ď C1h

ż h

0

t

ż t

0

p1 ` E
“

|qpsq|2
‰

qds dt` C2h
4

ż 1

0

p1 ` E
“

|q ` shψ|2
‰

qds

ď Ch4.

Here in the last step, we used the classical bounds from the beginning of this section,

E
“

|qpsq|2 ` |ppsq|2
‰

ď C
`

1 ` E
“

|q|2
‰

` E
“

|p|2
‰˘

,

and

(9) E
“

|ψ|2 ` |q|2 ` |p|2
‰

ď C
`

1 ` E
“

|q|2
‰

` E
“

|p|2
‰˘

.

The last inequality comes from the fact that, from (5), we have

E
“

|ψ|2
‰

ď C

ˆ

E
“

|p|2
‰

` E
“

|ΣW phq|2
‰

` h2
ż 1

0

E
“

|V 1pq ` shψq|2
‰

ds

˙

ď C1E
“

|p|2
‰

` C2h` C3h
2
`

1 ` E
“

|q|2
‰

` h2E
“

|ψ|2
‰˘

.

This implies that there exists an h˚ ą 0 such that for all 0 ă h ď h˚, inequality (9) is verified.

Therefore, we obtain the following bounds
ˇ

ˇ

ˇ
E

”

e
q,2
loc

ıˇ

ˇ

ˇ
ď

´

E

”

|eq,2
loc

|2
ı¯1{2

ď Ch2 and hence we proved

assertion (7).



7

For the estimate of ep
loc

, we get from (5) and (6) that

e
p
loc

“ ´
ż h

0

V 1pqptqqdt` h

ż 1

0

V 1pq ` shψqds.

Then using that V 1 is globally Lipschitz continuous, we obtain

E
“

|ep
loc

|2
‰

“ E

«

ˇ

ˇ

ˇ

ˇ

h

ż 1

0

`

V 1pqphsqq ´ V 1pq ` shψq
˘

ds

ˇ

ˇ

ˇ

ˇ

2
ff

ď h2
ż 1

0

E
“

|V 1pqphsqq ´ V 1pq ` shψq|2
‰

ds

ď Ch2
ż 1

0

`

E
“

|qphsq ´ q|2
‰

` s2h2E
“

|ψ|2
‰˘

ds

ď Ch4.

In the last step, we use the fact that

E
“

|qphsq ´ q|2
‰

“ E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż hs

0

pprqdr
ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ď hs

ż hs

0

E
“

|pprq|2
‰

dr ď Ch2.

Therefore we obtain the bounds |E rep
loc

s| ď
`

E
“

|ep
loc

|2
‰˘1{2 ď Ch2. An application of Milstein’s

fundamental convergence theorem completes the proof. �

4. Weak convergence analysis

The weak error analysis for the Hamiltonian functional in the given situation is a direct consequence
of the preceding sections. For the considered SDE, the main quantity of interest is given by a specific
test function, i. e., we are interested in computing

E rHppptq, qptqqs ,
for t ą 0. Equation (2) and Theorem 3 imply for all discrete times tn “ nh that

|E rHppptnq, qptnqqs ´ E rHppn, qnqs| “ 0.

For fixed h ą 0 let us further extend the discrete processes ppn, n “ 0, . . . , Nq and pqn, n “ 0, . . . , Nq
to an adapted process for all t ą 0 by setting

phptq “ pn, qhptq “ qn,

for t P rtn, tn`1q. Then ph and qh are piecewise continuous adapted processes which satisfy

|E rHppptq, qptqqs ´ E rHpphptq, qhptqqs| “ 1

2
Tr

`

ΣJΣ
˘

pt ´ tnq ď 1

2
Tr

`

ΣJΣ
˘

h.

In conclusion using the trace formulas (2) and (4) we have just shown the following corollary.

Corollary 5. Assume that V P C1. Consider the numerical discretization of the stochastic Hamilton-

ian system with additive noise (1) by the drift-preserving numerical scheme (3), then the weak error

in the Hamiltonian is bounded by

|E rHppptq, qptqqs ´ E rHpphptq, qhptqqs| ď 1

2
Tr

`

ΣJΣ
˘

h,

for all t ą 0. More specifically, for all t “ tn, with n “ 0, . . . , N , the error is zero and the approximation

scheme is preserving the quantity of interest.
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Let us next consider the weak error for other test functions than H and introduce for convenience
the space of square integrable random variables

L2pΩq “
 

v : Ω Ñ R, v strongly measurable, }v}L2pΩq ă `8
(

,

where
}v}L2pΩq “ Er|v|2s1{2.

In the following result on weak convergence, we obtain the same rate as for strong convergence in
Section 3 and will see in the examples in Section 5 that this seems optimal. This is caused by our
combination of smoothness assumptions and the additive noise.

Theorem 6. Assume that V 1 is globally Lipschitz continuous. Then the drift preserving scheme (3)
converges weakly with order 1 to the solution of (1) on any finite time interval r0, T s. More specifically,

for all differentiable test functions f : R2d Ñ R with f 1 of polynomial growth there exist C ą 0 and

h˚ ą 0 such that for all 0 ă h ď h˚ and corresponding n “ 1, . . . , N with hN “ T

|E rfppptnq, qptnqqs ´ E rfppn, qnqs| ď Ch.

Proof. If f is globally Lipschitz continuous, the claim follows directly from Theorem 4.
Else let us use the abbreviations Xptnq “ ppptnq, qptnqq and Xn “ ppn, qnq. Then the mean value

theorem and the Cauchy–Schwarz inequality imply that

|E rfpXptnqqs ´ E rfpXnqs| “
ˇ

ˇ

ˇ

ˇ

E

„
ż 1

0

f 1pXn ` spXptnq ´Xnqqds ¨ pXptnq ´Xnq
ˇ

ˇ

ˇ

ˇ

ď
ż 1

0

}f 1psXptnq ` p1 ´ sqXnq}L2pΩq}Xptnq ´Xn}L2pΩq ds.

While the second term in the product is bounded by

}Xptnq ´Xn}L2pΩq ď Ch

by Theorem 4, we use the polynomial growth assumption on f 1 for the first term to obtain
ż 1

0

}f 1psXptnq`p1´sqXnq}L2pΩq ds ď C
´

1 ` 2p2m´1q{2p2m ` 1q´1{2
`

Er|Xptnq|2ms ` Er|Xn|2ms
˘1{2

¯

.

The solution to (1) has bounded 2m-th moment by Theorem 4.5.4 in [30]. The corresponding bound-
edness of the numerical solution follows by Lemma 2.2.2 in [34] for h sufficiently small depending on
the polynomial growth constant on f 1. Choosing h˚ to be the minimum of this restriction and the one
from Theorem 4, we conclude the proof. �

Remark 7. As we will see in Section 5, there exist combinations of equations and test functions for
which the weak order of convergence of the drift-preserving scheme is in fact 2. More specifically,
we observe this behaviour in simulations for the identity as test function. To understand this faster
convergence, let us first consider the expectation of the stochastic Hamiltonian system (1)

d

dt
Erqptqs “ Erpptqs

d

dt
Erpptqs “ ´ErV 1pqptqqs

and apply the classical averaged vector field integrator (see e.g. [13, Eq. (1.2)]) to this ordinary
differential equation. This time integrator is known to be of (deterministic) order of convergence 2.
We obtain the following numerical scheme

Erqn`1s “ Erqns ` h

2
pErpns ` Erpn`1sq

Erpn`1s “ Erpns ´ h

ż 1

0

ErV 1pp1 ´ sqqn ` sqn`1qs ds.
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The above numerical scheme is nothing else than the expectation of the drift-preserving scheme (3)

ErΨn`1s “ Erpns ´ h

2

ż 1

0

ErV 1pqn ` shΨn`1qs ds

Erqn`1s “ Erqns ` hErΨn`1s

Erpn`1s “ Erpns ´ h

ż 1

0

ErV 1pqn ` shΨn`1qs ds “ 2ErΨn`1s ´ Erpns.

We can thus conclude that the weak order of convergence in the first moment of the drift-preserving
scheme is 2.

In general, we will not be able to compute E rfppn, qnqs analytically but have to approximate the
expectation. This can for example be done by a standard Monte Carlo method. Following closely [32],
we denote by

EM rY s “ M´1

M
ÿ

i“1

Ŷ i

the Monte Carlo estimator of a random variable Y based on M independent, identically distributed
random variables Ŷ i. It is well-known that EM rY s converges P-almost surely to ErY s for M Ñ `8,
by the strong law of large numbers. Furthermore, it converges in mean square if Y is square integrable
and satisfies

}ErY s ´ EM rY s}L2pΩq “ M´1{2
VarrY s1{2 ď M´1{2 }Y }L2pΩq.

By Corollary 5 for the Hamiltonian and the splitting of the error into the weak error in Theorem 6
and the Monte Carlo error we therefore obtain the following lemma.

Lemma 8. Assume that V P C1. Consider the numerical discretization of the stochastic Hamiltonian

system with additive noise (1) by the drift-preserving numerical scheme (3), then the single level Monte

Carlo error is bounded by

}E rHppptnq, qptnqqs ´ EM rHppn, qnqs}L2pΩq “ M´1{2
VarrHppn, qnqs1{2 ď M´1{2 }Hppn, qnq}L2pΩq,

for all tn “ nh. For any test function f under the assumptions of Theorem 6, this result generalizes

on any finite time interval to

}E rfppptnq, qptnqqs ´ EM rfppn, qnqs}L2pΩq “ Ch `M´1{2
Varrfppptnq, qptnqqs1{2

ď Ch `M´1{2 }fppptnq, qptnqq}L2pΩq

with computational work for balanced error contributions

W “ h´1 ¨ M2 “ h´3.

For completeness of presentation of the numerical analysis of the drift-preserving scheme (3), al-
though not necessarily relevant for Hamiltonian SDEs, let us look at the savings in computational
costs of the multilevel Monte Carlo estimator [25, 20]. Therefore we assume that pYℓ, ℓ P N0q is a
sequence of approximations of Y . For given L P N0, it holds that

YL “ Y0 `
L
ÿ

ℓ“1

pYℓ ´ Yℓ´1q

and due to the linearity of the expectation that

ErYLs “ ErY0s `
L
ÿ

ℓ“1

ErYℓ ´ Yℓ´1s.
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A possible way to approximate ErYLs is to approximate ErYℓ ´ Yℓ´1s with the corresponding Monte
Carlo estimator EMℓ

rYℓ ´ Yℓ´1s with a number of independent samples Mℓ depending on the level ℓ.
We set

ELrYLs “ EM0
rY0s `

L
ÿ

ℓ“1

EMℓ
rYℓ ´ Yℓ´1s

and call ELrYLs the multilevel Monte Carlo estimator of ErYLs.
We consider for the remainder of this section for convenience that the approximation scheme is

based on a sequence of equidistant nested time discretizations τ “ pτ ℓ, ℓ P N0q given by

τ ℓ “ ptℓn “ T ¨ n ¨ 2´ℓ, n “ 0, . . . , 2ℓq
with sequence of step sizes phℓ “ T ¨ 2´ℓ, ℓ P N0q.

Let us denote by pppℓ, qℓq, ℓ P N0q the sequence of approximation schemes with respect to the
sequence of time discretizations τ . We observe that Theorem 6 implies in the setting of [32, Theorem 1]
that aℓ “ 2´ℓ, η “ 2´1 by Theorem 4, and κ “ 1. Plugging in these values we obtain the following
corollary.

Corollary 9. Consider the numerical discretizations (3) of the stochastic Hamiltonian system (1)
satisfying the assumptions in Theorem 4 and Theorem 6. Then for any differentiable test function f

with derivative of polynomial growth, the multilevel Monte Carlo estimator on level L ą 0 satisfies for

any ǫ ą 0 at the final time T

}ErfpppT q, qpT qqs ´ ELrfppL
2L
, qL

2L
qs}L2pΩq ď pC1 ` C3 ` C2ζp1 ` ǫqqhL

with sample sizes given by Mℓ “ r22pL´ℓ{2qℓ2p1`ǫqs, ℓ “ 1, . . . , L, ǫ ą 0, and M0 “ r22Ls, where

r¨s denotes the rounding to the next larger integer and ζ the Riemann zeta function. The resulting

computational work is bounded by

WL “ Oph´2

L L3`2ǫq.
In conclusion we have seen that our drift-preserving scheme converges in general weakly with order 1,

i. e., the same order as in mean square in Section 3. Approximating quantities of interest with a
standard Monte Carlo error with accuracy h requires computational work h´3. This can be reduced
to essentially h´2 when a multilevel Monte Carlo estimator is applied instead.

5. Numerical experiments

This section presents various numerical experiments in order to illustrate the main properties of the
drift-preserving scheme (3), denoted by DP below. In some numerical experiments, we will compare
this numerical scheme with classical ones for SDEs such as the Euler–Maruyama scheme (denoted by
EM) and the backward Euler–Maruyama scheme (denoted by BEM).

5.1. The linear stochastic oscillator. We first consider the SDE (1) with the following Hamiltonian

Hpp, qq “ 1

2
p2 ` 1

2
q2

and with Σ “ 1 and W scalars. We take the initial values pp0, q0q “ p0, 1q.
In this situation the integral in the drift-preserving scheme (3) can be computed exactly, resulting

in the following time integrator

Ψn`1 “
ˆ

pn ` ∆Wn ´ h

2
qn

˙ˆ

1 ` h2

4

˙´1

,

qn`1 “ qn ` hΨn`1,

pn`1 “ pn ` ∆Wn ´ h

ˆ

qn ` h

2
Ψn`1

˙

.
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Using the stepsize h “ 5{24, resp. h “ 100{28, and the time interval r0, 5s, resp. r0, 150s, we
compute the expected values of the energy Hpp, qq along the numerical solutions. For this problem, we
also use the stochastic trigonometric method from [10], denoted by STM, which is know to preserve
the trace formula for the energy for this problem. For comparison, the following splitting strategies
are also used

‚ composition of the (deterministic) symplectic Euler scheme for the Hamiltonian part with an
analytical integration of the Brownian motion (this scheme is denoted by SYMP);

‚ a splitting based on the decomposition dqptq “ pptqdt, dpptq “ ΣdW ptq and dqptq “ 0 dt, dpptq “
´V 1pqptqqdt (this time integrator is denoted by SPLIT).

The expected values are approximated by computing averages over M “ 106 samples. The results
are presented in Figure 1, where one can clearly observe the excellent behaviour of the drift-preserving
scheme as stated in Theorem 3. Observe that it can be shown that the expected value of the Hamil-
tonian along the Euler–Maruyama scheme drifts exponentially with time. Furthermore, the growth
rate of this quantity along the backward Euler–Maruyama scheme is slower than the growth rate of
the exact solution to the considered SDE, see [40] for details. These growth rates are qualitatively
different from the linear growth rate in the expected value of the Hamiltonian of the exact solution
(2), of the STM from [10], and of the drift-preserving scheme (4). Although not having the correct
growth rates, the splitting schemes behave much better than the classical Euler–Maruyama schemes.
Further splitting strategies are under investigation in [16].
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Figure 1. Numerical trace formulas for the linear stochastic oscillator on
r0, 5s (left) and r0, 150s (right).

We next illustrate numerically the strong convergence rate of the drift-preserving scheme stated in
Theorem 4. Using the same parameters as above, we discretize the SDE on the interval r0, 1s using
step sizes ranging from 2´5 to 2´10. The loglog plots of the errors are presented in Figure 2, where
mean-square convergence of order 1 for the proposed integrator is observed. The reference solution
is computed with the stochastic trigonometric method using href “ 2´12. The expected values are
approximated by computing averages over M “ 105 samples.

To conclude this subsection, we numerically illustrate the weak rates of convergence of the above
time integrators. In order to avoid Monte Carlo approximations, we focus on weak errors in the first
and second moments only, where all the expectations can be computed exactly. We use the same
parameters as above except for Σ “ 0.1, T “ 1, and step sizes ranging from 2´4 to 2´16. The results
are presented in Figure 3, where one can observe weak order 2 in the first moment and weak order 1
in the second moment for the drift-preserving scheme. This is in accordance with the results from the
preceding section.
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Figure 2. Strong rates of convergence for the drift-preserving scheme (DP),
the backward Euler–Maruyama scheme (BEM), the Euler–Maruyama scheme
(EM), and the stochastic trigonometric method (STM) when applied to the
linear stochastic oscillator.
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(a) Errors in the first moment of q (left) and p (right).
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(b) Errors in the second moment of q (left) and p (right).

Figure 3. Weak rates of convergence for the drift-preserving scheme (DP),
the backward Euler–Maruyama scheme (BEM), the Euler–Maruyama scheme
(EM), and the stochastic trigonometric method (STM) when applied to the
linear stochastic oscillator.

5.2. The stochastic mathematical pendulum. Let us next consider the SDE (1) with the Hamil-
tonian

Hpp, qq “ 1

2
p2 ´ cospqq

and with Σ “ 0.25 and W scalars. We take the initial values pp0, q0q “ p1,
?
2q.



13

For this problem, the proposed time integrator reads

Ψn`1 “ pn ` Σ∆Wn ´ h

2

ˆ

cospqnq ´ cospqn ` hΨn`1q
hΨn`1

˙

,

qn`1 “ qn ` hΨn`1,

pn`1 “ pn ` Σ∆Wn ´ h

ˆ

cospqnq ´ cospqn ` hΨn`1q
hΨn`1

˙

.

Using the stepsize h “ 5{28, resp. h “ 10{210, and the time interval r0, 5s, resp. r0, 10s, we compute
the expected values of the energy Hpp, qq along the numerical solutions. Newton’s iterations are used
to solve the nonlinear systems in the drift-preserving scheme (3) as well as in the BEM scheme. The
expected values are approximated by computing averages over M “ 106 samples, resp. M “ 105

samples. The results are presented in Figure 4, where one can clearly observe the perfect behaviour of
the drift-preserving scheme as stated in Theorem 3 as well as the excellent behaviour of the splitting
strategies.
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Figure 4. Numerical trace formulas for the stochastic mathematical pendu-
lum on r0, 5s (left) and r0, 10s (right).

We also illustrate numerically the strong convergence rate of the drift-preserving scheme stated
in Theorem 4. For this, we discretize the stochastic mathematical pendulum with Σ “ 0.1 on the
interval r0, 0.5s using step sizes ranging from 2´5 to 2´10. The loglog plots of the errors are presented
in Figure 5, where mean-square convergence of order 1 for the proposed integrator is observed. The
reference solution is computed with the drift-preserving scheme using href “ 2´12. The expected values
are approximated by computing averages over M “ 105 samples.

We conclude this subsection by reporting numerical experiments illustrating the weak rates of
convergence of the above time integrators. In order to reduce the Monte Carlo error and thus produce
nice plots, we had to multiply the nonlinearity with a small coefficient of 0.2 and considered the
interval r0, 1s. The other parameters are the same as above. The step sizes range from 2´1 to 2´6.
The expected values are approximated by computing averages over M “ 108 samples. The results
are presented in Figure 6, where one can observe weak order 2, resp. 1, of convergence for the drift-
preserving scheme in the first, resp. second, moment in the variable q. This confirms the theoretical
results from the previous section.

5.3. Double well potential. We consider the Hamiltonian with double well potential from [5]. The
SDE (1) is thus given by the Hamiltonian

Hpp, qq “ 1

2
p2 ` 1

4
q4 ´ 1

2
q2
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Figure 5. Strong rates of convergence for the drift-preserving scheme (DP),
the backward Euler–Maruyama scheme (BEM), and the Euler–Maruyama
scheme (EM), when applied to the stochastic mathematical pendulum.
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Figure 6. Weak rates of convergence for the drift-preserving scheme (DP),
the backward Euler–Maruyama scheme (BEM), and the Euler–Maruyama
scheme (EM) when applied to the stochastic mathematical pendulum. Er-
rors in the first moment of q (left) and in the second moment of q (right).

and with Σ “ 0.5 and W scalars. We take the initial values pp0, q0q “ p
?
2,

?
2q.

When applied to the Hamiltonian with double well potential, the time integrator (3) takes the form

Ψn`1 “ pn ` Σ∆Wn ´ h

2

ˆ

q3n ´ qn ´ h

2
Ψn`1 ` 3h

2
q2nΨn`1 ` h2qnΨ

2

n`1 ` h3

4
Ψ3

n`1

˙

,

qn`1 “ qn ` hΨn`1,

pn`1 “ pn ` Σ∆Wn ´ h

ˆ

q3n ´ qn ´ h

2
Ψn`1 ` 3h

2
q2nΨn`1 ` h2qnΨ

2

n`1 ` h3

4
Ψ3

n`1

˙

.

Using 216 stepsizes of the drift-preserving scheme (3) on the time interval r0, 50s (using fixed-point
iterations for solving the implicit systems), and approximating the expected value with M “ 105

samples, we obtain the result displayed in Figure 7. This again numerically confirms the long time
behaviour of the drift-preserving scheme stated in Theorem 3 and shows its superiority compared to
the numerical schemes from [5], see the numerical results in [5, Table 1].
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Figure 7. Numerical trace formula for the stochastic Hamiltonian with dou-
ble well potential on r0, 50s.

5.4. Hénon–Heiles problem with two additive noises. Finally, we consider the Hénon–Heiles
problem with two additive noises from [5, 24]. This SDE is given by the Hamiltonian

Hpp, qq “ 1

2

`

p21 ` p22
˘

` 1

2

`

q21 ` q22
˘

` α

ˆ

q1q
2

2 ´ 1

3
q31

˙

,

and with Σ “ diagpσ1, σ2q and W “ pW 1,W 2qJ in (1). We take the following parameters σ1 “ σ2 “
0.2, α “ 1{16, and initial values p0 “ p1, 1q and q0 “ p

?
3, 1q.

For this system of SDEs, the drift-preserving scheme reads
ˆ

Ψ1,n`1

Ψ2,n`1

˙

“
ˆ

p1,n
p2,n

˙

`
ˆ

σ1∆W
1
n

σ2∆W
2
n

˙

´ h

2

¨

˝

q1,n ` h
2
Ψ1,n`1 ` α

´

q22,n ` hΨ2,n`1q2,n ` h2

3
Ψ2

2,n`1

¯

´ α
´

q21,n ` hΨ1,n`1q1,n ` h2

3
Ψ2

2,n`1

¯

q2,n ` h
2
Ψ2,n`1 ` 2α

´

q1,nq2,n ` h
2
q1,nΨ2,n`1 ` h

2
q2,nΨ1,n`1 ` h2

3
Ψ1,n`1Ψ2,n`1

¯

˛

‚,

qn`1 “ qn ` hΨn`1

ˆ

p1,n`1

p2,n`1

˙

“
ˆ

p1,n
p2,n

˙

`
ˆ

σ1∆W
1
n

σ2∆W
2
n

˙

´ h

¨

˝

q1,n ` h
2
Ψ1,n`1 ` α

´

q22,n ` hΨ2,n`1q2,n ` h2

3
Ψ2

2,n`1

¯

´ α
´

q21,n ` hΨ1,n`1q1,n ` h2

3
Ψ2

2,n`1

¯

q2,n ` h
2
Ψ2,n`1 ` 2α

´

q1,nq2,n ` h
2
q1,nΨ2,n`1 ` h

2
q2,nΨ1,n`1 ` h2

3
Ψ1,n`1Ψ2,n`1

¯

˛

‚.

Using 211 stepsizes of the drift-preserving scheme (3) on the time interval r0, 50s (using fixed-point
iterations for solving the implicit systems), and approximating the expected values with M “ 105

samples, we obtain the result displayed in Figure 8. This figure again clearly illustrates the excellent
long time behaviour of the proposed numerical scheme as stated in the above theorem.

Furthermore, the drift-preserving scheme (3) outperforms the numerical schemes from [5, 24] in
terms of preserving the expected value of the energy (compare Figure 8 to [5, Table 2] and [24,
Figure 6.7]).
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Figure 8. Numerical trace formula for the stochastic Hénon–Heiles problem
on r0, 50s.
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