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Abstract

The perhaps most promising platform for quantum information processing is the circuit-
QED architecture based on superconducting circuits representing quantum bits. These
circuits must be made with low losses so that the quantum information is retained for as
long as possible. We developed fabrication processes achieving state-of-the-art coherence
times of over 100 µs. We identified the primary source of loss to be parasitic two-level
systems by studying fluctuations of qubit relaxation times.

Using our high-coherence circuits, we implemented a quantum processor built on
fixed-frequency qubits and frequency-tunable couplers. The tunable couplers were lumped-
element LC resonators, where the inductance came from a superconducting quantum
interference device (SQUID). We achieved a controlled-phase gate with a fidelity of 99 %
by parametric modulation of the coupler frequency. Using this device, and another similar
to it, we demonstrated two different quantum algorithms, the quantum approximate
optimization algorithm, and density matrix exponentiation. We achieved high algorithmic
fidelities, aided by our carefully calibrated gates.

Additionally, we researched parametric oscillations using frequency-tunable resonators.
Previously, degenerate parametric oscillations have been demonstrated by modulation of
the resonant frequency at twice that frequency. We use this phenomenon to implement a
readout method for a superconducting qubit with a fidelity of 98.7 %.

We demonstrated correlated radiation in nondegenerate parametric oscillations by
modulating at the sum of two resonant frequencies of a multimode resonator. We showed
an excellent quantitative agreement between the classical properties of the oscillations
with a theoretical model. Moreover, we studied higher-order modulation at up to five
times their resonant frequencies. These types of parametric oscillation states might be
used as a quantum resource for continuous-variable quantum computing.

Keywords: superconducting circuits, quantum information, circuit quantum electrody-
namics, high coherence, parametric modulation
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CHAPTER I

Introduction

Computers are used everywhere in today’s society. We use them to predict the weather,
find the shortest route between two points, keep track of our money, and watch videos
of cats on the Internet. On a fundamental level, a computer is a combination of logical
gates operating on a set of bits. However, not many computer programmers express their
programs in terms of ‘microcode,’ which describes how the computer should modify its
bits. Instead, high-level programming languages and compilers are used to allow the
programmer to express their program and its intended function more easily.

A computer program needs to implement some algorithm that takes input data and
produces the correct solution. There can be many algorithms for solving the same problem,
but the time complexity of each algorithm can be different. Time complexity describes
how the time it takes to solve a problem scales with the size of the input data. For
example, a brute-force algorithm for searching for a number in a list would be to go
through and check all numbers in the list, resulting in linear time complexity, O(N),
where N is the number of numbers in the list. However, if we know that the list is sorted,
we can search through it in O(logN) time by checking whether our number is lower or
higher than the number in the middle of the list. We can then discard half of the list, and
continue doing so until we find our number. This algorithm is known as a binary search
and is exponentially faster than the brute-force search. On the other hand, if we need to
search the list many times, it would be better to store the numbers in a different data
structure than a list. For instance, a hash table would allow for searching in O(1) time.

As we just saw from this simple example, the choice of algorithm and the resulting
time complexity depend on how the data is structured and what we want to do with
the data. The same is true for quantum algorithms executed on quantum computers.
Quantum computers will not give a universal speed-up to all problems and algorithms.
However, it can give speed-ups for specific problems in certain applications [1].
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CHAPTER 1. INTRODUCTION

1.1 Quantum information

A quantum computer is predicted to be able to solve problems that today are intractable
for classical computers, such as prime factorization of large integers [2] and quantum
simulation of molecules [3]. The holy grail for a quantum computer is exponential speed-up
over a classical computer. For instance, Shor’s algorithm for factorization has a polynomial-
time complexity [2], which can be compared to the best known classical algorithm which
runs in sub-exponential time [4] (however, still much slower than polynomial). Therefore,
Shor’s algorithm provides an almost exponential speed-up.

The fundamental building block of a quantum computer is the quantum bit (qubit).
It takes inspiration from the classical bit, which can represent either a zero or a one. In
the context of qubits, Dirac’s ket notation is commonly used to represent the two states,
|0〉 and |1〉. The laws of quantum mechanics allow for superposition states, meaning that
each state is associated with a probability amplitude. Superposition states are sometimes
(wrongly) referred to as a qubit being in more than one state at the same time and the
source of parallel-processing power in quantum computers. However, superposition states
do enable parallel access to all 2n states available to n qubits, which is a part of why
quantum algorithms can outperform classical algorithms.

For instance, take two qubits with four possible states: |00〉, |01〉, |10〉, and |11〉. It
is possible to create an equal superposition of the four states, where each measurement
of the system would randomly yield only one of the states with a uniform probability
(essentially a random number generator). A computer that gives random answers is not
a good computer. We might have been in a superposition of all possible states, but the
outcome is not useful. The trick is not only to “try” all states at the same time; we
also need to be in the state corresponding to the solution to the problem by the time of
measurement. Therefore, a quantum algorithm must manipulate the qubits so that they
first utilize the large state space available to them, and then converge into to final state at
the end of the algorithm. The process to converge into one particular state relies on the
fact that the probability amplitudes can actually be negative (or even complex), which
allows for destructive interference between different state amplitudes (cf. the famous
double-slit experiment). This interference between different states is what gives quantum
computers their power [5]. Without the interference effect, the computer would not be a
quantum computer, but instead a probabilistic Turing machine [6], which can be used to
factorize integers [7], but not in polynomial time.

Another example of a quantum algorithm is the HHL algorithm for solving linear
systems of equations [8], which it does in O(logN) time, where N is the number of
variables. Classically, this problem would require O(N) time. So, HHL provides an
exponential speed-up, even if the classical algorithm is polynomial in time. HHL does
come with some caveats, it does, for instance, not provide the solution vector directly,
and it requires a quantum random access memory. In general, quantum algorithms can
provide exponential speed-ups for linear algebra; however, one should read the fine print
of the practical limitations [9].

There are other quantum algorithms that “only” provide polynomial speed-ups. The
most famous one being Grover’s search algorithm, which can search through an unsorted
list in O(

√
N) time. Sometimes, the phrase ‘Grover-type speed-up’ is used to describe
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1.1. QUANTUM INFORMATION

quadratic speed-up. One practical application of Grover’s algorithm would be to break
symmetric encryption (e.g., AES) by brute force (i.e., by guessing each possible combina-
tion). However, these types of attacks are rather weak, since a doubling in the encryption
key size would erase the quadratic speed-up gained by Grover’s algorithm.

To run useful versions of Shor’s and HHL would require large-scale fault-tolerant
quantum computers. Large-scale meaning thousands of quantum bits, and fault-tolerant
meaning that gates can be executed on those qubits without any errors [10, 11]. It is
unlikely that physical qubits will ever have low enough error rates on their own; instead,
quantum error correction (QEC) will be needed [5, 12]. Briefly, QEC encodes the state of
a logical qubit into many physical qubits, which leads to reduced error rates but also a
significant overhead in the number of qubits needed. As an example, factorizing a 2048
bit number with Shor’s algorithm would require 6144 logical qubits. However, even when
taking into account state-of-the-art physical error rates of 10−3, the overhead of QEC
brings the number of physical qubits up to 20 million [13, 14].

Current quantum processors are not fault-tolerant and are usually referred to as noisy
intermediate-scale quantum (NISQ) devices [15]. Nevertheless, such processors hold great
promise; for instance, they might allow for the execution of heuristic quantum algorithms
solving combinatorial optimization problems. On small-scale quantum processors, these
algorithms can serve as technology demonstrators. While there is no proven speed-
up (hence, heuristic), one argument for why quantum computers could be good at
combinatorial optimization problems is the enormous state-space available to them. For
instance, the number of different combinations that 60 people can sit on 60 chairs exceeds
the number of atoms in the known universe, and it would be impossible for a classical
computer to try all the different combinations. On the other hand, a quantum computer
with 272 qubits can form a superposition of that many states. The difficulty lies in
designing an algorithm that gives a high probability of measuring the optimal state at
the end of the algorithm.

Finding useful algorithms for quantum computers is no easy task. Proving their
performance and time complexity can be even harder. For each specific problem, a
quantum algorithm needs to be found that not only utilizes the quantum properties of
the qubits (i.e., superposition and state-amplitude interference) but also yields the correct
result upon a measurement of the qubits’ states.

In 2019, Arute et al. [16], demonstrated that a 53 qubit quantum computer could
perform a computation that is intractable on even the most powerful supercomputer in
the world. It is important to note that it is not proven that it cannot exist a classical
algorithm that does the same computation efficiently. Moreover, the computation itself
does not have any practical application. Nevertheless, it most likely demonstrates that
quantum computers can do better than classical computers on some problems (although
not every problem).

To build a successful quantum computer, both small- and large-scale, several criteria
need to be fulfilled [17]. These criteria are related to, among other things, coherence,
control, and readout of qubits, which all are topics of the research included in this thesis.

Quantum bits can be realized with many different physical systems. Some common
ones include nitrogen-vacancies in diamonds [18, 19], quantum dots in semiconductors
[20], trapped ions [21, 22], semiconducting nanowires [23] and 2D electron gases [24],
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CHAPTER 1. INTRODUCTION

superconducting tunnel junctions, and perhaps topological protected Majorana fermions
[25]. In this work, we solely use superconducting tunnel junctions and circuits to build
our devices.

1.2 Superconducting devices and circuit QED

As the name suggests, superconductivity is a phenomenon where the conductivity is very
large. In fact, it is infinite for direct currents. However, there is a critical current, Ic,
which is the maximum current that a superconductor can sustain without returning to
its normal (non-superconducting) state. The microscopics behind superconductivity is
modeled as an attractive interaction between the electrons in the material. Two electrons
pair up due to this interaction and create a so-called Cooper pair. Cooper pairs, in
contrast to electrons, are bosons. Meaning that below the critical temperature Tc, they
condense into a common ground state. Due to the binding between two electrons in a
Cooper pair, a gap in the density of states is opened where electrons cannot exist. Due
to this gap, the Cooper pairs can move without scattering inside the superconductor,
yielding zero resistivity. More information about superconductivity and its microscopic
theory can be found in Ref. [26].

A Josephson junction is formed by separating two superconductors via a thin insulator.
The insulator acts as a tunneling barrier, which Cooper pairs can tunnel through without
dissipating energy, making it possible to draw current through the barrier without applying
any voltage across it. Moreover, the Josephson junction also acts as an inductor, with an
inductance given by

L =
~
2e

1

Ic cosϕ
, (1.1)

where ϕ is the superconducting phase difference between the two superconductors, ~ is
the reduced Planck constant, and e is the electron charge. ϕ is related to the current I
through the junction,

I = Ic sin(ϕ). (1.2)

Superconducting circuits and devices [26, 27] are today found in a variety of systems,
such as MRI and MEG machines at hospitals, particle accelerators, and power grids. Three
main features make superconducting circuits so versatile and useful. Firstly, the absence
of electrical resistance allows for low-loss electrical circuits, as well as the generation of
high magnetic fields. Secondly, tunable nonlinear elements can be implemented and used
as, for example, signal amplifiers, mixers, and detectors. Finally, superconducting circuits
have a high susceptibility to changes in their environment, enabling a broad range of
different detectors and sensors for energies close to the quantum level [28].

In this thesis, we use superconducting circuits for quantum information processing.
Superconducting qubits are one of the most promising architectures for realizing a useful
quantum computer [29–36]. During the last two decades, superconducting circuits have
played a significant role in the development of what is now circuit quantum electrodynamics
(cQED) [37–39]. In other words, the study of light-matter interactions at the quantum
level using circuits (instead of actual atoms). For instance, coherence times exceeding
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1.2. SUPERCONDUCTING DEVICES AND CIRCUIT QED

100 µs [Paper B], gate fidelities above 99% [40], readout in less than 50 ns [41], and scalable
3D-integration [42] have all been demonstrated.

In cQED, there are three main building blocks. The first one is the resonator. A
typical example of a resonator is the LC circuit, which can be used as a storage for energy
and is characterized by its resonant frequency and quality factor. A quality factor is a
measure of the number of cycles that energy can be stored in the resonator. In this work,
resonators are built out of planar superconducting circuits, which lets us achieve quality
factors of several millions [43].

The second block is the superconducting quantum interference device (SQUID) [44]. A
SQUID consists of two superconducting Josephson tunnel junctions connected in parallel,
see Fig. 1.1 (c-d). A magnetic field threading the loop formed by the two junctions will
induce a circulating current, which effectively decreases the critical current of the SQUID.
Assuming identical junctions, Eq. (1.1) modifies to

L =
~
2e

1

2Ic| cos(πΦ/Φ0)| cosϕ
, (1.3)

where Φ is the magnetic flux threading the SQUID loop and Φ0 = h/(2e) is the magnetic
flux quantum. Therefore, the SQUID can be used as a magnetic flux tunable inductor.
For a comprehensive review of SQUIDs, see Ref. [44].

The tunability allows for precise and rapid modulation of different circuit parameters,
such as resonant frequencies [45] and couplings [46]. The nonlinearity of the Josephson
junction with respect to the current I, and the fact that it can be made strong, is what
allows for the generation of nonclassical states. A strong nonlinearity is one of the reasons
for the success of cQED, as it allows for experiments not possible with optical photons
where nonlinearities are much weaker.

The third and final block is the quantum bit (qubit). A qubit is a two-level system
typically used to store quantum information. Moreover, a qubit can be used as an artificial
atom to study how light and atoms interact. The benefits of using circuits and not real
atoms are that it is easier to isolate and manipulate a circuit, and that is easier to engineer
its properties.

1.2.1 Planar resonators

Microwave resonators are fundamental parts of many electrical circuits. Resonators can
be used to store electromagnetic energy in the microwave regime, to filter noisy signals,
to stabilize oscillators, and to achieve high electric fields [47]. Superconducting resonators
are often used in applications requiring very low losses (high quality factors), such as in
particle accelerators [48], radiation detectors [49], and quantum devices [32]. In quantum
physics, the electromagnetic field inside a resonator can be quantized and instead described
using particles known as photons [50]. The quantization of the electromagnetic field leads
to the presence of vacuum fluctuations, which means that even at zero temperature, the
resonator is still oscillating.

A piece of a transmission line can realize a microwave resonator. By fixing the length
of the transmission line, and the two boundary conditions (usually open and grounded),
see Fig. 1.1 (a-b), a certain mode structure is achieved with some resulting resonant
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(a) (c) (e)

(b) (d) (f)

Josephson junctions
50 um1 um100 um

Figure 1.1: Three building blocks of circuit quantum electrodynamics. The top row shows
the equivalent electrical circuits, and the bottom row shows images of fabricated devices.
(a-b) A distributed, quarter wavelength, microwave resonator. In practice, the resonator
is meandered to reduce its footprint. (c-d) A superconducting quantum interference device
(SQUID) consisting of two Josephson junctions in parallel. (e-f) A transmon qubit. The
x-shape forms the capacitor while the Josephson junction is located (but not visible) in the
darker area near the top.
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frequencies. Usually, one of the resonators’ ends is used to couple the resonator to another
transmission line with a strength κ, which is used to drive and measure the resonator.
Refs. [51–53] cover the derivation of many resonator properties (e.g., resonant frequencies
and coupling strengths) as a function of their geometry.

In addition to being a useful element for cQED, resonators themselves can be used
to study physics. For instance, they are valuable tools for probing surface defects (e.g.,
magnetic spins [54] and quasiparticle recombination time [55]). Resonators are also used
as high-sensitivity detectors for radiation ranging from infrared to x-rays [56].

1.2.2 The transmon qubit

Superconducting quantum bits (qubits) have seen tremendous development since their
first demonstration in 1999 [57]. Their coherence times, the gate and readout fidelities,
and the number of coupled qubits have all improved by orders of magnitude. However,
there is still a long way to go before a large-scale universal quantum computer can
be demonstrated. The largest improvement has been in the coherence time, which is
now in the 100 µs range, compared to a few nanoseconds in the first qubit. With that
problem under control, for now, the focus has shifted to scaling up the systems from
just a few qubits to tens or hundreds of qubits. The currently largest, and published,
superconducting quantum processor consists of 53 qubits [16]. A significant challenge is
to maintain the long coherence times while scaling up to more qubits due to the complex
3D geometries needed to provide control access to all qubits [42].

There are many different types of superconducting qubits [31, 35]. Almost all super-
conducting qubits have in common that their transition frequencies are in the low GHz
range and that they utilize the Josephson nonlinearity in some way. One of the most
popular qubits is the transmon [58], which is a capacitively shunted Josephson junction,
see Fig. 1.1 (e-f). The transmon can be modeled as a highly nonlinear LC resonator. Since
the inductance of the Josephson junction is nonlinear, it introduces anharmonicity in the
spectrum of the LC circuit, see Fig. 1.2 (a). If the anharmonicity is large enough, the two
lowest energy levels of the oscillator, denoted |0〉 and |1〉, can be isolated and used as a
qubit. For the transmon, the anharmonicity is negative (the energy difference between
|1〉 and |2〉 is lower than the one between |0〉 and |1〉) and its magnitude is typically
200–300 MHz.

The transmon is characterized by two energies, the Josephson energy EJ and charging
energy EC. The Josephson energy is related to the critical current (and inductance) of
the Josephson junction,

EJ =
Φ0Ic
2π

. (1.4)

The charging energy is related to the sum of all capacitances in the system, CΣ,

EC =
e2

2CΣ
. (1.5)

EJ/EC � 1 is required for being in the so-called transmon regime, where the qubit
frequency is insensitive to electric charge [58]. The sensitivity to electric charge is known
as the charge dispersion and is exponentially suppressed in EJ/EC. A low charge dispersion
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(a) (b) (c) (d)

Figure 1.2: (a) Illustration of the transmon spectrum including the three lowest energy
levels. Note that the distance between |1〉 and |2〉 is smaller than the distance between
|0〉 and |1〉. (b) Transmon frequency and anharmonicity as a function of EJ/EC with
EC/2π = 200 MHz (c) A transmon qubit (red) coupled to a microwave resonator (black).
(d) Readout voltage as a function of frequency. The dispersive shift χ moves the resonant
frequency depending on the qubit’s state.

is needed to achieve a long coherence time as inevitable charge noise would otherwise
cause dephasing. Noise, relaxation, and dephasing will be discussed in more detail in
Chapter 2.

Far into the transmon regime, the transition frequency between the ground and the
excited state is

ωq =

√
8EJEC − EC

~
, (1.6)

and the anharmonicity is

η = −EC

~
. (1.7)

However, for finite and practical EJ/EC ratios, numerical solutions of the full transmon
Hamiltonian in a phase basis using Mathieu functions are typically needed for accurate
estimations of ωq, η, and the charge dispersion [59]. In Fig. 1.2 (b), we plot ωq and η as
a function of EJ/EC with EC/2π = 200 MHz. For the qubit frequency, Eq. (1.6) has an
error smaller than 1 % and is not visible on the scale of this plot. However, for η, Eq. (1.7)
predicts a constant anharmonicty of −2π × 200 MHz. which is an error of 10–20 % for
30 < EJ/EC < 200.

1.2.3 A coupled system of resonators and qubits

In the circuit quantum electrodynamics architecture, a qubit is strongly coupled to one
or several resonators [60], as shown in Fig. 1.2 (c). The resonators allow for fast and
accurate state readout, qubit–qubit coupling, and gives protection from the environment.
A two-level system (qubit) coupled to a harmonic oscillator (microwave resonator) is
typically described by the Jaynes-Cummings Hamiltonian, which after a rotating-wave
approximation equals to [37]

Ĥ/~ = ωrâ
†â+

ωq
2
σ̂z + g

(
σ̂+â+ σ̂−â†

)
, (1.8)

10



1.2. SUPERCONDUCTING DEVICES AND CIRCUIT QED

where â (â†) is the annihilation (creation) operator for the harmonic oscillator, σ̂± are
the raising and lowering operators for the qubit, and g is the coupling strength.

To enable measurements of the qubit’s state, the dispersive coupling regime is typically
used. This regime is valid when |∆| � g, where ∆ = ωa − ωr is the qubit–resonator
detuning. In this limit, the Jaynes-Cummings Hamiltonian can be rewritten as

Ĥdisp/~ = (ωr + χσ̂z) â†â+
1

2

(
ωq +

g2

∆

)
σ̂z. (1.9)

For a true two-level system, χ = g2/∆. However, for the transmon with its rather weak
anharmonicity, the higher levels also contribute [58],

χ =
g2

∆

η

∆ + η
. (1.10)

χ is known as the dispersive shift, and its effect is that the resonator frequency depends
on the qubit state, as illustrated in Fig. 1.2 (d). Therefore, the dispersive shift can be
used to readout the state of the qubit.

In general, Eq. (1.8) is not enough to describe the full behavior of an implementation
of a qubit. The environment interacts with the qubit and causes, for example, relaxation
back into the ground state or thermal excitation to higher levels. It is challenging to model
the microscopics of the environment due to the many degrees of freedom involved. Instead,
statistical properties of the qubit–environment interaction are used. These include the
qubit’s effective temperature T and relaxation time T1. If the qubit is initialized to its
excited state, it will relax back into its ground state with the characteristic time scale T1,
which is defined as the time where the probability of finding the qubit in its excited state
is equal to 1/e, in the case of exponential decay.

1.2.4 Frequency tunability and nonlinearities

The resonator and qubit described so far are fixed in frequency, which in some applications
is sufficient. However, in this work, resonators with a tunable resonant frequency are
needed. To achieve fast frequency tunability of resonators, a SQUID is placed at the
grounding point of the resonator, where the current is at its maximum [45]. The inductance
of the SQUID gives an additional phase shift, which is equivalent to an increase in
the resonator’s electrical length. The resonant frequency ωr of the SQUID-terminated
resonator can be approximated by [61]

ωr(Φ) ≈ ωλ/4

1 + γl/| cos(πΦ/Φ0)| , (1.11)

where ωλ/4 is the resonant frequency without the SQUID, and γl is the inductive partici-
pation ratio defined as the ratio between the SQUID and bare resonator inductances.

Incorporation of a SQUID into the resonator does not only enable frequency modulation,
but it also adds nonlinearity to the system due to the dependence between the current
through and phase across the junction. A Taylor expansion of Eq. (1.2) yields

I ≈ Ic(ϕ− ϕ3/6). (1.12)
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The cubic term is known as the Duffing term, or Kerr term in optics. This nonlinearity
causes a power-dependent frequency shift of the resonator, which can be quantified by
αn, the amount of negative frequency shift per photon in the resonator [62]. Nonlinear
dynamical systems are popular in textbooks, where effects such as harmonic generation,
bifurcation, and chaos are studied [63, 64].

The transmon qubit can also be made frequency tunable by replacing its single
Josephson junction with a SQUID.

1.3 Continuous-variable quantum computing

Another architecture for quantum computing is based on continuous variables (CV) where
harmonic oscillators (resonators) replace the qubits [65, 66]. Harmonic oscillators have an
infinite Hilbert (state) space, in contrast to qubits, which have two energy levels. However,
a harmonic oscillator is usually thought of as a classical system. So to do quantum
information processing, nonclassical states of the harmonic oscillator are created, such
as superpositions of Fock states [67], entangled two-mode squeezed states [68–70], and
multi-photon cat states [71]. In the creation of these states, parametric phenomena play
a prominent role.

While this thesis includes results related to parametric pumping of quantum states
that could be useful for CV quantum computing, we do not utilize them in that context.

1.3.1 Parametric effects

Parametric phenomena have a long history in a vast number of areas. A common, everyday
example is that of a child standing on a swing and increasing the swing amplitude by
moving up and down with twice the frequency of the swing. Parametric pumping is
the modulation (pumping) of one system parameter, for example, the frequency or
nonlinearity of a resonator. If done at certain frequencies, the parametric pump can
provide amplification, damping, or frequency conversion. In the quantum regime, it can
also be used to create entanglement between optical, microwave, or mechanical modes.
Parametric amplifiers also add the lowest amount of noise possible and are vital to
measurements of superconducting qubits and gravitational waves.

There are a few concepts related to parametric pumping that are important to know.
First, energy must, of course, be conserved. In the case of ‘degenerate’ amplification of
a signal via three-wave-mixing, the pump has an energy ~ωp, and the signal ~ωs. To
conserve energy, ωp = 2ωs. In a quantum picture, one pump photon gets split into two
signal photons with half the energy. In the nondegenerate case, the signal is slightly
detuned from ωp/2, which implies that an idler is created at ωi to conserve energy,
ωp = ωs + ωi.

There is also four-wave-mixing, where the pump frequency is close to the signal
frequency, and 2ωp = ωs + ωi. Three- and four-wave refers to how many photons are
involved in the parametric process.

Parametric pumping can also perform frequency conversion between two modes of
different frequencies. If done via three-wave-mixing, ωp = ω1 − ω2, where ω1/2 are the
frequencies of the respective modes.
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Superconducting circuits can implement all of the above parametric phenomena.
Typically, the parametric modulation is achieved by modulating the flux through the
SQUID loop of a frequency tunable microwave resonator. A microwave transmission line
is placed close to the SQUID so that the current through the transmission line induces a
magnetic field around itself and into the SQUID loop.

Parametric pumping refers to the pumping (modulation) of one of the parameters
of a system. In the case of a resonator, there are two possibilities, either to modulate
the damping or the resonant frequency. When placing a SQUID at the current antinode
of the resonator, its resonant frequency will depend on the magnetic flux through the
SQUID. By modulating the magnetic field with a sinusoidal signal, and therefore the
resonant frequency, different parametric effects such as amplification [72] and frequency
conversion [73] can be realized.

In this work, a phenomenon knows as parametric oscillation is studied and utilized.
By frequency modulating a resonator at twice its resonant frequency, and with a large
amplitude, the ground state of the resonator becomes unstable. Therefore, the resonator
starts to oscillate at its resonant frequency. These oscillations are said to be self-sustained
since there is no external drive of the system at the resonant frequency. Parametric
oscillations have been observed in a variety of systems, such as optical and microwave
cavities [74, 75]. We demonstrate a different regime by using a multimode resonator and
a frequency modulation at the sum of two resonant frequencies. This regime is referred to
as nondegenerate parametric oscillations [76, 77].

1.4 Measurement techniques

Superconducting qubits and devices need to operate at cryogenic temperatures. The
reason is two-fold: the critical temperature of the most commonly used superconductors is
on the order of 1 to 10 Kelvin, and for resonators and qubits to occupy their ground states,
their energy ~ω must be much less than the thermal energy kBT . Most superconducting
qubits are partly made out of aluminum, which has a critical temperature of 1.2 K, while
the temperature corresponding to the qubit energy is around 200 mK. Therefore, it is
desirable to operate the device below 20 mK.

Commercially available dilution refrigerators reach temperatures below 10 mK. Cooling
to a temperature of 3 K is done using the second stage of a pulse-tube cryocooler [78, 79].
Then, a dilution unit in the refrigerator achieves temperatures below 10 mK via a transfer
of helium-3 through a phase boundary in a mixture of helium-3 and helium-4 [80].

The electrical measurement setup can be divided into two parts: inside and outside
of the cryostat. The cryostat is equipped with a set of coaxial cables for transmitting
and receiving microwave signals to and from devices. The input signals are attenuated on
their way down from room temperature to 10 mK. This serves three purposes: first, it
thermally anchors the lines to the different stages of the cryostat. Secondly, it yields the
appropriate signal powers at the resonator input. Finally, it also attenuates the thermal
noise generated at the different temperature stages inside the cryostat.

The setup outside of the cryostat consists of various microwave instruments. For
instance, signal generators provide monochromatic microwave signals in the GHz range,
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and vector network analyzers are used to measure scattering matrices. Due to the
complexity of the measurements, such as the amount of data and instruments involved,
computers are needed for synchronous hardware control and data logging. This work
uses the software Labber for all instrument control, measurement automation, and data
logging1. Each physical instrument has its own software instrument driver responsible for
translating from a general command to an instrument-specific command. For example,
the user might request that the frequency of a signal generator be set to 5 GHz. The driver
then translates this to a command that the instrument understands. Most instruments are
controlled via the standard commands for programmable instruments (SCPI); however,
some instruments have their own APIs. Most instrument drivers are found on the Labber
driver repository2.

1.5 Thesis outline

This thesis serves both as an introduction to, and a summary of, 13 journal articles in
the subject area of superconducting circuits and quantum information. The articles can
be grouped into three main categories with extensive overlap. Papers A to D concern the
fabrication and characterization of superconducting devices. Paper E is about a readout
technique for quantum bits. Paper F and Paper G show experimental implementations of
two quantum information algorithms. Finally, we look at how superconducting circuits
can be used to create different microwave photon states in Papers H to M.

This thesis will not include all the results of all the articles. Instead, all papers are
appended at the end and cited as needed in the thesis. The thesis focuses on some of the
background and experimental details omitted from the papers, as well as on putting the
appended papers in a broader context.

1See http://labber.org for more information.
2See https://github.com/Labber-software/Drivers
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CHAPTER II

High-coherence superconducting circuits

This chapter describes some of the different loss and dephasing mechanisms in supercon-
ducting circuits. This knowledge is required for understanding how to best design circuits
and their measurement environment. It is also important to fabricate the devices with as
few defects and lossy interfaces as possible. One section of this chapter is dedicated to
explaining our fabrication procedure. Finally, this chapter provides a summary of the
results in Papers A to D, which deal with the characterization of losses and noise in a few
different systems.

High-coherence circuits are needed to be able to store quantum information in the
circuits, as decoherence is equivalent to the loss of information. In quantum computing,
information is stored in the complex state (amplitude and phase) of a qubit. Therefore,
both amplitude and phase need to be preserved for as long as possible. Loss of amplitude
is usually referred to as relaxation and can be caused by electrical dissipation in the case
of superconducting qubits. The time with which the qubit relaxes is denoted by T1. In
the context of quantum information, relaxation can be seen as a probability of having the
qubit state flip from |1〉 to |0〉.

On the other hand, a qubit’s phase is lost by uncertainty in the qubit frequency. The
time on which this happens is known as the dephasing time Tφ. Analogously to bit flips,
dephasing can be seen as a probability of having a phase flip between |1〉 and −|1〉. The
combination of relaxation and dephasing is what causes decoherence and loss of quantum
information, which happens with the decoherence time T2, related to T1 and Tφ by

1

T2
=

1

2T1
+

1

Tφ
. (2.1)

There are two ways of extending T2. Either by reducing the mechanisms responsible
for relaxation and dephasing or by the use of error-correcting codes [81]. Quantum error
correction (QEC) is a research topic by itself and is not featured in this work. Basically,
QEC relies on encoding the information of one logical qubit into many physical qubits.
By some measurement, errors can be detected and subsequently corrected for, resulting in
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a longer coherence time of the logical qubit compared to each physical qubit. In this work,
we are focused on identifying and reducing the relaxation and dephasing mechanisms,
which allow us to realize the high-coherence qubits needed to enable QEC and large-scale
quantum computers in the future.

2.1 Loss in superconducting devices

Our circuits are made out of superconductors for minimal loss due to electrical resistance.
While superconductors have zero resistance for DC currents, they are not necessarily loss-
less at higher frequencies. For instance, the presence of quasiparticles (unpaired electrons)
or magnetic vortices (non-superconducting regions) in the superconductor can induce loss
for alternating currents. Additionally, there is loss due to electromagnetic interaction
with parasitic two-level systems (TLS) that can absorb and dissipate energy, and due to
radiation into other electromagnetic modes present in the device. The dominating loss
mechanism for a given circuit mainly depends on its geometry and environment; however,
it is not trivial to experimentally determine the dominating mechanism. This can make
it challenging to improve circuits, as changes to a non-dominant mechanism cannot be
observed without collecting a significant amount of statistics.

Over the last two decades, superconducting resonators and qubits have increased
their relaxation times into the 100 µs range, corresponding to quality factors well above
one million [82]. Achieving these long lifetimes was enabled via improved circuit design
[58, 83, 84], reduced loss to quasiparticles and magnetic vortices by improved shielding
[85, 86], and improved materials with fewer TLS [87, 88]. In Paper A and Paper B, we
demonstrated that the loss in our resonators and qubits, are mainly due to TLS.

For a qubit, we define the relaxation rate to its steady-state,

Γ1 =
1

T1
= Γ1→0 + Γ0→1, (2.2)

where Γ1→0 is the transition rate from excited to ground state and Γ0→1 from ground to
excited state. At low temperatures (T � ~ω/kB), Γ0→1 is negligible. We typically observe
that our qubits have a ground state population above 99%, consistent with Γ0→1 � Γ1→0

Unwanted qubit-state transitions are due to noise or signal in some parameter λ, which
can be calculated via Fermi’s golden rule [89],

Γ1→0 =
1

~2

∑
λ

∣∣∣∣∣〈1| dĤλ

dλ
0〉
∣∣∣∣∣
2

Sλ(ωq), (2.3)

where Sλ(ωq) is the spectral density at the qubit frequency, and the sum goes over all
possible parameters. To decrease the decay rate, we can either decrease the sensitivity to
the noise (the matrix element) or the noise itself. Some matrix elements cannot decrease
too much since we need them to control the qubit itself. One example of reducing a matrix
element can be seen with the evolution from the single Cooper-pair box into the transmon.
The transmon exponentially suppresses the qubit’s sensitivity to electric charge, implying
that decoherence due to charge noise is also suppressed [58].
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Every possible loss mechanism contributes linearly to the total relaxation rate. For
instance, we could have a combination of TLS, quasiparticle, magnetic and radiative
(Purcell) loss,

Γ1 = ΓTLS(P, T ) + Γqp(T ) + Γmag(B) + Γp(T ), (2.4)

where each mechanism has some dependence on the external parameters P (circulating
power in the resonant circuit), T (temperature), and B (magnetic field). As long as
the external parameter dependence is not identical for two or more mechanisms, we can
change the external parameters to extract the rate for each mechanism. For instance,
we can measure the loss of a resonator as a function of P to extract ΓTLS as it is the
only mechanism with a power dependence. Typically, we perform experiments where we
measure loss as a function of power and temperature.

2.1.1 Radiative loss

A qubit coupled directly to a wideband transmission line would spontaneously emit into
said transmission line with a rate Γr, where Γr is the coupling strength between qubit
and transmission line. To prevent this rapid decay, we use a frequency-detuned readout
resonator as a filter between the qubit and the transmission line, which results in a reduced
effective decay rate Γp. This rate is known as the Purcell rate [90]. Another way to look
at the Purcell decay is that noise in the transmission-line induces qubit relaxation via
Eq. (2.3). The resonator acts as a filter and reduces the noise at the qubit frequency,
therefore reducing the decay rate.

The Purcell rate depends on the inter-system couplings (g and κ) and frequency
detuning (∆ = ωq − ωr). For a transmon qubit, a common formula for the Purcell rate
(at zero temperature) is [58],

Γp = κ
g2

∆2
. (2.5)

To account for finite temperature, Eq. (2.5) should be multiplied by coth (~ωq/2kBT ) [89],
meaning that the Purcell rate increases with temperature. This increase is understood as
stimulated emission due to increased thermal noise in the transmission line.

However, Eq. (2.5) does not tell the full story. There is a frequency correction factor
ωq/ωr [91], and g is not detuning independent as it originates from a capacitive coupling
capacitance Cg with a frequency-dependent impedance 1/jωCg. A modified Purcell rate
expressed with circuit parameters is

Γp = κ
C2
g

4CqCr

ωqωr
(ωq − ωr)2

. (2.6)

Moreover, both Eq. (2.5) and Eq. (2.6) assume that the qubit is coupled to a single-mode
resonator. However, our readout resonators are typically distributed coplanar waveguide
resonators containing modes at harmonics of its fundamental resonant frequency. These
higher frequency modes introduce an asymmetry in ∆ for the Purcell rate, increasing the
decay rate for positive detunings [83]. In addition, g and κ increase with the square-root
and square of the mode number, respectively. These scalings with the mode number
result in a significant contribution to the total Purcell rate from the higher modes [83].
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A numerical investigation of a full circuit model taking the higher modes into account
was performed in Ref. [83] and showed good agreement with experimentally observed
relaxation times. With that said, we use ∆ < 0 to minimize the Purcell rate, and Eq. (2.6)
is accurate enough in that regime.

If we cannot reach a low enough Purcell rate due to other constraints on g, κ, and ∆,
we may add additional circuit elements to change the environment seen by the qubit to
reduce the rate even further. For instance, a second resonator [91, 92] or an impedance
transformer [93], can be added between the readout resonator and the transmission line
to act as a so-called Purcell filter. Purcell filters are typically used when fast qubit
readout is needed (i.e., large κ). In the case of using a second resonator as a Purcell filter,
the filter is resonant with the readout resonator, which reduces the coupling between
the qubit and transmission line (analogously to a second-order filter where its transfer
function is squared, and a sharper cut-off is achieved). A Purcell filter with a quality
factor QF and resonant with the readout resonator decreases the Purcell rate with a
factor of (ωr/2∆QF )2.

Finally, it is possible to couple a Purcell filter to more than one readout resonator,
which is beneficial for frequency-multiplexed readout in a multi-qubit architecture. In
that case, the bandwidth of the Purcell filter (ωr/QF ) should be wide enough so that the
readout resonators can be spaced far enough apart in frequency to avoid any significant
overlap between two or more resonators. In our work, only Paper F uses a Purcell filter,
where it is coupled to three readout resonators.

2.1.2 Quasiparticle loss

Here, quasiparticles refer to unpaired electrons in a superconductor. They can cause a
loss in both resonators and qubits by absorbing energy and then relaxing via a phonon,
so it is important to minimize the number of quasiparticles as much as possible.

Just below the critical temperature of the superconductor, only a small amount of all
electrons form Cooper-pairs, but as the temperature decreases, more and more electrons
pair up. At zero temperature, all electrons are paired up (except one if the total number
of electrons is odd). If the number of quasiparticles follows what is expected for a certain
temperature, they are said to be equilibrium or thermal quasiparticles. However, the
temperature of the quasiparticles might be elevated above the temperature of the cryostat
(10 mK), sometimes referred to as cold nonequilibrium quasiparticles. For equilibrium and
cold nonequilibrium quasiparticles, the loss rate for resonators and transmons is given by
[94, 95]

Γqp =
Lkωr
Lπ

√
2∆0

~ωr
xqp, (2.7)

where Lk is the kinetic inductance from the superconductor (which depends on the
superconductor used and the geometry of the resonator), L is the total inductance, ∆0 is
the superconducting gap, and xqp is the ratio between the density of quasiparticles and
the density of Cooper-pairs. For transmons, Lk = L and ωr = ωq. At low temperatures,
we have that [95],

xqp =

√
2π∆0kBT

∆0
e−∆0/kBT . (2.8)
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Combining Eq. (2.7) and Eq. (2.8) shows that the loss to quasiparticles is linear in the
number of quasiparticles, which decreases exponentially with temperature.

There are also hot nonequilibrium quasiparticles. These are believed to originate from
high-energy photons. A photon with an energy larger than the superconducting gap can
impinge the superconductor and break a Cooper pair into two quasiparticles. If the energy
of the photon is much larger than the gap, it will also provide a large momentum to
the quasiparticles, enough for the quasiparticles to stimulate emission and absorption of
qubits. These quasiparticles will not follow a distribution given by a system in equilibrium
with some temperature, and we cannot use Eq. (2.8). In general, we would need to
integrate over the exact distribution of quasiparticles, which we do not know, to find xqp.

The quasiparticle population does not grow with time since two quasiparticles can
again pair-up and form a Cooper pair. This mechanism is known as recombination and
happens with some timescale depending on the superconductor [96] and substrate [55]
used. Therefore, xqp depends on the balance between the rate that incoming photons
and thermal fluctuations generate quasiparticles, and the rate with they are removed [94].
It is also possible to create traps for quasiparticles to reduce their population [97, 98].

2.1.3 Two-level systems

The term ‘two-level systems’ is a very general concept that refers to any microscopic
system with two predominant states in which the system can switch between the two
states. A TLS can, therefore, be characterized by the energy difference and switching rate
between its two states. The TLS model was originally developed for amorphous solids and
their low-temperature properties. The simplest TLS model, the standard tunneling model
(STM), assumes an ensemble of TLS with a uniform energy distribution, and importantly,
no TLS–TLS interaction.

The microscopic origin of TLS is not fully known and has been a long-lasting problem
in condensed matter physics. Recently, atomic hydrogen [99] and molecular oxygen [100]
have been shown to be two sources of TLS. For a TLS to absorb energy from a qubit, the
TLS must couple to electrical fields (e.g., via an electric dipole moment). The coupling
strength between a TLS and a qubit strongly depends on the physical location of the
TLS. For instance, TLS on the surface of the capacitor couples less than a TLS inside
the insulating barrier for a Josephson junction. For qubits with large or many Josephson
junctions, the probability of having strongly coupled TLS in the junction barrier is higher
than for a transmon with only one junction.

The electrical dipole moment of a TLS allows for tuning of the TLS with external
electrical fields, which in turn can be used to infer the physical location of TLS [101, 102].
In Ref. [102], they found that 46 % of the TLS reside on the surface of the device.

For resonant circuits (e.g., qubits and resonators), TLS with similar resonant frequencies
can exchange energy with the circuit. An excited TLS then relaxes by emitting a phonon,
essentially removing energy from the circuit. Since a single TLS can only absorb a single
energy quantum at a time, there is a maximum loss rate that the TLS ensemble can
induce. By increasing the circulating power in the circuit, the TLS gets saturated, and
the loss rate decreases. In superconducting resonators, we can probe their losses as a
function of the circulating power in the resonator P . The STM predicts that the TLS
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loss rate as a function of P is

ΓTLS(P, T ) = ωrFδTLS

tanh ~ωr

2kBT(
1 + P

Pc

)β , (2.9)

where F is a filling factor equal to the ratio of electric field in the TLS region to the total
electric field, δTLS is the TLS loss tangent, and Pc is a critical power needed to saturate
one TLS. The exponent β should be 1/2 according to the STM; however, experimentally
β is usually closer to 0.2 for superconducting resonators. There are various theories for
explaining this discrepancy, such as spectral diffusion of strongly interacting TLS or the
presence of different types of TLS ensembles with different Pc [103].

In the case of qubits, P � Pc for typical Pc, thus Eq. (2.9) can be approximated as

ΓTLS(T ) = ωqFδTLS tanh
~ωr

2kBT
. (2.10)

Therefore, we can use measurements of loss in superconducting resonators at low powers to
estimate the expected loss for qubits with similar filling factors [104]. This is advantageous
as measuring the loss of resonators is simpler and faster than measuring the loss of qubits.

Equation (2.9) predicts that the loss to TLS should decrease with increasing tempera-
tures, as a higher temperature can saturate the TLS in a similar way to high circulating
power. This effect has been observed in resonators [105]. We might, therefore, conclude
that qubits should perform better at an elevated temperature; however, the temperature
needed to observe a substantial decrease in TLS loss is above 100 mK. At that temper-
ature, other qubit relaxation mechanisms would be increased, effectively nullifying the
benefits of TLS saturation, see Fig. 2.1.

Finally, we compare the temperature dependence of TLS [Eq. (2.10)] to quasiparticle
[Eq. (2.7)] and radiative loss [Eq. (2.5)], see Fig. 2.1. It is clear that at low temperatures,
the loss due to quasiparticles is many orders of magnitude smaller than for both TLS
and Purcell. However, the quasiparticles loss is calculated assuming only equilibrium
quasiparticles, which is generally not the case. At low temperatures where qubits typically
operate, the loss is dominated by TLS. For the calculations in Fig. 2.1, we assumed
aluminum as the superconductor (∆0/h = 44 GHz), FδTLS = 5× 10−7, ωq/2π = 4 GHz,
and a Purcell rate at zero temperature of 1/Γp = 300 µs.

2.2 Qubit dephasing

Energy loss is not the only decoherence mechanism for superconducting qubits, see
Eq. (2.1). If the frequency of a qubit is not stable (hint, it is not), the qubit state will
evolve in time with a non-deterministic phase. This phase gives a probability of having a
phase flip of the qubit state. The larger the frequency fluctuations are, and the longer the
qubit state evolves under these fluctuations, the larger the phase error becomes. In the
long evolution time limit, all phase information is lost, and the qubit is in a fully mixed
state.
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Figure 2.1: The temperature dependencies of energy loss due to quasiparticles, two-level
systems, and radiation (Purcell). The solid line corresponds to the combined loss. At
low temperatures, TLS dominate, while at high temperatures, the loss is dominated by
quasiparticles.

As for loss, dephasing can be related to a noise spectral density and a matrix element.
In contrast to Eq. (2.3), the dephasing rate depends on the noise within a window of
frequencies, resulting in a strong dependence on the shape of the noise spectrum. The
exact window depends on the pulse sequence used to measure dephasing, and a qubit
may, therefore, be used to measure the noise spectrum itself [106]. For instance, flux
and charge noise usually have 1/f (pink) spectra, whereas thermal resonator noise gives
a constant spectrum (white). In the case of A/f noise, where A is the frequency noise
amplitude at 1 Hz, the resulting dephasing rate is equal to A [58].

Historically, three primary sources of dephasing were considered for qubits based on
Josephson junctions: charge, flux, and critical-current noise. To a great extent, charge
noise was mitigated by the invention of the transmon qubit, which made the qubit
frequency much less sensitive to charge [58]. Critical-current noise is interesting since it
was estimated that transmons should be limited to dephasing times of 35 µs [58], which is
not the case as dephasing times far exceeding that has been demonstrated, as we will see
later. This must imply that the critical-current noise in modern circuits is much less than
what has been previously reported in the literature [107].

Frequency-tunable circuits are common in circuit-QED. This tunability is typically
achieved by tuning the magnetic flux through a SQUID acting as a tunable inductance.
Any frequency tunability necessarily induces frequency fluctuations due to fluctuations in
the control parameter. For circuits with SQUIDs, dephasing is caused by flux noise, a
well-researched topic due to the application of SQUIDs as detectors [44]. Typically, we
distinguish between flux noise in the macroscopic environment surrounding the device and
the microscopic environment on the surface of the SQUID itself. By proper filtering and
shielding, the macroscopic flux noise can be reduced to a level well below the microscopic.
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It is noteworthy that the level of microscopic flux noise is very similar for both detectors
and qubits, implying that the two communities can benefit from each other and collaborate
on reducing flux noise.

One simple solution to mitigate the contribution of flux noise to qubit dephasing is
to remove the SQUID and use a single Josephson junction, which removes the qubit-
frequency tunability. In Papers B and G, we use these fixed-frequency qubits to achieve
high coherence. As we will see in later chapters, we introduce tunable couplers to overcome
some of the limitations of having fixed-frequency qubits. These couplers do not have the
same requirement of high coherence and can have SQUIDs even in the presence of flux
noise. If the flux tunability and its associated noise is an issue, an asymmetric SQUID
can be used to reduce the sensitivity to flux noise [108].

A sometimes overlooked dephasing mechanism is capacitance noise, which can be caused
by interacting TLS. Such noise has been observed in planar superconducting resonators,
as in Paper A and Ref. [109], and there is no fundamental reason why transmons should be
protected from this type of noise. Further investigations are needed into how capacitance
noise could limit transmon qubits.

An additional dephasing mechanism is varying photon numbers in, for instance, readout
resonators. A residual photon population could originate from previous measurements
(coherent states) or nonideal thermalization of the resonator (thermal states). Both
thermal and coherent states contain superpositions of different numbers of photons,
implying that there is an uncertainty in the number of photons in the resonator. This
uncertainty yields frequency fluctuations of qubits coupled to the resonator through the
AC-stark shift. The effective dephasing rate from a thermal state with a small population
n̄� 1 can be expressed as [110],

Γth
φ =

κ2

κ2 + 4χ2

4χ2

κ
n̄. (2.11)

Finally, fluctuations in qubit frequencies could be confused with frequency fluctuations
in the signals used to drive the qubits. However, all microwave equipment can be phase-
locked to a common atomic clock, yielding frequency stabilities far greater than the
stability of any current superconducting qubit frequency [111].

2.3 Qubit and resonator design

From our understanding of loss and dephasing mechanisms, we set out to design practical
circuits optimized for low loss and dephasing. Here, practical means that we can measure
and control the qubits with high fidelity in a reasonable time. For instance, we need
1/κ ≈ 500 ns to achieve a sufficiently fast qubit readout and an anharmonicity larger than
200 MHz to be able to drive sufficiently fast qubit gates without leaking to higher qubit
states. Another practical consideration is the physical size of the qubit. A physically large
capacitor can reduce the filling factor F in Eq. (2.10), effectively decreasing loss due to
TLS [87]. However, since the ultimate goal is to create a device with multiple qubits on
the same chip, there is a trade-off between the filling factor and the physical size of the
chip. The first transmons used compact interdigitated capacitors with an approximate
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size of 0.005 mm2 [112]. While they were physically small, their filling factors were high,
yielding relaxation times of T1 ≈ 2 µs [113]. By increasing the finger width of the capacitor
(and reducing the number of fingers to keep the capacitance constant), relaxation times
of up to 18 µs was observed in Ref. [114] using similar materials as Ref. [113]. In the limit
of only two fingers, the capacitor consists of two large rectangular plates. In this limit,
using a 0.25 mm2 capacitor, Paik et al. [84] demonstrated T1 ≈ 60 µs. Later on, Barends
et al. [115], developed the ‘xmon’, a cross-shaped transmon suitable for scaling up to a
large 2D-grid of qubits while having a reduced filling factor, demonstrating T1 ≈ 44 µs
with an area of 0.05 mm2.

To operate in the transmon regime, we need a Josephson energy much greater than the
charging energy, EJ/EC � 1; however, it is not practical to go too deep into the transmon
regime. There are three main trade-offs for EJ and EC: lower qubit frequency yields
higher coherence; greater anharmonicity allows for faster qubit operations; and larger
EJ/EC reduces the qubit frequency sensitivity to charge. These three criteria cannot be
fulfilled at the same time. A good trade-off is EJ = 12 GHz and EC = 180 MHz, which
gives EJ/Ec = 67, a qubit frequency around 4 GHz, an anharmonicity of −200 MHz,
and a charge dispersion less than 400 Hz. With these parameters, we typically achieve
relaxation times T1 ≈ 60 µs, decoherence times T2 ≈ 100 µs, and operations can safely be
run in 20 ns.

With the qubit frequencies fixed, we proceed to the design of the resonator, which
includes its frequency ωr (and the detuning ∆ = ωq − ωr) and the two coupling strengths
g and κ. Here, we trade-off the speed of the readout (1/κ) to the Purcell rate (Eq. (2.6)),
while also maintaining a dispersive shift χ similar to κ. For κ ≈ χ, the dephasing due
to thermal photons in the resonator, Eq. (2.11), simplifies to Γth

φ ≈ κn̄. Even though
a cryogenic refrigerator cools the devices to below 10 mK, n̄ will not thermalize to the
value expected from a Boltzmann distribution at 10 mK, n̄ < 10−12. Instead, an elevated
effective temperature is usually observed, yielding n̄ on the order of 10−3 [116]. There is
therefore a trade-off between the speed of the qubit readout (1/κ) and dephasing time
(1000/κ).

We summarize our design constraints in Table 2.1 and give equations for converting
between system and circuit parameters in Table 2.2. A typical device with one resonator
and one qubit is seen in Fig. 2.2 (a), with the resonator–transmission line coupling in
Fig. 2.2 (b), and the resonator–qubit coupling along with the qubit in Fig. 2.2 (c). The
qubit is of the xmon style [115].

One of the significant advantages of transmon qubits is their close resemblance to
lumped-element LC resonators. By replacing the Josephson junction with a linear
inductance, we may simulate the transmon’s parameters and its response to external signals
using linear electromagnetic field solvers, such as COMSOL and HFSS. Importantly, all
involved capacitances can be simulated using electrostatics, vastly reducing the simulation
time.

Superconductors in the presence of magnetic fields can exhibit loss due to the move-
ment of so-called Abrikosov vortices [26, 117]. In such a vortex, superconductivity is
suppressed, and the vortex can interact via a Lorentz force with currents flowing through
the superconductor. An oscillating current, as in our microwave circuits, can, therefore,
dissipate through the motion of these vortices. Therefore, we introduce flux-trapping
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Table 2.1: Design constraints for a high-coherence and practical circuit-QED system.

Constraint Motivation

ωq/2π < 5 GHz Lower qubit frequency implies lower ΓTLS

η/2π < −200 MHz Minimize leakage to |2〉
EJ/EC > 60 Low enough charge dispersion
ωq < ωr The Purcell rate is lower for negative detunings
1/κ < 1 µs Minimize relaxation during readout
χ > κ Maximize readout contrast
1/Γp > 150 µs Not to be limited by Purcell decay
1/Γth

φ > 200 µs Not to be limited by thermal photons in the resonator

Table 2.2: Equations for converting between circuit and system parameters. Cq and Cr are
the qubit and resonator capacitances, Cg is the coupling capacitance between resonator
and qubit, and Cκ is the coupling capacitance between resonator and transmission line.
Zr is the characteristic impedance of the resonator and Ze is the environmental impedance
seen by the resonator.

Parameter Comment

EC = e2/2Cq Charging energy
EJ = Φ0Ic/2π Josephson energy
g = Cg

√
ωqωr/(2

√
CqCr) Capacitive coupling between two resonant circuits

ωq =
√

8EJEC − EC Qubit frequency
ωr = πc/(2l

√
εeff) Quarter-wavelength resonator frequency

εeff = (1 + εr)/2 Effective dielectric constant. For silicon, εr = 11.7
Cr = π/4ωrZr Effective capacitance for a quarter-wavelength resonator
κ = ω2

rC
2
κZe/Cr Coupling between a resonator and a transmission line
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(a) (b) (c)

Figure 2.2: (a) A coplanar waveguide resonator coupled to a transmon qubit. (b) Inductive
resonator to transmission line coupling. Visible is also the flux-trapping holes. (c)
Resonator to qubit coupling. The ground plane extends all around the qubit, ensuring a
good microwave environment.

holes in our superconducting ground planes, which allow vortices to form without creating
dissipative normal metal cores [118]. It is important to have these holes close to the
qubits. However, there is a risk of introducing additional TLS loss due to the exposed
substrate in the flux-trapping hole. Chiaro et al. [119] investigated the loss dependence as
a function of the distance between the holes and resonators. The flux-trapping holes used
in our work are 2 µm in diameter with a minimum distance of 8 µm to any microwave
structures, see Fig. 2.2 (b).

2.4 Fabrication techniques

Concerning qubit coherence, there are a few important things to consider when fabricating
devices: use substrates with low dielectric loss, minimize the amount of surface oxide
[120] and resist residues [121], and avoid jagged transmission lines with sharp corners that
can enhance local electric fields, hence inducing additional loss [122].

As a dielectric substrate, we use intrinsic high-resistivity (100) silicon. It is essential
that the silicon is truly intrinsic (not counter-doped), so that, in practice, no charge
carriers exist in the substrate that could induce loss. Another commonly used substrate is
sapphire. Even though bulk sapphire has a lower dielectric loss than bulk silicon [123], the
dominating surface losses bring the two substrates to comparable effective loss [87]. From
a fabrication point of view, sapphire has one major disadvantage for scalable quantum
circuits. Its hardness and chemical inertness make it almost impossible to etch; therefore,
it is not feasible to trench, or create vias through, the sapphire substrate. Vias are needed
to suppress spurious microwave modes when scaling to more qubits and larger chips [42].

The fabrication starts with an empty 2-inch silicon wafer. First, any organic residues
are cleaned from the silicon by solvents and a hot mixture of hydrogen peroxide and
ammonium hydroxide. We then submerge the wafer into a bath of hydrofluoric acid (HF).
HF removes the native silicon surface oxide (SiO2) that is known to host a large density
of two-level systems. However, the oxide is regrown quickly if the bare silicon is exposed
to air [105]. To prevent the regrowth of silicon dioxide, we load the wafer into the vacuum
of a deposition system within minutes of the HF dip.
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As the deposition system, we use an electron-beam evaporator equipped only with
aluminum targets to minimize the probability of cross-contamination. To remove any
residual water from the wafer, we immediately ramp up the temperature of an infrared
heater until the silicon has reached a temperature of 300 ◦C. The wafer is then allowed
to cool down to room temperature while the evaporation chamber is evacuated to its
base pressure 4× 10−8 mbar. We evaporate a 150 nm thin film at a rate of 1.0 nm s−1

and at room temperature. A scanning electron microscope (SEM) image of the aluminum
film is seen in Fig. 2.3(a). The grains are clearly visible, as expected from our quite
high deposition rate [124]. However, it is not clear if the grain size has any effect on the
qubit coherence. The grain size and surface roughness of evaporated aluminum depend
on the deposition rate and temperature [124, 125], and it would be interesting to study
the relationship between these parameters and coherence in the future.

We proceed by patterning all microwave structures using a direct-write laser lithography
system. The laser writer has a resolution below 1 µm that requires careful calibration of
the laser intensity before every exposure. When combined with an almost omnidirectional
etch process that widens any pattern, it becomes challenging to achieve sub-micron
features routinely. Not to push the limit of the system, we keep all features above 2 µm.
The aluminum is etched using a hot mixture of phosphoric, nitric, and acetic acids. Other
groups have had success with reactive ion etching (RIE) of aluminum using chlorine-based
chemistry [43]. Using RIE to etch aluminum also comes with the issue of chlorine residues
that eventually form HCl and corrodes the aluminum. The chlorine residues may be
removed by immediately rinsing the wafer in water after etching. We tried using RIE
as well, but the measured quality factors of resonators were never as high as with the
acid-based etch.

We have an optional step to reduce losses to TLS. After the aluminum etching, we
may subject the wafer to RIE with a fluorine-based gas (e.g., NF3 or SF6). Fluorine will
etch and remove silicon in the gaps of the coplanar waveguides and the qubit capacitor,
so-called ‘trenching.’ By trenching the substrate, we move the lossy silicon surface further
away from the electrical field of the device, effectively lowering the filling factor and the
associated loss rate [105, 126]. The reason why we have this step as an optional one is
that it adds a lithography step since we do not want to trench underneath Josephson
junctions, and we have not yet conclusively proved that trenching improves the coherence
of our circuits. The resonator in Paper A, qubit B in Paper B, the qubit in Paper C, and
all resonators in Paper D use trenched substrates. Trenching also reduces the effective
dielectric constant of the coplanar waveguides, implying higher impedances and lower
capacitances that need to be accounted for when designing the circuits.

We realize a Josephson junction by patterning two narrow, orthogonal, and crossing
lines by electron-beam lithography. The lines have widths between 100 and 200 nm,
which is less than the resist thickness. If we evaporate aluminum at a 45° angle, any
aluminum not evaporated along one of the lines will get deposited on the resist wall and
therefore removed when the resist is later dissolved. This effect allows us to evaporate
the first junction electrode along with one of the lines, do controlled oxidation to create
the insulating part of the junction, and then rotate the wafer 90° to evaporate the second
junction electrode along the other line. We use static oxidation using 2 mbar of pure
oxygen for 20 minutes, and control the tunnel junction resistance by the size of junction.
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Figure 2.3: Scanning electron microscopy images. (a) The 150 nm thin aluminum film
that constitutes all microwave structures. The grains are clearly visible. (b) An instance
of a 1 µm trench into the silicon. (c) A Josephson junction. The insulator is sandwiched
between the two overlapping aluminum leads, which forms a cross.

Our oxidation gives a normal-state resistance of 3.05× 108 Ω nm−2. This fabrication
process for Josephson junctions is ‘bridge-less’ as it does not rely on the formation of a
resist bridge to shadow the evaporation [127]. The bridge-less process is less sensitive to
variation in the resist development and its associated undercut, which makes our process
more robust against variations in development rates and resist thicknesses.

The junction geometry and fabrication used here avoids the creation of any extra
Josephson junctions. While such junctions do not participate in the electrical circuit, they
have been shown to contain a large density of TLS [101, 102].

A final lithography step is used to connect the Josephson junctions’ electrodes to
the rest of the circuit. We pattern rectangles covering parts of the electrodes and the
connecting circuit. We ensure good electrical contact by using an in-situ ion mill to
remove native aluminum oxide before evaporating 200 nm of aluminum. Even though
these rectangles are several micrometers large, we use electron-beam lithography for the
pattering. The low glass-transition temperature of conventional photoresists makes ion-
milling difficult as the resist will reflow and cross-link due to heating from a neutralizing
filament and the implantation of argon ions. E-beam resists are not as sensitive, thus
yielding better results with cleaner surfaces.

As the last step, the wafer is diced into individual chips and thoroughly cleaned in
solvents and an ozone atmosphere.

2.5 Measurement setup

As discussed previously, the environment around the device may induce loss and dephasing
of qubits and resonators. An ideal environment would be to isolate the device as
much as possible by enclosing it in a vacuum-sealed superconducting box to screen
any electromagnetic fields (e.g., static, microwave, infrared, and optical). However, to
measure the device, we need to send and receive microwaves from the device. Additionally,
for some experiments, we also need static magnetic fields and electrical currents, implying
that we need to trade-off isolation and ease of measurement. The exact setup used for
each experiment in this work is found in the corresponding appended paper.
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Figure 2.4: Measurement setup for high-coherence superconducting circuits. (a) Attenu-
ation and filtering scheme for the four types of coaxial lines described in the main text.
(b) Shielding setup. Two cryoperm shields and two superconducting shields protect the
sensitive circuits from any external magnetic fields. The superconducting shields are
painted on the inside with infrared-absorbing paint to reduce the amount of quasiparticle
generating radiation.

As the devices operate below 10 mK and at GHz frequencies, it is crucial to attenuate
the Johnson-Nyquist noise from room temperature and warmer stages of the cryostat.
Otherwise, the effective device temperature may be much higher than the cryostat
temperature. Typically, we have four different types of coaxial lines to our devices: inputs
and outputs for readout, drive lines for single-qubit gates, and flux lines for frequency-
tunable elements. The required attenuation is different for each type, see Fig. 2.4 (a), as
the noise in each line will couple with different matrix elements in Fermi’s golden rule,
Eq. (2.3). Ideally, all attenuation is placed at the mixing chamber of the cryostat to
achieve the lowest possible amount of noise. However, the cooling power of the mixing
chamber is limited and not enough to handle the dissipated power if all attenuators where
to be placed there.

For all lines except the readout output lines, we place a 20 dB attenuator at the 3 K
stage of the cryostat, where the cooling power is more than 1000 times greater than at the
mixing chamber. The readout input line is the most attenuated, since qubit dephasing
is very sensitive to residual thermal photons in the readout resonators, Eq. (2.11). The
qubit drive lines are also heavily attenuated since the qubits will thermalize to the same
effective temperature as the drive line. However, the drive line is slightly less attenuated
than the readout input to allow for fast qubit gates. In contrast to a drive line, a flux
line is grounded close to the tunable element and does not couple to electric fields of the
device. Therefore, the attenuation constraint is relaxed for the flux line, and it is enough
with 30 dB in total and none at the mixing chamber. We do not put any attenuation at
the mixing chamber as we want to be able to use the flux line for DC-biasing of SQUIDs,
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therefore requiring currents of the order of 1 mA to pass through the line. Any attenuation
at the mixing chamber would dissipate too much power at such currents. Finally, the
readout output line does not have any attenuation at all, as that would decrease the
signal-to-noise ratio of the readout. To shield the device from high-temperature noise, we
use microwave isolators to provide an effective attenuation of at least 60 dB in the reverse
direction, while providing almost none in the forward direction. Isolators only work in a
specific frequency band, so we use low- and high-pass filters to shield the device outside
of the isolator band.

In our multi-qubit setups, we use dedicated drive lines for each qubit. A drive line
is weakly coupled to a qubit so that the qubit does not relax into the drive line faster
than the qubit’s intrinsic relaxation rate. We design the coupling so that 1/Γ1 into the
drive line is above 250 µs. This weak coupling implies that the drive signal needs a high
amplitude to drive a fast (10–30 ns) single-qubit gate. However, we still need to heavily
attenuate any thermal noise in the drive line not to cause a significant population of the
|1〉 state. To achieve a low thermal population and fast gates puts a tight window of viable
attenuation values that can drive a fast gate with typical output powers of microwave
signal generators. We use −60 dB.

To minimize any detrimental effects from stray magnetic fields, we employ flux-trapping
holes. However, for flux tunable circuits, we also need to minimize any flux noise due to
fluctuations in any external magnetic fields. We shield our devices with several layers
of magnetic shielding, Fig. 2.4(b). We have experimented with several configurations
of shielding and converged at two high magnetic permeability (mumetal and cryoperm)
and two superconducting shields. The outer mumetal and superconducting shield mainly
reduce magnetic fields from sources outside the cryostat (e.g., the earth magnetic field).
The two inner shields are there to reduce magnetic fields from sources inside the cryostat,
for instance, microwave isolators containing permanent magnets. Inside the inner shields,
we exclusively use non-magnetic hardware (e.g., screws, connectors, and cables).

Photons with an energy higher than twice the superconducting gap can break Cooper-
pairs into quasiparticles, which cause relaxation and dephasing. It is believed that there
are two main paths for high-energy photons to enter the cryostat. The first is through the
coaxial cables themselves. Although the lines are low-pass filtered to cut-off all frequencies
above 8 GHz, such filters are never perfect, especially at many times the cut-off frequency.
At hundreds of gigahertz, both filters and the dielectric of the cables are transparent,
and infrared radiation from room temperature can travel unhindered through the control
lines to the sample where it creates quasiparticles. To solve this issue, we use home-made
eccosorb filters [86], which have exponentially increasing attenuation with respect to
frequency.

The second path is by direct line-of-sight between hot surfaces and the sample. The
cryostat has several temperature stages, where the hottest one is at room temperature. All
stages will emit black-body radiation, and it is important to shield the sample from this
radiation. Therefore, the cryostat itself has shields on each temperature stage (except at
the 100 mK stage) to shield from radiation from the previous stage. As a final precaution,
we use infrared-absorbing paint on the shields surrounding the device [94, 128].
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2.6 Characterization of loss and dephasing

2.6.1 Coherence and frequency noise of resonators

In Paper A and Paper D, we specifically study the energy loss of resonators, but it is
characterized in almost all the appended papers. For resonators, we typically express loss
as quality factors Qi = ωr/Γ1, where ωr is the resonant frequency. Similarly, the coupling
between resonator and transmission line is expressed as Qc = ωr/κ. To experimentally find
the resonant frequencies and quality factors, we measure either the reflection coefficient
S11 or transmission coefficient S21 as a function of frequency. The coefficient we use
depends on the setup and varies across the different papers. By fitting the measured
coefficients to either

S11 =
2δω/ωr − i (1/Qi − 1/Qc)

2δω/ωr − i (1/Qi + 1/Qc)
, (2.12)

or

S21 = 1− 1/Qc
1/Qi + 1/Qc + 2iδω/ωr

, (2.13)

we can determine the resonant frequency and internal and coupling quality factors.
In Paper A, we measure a single microwave resonator made of aluminum on a silicon

substrate. We change the power in the resonator and extract the internal quality factor
for each power. We see a monotonically increasing quality factor with circulating power.
Since TLS is the only loss with a power dependence, we compare the internal quality
factors with

Qi(P ) =
1

ΓTLS(P )/ωr + δother
, (2.14)

where δother contains all other loss mechanisms. From this measurement and Eq. (2.9),
we extract FδTLS = 1/(0.87× 106) and δother = 1/(3.5× 106). The agreement between
data and the TLS model is excellent and demonstrates that the resonator’s dominant
loss mechanism at low powers is TLS. Which loss mechanism that dominates at high
power cannot be inferred from this measurement. If we were to measure the resonator’s
quality factor against temperature and magnetic field, we might be able to understand
more about the high-power loss.

In Paper A, we also study fluctuations of the resonant frequency. The resonant
frequency is determined by the resonator geometry and dielectric constant, which should
not change. However, the movement of TLS in frequency space due to TLS interaction
with low-frequency TLS causes the effective dielectric constant of the resonator to fluctuate
[109, 129, 130].

We perform the study at a circulation power close to that of a single photon, making
this study relevant to qubits, as it will set a limit on the dephasing for qubits with similar
design and fabrication. We measure the frequency fluctuations using a Pound loop, which
is a frequency locked loop that can monitor the resonant frequency in real-time [131]. We
find that the noise in our aluminum resonator is well described by a fractional frequency
fluctuation spectrum

Sy(f) =
3.5× 10−15

f1.05
+ 2.5× 10−16. (2.15)
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We can estimate the dephasing time for a qubit experiencing a 1/f noise with that
amplitude, Tφ ≈ 520 µs.

Our noise amplitudes are higher than those observed in niobium resonators [109],
although those were measured at higher powers and temperatures, which decreases the
noise substantially.

In Paper D, we study similar resonators but on a piezoelectrical substrate, gallium
arsenide. Piezoelectricity is the creation of mechanical strain from electric fields, and vice
versa. A varying electric field will inevitably create propagating phonons, both in the
bulk and at the surface of the substrate. This effect can be desired, such as in the field of
quantum acoustics [132, 133]. However, it is also detrimental for high-coherence circuits,
as the conversion from photons to phonons can severely increase the loss in such circuits.

In Paper D, the power dependencies of the resonators’ quality factors are much less
pronounced than on silicon, with FδTLS = 1/(0.35× 106) and δother = 1/(0.046× 106),
indicating that TLS is not the dominant loss mechanism. In the paper, we present a
numerical simulation of a model where the varying electrical field creates bulk and surface
acoustic waves that propagate in and on the substrate. This photon to phonon conversion
predicts a linear relationship between quality factor and frequency, which we also observe
by measuring a large set of resonators with different frequencies. The absolute values of
δother agree well with the simulated values, lending confidence in that the piezoelectric
substrate is the dominant loss mechanism for these resonators.

A related topic is that any surface is piezoelectric, even if the bulk of the material itself
is not, which means that the varying electric fields generated by qubits and resonators
on silicon will generate phonons [58, 134]. Currently, this effect is believed to be small,
and there has not been any observation of it yet. Nevertheless, it is worth taking it into
consideration as other sources of loss are reduced.

2.6.2 Coherence fluctuations in circuit QED

In the circuit-QED architecture, a qubit is usually coupled to a resonator and not to
any transmission lines, Fig. 2.2(a), which prohibits us from probing the qubit properties
directly. The lack of coupling is by design, as it increases the coherence of the qubit.
Thankfully, we can use the resonator to measure the qubit state, and therefore the qubit
properties as well. Depending on which property we want to investigate, we apply different
evolutions, or gate sequences, to the qubit. First, to measure the time constant of the
qubit relaxation, T1, we prepare the qubit in its excited state, idle for some time, and
measure the qubit state. We repeat the experiment multiple times and extract the excited
state probability. The probability as a function of idling time can be fitted to some decay
model (usually a single decaying exponential e−t/T1), from where the relaxation time T1

is extracted.

In Fig. 2.5 (a), we show one instance of a measured qubit with T1 = 63.5 µs. This qubit
had a frequency of ωq/2π = 4.4 GHz, corresponding to a quality factor of 1.8× 106. The
qubit was fabricated very similarly to the resonator in Paper A, so one could expect them
to have similar quality factors. The discrepancy of a factor of 2 can partly be explained by
that the resonator has smaller dimensions than the qubit, implying a higher filling factor
for the resonator. The resonator also had a fabrication issue with residual photoresist
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Figure 2.5: (a) Relaxation and coherence measurement (Ramsey free-induction decay) of a
fixed-frequency transmon qubit operating at 4.4 GHz. The corresponding gate sequences are
shown to the right. The arrows indicate where the time delay is inserted. (b) Histogram
over 2000 measurements of the qubit relaxation time, and a fit to a Gaussian distribution
with a mean of 71 µs and a standard deviation of 14 µs.

on the resonator, leading to a higher δTLS. The lower filling factor and the lower loss
tangent for the qubit explain why it has a higher quality factor than the resonator has at
low powers. In principle, we could make new resonators with the same filling factor as
the qubit, and their quality factors should agree [104].

The sequence for measuring the relaxation time has the qubit confined to the mea-
surement basis; thus, the qubit phase evolution does not affect the measurement outcome.
To be sensitive to phase errors and measure dephasing rates, we instead prepare the
qubit in a superposition state (e.g., |+〉 by applying a

√
Y gate), idle for some time t,

rotate into the measurement basis (by another
√
Y gate) and perform a measurement.

This sequence is referred to as Ramsey, named after Norman Ramsey. If the qubit phase
changes during the idling time, the subsequent gate will no longer bring the qubit to
|1〉. For instance, if the qubit is in |−〉 after the idling period, a

√
Y gate will bring the

qubit to |0〉. If the qubit drive is detuned in frequency from the qubit by δ, the qubit
acquires a deterministic phase shift equal to δt, causing the Ramsey measurement to
oscillate between |1〉 and |0〉 as t is increased. However, if δ fluctuates, the qubit phase
will no longer be deterministic, so when averaged over many experimental trials, the
oscillations will have a smaller amplitude. As t increases, the qubit phase will be more
random, leading to a decaying amplitude (envelope).

The decay envelope is used to extract the decoherence time T ∗2 (the star is used to
denote that it is measured using a Ramsey sequence), from which the dephasing time Tφ is
calculated via Eq. (2.1). The exact shape of the envelope depends on the noise spectrum

experienced by the qubit. A 1/f spectrum would cause a Gaussian envelope e−(t/T∗
2 )2 ,

whereas a white spectrum gives a single exponential e−t/T
∗
2 . Generally, a combination of

the two models can be used if neither 1/f or white noise is dominating. For the edge case
where Tφ is infinite and T ∗2 = 2T1, the decay is exponential.

Figure 2.5 (a) shows one instance of a Ramsey measurement with T ∗2 = 94.6 µs and
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Tφ = 370 µs. The decay shape used here only contains an exponential and agrees well with
the data. In our fixed-frequency qubits, we typically only observe exponential decaying
Ramsey fringes, indicating that the noise seen by the qubit is mostly white during the
duration of the experiment. The source of the white noise could be thermal photons in
the resonator.

Only measuring and reporting single instances of coherence measurements is not
enough. Coherence times are known to fluctuate [135–137]. The main result of Paper B is
the extensive statistics collected and analyzed. For example, we measure T1 uninterrupted
for three days, giving us a time series of 2001 T1 values. The histogram of the extracted
T1 values are shown in Fig. 2.5 (b). We observe a difference between the minimum and
maximum values of almost a factor of 3.

We analyze the relaxation time fluctuations in detail by transforming the time series
to the frequency domain. The spectrum can give insights into which loss mechanism is
responsible for the fluctuations. Additionally, in the time domain, we use the overlapping
Allan deviation [138], a tool commonly used in frequency metrology. First, we consider
three common noise processes, expressed in Allan deviation as [138],

σT1
(τ) =

(
2π2

3
h−2

) 1
2

τ
1
2 + (2 ln(2)h−1)

1
2 +

(
h0

2

) 1
2

τ−
1
2 , (2.16)

where h−2, h−1, and h0 are the amplitudes of random walk, 1/f , and white noise processes,
respectively. In the frequency domain, these processes translate into power laws

ST1(f) =
h−2

f2
+
h−1

f
+ h0, (2.17)

from which the amplitude notation becomes obvious. Importantly, no power-law process
will generate a peak in the Allan-deviation (i.e. a stationary point with negative second-
derivative). To achieve such a feature in the Allan-deviation, we must include a Lorentzian
noise process [139],

σL(τ) =
Aτ0
τ

(
fe−τ/τ0 − e−2τ/τ0 − 3 + 2τ/τ0

) 1
2

(2.18)

with the corresponding frequency spectrum

SL(f) =
4A2τ0

1 + (2πfτ0)2
, (2.19)

where A is the Lorentzian amplitude and 1/τ0 its switching rate.
In Paper B, we found that most T1 fluctuations could be explained by a combination

of two Lorentzians and white noise. In Fig. 2.6 (a) and (b), we see an example of such
a data set. Both the Allan deviation and the frequency spectrum agrees well with the
measured data. In Fig. 2.6 (a), we see a clear peak in the Allan deviation, corresponding
to Lorentzian noise processes.

The Lorentzians’ switching rates were in the range 70–1850 µHz, well in agreement with
TLS switching rates found in amorphous solids [140, 141] and other qubit experiments

33



CHAPTER 2. HIGH-COHERENCE SUPERCONDUCTING CIRCUITS

10-5 10-4 10-3 10-2

f (Hz)

10-3

10-2

10-2

100

101

Data
White
Lorentzian 1
Lorentzian 2
Total

102 103 104 105 106

 (s)

1

3

5

7

T 1(
) (

s)

Data
White
Lorentzian 1
Lorentzian 2
Total

Qubit capacitor

Ground

Near-resonant 
TLS

Non-resonant 
TLS

Non-resonant 
TLS

(c)(a)

(b)

Figure 2.6: Relaxation-time fluctuations due to interacting two-level systems (TLS). (a)
Overlapping Allan deviation containing two Lorentzians and white noise. (b) Spectral
density of the same fluctuations and noise models as in (a). (c) A possible explanation
of the two Lorentzians. A single near-resonant TLS interacts with two neighboring off-
resonant TLS. The states of the off-resonant TLS affect the frequency of the near-resonant
TLS, causing the qubit to see a different amount of noise depending on the states of the
off-resonant TLS. The switching rates in (a) and (b) correspond to the switching rates of
the off-resonant TLS.

.

[135, 136]. We interpret the two Lorentzians as the qubit being coupled to either one
near-resonant TLS coupled to two off-resonant TLS [see Fig. 2.6 (c)], or two near-resonant
TLS coupled to one off-resonant TLS each. In the interacting-TLS-model [129], TLS can
interact with off-resonant TLS, which can have slow switching rates. When a coupled
TLS switches its state, it induces a frequency shift of the near-resonant TLS, changing
the noise seen by the qubit, which in turn changes its relaxation time. The observed
switching rates are the switching rates of the off-resonant TLS.

These slow switching rates highlight the importance of measuring coherence across long
periods as the TLS can be in the same configurations for hours before switching. We argue
that any coherence study should be performed during at least 5 hours and with more than
1000 individual samples to acquire a sufficient amount of statistics. Moreover, fluctuations
and their spectra, and not only mean values, should be reported and compared.

2.6.3 Measuring coherence in waveguide QED

Experiments not aiming to store quantum information in qubits can use qubits directly
coupled to transmission lines. The coupling to the transmission line, Γr, is typically made
large such it dominates the qubit lifetime, Γ1 ≈ Γr. However, there are applications
where Γr has to be kept reasonably low, and the intrinsic loss rate (or non-radiative
decay rate) Γnr can come into play, together with the dephasing rate. In general, for a
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waveguide-QED system, we have

Γ1 = Γr + Γnr, (2.20)

Γ2 =
Γ1

2
+ Γφ =

Γr + Γnr

2
+ Γφ. (2.21)

Typically, Γr and Γ2 are extracted from the coherent scattering at low signal powers.
However, this measurement cannot distinguish Γnr from Γφ. In Paper C, we demonstrate
several methods to overcome this deficit and extract all involved rates. We find 1/Γnr = 3 µs
and 1/Γφ = 53 µs, both which are an order of magnitude smaller than the T1 and Tφ
from a circuit-QED system. We currently do not have an answer to why, but we are
speculating that it could be to a different measurement setup for the waveguide-QED
system or just an outlier. Additional measurements and statistics are needed to confirm
if the discrepancy actually exists.

2.7 Further improvements to qubit coherence

There are three problems regarding the coherence of current superconducting qubits.
They are “only” on the order of one-hundred microseconds, they fluctuate in time, and
there are frequencies where the coherence is much worse. The fluctuations can lead to
downtime and the need for recalibration of quantum processors, while the existence of
harmful frequencies is challenging for achieving high fidelity gates across a large grid of
qubits [16]. As the number of qubits grows, there will always be some qubits close to such
frequencies, severely limiting the performance of gates involving those qubits.

Luckily, all three problems are currently related to the presence of two-level systems.
So if we can eliminate TLS, we should solve all three problems. Of course, then the next
loss mechanism will limit the coherence instead.

How do we go about identifying the source and location of TLS? Similarly to Refs. [99–
101], we could perform different types of spectroscopy techniques to identify the atom or
molecule responsible. The location of TLS can be inferred by the method in Ref. [102].
Identifying the source is not enough; we also need to remove the source. Depending on
where on the device they are located, that can be challenging. Typical hosts of TLS are
oxides and other surface defects. It is challenging to prevent oxide from growing on the
surface of aluminum and silicon. It is possible to cover the aluminum surface with a noble
metal (e.g., gold, palladium, or platinum). Noble metals corrode less, but can still attract
impurities on their surfaces. It is crucial that the cover is thin enough so that it becomes
superconducting due to the proximity effect [26].

An alternative method is to use a superconductor that oxidizes less, such as titanium
nitride [114, 122]. Recently, tantalum has also shown good promise, reaching relaxation
times of 300 µs [88].

Additionally, other types of superconducting qubits show great promise in terms of
coherence times. For example, the fluxonimum has shown T1 > 8 ms [142] and T2 > 400 µs
[143], and the capacitively shunted flux qubit has shown coherence times similar to the
transmons in this work [116]. These types of qubit have other disadvantages, such as that
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they have to operate under specific bias conditions, are difficult to fabricate reproducibly,
and make it difficult to couple qubits together.

One can ask, how long coherence do we need? One answer might be, as long as possible.
Typical quantum algorithms like Shor’s require error rates below 10−15 [13]. If we can
perform gates in 10 ns, we would need coherence times on the order of 10 days to achieve
such low error rates, which is not feasible for superconducting circuits. Therefore, no
matter how much we improve our coherence, error correction will be needed for such
algorithms. That does not mean that there is no point in improving coherence times. The
overhead for the error correction scales with the error rates of the physical gates. For
example, physical error rates on the order of 0.01 yield 4761 physical qubits per logical
qubit if we want logical error rates below 10−15. If we can improve the errors with a
factor of 10, then the overhead is approximately four times lower [144].
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CHAPTER III

High-fidelity control and readout of quantum bits

A vital aspect of quantum bits is to be able to control and measure their states with high
accuracy. Control errors degrade the overall performance of a quantum computer and
limit how deep quantum circuits we are able to run. This chapter summarizes the ideas
behind qubit control and readout (including Paper E about a new type of readout). We
go through the single and two-qubit gates used in Paper F and Paper G and how to tune
them up to state-of-the-art fidelities, 0.999 for single-qubit gates and 0.99 for a two-qubit
gate.

For quantum computers to have any chance of having an advantage over their classical
counterpart, the qubits need to utilize the large Hilbert space given by superposition.
To initialize a qubit into an arbitrary superposition state, |ψ〉 = c0|0〉+ c1|1〉, we use a
sinusoidal drive at the qubit frequency. The amplitude, phase, and length of the drive
determine the complex state amplitudes ci. The probability of measuring a certain state
|i〉 is P|i〉 = |ci|2, thus, |c0|2 + |c1|2 = 1 is required for proper normalization.

A single-qubit state can be represented by the position on a Bloch sphere where |0〉
is on one pole and |1〉 on the other, with the z-axis intersecting the two poles. For two
(or more qubits) with any entanglement between them, Bloch-spheres are no longer good
representations, and we instead use a state vector with a complex amplitude for each
state,

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉 =


c00

c01

c10

c11

 , (3.1)

where cij is the complex amplitude for the |ij〉 state. For n qubits, the state vector
contains 2n amplitudes.

A controlled change of a state vector is known as a quantum gate. All quantum gates
are reversible and can be represented by their unitary matrices U . The new state vector
after the application of U is equal to U |ψ〉. For example, the single-qubit X gate has the
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unitary

X =

(
0 1
1 0

)
, (3.2)

which swaps the amplitudes of the |0〉 and |1〉 states. Two examples of two-qubit gates
are the controlled-phase (CZ) gate with the unitary

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (3.3)

and the iSWAP gate, which has the following unitary

iSWAP =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 0

 . (3.4)

A CZ gate applies a phase shift of π to one qubit if the other is in the excited state,
while the iSWAP gate swaps the state amplitudes between the two qubits but with a
pi/2 phase shift on both qubits. Both the CZ and iSWAP gates conserve the number
of excitations in the system, and together with arbitrary single-qubit gates, constitute
universal gate sets, which means that any multi-qubit unitary can be decomposed into
the gates in those sets [145].

In Chapter 2, we discussed two different types of errors, bit and phase flips, due to
relaxation and dephasing of the qubit state. These types of errors are probabilistic, known
as incoherent errors, and their associated error rates are related to the gate, relaxation,
and dephasing times. In the case of exponentially decaying decoherence, the incoherent
error rate for a single-qubit gate is [146]

ε =
tgate

3
(Γ1 + Γφ) , (3.5)

where tgate is the time duration of the gate. Due to their probabilistic nature, incoherent
errors cannot be described by a single unitary matrix. Instead, they are represented as
sets of Kraus operators [5].

It is worth noting that in the presence of decoherence and incoherent errors, a state
vector can no longer be used to describe the resulting mixed quantum state. Instead, we
need to use a density matrix ρ [5]. For a single qubit, a mixed state can be seen in the
Bloch sphere by a vector with a length less than unity. The state is then said to be inside
the Bloch sphere.

There are also coherent errors. These errors are deterministic and due to some
nonideality in the applied unitary. For instance, it could be that the drive amplitude of
a single-qubit gate is too high, leading to an over-rotation. The name, coherent errors,
refers to the fact that the qubit is still well described by a state vector since no coherence
was lost due to the error. The coherent-error rates are strongly dependent on how well

38



3.1. SINGLE-QUBIT GATES

we know and calibrate the system. For example, An over-rotation of an X gate by 10%
would have the nonideal unitary matrix

X′ =

(
0.02− 0.15j 0.98 + 0.15j
0.98 + 0.15j 0.02− 0.15j

)
, (3.6)

which should be compared with Eq. (3.2). For very short gate times, tgate . 2π/η,
coherent errors are not as simple as an error in the drive amplitude. For these short
gate times, higher states of the qubit come into play, and the coherent error rate is more
related to how well we can compensate for effects due to these higher states.

To quantify how good a gate is, we define a fidelity number, F , which is

F =

(
tr

√√
U ′U
√
U ′
)2

=

(
tr

√√
ρ′ρ
√
ρ′
)2

, (3.7)

where U is the ideal unitary and U ′ is the performed unitary, or in the case of density
matrices, ρ is the ideal state after the gate and ρ′ is the actual state [147]. Several
techniques can be used to measure or infer qubit states and performed unitaries, such as
quantum state and process tomography [148, 149], and cross-entropy benchmarking [150].
In Paper F, we use process tomography to investigate what unitary was implemented
using a sequence of gates.

In general, longer gate times imply fewer coherent, but more incoherent, errors. The
lowest total error rate occurs when the coherent and incoherent error rates are equal.
However, there can be applications where one type of error is more detrimental than
others. For instance, in the context of quantum error correction, coherent errors are more
damaging than incoherent ones [151]. In our work, we run with a bit slower gates where
the incoherent error rates are higher than the coherent ones since slower gates make
calibration easier.

3.1 Single-qubit gates

To realize single-qubit gates, we need some way to couple transversely and exchange energy
with the qubit. The transmon qubit couples well to electric fields and a time-varying
voltage, V (t), yields the following Hamiltonian [58]

Ĥ

~
=
ωq
2
σ̂z + CV (t)

(
σ̂+ + σ̂−

)
, (3.8)

where C is some constant to account for the coupling strength between the voltage source
and the qubit. The signal used to drive the qubit can be described as a motion in a
complex plane characterized by the in-phase I(t) and quadrature Q(t) voltages, together
with the drive frequency ωd,

V (t) = I(t) cos(ωdt+ φ) +Q(t)(t) sin(ωdt+ φ). (3.9)

We enter a rotating frame at ωd, take φ = 0, and make the rotating wave approximation,
which transforms Eq. (3.8) into

Ĥ

~
= δσ̂z +

C

2
I(t)σ̂x +

C

2
Q(t)σ̂y, (3.10)
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where δ = ωq − ωd. In the Bloch-sphere picture, I(t) determines rotations of the qubit
state around the X-axis. To achieve rotations around the Y-axis, we can either set φ = π/2
or use Q(t). In general, the drive phase φ determines the rotation axis for the in-phase
voltage.

3.1.1 X and Y gates

To implement controlled rotations with some angle θ around the X-axis, we apply a pulse
to I(t). We choose to use a pulse envelope with a cosine shape, see Fig. 3.1 (a), which is
parameterized by

I(t) =
A

2

(
1− cos

2πt

τ

)
, (3.11)

where A is the pulse amplitude, and τ is the pulse length. Other pulse shapes, such as
a Gaussian, are also commonly used. One good feature of the cosine shape is that it
starts and ends at zero, whereas a Gaussian extends infinitely and needs to be truncated,
leading to a broader spectral content.

The area under the pulse envelope is proportional to the rotation angle θ. By changing
A or τ , we control θ. In Fig. 3.1, we plot the measured qubit state as a function of A and
observe that the qubit is oscillating between |0〉 and |1〉, so-called Rabi oscillations. This
type of plot provides a map between the rotation angle θ and A, allowing us to realize
arbitrary rotations around the X-axis. For instance, A ≈ 0.5 and A ≈ 1 correspond to√
X (θ = π/2) and X (θ = π) gates, respectively. The reason that P|1〉 does not reach 1.0

is not due to an error in the gate but to a limited readout fidelity. More details about the
limitations of readout and how it can be calibrated are discussed in Section 3.3.

Compensation of nonidealities due to higher qubit levels

The quadrature Q(t), can be used to compensate for nonidealities due to the presence of
higher qubit levels. We apply the Derivative Removal by Adiabatic Gate (DRAG) scheme
[152] by using a signal on the quadrature voltage set to

Q(t) = −α
η

dX(t)

dt
= −πAα

τη
sin

2πt

τ
, (3.12)

where η is the qubit anharmonicity, and α is a real-valued scaling parameter. Q(t) is
anti-symmetric around the center of the pulse, implying that its area is zero. In an ideal
system, the DRAG component would not affect the qubit state at all since it just reverses
the σ̂y trajectory after half the pulse. However, for a qubit with more states than just |0〉
and |1〉, such as the transmon, errors can occur due to those higher states.

During a resonant drive of the transition between |0〉 and |1〉, there is also an off-
resonant drive of the |1〉 to |2〉 transition. Even if the probability of populating |2〉 is
decreased due to the drive being off-resonant, it is still finite and causes leakage out of the
qubit subspace. Moreover, the drive induces an AC-Stark shift, causing the |1〉 and |2〉
states to repel and therefore reduces the transition frequency ωq during the drive. The
effect of a detuning between the drive and qubit frequencies results in a σ̂z component in
the interaction Hamiltonian, which gives a phase error on the final qubit state.
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Figure 3.1: Single-qubit X control. (a) The pulse envelope with its two components I(t)
(red) and Q(t) (blue). Here, the pulse length is τ = 25 ns and the amplitude is A = 1.
The Q component is the DRAG compensation, Eq. (3.12). (b) Experimentally observed
Rabi oscillations. The probability of measuring |1〉 as a function of the pulse amplitude A.

DRAG can compensate for each of the two types of errors. DRAG with α = 1/2
should minimize phase-errors [153, 154], and α = 1 should minimize leakage [155]. It
is possible to reduce both errors by using α = 1 and adding a frequency shift to ωd to
compensate for the phase error. In our work, we use α = 1/2 as leakage is sufficiently
reduced by using a long enough pulse, τ � 2π/η ≈ 5 ns. Experimentally, the optimal α
can differ from 1/2 and has to be found empirically, see Fig. 3.3 (a).

Pulse generation using IQ mixers

To physically realize Eq. (3.9), we use two channels of an arbitrary waveform generator
(AWG), a microwave signal generator at ωLO, and an IQ-mixer, see Fig. 3.2 (a). The AWG
is programmed to play I(t) and Q(t), whereas the mixer and signal generator are used to
upconvert the signals to ωd. However, physical IQ-mixers are never ideal. There are three
considerations: the output voltage is not linear with input voltages; zero input voltage
does not yield zero output voltage; and an amplitude and phase imbalance between the I
and Q ports.

If the output voltage is not zero when I = Q = 0, a part of the local oscillator is
transmitted to the qubit, so-called bleedthrough. This bleedthrough drives unwanted
qubit transitions if the local oscillator is resonant with the qubit. To reduce the impact,
we shift the local-oscillator frequency by an intermediate frequency, ωIF, away from the
qubit frequency, so that any bleedthrough is off-resonant with the qubit. However, only
shifting the local oscillator frequency would lead to the drive not being on resonance with
the qubit. To keep the drive resonant, we transform the I and Q voltages played by the
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Figure 3.2: Single-sideband upconversion for driving single-qubit gates. (a) Microwave
setup for generating single-qubit pulses. The AWG plays two voltages I(t) and Q(t),
which get upconverted to a frequency ωLO + ωIF. (b) The resulting spectrum of a nonideal
upconversion. There are unwanted signals at ωLO and ωLO − ωIF.

AWG according to

I∗(t) = I(t) cos(ωIFt+ φ)−Q(t) sin(ωIFt+ φ), (3.13)

Q∗(t) = Q(t) cos(ωIFt+ φ) + I(t) sin(ωIFt+ φ). (3.14)

As a mixer acts as a multiplier between its I/Q and LO ports, the output signal will be
at the frequencies ωLO ± ωIF. The above transformation to I and Q creates signal at the
positive sideband, ωLO + ωIF, only. Any signal at the image sideband, ωLO − ωIF, is due
to imbalance between the I and Q ports of the mixer.

Even if there should not be any qubit transitions at ωLO or ωLO − ωIF, see Fig. 3.2
(b), we still want to minimize the signals at those frequencies as it makes the mixer
behavior more ideal. We calibrate a mixer by applying two sinusoids to its I and Q
ports. There are four parameters to calibrate: two DC-offsets, the ratio between the
sinusoidal amplitudes, and the phase between the two sinusoids. The offsets determine
the local-oscillator bleedthrough, so by varying the offsets and measuring the amplitude
at the local-oscillator frequency, the bleedthrough can be minimized. We can typically
suppress the local oscillator by more than −80 dB.

Similarly, the amplitude ratio and phase difference can be optimized by minimizing
the amplitude at the image sideband. For instance, we typically use ωIF = −100 MHz,
which means that we should minimize the signal at ωLO + 100 MHz. If executed properly,
the image sideband is at least −50 dB compared to the signal sideband.

Proper mixer calibration is crucial for achieving the high-fidelity gates in Paper F
and Paper G, along with the demonstration of the feasibility of the single-photon source
proposed in Paper M. To speed-up the mixer calibration, we feed the measured amplitudes
to an optimization algorithm, which finds the optimal mixer parameters in a few seconds.

3.1.2 The Z gate

For a spin in a magnetic field, the spin precesses along the magnetic field axis with the
Larmor frequency. A qubit is mapped onto the same spin Hamiltonian, including the term
ωqσ̂

z, implying that the qubit state precesses around the Z-axis of the Bloch sphere with
the frequency ωq. However, we typically enter a rotating frame at ωq, which removes any
precession, Eq. (3.10). If we were to change ωq by δ, the rotating frame is no longer at
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the qubit frequency, and a precession around the Z-axis with a rate equal to δ is obtained.
Therefore, by detuning the qubit frequency for some time in a controlled manner, a Z
gate can be realized.

The ability to adjust the frequency of a transmon qubit requires a magnetic-flux
sensitive SQUID. However, fixed-frequency qubits generally have longer coherence than
frequency-tunable ones. So, how do we implement Z gates for fixed-frequency qubits?
If we cannot change the qubit frequency, we instead have to change the rotating-frame
frequency. The rotating-frame frequency is set by the frequency of the microwave signal
used to drive X and Y rotations, ωd. Technically, we could change that frequency by δ
for some time t. However, the net effect would just be a phase shift equal to δt, and that
is equivalent (up to a global phase) to changing the phase φ of subsequent gates by δt.
This implementation of a Z gate is entirely made in software to the signals uploaded to
the AWG and is sometimes referred to as a ‘virtual Z gate.’ Consequently, virtual Z gates
have zero time duration and fidelities equal to unity [156]. So even if we could control the
qubit frequency, virtual Z gates would be preferred.

As an example, if we have the gate sequence
√
X, Z, X. The first gate is implemented

as described in the previous subsection. The X gate, however, needs to have its phase
(φ = π) adjusted so that the Z gate is effectively performed.

3.1.3 Error amplification and tune-up

For a single-qubit gate, we use three control parameters: the drive frequency ωd, the
amplitude A, and the DRAG coefficient α. We measure the detuning between ωd and
ωq using a Ramsey sequence, whose oscillation frequency is equal to the detuning. By
measuring a Ramsey sequence extending up to three times the coherence time, we make
sure that our knowledge of the qubit frequency is accurate enough not to cause a significant
error during that time.

From the previous Rabi experiment, we have a good idea of the pulse amplitude
corresponding to an X gate. However, to optimize the amplitude can be challenging since
the sensitivity to an error in the amplitude is rather small. To amplify the error and
increase the sensitivity, we may apply sequences of gates. For instance, a sequence of ten
X gates with some over-rotation will over-rotate ten times more than a single gate would.

Since we already have a good idea of the pulse amplitude corresponding to an X
gate, we first optimize the DRAG coefficient before returning to fine-tune the amplitude.
DRAG can compensate for either phase errors, leakage, or both. We restrict the pulse
length to τ > 25 ns, such that leakage is minimal even without DRAG [155]. To amplify
any phase errors, we apply an alternating sequence of X and X−1 gates. After an even
number of gates, the qubit should remain in its ground state, even in the presence of any
over- or under-rotations since they will cancel out due to the alternation between positive
and negative gates. Contrarily, phase errors accumulate since the AC-Stark shift does not
depend on the sign of the gate, causing oscillations between the |0〉 and |1〉 states as the
number of gates is increased. In Fig. 3.3 (a), we measure this alternating sequence as a
function of the gate count and the DRAG-coefficient. The optimal α ≈ 0.08 is where no
oscillations are observed as the number of gates is increased.

To optimize the pulse amplitude, we apply a similar sequence as for the DRAG-
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Figure 3.3: Tune-up for single-qubit gates. Blue corresponds to a high population of the |0〉
state, and red to the |1〉 state. (a) An even number of an X gates and its inverse is applied
such that phase errors accumulate. The dashed yellow line marks the optimal DRAG
coefficient. (b) An odd number of X gates is applied such that over- and under-rotations
accumulate. The dashed yellow line indicates the optimal pulse amplitude.
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coefficient, the differences being that the sequence does not alternate the signs of the
gates and that we vary the pulse amplitude instead of α. An error in the amplitude leads
to an accumulation of over- or under-rotations, which causes oscillations between |1〉 and
|0〉. In Fig. 3.3 (b), we measure this sequence as a function of A and the number of X
gates to find the optimal amplitude. Here, the optimal amplitude is A ≈ 1.01.

3.1.4 Benchmarking of single-qubit gate fidelities

To benchmark gates, we could directly use the fidelity metric defined in Eq. (3.7). However,
accurately measuring the unitary of an applied gate is no easy task. Quantum state and
process tomography [5] are only as good as the gates used to perform the tomography,
which is an issue when those gates are the same as the ones we want to measure the
fidelity of. To overcome this issue, the randomized benchmarking protocol was developed
[157]. Randomized benchmarking can deconvolve gate errors from state-preparation and
measurement (SPAM) errors and estimate an accurate average gate fidelity equal to the
definition in Eq. (3.7).

Randomized benchmarking is performed by applying sequences of random unitaries, but
with a net effect equal to the identity matrix, to one or more qubits. It is enough to perform
measurements in the computational basis instead of a full tomographic reconstruction of
the quantum state. This more straightforward measurement protocol is sufficient since,
due to the randomness, any coherent gate errors turn into incoherent ones when averaged
over many different randomizations. Since the net effect should be the identity, a system
initialized in its ground state would always come back to the ground state by the end of
the sequence if no errors occurred. By measuring how the probability of occupying the
ground state decreases with the number of random unitaries, the average unitary fidelity
can be estimated separately from any SPAM errors.

To simplify and make the protocol more efficient, we restrict the unitaries to be drawn
from the Clifford group [147]. The single-qubit Clifford group contains all unitaries which
transforms between the six Pauli operator eigenstates (|0〉, |1〉, |+〉, |−〉, |+i〉, |−i〉). There
are 24 unitaries that have that property. We decompose those unitaries into a combination
of maximally three

√
X, X,

√
Y, and Ygates. On average, a single-qubit Clifford is composed

of 1.875 gates. For the exact decompositions used, see the Supplementary material of
Ref. [40].

In practice, we perform Clifford-based randomized benchmarking by the following
steps:

1. Draw m random unitaries from the Clifford group.

2. Calculate the combined unitary of those unitaries and the inverse of that combined
unitary.

3. Initialize the qubit in |0〉 and apply the randomly selected unitaries followed by the
inverse and measure the probability of the |0〉 state.

4. Repeat steps 1–3 k times for different randomizations and take the average of P|0〉.

5. Repeat steps 1–4 for different values of m and record P|0〉.
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Figure 3.4: Single-qubit randomized benchmarking. m Cliffords followed by an inverse
gate are applied to a qubit. (a) Probability of measuring the ground state as a function of
the number of random Cliffords. Circles are experimental data, and lines are theoretical
curves for three different average gate fidelities. (b) The average gate fidelity for m = 100
Cliffords as a function of two pulse parameters. The highest recorded fidelity is 0.9995.

6. Fit the decaying probability to apm + b, where a and b are constants related to the
SPAM errors, and p is a decay constant.

The decay constant p is related to the error probability per Clifford as (p+ 1)/2. Since
there are 1.875 gates per Clifford, the average gate fidelity from randomized benchmarking
is

F = 1− 1− p
2 · 1.875

. (3.15)

In Fig. 3.4 (a), we show randomized benchmarking performed with up to 1000 random
Cliffords. From the data, we extract an average gate fidelity of 0.999. We also show the
sensitivity of the protocol by plotting how the decay would look for lower gate fidelities. At
a given value of m, the state probability increases monotonically with F . In Fig. 3.4 (b),
we estimate the gate fidelity as a function of the pulse amplitude and DRAG coefficient.
Since a and b should not change with the pulse parameters, we measure P|0〉 at m = 100

and estimate the decay constant via p = [(P|0〉 − b)/a]1/m. The fact that P|0〉 increases
monotonically with F allows for a fast estimation between changes in pulse parameters
and their effect on the gate fidelity. This estimation can be used in a feedback loop to
optimize the pulse parameters numerically [158, 159]. The landscape of the optimization
cost function would look like Fig. 3.4 (b).

The benchmarking protocol just described yields the average gate fidelity for
√
X, X,√

Y, and Y. To extract the fidelity of each gate individually (or any single-qubit Clifford
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Table 3.1: Interleaved randomized benchmarking fidelities for nine different single-qubit
gates.

X X−1
√
X

√
X
−1

Y Y−1
√
Y

√
Y
−1

I

0.9988 0.9988 0.9993 0.9994 0.9990 0.9981 0.9978 0.9976 0.9986

for that matter), we use interleaved randomized benchmarking [160]. The process is very
similar, with the addition that after each random single-qubit Clifford, the gate of interest
is inserted, and the decay constant pinterleaved is extracted. The fidelity of the interleaved
gate is

Finterleaved =
1 + pinterleaved/p

2
. (3.16)

A typical set of interleaved randomized benchmarking results is found in Table 3.1. We
see that there is some variation between the fidelities, even if there is no reason why any
particular gate should have a higher or lower fidelity than the others. The variation in gate
fidelities is most likely due to fluctuations of the qubit coherence during the benchmarking
[Paper B].

We could expect the identity gate to have a better fidelities than the other gates.
The identity gate is performed by idling the qubit for a time equal to the pulse length
τ . Since the I gate requires no active control, it should not have any coherent errors.
Therefore, interleaved randomized benchmarking of the I gate can serve as a metric for
the incoherent error rate. However, we see that the I-gate fidelity is lower than for the Y
gate, most likely due to coherence fluctuations of the device, making the incoherent errors
temporally larger during the benchmarking of the I gate. Another way to benchmark the
incoherent-error rate would be with a protocol known as purity benchmarking [161], where
the trace of the qubit’s density matrix is measured (using quantum state tomography) as
a function of the number of Cliffords.

3.2 Two-qubit gates

The implementation of single-qubit gates in transmon qubits is quite straightforward,
and all research teams do it more or less identically. On the other hand, there is a large
variation in how two-qubit gates are achieved. Both in the physical implementation and
the actual gate (e.g., CZ, CNOT, or iSWAP). The reason for this variation is because
there is no clear winner. All implementations have their respective advantages and
disadvantages. For a comparison between the current performance of different two-qubit
gates with superconducting qubits, see the review of Kjaergaard et al. [36].

One of the difficulties in realizing a high-fidelity two-qubit gate is the on-off-ratio
problem, that is, to achieve a high ratio between the coupling strength when the coupling
should be on and when it should be off. A controllable interaction between the qubits is
needed to accomplish a high on-off ratio. For instance, the interaction could be achieved
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by capacitive coupling between two qubits, leading to the following Hamiltonian,

Ĥ

~
=
ω1σ̂

z
1

2
+
ω2σ̂

z
2

2
+ J(σ̂+

1 σ̂
−
2 + σ̂−1 σ̂

+
2 ), (3.17)

where σ̂zi , σ̂+
i , and σ̂−i are the Pauli-Z, and the raising and lowering operators for the ith

qubit, respectively, and J is the qubit–qubit coupling strength.
If ω1 = ω2, the evolution of Eq. (3.17) leads to the iSWAP unitary in Eq. (3.4) [162,

163]; however, the issue is that the interaction is always on. To turn off the interaction,
the qubit’s frequency could be made tunable so that the qubit frequencies can be detuned
from each other. To achieve a high ratio between the on and off couplings, the detuning
usually needs to be larger than 1 GHz. A qubit that far detuned from its flux sweet spot
will have a significant sensitivity to magnetic fields and flux noise. Moreover, while tuning
the qubit frequency by several hundreds of megahertz along some trajectory, the qubit
will pick up a considerable phase shift during the gate. While this phase can be calibrated
and compensated for, any small deviation from the trajectory will quickly degrade the
gate fidelity. The trajectory in frequency space might also contain regions where the
coherence is severely reduced [136], leading to more incoherent errors during the gate.

A CZ gate can be implemented similarly. Instead of having the two qubits on resonance
with each other, one qubit’s |0〉–|1〉 transition is nearly resonant with the other’s |1〉–|2〉.
If they are precisely on resonance, swapping between the |11〉 and |02〉 states occurs. If
timed correctly so that all population returns to |11〉, the |11〉 state will have accumulated
a minus sign, corresponding to a CZ gate [164]. The minus sign on the |11〉 state is
easily understood as two iSWAP gates between |11〉 and |02〉. By squaring the iSWAP
unitary, Eq. (3.4), both the involved states acquire a minus sign; however, |02〉 is not
a computational state and is therefore not an issue. The drawback of this diabatic
implementation is that we temporally use a non-computational state and risk leaving
some population there (i.e., leakage) [165]. Moreover, this type of gate suffers from the
same off problem as before, and the relaxation of the |2〉 state is a factor of 2 faster than
for the |1〉 state [166].

An adiabatic implementation of this gate can be made [40, 167] and is used in Paper F.
There, an optimized trajectory brings |11〉 and |02〉 nearly into resonance, but in a way
that no swapping into |02〉 occurs. Due to the off-resonant interaction between the two
states, |11〉 still acquires a phase-shift that can be made to be equal to π, which is a CZ
gate.

Two-qubit gates based on direct coupling are typically fast but have issues with turning
off the interaction. To reduce the off coupling, we can insert a detuned resonant circuit (a
‘coupler’) between the two qubits, as illustrated and shown in Fig. 3.5 (a) and (b). The
effective coupling strength between the two qubits is

J =
g1g2

2

(
1

ω1 − ωc
+

1

ω2 − ωc

)
, (3.18)

where ωc is the frequency of the coupler. While the off coupling is vastly reduced, so is
also the on coupling.

To turn on the interaction, either the coupler is tuned to a point where J is large so
that the qubits are strongly coupled [16, 168, 169], or the coupler is first tuned into the
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Figure 3.5: Two fixed-frequency transmon qubits coupled via a frequency-tunable transmon
coupler. (a) Electrical circuit of two qubits (red) and one coupler (green). In black are
two drive lines and one flux line. (b) Micrograph of an actual device. In addition to the
qubits, coupler, and control lines, there are also readout resonators in blue. (c) The energy
diagram of the two transmons truncated to their three lowest states. The three possible
interactions are indicated by black arrows.

resonance of one qubit, and then the other [61], or the coupler is parametrically modulated
to induce a strong coupling [170, 171]. Alternatively, a microwave drive to either the
coupler itself [172] or one of the qubits [173] can be used to induce interactions.

3.2.1 A parametric and diabatic CZ gate

In our work, we have chosen to focus on a parametric two-qubit gate. We use a
parametrically-driven tunable coupler to mediate the interaction between two fixed-
frequency transmon qubits. We have the ability to implement either an iSWAP, a CZ, or
both gates. The corresponding modulation frequencies are shown in Fig. 3.5 (c). Here,
and in Paper G, we focus on the implementation of a CZ gate.

The following Hamiltonian describes the two qubits and the coupler in the dispersive
regime [174]

Ĥ

~
=
ω1σ̂

z
1

2
+
ω2σ̂

z
2

2
+
ωcσ̂

z
c

2
+ g1(σ̂+

1 σ̂
−
c + σ̂−1 σ̂

+
c ) + g2(σ̂+

2 σ̂
−
c + σ̂−2 σ̂

+
c ) (3.19)

where ωc(t) = ωc0
√
| cos(πΦ(t)/Φ0)|. By eliminating the coupler, we end up with the

same Hamiltonian as for two directly coupled qubits Eq. (3.17), where the coupling
strength J given by Eq. (3.18).

To induce an interaction, we should modulate the frequency of the coupler at the
correct frequency. In the case of a CZ, the modulation frequency should be the difference
between the |11〉 and |02〉 states, or |11〉 and |20〉 states. Without loss of generality,
we choose the former, which is ω2 − ω1 + η2 . However, due to the nonlinear relation
between coupler frequency and magnetic flux, the coupler and qubit frequencies will shift
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Figure 3.6: (a) Parametrically induced swapping between |11〉 and |02〉, as measured by the
gate squence above the data plot. (b) Gate sequence and data for measuring the acquired
phase of the |11〉 state by changing the modulation frequency along the dashed line in (a).
In both panels, the state probabilities do not reach 1 since they are limited by the readout
fidelities.

during modulation [170]. We need to compensate for this shift, modifying the modulation
frequency to ω2 − ω1 + η2 + ξ, where ξ is the frequency shift due to the modulation.

To characterize the interaction, we initialize the system in |11〉 and apply a parametric
modulation with some frequency and duration. In Fig. 3.6 (a), we plot the probability
of measuring the |11〉 state as a function of modulation duration and frequency offset
ξ. We observe swapping from |11〉 to |02〉, which exhibits the typical Chevron pattern.
Around ξ = −2 MHz, the oscillation with pulse length has the largest contrast and lowest
frequency, which means that the drive is resonant with the transition and that all the
population of |11〉 is transferred into |02〉 and then back again. This is where we want to
operate the CZ gate.

To measure the phase acquired by the |11〉 state during the conditional-phase gate, we
prepare the system in |01〉+ |11〉 = |+1〉, apply the parametric modulation followed by a√
Y gate on the first qubit, as shown in Fig. 3.6 (b). If the |11〉 state did not acquire any

phase, the final system state should be |11〉. However, if a CZ gate was performed, the
final state should instead be |01〉. In Fig. 3.6 (b), we plot the probabilities of these two
states as a function of the modulation frequency offset. Around −2.2 MHz, we observe
that most of the system is in |01〉, corresponding to a CZ gate.
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Figure 3.7: Two-qubit randomized benchmarking of a parametric CZ gate. Red circles
with a solid black line show the reference data (only two-qubit Cliffords) with a fidelity of
94 %. Blue circles and a solid orange line have CZ gates interleaved between each Clifford,
showing a CZ fidelity of 99 %.

During the parametric modulation, the coupler frequency will negatively detune due
to the nonlinear relation between flux and frequency. If we Taylor expand the relation,
we get a quadratic term. The square of a cosine contains a zero-frequency component,
which is the reason for the lower coupler frequency during the gate. Due to the coupling
between the coupler and the qubits, the qubits frequencies also become detuned during
the gate, making the |01〉 and |10〉 states acquire phase shifts. These are deterministic
phase shifts, meaning that they are independent of the actual qubit states. Since the
phases are deterministic, we can compensate by applying virtual Z gates on each qubit
after performing the CZ gate.

3.2.2 Benchmarking of two-qubit gate fidelities

Similarly to the benchmarking of single-qubit gates, we apply the protocol of randomized
benchmarking to two-qubit gates. The two-qubit Clifford group consists of four different
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subgroups [175]: the single-qubit group (576 elements), the CNOT-like group (5184
elements), the iSWAP-like group (5184 elements), and the SWAP-like group (576 elements).
Each group starts with a single-qubit Clifford on both qubits, then follows either a CNOT,
an iSWAP, or a SWAP. For the CNOT and iSWAP groups, an additional single-qubit gate
is added to both qubits. An iSWAP gate can be decomposed into two CNOTs, and a
SWAP into three CNOTs. This gives an average of 1.5 CNOTs per two-qubit Clifford.
Note that a CNOT can be decomposed into one CZ gate and two single-qubit gates (i.e.,
1.5 CZ gates per two-qubit Clifford [40]). If one had access to both CZ and iSWAP gates,
as we do in the parametric scheme, only one two-qubit gate per two-qubit Clifford would
be required, on average.

To perform the benchmarking, one randomly draws m two-qubit Cliffords and append
the inverse gate at the end that returns the system to |00〉. Then, we measure the
probability of |00〉 as a function of m and for different randomizations. We fit the resulting
decay to the same model as for a single-qubit gate. From p we calculate the average
two-qubit Clifford fidelity (3p+ 1)/4. From just the two-qubit Clifford fidelity, we cannot
extract the CZ fidelity since a two-qubit Clifford contains both single- and two-qubit
gates.

To extract only the CZ fidelity, we run interleaved randomized benchmarking. After
each random Clifford, we insert a CZ gate and then repeat the benchmarking protocol.
From the resulting decay constant pCZ we can calculate the CZ fidelity as

F =
3

4
(1− pCZ/p), (3.20)

In Fig. 3.7, we plot both the reference (no interleaved CZ gates) and the interleaved
benchmarking, with a two-qubit Clifford fidelity of 94.0 % and a CZ fidelity of 99.0 %.

A two-qubit fidelity of 99.0 % is close to the state-of-the-art and above the threshold
for the error-correcting surface code [13, 40], which means that we could use our gate to
implement error correction. However, error correction needs more than two qubits, which
our current processor does not have. Nevertheless, two qubits are enough to demonstrate
quantum algorithms, and our gate fidelity is more than enough as well. In Chapter 4, we
demonstrate two quantum algorithms.

To increase the gate fidelity further, we would need to operate the gate faster. The
current gate time of 260 ns is rather slow, which means that we are mainly limited by
incoherent errors. We are confident that increasing gi by a factor of

√
2 will allow us

to achieve gate times of 100 ns and fidelities of 99.5 %. There is a trade-off between
short gate times and coherent errors due to off-resonant driving of other transitions [174].
Therefore, achieving gate times approaching 10 ns might be challenging.

We are working on increasing the number of qubits and couplers on our processors.
It is possible to couple more than two qubits to the same coupler [170], which can be
advantageous as it reduces the amount of hardware needed. One issue when scaling
to more qubits might be crosstalk between different couplers. Currently, the crosstalk
between two SQUIDs can be as high as 10 %; however, this number is generally vastly
reduced when moving to a 3D-integrated architecture [16, 42].
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3.3 Readout of qubit states

Finally, we turn to the last quantum operation, the measurement of a qubit’s state. A
measurement is performed using the readout resonator that is coupled to the qubit. As
a result of the dispersive coupling between the two, the effective resonator frequency
is ωr + χσ̂z, where χ is the dispersive shift, Eq. (1.10). The dispersive shift makes the
resonant frequency dependent on the qubit’s state, allowing the state of the qubit to be
inferred by probing the resonator with a weak microwave signal. Experimentally, a single
microwave tone is applied to the feedline at a frequency close to ωr, and the transmitted
signal is measured. Depending on where the resonant frequency is, the transmission
coefficient, Eq. (2.13), is different, and the qubit’s state can be inferred.

A readout pulse is generated by the same upconversion scheme as a single-qubit pulse.
However, here we also need to downconvert the transmitted signal to be able to sample
it with an analog-to-digital converter (ADC). The up- and downconversions are done
using the same local oscillator [Fig. 3.8 (a)], which provides a stable phase relationship
between generation and detection. As for the single-qubit drive, we use an intermediate
frequency to avoid having the local-oscillator frequency at the readout-resonator frequency.
Otherwise, in the presence of bleedthrough, that would lead to an excess population of the
resonator and qubit dephasing, Eq. (2.11). The use of IQ mixers allows us to distinguish
between positive and negative intermediate frequencies, essentially doubling the available
bandwidth.

Accurate triggering of when the readout should start is crucial. The readout should
start immediately after the last quantum gate to minimize any decoherence of the system
state. At the end of the last gate, a trigger signal is sent from the qubit AWG to the
readout AWG and ADC. The ADC then acquires both channels for a specific time and
integrates the signal over this time window, resulting in two voltages I and Q. To
compensate for the intermediate frequencies of the readout signal, we use integration
weights proportional to cos (ωIFt) and sin (ωIFt). By a proper choice of integration weights,
only one of the sidebands of the downconverted signal is measured. The gate sequence
and measurement can be repeated multiple times to build up statistics of the qubit state.

It is important to point out that even with no noise on the readout signal, statistics
are needed to infer the qubit populations. According to the Copenhagen interpretation of
quantum mechanics, a measurement projects a quantum state to one of its eigenstates.
So if a qubit is in a superposition state (e.g., |0〉+ |1〉), a single measurement would only
yield |0〉 or |1〉. It is only by statistics (and state tomography) that we could tell that
the qubit is, in fact, in a superposition state. In Fig. 3.8 (b), we plot a two-dimensional
histogram over the readout I and Q voltages for a qubit prepared in |0〉+ |1〉. We see
two clouds of almost equal size, each corresponding to one of the two-qubit states.

In Fig. 3.8 (c), we plot the integrated I voltages for a qubit prepared in the ground
and excited states. Ideally, each state should have a voltage distribution described by
a narrow Gaussian. The width of each Gaussian is proportional to the total system
noise, and the separation between is proportional to the signal amplitude and readout
duration. Additionally, we see that each distribution is the sum of two Gaussians, with
the second one having a smaller magnitude. The origin of the second Gaussian is due to
some qubit-state error since the second Gaussian has the same mean value as the primary
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Figure 3.8: (a) Setup used to generate and detect readout pulses. An arbitrary wave-
form generator (AWG) is used to generate the readout signal, and an analog-to-digital
converter (ADC) is used to detect it. The local oscillator is shared between the up- and
downconversion mixers. Here, three readout resonators are coupled to a common feedline
for multiplexed qubit readout. (b) 2D histogram of acquired complex readout voltages of a
qubit in the |0〉+ |1〉 state. The left and right clouds correspond to |0〉 and |1〉, respectively.
(c) Histogram of measured I voltages with the qubit in |0〉 (red) and |1〉 (blue). The dashed
line corresponds to a threshold value used for deciding the qubit state.

Gaussian of the other state. The second Gaussian of the red trace (qubit ideally prepared
in |0〉) is most likely due to a thermal population of the qubit. The second Gaussian of
the blue trace originates from a combination of thermal population, single-qubit gate
error, and qubit relaxation before and during the readout, explaining why the second
Gaussian is more significant for the blue trace than for the red. By identifying the mean
I and Q values for the qubit in its ground and excited state, it is possible to define a
threshold in-between those means and label a measurement as a |0〉 or |1〉.

A readout fidelity F is defined via the overlap between the measurement distribu-
tions with the qubit in the ground respective excited state. This overlap equals to
1− F = P (|0〉||1〉)− P (|1〉||0〉), where P is the conditional probability of measuring the
wrong state. Ideally, the only contribution to the system noise would be from the vacuum.
However, in most practical applications, the semiconducting HEMT amplifier used adds
noise that dominates over the vacuum. This causes more overlap between the readout
voltage distributions corresponding to the qubit in the ground and the excited state.

To reduce the noise and the width of the Gaussians, we can either use a longer
integration time or amplifiers with less noise. We are already using the best HEMT
amplifiers on the market with a noise temperature (2 K) approximately ten times that
of the Heisenberg limit (~ω/2kB ≈ 150 mK). To decrease the system noise temperature
further and approach the quantum limit [176], we could use custom-made superconducting
amplifiers based on parametric interactions. For example, a Josephson parametric amplifier
(JPA) has been used as the first-stage amplifier to demonstrate single-shot readout [177,
178]. JPAs provide high gain but low bandwidth and saturation power. To combat these
drawbacks, the traveling wave parametric amplifier (TWPA) was developed [179, 180]. In
Paper C and Paper F, we use TWPAs to boost the signal-to-noise ratio of the readout
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signal.
In linear systems, the SNR can be increased by just increasing the signal. Here,

that corresponds to increasing the amplitude of the microwave tone used for readout.
However, if the amplitude and the number of photons inside the resonator are too large,
the approximations performed to the dispersive Hamiltonian Eq. (1.9) breaks down [37],
and state mixing and transitions are induced [181]. The critical photon number where
state mixing starts to occur is

nc =
∆2

4g2
≈ 200, (3.21)

for our qubits. Note that ∆ and g are strongly dependent on the readout speed needed.
For faster readouts than ours, nc quickly approaches 1-10 photons, matching the noise
added by the best HEMT amplifiers currently available.

To build a quantum computer, we need more than one qubit. If we were to multiply
the readout setup by the number of qubits, that would be very impractical and expensive.
One advantage of the transmission configuration [Fig. 3.8 (a)] is that multiple readout
resonators can be coupled to the same feedline, allowing for a simultaneous readout of
several qubits using frequency multiplexing.

There is a practical limit on the number of resonators coupled to the same feedline. In
essence, the frequency spacing between each resonator must be sufficiently large compared
to the bandwidth of the resonators (κ) so that there is minimal crosstalk and all resonant
frequencies must be within the bandwidth of the detection chain. In our case, that
bandwidth is set by the analog-to-digital converter and is 1200 MHz. For example, we
could couple ten resonators with a spacing of 120 MHz, which is sufficient for typical κ
values.

3.3.1 Tuneup of dispersive readout

In practice, we have to tuneup and calibrate our readout. Three main parameters are
associated with a readout pulse: amplitude, frequency, and duration. The amplitude
should be high enough to overcome the system noise, but not higher than the critical
photon number. The optimal frequency is typically close to ωr and can be found by
maximizing the separation of the Gaussian distributions [Fig. 3.8 (c)] as a function of
frequency. The optimal duration is found by analyzing the readout fidelity as a function
of the integration window. Too long duration and the qubit relaxes during the readout.
Too short duration and the separation error is significant. In Paper G, we do not use any
parametric amplifiers. However, we can still reach readout fidelities above 0.9, since the
readout can be made relatively long (2.3 µs), well below our relaxation times (several tens
of microseconds).

To refine our accuracy of measuring state probabilities in the presence of limited
readout fidelity, we collect statistics of the measured qubit population as a function of the
rotation angle θ around the X-axis on the Bloch sphere, see Fig. 3.9. Since the measured
population increases monotonically with the angle, we can renormalize the populations
to account for the limited readout fidelity (95%). We fit the measured probabilities
to β〈σ̂z〉 cos(θ) + βI . The β parameters allow us to convert between measured state
probabilities and the actual expectation values of a qubit. The mathematical relation
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Figure 3.9: Measured state probabilities as a function of the rotation angle θ. The |1〉
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between state probabilities and expectation values is(
P|0〉
P|1〉

)
=

(
βI βσ̂z

βI −βσ̂z

)(
〈I〉
〈σ̂z〉

)
. (3.22)

This conversion is crucial, as it allows for quantum state tomography in the presence of
limited readout fidelities [153]. Moreover, for more than one qubit, it is still enough to
calibrate the β parameters separately for each qubit. The system β matrix is then given
by the tensor product between all individual β matrices.

3.3.2 Readout using a degenerate parametric oscillator

In Paper E, we demonstrate a slightly different readout protocol, which was first proposed
in Ref. [62]. It still relies on the dispersive coupling between a qubit and a resonator,
but instead of probing the resonator using a weak signal, we parametrically modulate
the readout resonator. Under the right conditions, the parametric pumping yields strong
parametric oscillations (see Chapter 5).

The excitation of oscillations in a degenerate parametric oscillator is sensitive to
the pump parameters: the pump amplitude must exceed an instability threshold, and
the frequency must be close to 2ωr. By coupling a superconducting qubit, such as the
transmon, to a parametric oscillator (Fig. 3.10), the dispersive shift can move the resonant
frequency so that the second criterion is no longer fulfilled. The oscillator will then
remain in its ground state. In this way, the ground state of the qubit can be mapped
to an oscillating state and the excited state to a silent state, or vice versa. Since the
oscillating state has a large number of photons in the resonator, there will be a significant
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Figure 3.10: Experimental setup for the parametric oscillation readout. A transmon
qubit (red) is coupled to a parametric oscillator (blue). The parametric readout pump is
controlled by a microwave mixer and an arbitrary waveform generator. The outgoing field
is amplified, downconverted, and sampled by an ADC.

measurement contrast between the outputs corresponding to the qubit states, and therefore
a high signal-to-noise ratio.

In Fig. 3.11 (a) and (b), the output power of the oscillator is presented as a function
of pump detuning and amplitude when the qubit is prepared in the ground and excited
states, respectively. For the ground state, we see a typical parametric region around zero
detuning between half the pump frequency and the resonator frequency. For the excited
state, the region has moved to lower frequencies due to the dispersive shift χ. However, a
faint region is still seen in the original position. This is due to qubit relaxation back to
its ground state before the readout, or that the excitation pulse was not successful.

It is clear that if the parametric oscillator is operated close to zero detunings, the
finite-amplitude state is mapped to |0〉 and the zero-amplitude state to |1〉. If performed
at negative detunings instead, the situation is reversed. The optimal operating point is
found by extracting the readout fidelity at each point in the parametric regions.

For the operating point with the highest readout fidelity, 81.5%, the readout voltage
distributions are analyzed in detail in Fig. 3.11 (c). With the qubit in the ground state,
the oscillator is mostly in its zero amplitude state (the Gaussian at the origin). In the
excited state, the oscillator has a finite amplitude and shows a combination of three
Gaussians. The two outer ones are the oscillating and the most probable states. The
reason for two Gaussians at finite voltages is that the oscillator has two degenerate states,
which are shifted by π radians. The presence of the central peak with the qubit in |1〉 is
due to qubit errors. For example, when the qubit relaxes before the start of the readout,
the excited state measurement shows three Gaussians instead of two. If the qubit instead
relaxes during the readout, it introduces an asymmetry in the Gaussians.

Performing a careful analysis of the acquired histograms can give insights into the
origins of the fidelity loss. Due to the probabilistic nature of the effects limiting the
readout fidelity, we use a Monte-Carlo based simulation of the experiment. The simulation
starts with the qubit initialized to its ground state. Several random numbers between 0
and 1 are generated and compared to the probability of specific processes, deciding if that
process will happen during one cycle of the experiment. The final qubit state is recorded,
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Figure 3.11: Measurements of the output power of the parametric oscillations as a function
of normalized pump parameters, when the qubit is prepared in the ground state (a) and
excited state (b). Note that in the context of parametric oscillators, ε is the pump
amplitude, and Γ is the resonator bandwidth. (c) Histogram of measured I quadrature
voltages, together with simulation results.

and a readout voltage is drawn from the associated Gaussian distribution. The simulation
is then repeated, but with different random numbers. Over time, a distribution of qubit
states and readout voltages are built up.

There are five sources of error taken into account in the simulation:

1. The qubit is not in its ground state initially. The Boltzmann distribution gives this
probability for a certain qubit frequency and temperature.

2. The qubit is not excited by the π pulse, which is modeled as a gate fidelity.

3. The qubit relaxes before readout. The probability of decay after a given delay time
td between the excitation pulse and the start of the readout is given by 1− e−td/T1 .

4. The qubit relaxes during readout. The probability of decay in a given time interval
∆t is given by e−∆t/T1∆t/T1.

5. The parametric oscillator switches during readout. The probability is given by the
switching rate.

The switching rate and relaxation time T1 are measured separately, while the gate fidelity
and the temperature of the qubit are treated as fitting parameters.

In Fig. 3.11 (c), the result of the simulation and the experimental data are compared.
The side peaks in the red data set correspond to the qubit initially being in the excited
state due to thermal excitation, and the temperature T in the simulation is adjusted to
match the data. The central peak in the blue data set corresponds to either relaxation
before the readout, an unsuccessful π pulse, or the qubit being in the excited state initially
and then de-excited by the π pulse. Since T1 is measured separately, and T is already
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fixed, only the gate fidelity is adjusted in the simulation. These two adjustments give
an overall good agreement with experimental data and simulation. The loss of fidelity
associated with each error channel is:

• 16.1% to relaxation and preparation errors.

• 1.1% to thermal population.

• 1.2% to phase switching of the parametric oscillator.

• 0.002% due to overlap between Gaussians.

• In total, 18.4% of error.

From this analysis, we conclude that the fidelity due to the readout method itself is
98.7% and limited by the phase switching. What determines the switching rate is still
unknown to a large extent, but two things could be done to improve it. Either, the
readout duration is decreased so that the probability of switching during the readout is
lower, or the oscillations can be injection-locked to one of the states by applying a small
resonant signal, as done in Ref. [182] and Paper K.

The qubit induced readout errors are mainly due to the low coherence time compared
to the readout duration. This experiment was carried out with an older qubit with
coherence times on the order of single microseconds. Our more modern qubits have
coherence times at least ten times longer than the one used here, and should, therefore,
reduce errors 3 and 4 substantially. A more in-depth description and analysis of the
parametric readout is found in the Ph.D. thesis of Philip Krantz, Ref. [183]. Also, this
readout method is not used in any of the other appended papers.
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CHAPTER IV

Two quantum algorithms and their implementation

So far, we have discussed how to design and fabricate qubits with high coherence and
how to control them with high fidelity. We now turn to the actual quantum information
processing part of this thesis. This chapter summarizes the results of Paper F and Paper G,
which are about two different quantum algorithms. We cover the basics of each algorithm
and how they are implemented on actual hardware.

Current quantum processors are far from large or fault-tolerant, which means that
factoring large integers via Shor’s algorithm is not possible at the moment. The textbook
algorithms, which have provable speed-up over the best known classical algorithms, all
require thousands of error-free qubits. In parallel with working towards building such
systems, it is important to investigate heuristic algorithms that can run on current or
near-term hardware. Such algorithms are referred to as noisy intermediate-scale quantum
(NISQ) algorithms [15]. While we cannot prove their speed-up, or expect an exponential
speed-up over classical algorithms, they might provide polynomial or even just constant
speed-up. In many industrial applications, 10, 20, or 50 % speed-up would still be of
great value. In this chapter, we will see one NISQ algorithm, the quantum approximate
optimization algorithm [184], and one non-NISQ, density matrix exponentiation.

The quantum processors used here contain two qubits. While it is trivial to simulate
such a processor, and even up to tens of qubits, on a classical computer, it is still important
to run algorithms on actual hardware. First of all, it demonstrates that there is nothing
fundamentally wrong with quantum mechanics and the algorithm. Second, it sparks
interest in the research of new quantum algorithms and how they could be used to solve
real-world problems, for example, in the airline industry [185, 186]. Third, small-scale
algorithms can act as benchmarks for how a specific quantum processor is performing.
Finally, implementing algorithms on small and noisy processors forces us to come up
with smart and creative ways to utilize the limited resources available (e.g., efficient gate
compilation and reuse of qubits), which we will greatly benefit from even when larger
processors become available.
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4.1 Density matrix exponentiation

Density matrix exponentiation (DME) is a unitary transformation, e−iρθ, of a density
matrix ρ, and an angle θ. To classically implement DME would require a full tomographic
reconstruction of ρ. This, in turn, requires O(22n/ε2) copies of ρ, where n is the number
of qubits in the density matrix and ε is the desired precision [187].

If ρ represent some data matrix, then DME combined with quantum phase estimation
[5] can be used to extract the dominant eigenvalues and eigenvectors of ρ [188], which
provides exponential speed-up for principle component analysis [189] and quantum machine
learning [190]. Furthermore, if ρ is a large entangled state, DME efficiently reveals its
entanglement spectrum without having to perform full quantum state tomography [191].

It has been shown that a quantum version of DME asymptotically outperforms any
tomographic strategy to implement e−iρθ [188, 189]. DME, as implemented directly
on quantum hardware, requires only O(θ2/ε) copies of ρ, resulting in an exponential
reduction in the resource requirements [189].

Another way of seeing density matrix exponentiation is as a quantum instruction set.
By changing the state of an instruction qubit, we achieve different operations on a target
qubit. The opposite would be a classical instruction set, where the operation of the target
qubit is determined by a classical computer and the actual waveforms sent to the qubit.
A quantum instruction set has a variety of applications, including quantum simulation
[188] and quantum emulation [192].

A practical protocol for implementing the quantum version of DME utilizes partial
SWAP gates between a target state σ and N copies of an instruction state ρ. We will
denote this protocol DMEN . The SWAP unitary exchanges the states of two qubits
according to SWAP(σ⊗ ρ) = ρ⊗σ. The DMEN algorithm relies on the observation that:

Trρ
[
e−iSWAPδσ ⊗ ρeiSWAPδ

]
= σ − iδ[ρ, σ] +O(δ2) = e−iρδσeiρδ +O(δ2).

That is, after a partial SWAP, defined as δSWAP ≡ e−iSWAPδ [193], σ undergoes unitary
evolution of the form e−iρδ (up to first order in δ). Applying this technique serially by
introducing a new copy of ρ for each of N δSWAP operations with δ = θ/N implements
the operator

DMEN (ρ,N, θ)→ e−iρθ +O
(
θ2

N

)
. (4.1)

For intuition, if ρ is a single-qubit pure state, DMEN rotates σ about the axis defined by
the Bloch sphere vector of ρ, with an angle θ. The more copies of ρ we have, the more we
can reduce the algorithmic error.

For small δ, the state of the target and instruction qubits are nearly unaffected by
a δSWAP. In this case, a measurement of ρ in its eigenbasis approximately ‘resets’ the
qubit by projecting it onto one of the eigenstates. As the effect of δSWAP is small, the
probability of projecting into the same eigenstate every time is high, and the qubit will,
therefore, stay in that eigenstate, an effect that is known as the quantum Zeno effect
[194]. So, by measuring the instruction qubit after each δSWAP, we can use the same
instruction qubit to the next round of δSWAP; thus, removing the need for N physical
copies of ρ.
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Figure 4.1: (a) Two-qubit DME implementation using simulated quantum measurements
(SQM) to approximately reinitialize the instruction qubit to ρin. The substep parameter n
is stepped from 0 to N . We perform n rounds of δSWAP + SQM, measure the two-qubit
density matrix, and trace over each subsystem to extract the individual density matrices
σ(n) and ρ(n). (b) Substeps of DME(|0〉〈0|, 8, π), corresponding to a Z gate on the target
qubit at n = N . Black lines are guides to the eye.
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This resource-efficient protocol, which we denote DME, trades a moderate increase in
algorithmic error for a significant reduction in the required number of qubits. Because the
reset of ρ is approximate, it introduces additional error on the same order of magnitude
as the algorithmic error in DMEN :

DME(ρ,N, θ) → e−iρθ + O( θ
2

N )︸ ︷︷ ︸
Finite N

+O( θ
2

N )︸ ︷︷ ︸
Reset

.
(4.2)

The reset protocol does not depend on us knowing the outcome of the measurement.
It is the effect of the measurement itself that performs the approximate reset. Instead
of performing the measurement, which can take several microseconds, we use a novel
probabilistic operation, which we call a simulated quantum measurement (SQM). SQM
mimics a measurement by constructing a dephasing channel via a random application of
either an identity (I) or a Z gate:

SQM =

{
I with p = 0.5

Z with p = 0.5
(4.3)

Here, we focus on instruction states in the z-basis |0〉, |1〉; however, SQM can be extended
also to the x- and y-bases. When averaged over many randomizations, SQM is identical
to a measurement whose outcomes are ignored, while only requiring the time span of a
single-qubit gate (tens of nanoseconds).

The circuit for our implementation of DME is shown in Fig. 4.1 (a). We interleave
δSWAP operations with SQM on the instruction qubit, executing many instantiations of
the circuit with random choices of I and Z for each SQM, and averaging together the
outcomes. We implement a δSWAP using single-qubit and CZ gates.

In Paper F, we extensively characterize and benchmark our DME implementation.
Here, in Fig. 4.1 (b), we demonstrate the working principle. We choose a target state
σ = |+i〉〈+i|, an instruction state ρ = |0〉〈0|, number of steps N = 8, and total phase
θ = π, yielding DME(|0〉〈0|, 8, π). Since the instruction is z-polarized, this operation
should perform a Z gate on the target qubit. We interrupt the algorithm after n substeps
of δSWAP + SQM and perform quantum state tomography, averaging together all SQM
randomizations to produce a single density matrix. We see that σ(n) undergoes partial
rotation at each step about an axis defined by ρ; ρ(n) maintains its z-polarization
but undergoes depolarization due to gate errors. This demonstrates and validates the
fundamental underlying principle of DME.

DME is not a NISQ algorithm, as we cannot allow for any errors to happen during
the execution, and the number of qubits needs to be large to be able to solve interesting
problems. Nevertheless, its demonstration is important. Just as factoring 15 using a
quantum computer is not useful by itself [195], it is an important demonstration of the
underlying theory and technology. As quantum computers grow in size and become
fault-tolerant, we hope that DME can prove its usefulness in quantum simulation and
machine learning.
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Figure 4.2: The quantum approximate optimization algorithm (QAOA) for a problem
specified by an Ising Hamiltonian Ĉ. An alternating sequence of two Hamiltonians (Ĉ
and B̂) is applied to an equal superposition of n qubits. After measurement of the qubit
states, a cost is calculated, which a classical optimization algorithm minimizes by varying
the angles ~γ, ~β.

4.2 Quantum approximate optimization

The quantum approximate optimization algorithm (QAOA) is a heuristic algorithm
for solving NP-complete optimization problems [184, 196, 197]. It is not believed that
quantum computers will be able to provide an exponential speed-up for NP-complete
problems, as that would imply that all NP problems would be efficiently solvable on a
quantum computer. However, quantum computers might still bring polynomial speed-up
(cf. Grover’s search algorithm [198]). It has been shown that QAOA should provide a
polynomial speed-up to the solution of specific problems encoded in a quantum Hamiltonian
[199, 200].

QAOA is executed on both a classical and a quantum computer, making it a hybrid
algorithm. The quantum part consists of a circuit with p levels and some variational
angles, where better approximations to the solution of the encoded problem are generally
achieved with higher p. A classical optimizer is then used to minimize some cost function
measured on the quantum processor.

All NP-complete problems can be formulated in terms of finding the ground state of
an Ising Hamiltonian [201],

Ĉ =

n∑
i=1

hiσ̂
z
i +

∑
i<j

Jij σ̂
z
i σ̂

z
j , (4.4)

where hi and Jij are real coefficients. QAOA aims at finding this state by applying two

non-commuting Hamiltonians, B̂ and Ĉ, in an alternating sequence (with length p) to an
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equal superposition state of n qubits (visualized in Fig. 4.2),

∣∣∣~γ, ~β〉 =

p∏
i=1

[
e−iβiB̂e−iγiĈ

]( |0〉+ |1〉
2

)⊗n
, (4.5)

where γi and βi are variational angles. The second Hamiltonian is a transverse field
(mixing) Hamiltonian defined by

B̂ =
n∑
i=1

σ̂xi , (4.6)

The ground state of Eq. (4.4) corresponds to the lowest-energy state. Therefore, we
aim to find the minimum value of the energy expectation value of Eq. (4.5),

F (~γ, ~β) =
〈
~γ, ~β

∣∣∣ Ĉ ∣∣∣~γ, ~β〉 =

n∑
i=1

hi〈σ̂zi 〉+
∑
i<j

Jij〈σ̂zi σ̂zj 〉. (4.7)

We use F as a cost function for a classical optimization algorithm aiming to find the
optimal varitional angles ~γ∗, ~β∗. F is evaluated by repeatedly preparing and measuring
|~γ, ~β〉 on a quantum processor. For a high enough p, |~γ∗, ~β∗〉 is equal to the ground state
of Ĉ and the answer to the optimization problem [184]. However, for algorithms executed
on real hardware without error correction, noise will inevitably limit the circuit depth,
implying that there is a trade-off between algorithmic errors (too low p) and gate errors

(too high p). The angles ~γ∗, ~β∗ themselves are not interesting, as long as they yield the
lowest-energy state. This gives some robustness against coherent gate errors since any
over- or under-rotations can be compensated for by a change in the variational angles
[202].

In Paper G, we report on using our superconducting quantum processor to demonstrate
QAOA with up to p = 2. We solve four instances of the NP-complete exact-cover problem.
Let us consider one of the four instances where n = 2, J12 = 1/2, h1 = −1/2 and h2 = 0.
It is easy to check that the corresponding ground state is |10〉. For p = 1, we apply a
simple grid (61× 61) search of β1, γ1 ∈ [0, π[ while recording 5000 measurements of each
qubit. From these, we calculate 〈σzi 〉, 〈σz1σz2〉, the cost function F , and the occupation
probability for each of the four possible states. The grid search allows us to explore the
shape of the optimization landscape, which may bring an important understanding of the
difficulty of finding global minima for black-box optimizers.

In Fig. 4.3 (a), we show the measured cost function. Due to the normalization of hi
and J12, the ground state corresponds to F = −1. We observe that the cost function
never reaches below −0.5. To achieve costs approaching -1, additional levels (p > 1) are
needed. Moreover, the existence of a local minimum around γ1 ≈ β1 ≈ 3π/4 could cause
difficulties for optimizers trying to find the global minimum.

In Fig. 4.3 (b), we take linecuts along the dashed lines in Fig. 4.3 (a) and benchmark our
measured cost functions and state probabilities against those of an ideal quantum computer
without any noise. We see excellent agreement between measurement and theory: the
measured positions of each minimum and maximum are aligned with those of the theory,
consistent with low coherent-error rates. In addition, we observe excellent agreement
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Figure 4.3: (a) Cost function F (~γ, ~β) for QAOA with p = 1 and n = 2. Each experimental
data point is evaluated from the average of 5000 measurements on our quantum processor.
(b) A comparison between experiment (open circles) and theory (solid lines). Each color
corresponds to either a state probability or the value of the cost function F . The linecuts
are taken at the vertical dashed line in (a). The theory curves are calculated assuming an
ideal quantum processor.

between the absolute values at the minima and maxima, indicating low incoherent-error
rates as well.

Even with high gate fidelities, high algorithmic fidelity is not guaranteed. Randomized
benchmarking gives the average fidelity over a large number of random gates, which
transforms any coherent errors into incoherent ones. For real quantum algorithm circuits,
the gates are generally not random. Therefore, any coherent errors can quickly add up and
yield algorithmic performance far lower than expected from randomized benchmarking
fidelities alone [203].

To increase the success probability, we add an additional level (p = 2). For p > 1, a
grid search to map out the full landscape becomes unfeasible due to the many parameters
(equal to 2p). Therefore, we instead use a black-box optimizer to find the optimal
variational angles. Here, we use Bayesian optimization with Gaussian processes (BGP).
We choose BGP due to its ability to find global minima.

We evaluate the optimizer performances by running 200 independent optimizations with
random starting values (~γ, ~β ∈ [0, π[). We set a threshold for convergence at F < −0.95
and count the number of converged optimization runs as well as the number of calls to
the quantum processor (function calls) required to converge. We also record the success
probability of measuring the problem solution (P|10〉). For the optimizer presented in
Fig. 4.4, we converged to the ground state 61.5% of the time, with an average number of
function calls of 44.

We study the individual optimization trajectories in Fig. 4.4. For each run, we plot the
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Figure 4.4: QAOA using p = 2 and Bayesian optimization with Gaussian processes. We
run the optimization 200 times with random starting parameters. Plotted as blue lines are
the individual optimization trajectories for the cost F . In orange and green are F and the
success probability (P|10〉) averaged over the converged runs.

cost F and the success probability P|10〉, along with their average over all converged runs.
The first function calls are random points, which explains why there is no improvement
in the beginning. After that, the cost function decreases rapidly, accompanied by an
expected increase in P|10〉. We see an indication of a local minimum at F ≈ −0.5, and
that the optimizer sometimes manages to escape from this minimum, showcasing the
strength of Bayesian optimization.

At the end of the optimization, the highest recorded probability of generating the
correct state is 96.6%. The success probability is limited by imperfect gates (we have
verified that an ideal quantum computer and p = 2 can achieve P|10〉 = 1). We compare our
measured success probability to what we would expect from the randomized-benchmarking
fidelities. The quantum circuit, together with the fidelities for each gate, predicts a total
fidelity of 96.3%, in good agreement with the measured fidelity, considering experimental
uncertainties (e.g., fluctuations in qubit coherence and gate fidelities). Note that p = 3
would not yield a higher success probability, since adding more gates would lower the
total fidelity further (predicted to be 94.2%).

Finally, let us discuss success probabilities. The important question is, how high does
it need to be? If we were to guess solutions randomly, we would have a success probability
of 1/2n. Of course, there are better classical algorithms than random guessing; however,
since these are heuristic algorithms, it is difficult to quantify how high success probability
QAOA needs to outperform a classical computer. As an example, even if the success
probability of measuring the correct state is only 5%, we could measure 100 instances
and still attain a probability higher than 99% of finding the correct state at least once in
those 100 measurements. We can therefore use QAOA to generate a shortlist of possible
solutions, which then can be checked efficiently on a classical computer. The fact that we
can tolerate errors by re-running the algorithm, and that we potentially only need 50 to
100 qubits to solve something that a classical computer cannot, is why QAOA is a NISQ
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algorithm.

4.3 Gate compilation

There are two points of gate compilation: to translate an arbitrary sequence to gates
that are available on the hardware, and to minimize the number of gates used. Since the
number of gates that we can run while maintaining a high algorithmic fidelity is limited,
it is essential to compile any quantum algorithm into as few gates as possible. However,
the gate compilation itself should not be exponentially costly, as that would remove any
possible speed-up of the quantum algorithm. The gates in the available gate set might
not have the same fidelity, and a compiler should also minimize the number of low-fidelity
gates.

In this section, we will see how the gate compilation of DME was implemented. DME
utilizes partial SWAP gates. A full SWAP can be implemented by [5]

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =
• •
•

. (4.8)

From this construction, a partial δSWAP interaction is generated as

δSWAP =


1 0 0 0
0 (1 + ei2δ)/2 (1− ei2δ)/2 0
0 (1− ei2δ)/2 (1 + ei2δ)/2 0
0 0 0 1

 =
• H • H •

•
2δ , (4.9)

where

•

•
δ = CZδ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iδ

 =
Zδ/2 • •

Zδ/2 Z−δ/2
(4.10)

is a partial CZ gate. This decomposition together with Eq. (4.9) would allows us to rely
on just CNOT gates (together with single-qubit gates), instead of having to tune up high
fidelity versions of CZδ for each value of δ [204]. However, this decomposition introduces
two CNOTgates for each CZδ gate, making it a total of four CNOT gates per δSWAP,
which is an overhead in the circuit depth.

To optimize the δSWAP implementation further, we utilize the fact that any two-qubit
unitary can be decomposed into a circuit with maximally three CNOT and four single-qubit
gates [5, 205]:

U =

R1,1 • R1,2 • R1,3 • R1,4

R2,1 R2,2 R2,3 R2,4

, (4.11)

where Ri,j is a single-qubit gate acting on qubit i at moment j in the circuit. So, for each
value for δ in δSWAP, we can numerically calculate the rotation axes and angles for Ri,j .
This is also referred to as Cartan’s KAK decomposition [206].
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Finally, we turn the CNOT gates into our physically available two-qubit gate, the CZ
gate, by using the identity •

=
•

H • H
(4.12)

In the context of Eq. (4.11), we can absorb the Hadamard gates into the neighboring
single-qubit gates Ri,j .

To construct the DME(ρ,N, θ) circuit, we append N copies of the compiled δSWAP
gate using δ = θ/N , interleaving SQM on qubit 2 (the instruction qubit, ρ) to emulate
the effect of measurements. Rows 1 and 2 in Fig. 4.5 shows the generic structure and
gate decomposition of our implementation of DME. The final layer of single-qubit gates
in the δSWAP at step n can be recompiled together with the SQM and the first layer of
single-qubit gates in the δSWAP at step n+ 1. We slice out these three layers (Row 2 in
Fig. 4.5) of single-qubit gates, recompile them into a single layer (Row 3 in Fig. 4.5), and
reinsert them (Row 4 in Fig. 4.5).

Our compilation enables us to achieve high algorithmic fidelity at significant circuit
depth since it relies upon a restricted set of gates that are readily characterized and
numerically optimized. In particular, the final compiled circuit has a regular structure
(each CZ is followed by exactly one layer of single-qubit gates), amenable to generic tuneup
protocols for reducing coherent error buildup.
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Figure 4.5: Row 1. Two steps of the density matrix exponentiation algorithm implemented
using partial SWAP operations and the simulated quantum measurement (SQM) gate.
Row 2. Decomposing each δSWAP according to Eq. (4.11). Each substep at this step
requires 8 layers of gates (7 for δSWAP decomposition and 1 for SQM). Row 3. The three
layers of single-qubit gates stemming from the the end of the δSWAP of step n, followed
by SQM, and the first layer of single-qubit gates in δSWAP of step n+ 1 can be recompiled
into a single layer. Row 4. The recompiled gates are reinserted into the algorithm result
in the optimal structure of exactly one CZ gate, followed by a single layer of single-qubit
gates.
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CHAPTER V

Generation of microwave photon states

This chapter summarizes our work on the creation of different microwave states. We
use two different methods to achieve this, parametric pumping of microwave resonator
(Paper H–Paper L), and controlled exciation an decay of quantum bits (Paper M).

Quantum information can not only be processed by qubits (a system with only two
levels). It is also possible to use harmonic oscillators with an infinite number of levels,
so-called continuous-variable quantum computing [65, 66]. However, the typical excitation
of a harmonic oscillator is the coherent state, which resembles the kind of excitation seen
in pendulums, guitar strings, and other common examples of harmonic oscillators. To
perform universal quantum computing with continuous variables, something more than
just coherent states are needed. Typically, non-Gaussian states are used; such as Fock
states [50], photon subtracted coherent states [207, 208], or cat states [71, 209].

If the states are Gaussian (e.g., coherent), it can still be possible to perform universal
quantum computing. In that case, either non-Gaussian evolution (i.e., non-quadratic
Hamiltonians) or detection (e.g., single-photon detectors) is needed. If the states, evolution,
and detection are all Gaussian, the evolution can be efficiently simulated on a classical
computer [210]. In this chapter, we will see how non-quadratic Hamiltonians can be
achieved using parametric modulations of nonlinear microwave resonators, and a proposal
for a single-photon generator in the microwave domain.

5.1 Multimode resonators

The resonators used in this work are quarter-wavelength resonators made of pieces of
coplanar waveguides that are open in one end and shorted to ground in the other. Coplanar
waveguide resonators are of the distributed type, which means that higher harmonics also
exist. As long as the voltage profile in the resonator fulfills the given boundary condition,
the voltage can have an arbitrary number of nodes inside the piece of a transmission
line, as illustrated in Fig. 5.1 (a). For resonators with nonlinearities from embedded
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Figure 5.1: A multimode resonator. (a) The voltage profiles for the four lowest modes
of a quarter-wavelength resonator. (b) Resonant frequencies of the five lowest modes, as
a function of magnetic flux through the SQUID loop. These frequencies are calculated
for a resonator with ωλ/4/2π = 919 MHz, γl = 0.02, and γc = 0.009. Open circles are
experimental data, showing good agreement with the theoretically calculated frequencies.

Josephson junctions, the harmonics exist at ωn ≈ (2n− 1)ω1, where n = 1, 2, 3, ... is the
mode number. This relation is only approximate since the phase drop across the junctions
modifies the mode frequencies differently for each mode, creating a slightly anharmonic
spectrum. The spectrum of a tunable multimode resonator can be found by solving a
dispersion equation [76, 211],

kn tan kn =
|cos (πΦ/Φ0)|

γl
− knγc, (5.1)

where kn = πωn/2ωλ/4, and γc (γl) are the ratios between the capacitance (inductance)
of the SQUID and the resonator. In Fig. 5.1 (b), the five lowest modes calculated using
Eq. (5.1), together with experimental data for three of the modes, are seen as a function
of magnetic flux through the SQUID loop, Φ. Each mode of the resonator is characterized
by its resonant frequency ωn, external loss rate Γn0, total loss rate Γn, and Duffing
nonlinearity αn. In relation to the previously discussed coupling rate between a resonator
and a transmission line, κ, we have that κ = 2Γn0.

The resonators used for the parametrically pumped circuits are fabricated slightly
differently from the high-coherence quantum bits seen previously in this thesis. Here, we
used an older fabrication process where the superconductor for the resonators is niobium
instead of aluminum. A thin film of niobium (80-90 nm) is sputtered onto a substrate
using a near-UHV, DC magnetron sputtering system. The deposited niobium covers
the entire surface of the wafer. Subsequently, the niobium is patterned using either an
electron-beam or laser lithography system. The pattern is transferred to the niobium
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(a) (b)

(c)

Fluxline

Input/output

SQUID

Figure 5.2: Micrographs of a typical tunable resonator. (a) The full sample with an
on-chip flux line at the top, and input/output port with a coupling capacitor at the bottom.
The resonator is meandered to fit in a smaller chip. (b) The SQUID together with the
inductively coupled flux line. (c) The coupling capacitor between the resonator and the
transmission line.

using an inductively-coupled reactive ion plasma of NF3. The Josephson junctions are
still made out of aluminum.

5.2 Parametric pumping of nonlinear resonators

Parametric oscillations are well-studied phenomena, with applications in amplification,
quantum optics, and quantum information processing. They can occur as a parameter of
a system, such as the resonant frequency, is modulated or “pumped” by an external field.
A nonlinearity of the system can then transfer power from the pumping frequency to two
frequencies known as signal and idler. When the signal falls within a resonance, and when
the pump amplitude exceeds an instability threshold, parametric oscillations occur.

The first observation of self-sustained parametric oscillations was done in a second-order
nonlinear (χ(2)) optical cavity, by pumping the cavity at twice its resonant frequency (de-
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generately) [74]. When the pump amplitude exceeded an instability threshold, oscillations
were observed at half the pump frequency. Pumping at the sum of two resonant frequencies
(nondegenerately) leads to correlated oscillations in both modes [212]. Entanglement
between the two modes was demonstrated [213], and also extended to include the pump
mode, yielding a three-mode entanglement [214].

In the microwave domain, frequency-tunable superconducting resonators based on
Josephson junctions are versatile tools. Two parallel Josephson junctions form a super-
conducting quantum interference device (SQUID), which acts as a magnetic-flux tunable
inductance, therefore enabling frequency modulation via inductively coupled microwaves
[45]. When a frequency-tunable resonator is driven parametrically, below the threshold
amplitude, it provides amplification at the quantum limit [72, 215, 216] and entangled
two-mode squeezed states [68, 70]. Above the threshold amplitude, parametric oscillations
occur [75].

Another but related phenomenon is subharmonic oscillations. These oscillations occur
when a nonlinear resonator is driven strongly. The strong drive is also referred to as
a current pump since a drive result in current flowing in the resonator with the same
frequency as the drive (in contrast to a flux pump, which does not induce any current at
the pump frequency).

In a quantum picture, the process that underlies parametric and subharmonic oscilla-
tions is a decay of a single photon into two, three, or more photons. For instance, the
Hamiltonian for a degenerately pumped resonator is [77]

Ĥ

~
= −αn

2
(â†nân)2 − ε

2
(â2
n + â†

2

n ) = −αn
2

(
â†

2

n +
ε

αn

)(
â2
n +

ε

αn

)
+

ε2

2αn
, (5.2)

where ân is the annihilation operator for the nth mode. The term â†
2

n creates a pair of
photons in the mode.

By remembering that a coherent state is the eigenstate of ân, it is easy to see that
the eigenstates of Eq. (5.2) are two coherent states with equal amplitude but opposite
phases, |±i

√
ε/αn〉. Therefore, the steady-state of a parametric oscillator is a coherent

superposition of the two coherent states.
These kinds of states are also known as cat states, as they are a superposition of two

“macroscopic” states [71]. This analysis generalizes to higher-order terms as well, where
superpositions of N coherent states can be created by Hamiltonians on the following form
[217]

Ĥ

~
= −αn

2
(â†nân)N − ε

2
(âNn + â†

N

n ). (5.3)

There is one caveat. The analysis above relies on the resonator having no loss of
photons. However, to measure and utilize the states, we need to connect the resonator
to some kind of measurement apparatus, which will introduce single-photon loss. In the
presence of this loss, the coherence of the superposition will be lost, and the resonator
steady-state will be a mixed state of the two coherent states. Puri et al. [217] showed
that by introducing a two-photon loss process, the coherence of the cat state could be
maintained even in the presence of single-photon loss.

In the presence of loss and couplings to external drives Bn, the full system can be
described by Langevin equations. Wustmann and Shumekio derived such equations for
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a variety of different parametric pumping schemes in Refs. [62, 76, 77]. In general, it
is possible to derive quantum Langevin equations for ân; however, in the case of large
oscillation amplitudes, the states are almost classical, and the equation can be written
in terms of a classical amplitude An instead. We will see examples of such Langevin
equations in later sections.

As the internal field couples into the measurement line, it creates an output amplitude
Cn, which is related to the external drive and resonator mode amplitudes as

Cn = Bn − i
√

2Γn0An. (5.4)

The normalization of the fields is such that |An|2 is equivalent to the average number of
photons in the nth mode; hence |Bn|2 and |Cn|2 are in- and outgoing photon rates.

5.3 Measurement techniques

To measure the outgoing field Cn from a resonator, a vector digitizer is used to downconvert
the signal using heterodyne mixing to an IF frequency of 187.5 MHz, which is then sampled
with an analog-to-digital converter (ADC) at 250 MS/s. After digitization, an onboard
FPGA filters and processes the signal by digital down conversion to zero frequency, as well
as decimating it to an effective sampling frequency [218]. It is important to choose the
effective sampling rate high enough, so all signals of interest are captured, but not much
higher than that to minimize the amount of noise in the measurement. From the digitizer,
the quadratures of the complex voltage, In(t) and Qn(t), are transferred to a computer
for further processing. The total power is calculated as Pn = 〈In(t)2〉+ 〈Qn(t)2〉, where
the voltages are assumed to be over a 50 Ω resistor.

One complication when measuring power instead of amplitude is that the power of
noise, X(t), doesn’t average to zero (i.e., 〈X(t)〉 = 0 6=⇒ 〈X(t)2〉 = 0). This implies that
a measurement of the power of parametric oscillations will also include the power of the
noise. However, by assuming that the noise is constant in time, the noise can be measured
separately and subtracted from subsequent measurements. The measured output power
can then be translated to output field intensity via |Cn|2 = (Pn − Pnoise)/G~ωn, where
Pnoise is the system noise power and G is the gain of the system.

For simultaneous detection of two modes far separated in frequency (as in Paper K and
Paper L), two vector digitizers are used. The digitizers use two different, but phase-locked,
local oscillators. This ensures phase stability between the digitizers, which is essential
when correlating signals between the modes. One might ask, how can there even exist a
phase relationship between two signals with different frequencies? The answer is that the
phase relation only exists when the frequencies are connected by a third frequency, which
acts as a clock (e.g., a parametric pump at the sum of two mode frequencies, ωp = ωn+ωm).
It is also crucial to start the data acquisition for the digitizers simultaneously. This is
achieved by a clock module, which distributes a common trigger signal to both digitizers
in cables of equal length.
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5.4 Gain and loss calibrations

Calibration of the system loss and gain is needed for proper measurements of the outgoing
fields Cn, as well as for proper normalization of the incoming fields Bn. It is enough to
know either the loss or the gain since the other can be inferred by using that a resonator
is fully reflecting far-off resonance. Subsequently, the number of photons inside the mode
can be calculated using Eq. (5.4).

The gain is calibrated using a shot noise tunnel junction (SNTJ) [219, 220] connected
to a microwave switch at the mixing chamber of the refrigerator. The SNTJ is a tunnel
junction made of a normal metal–insulator–normal metal. When a current is applied
through the junction, shot noise is produced. The amount of shot noise depends on the
resistance of the junction, and the current through the junction. Moreover, there is also
thermal, vacuum, and amplifier noise. By measuring the total noise as a function of
the current through the junction, the contribution of the different noise processes can
be extracted, together with the gain between the SNTJ and the detector. For practical
reasons, the designed value of the SNTJ resistance is 50 Ω. For more information about
the SNTJ and how it is used, see Ref. [79].

In Paper L, we do not use an SNTJ, but instead, we use the Josephson junctions of
the device as the setup allows us to apply currents through the junctions. This makes the
calibration very precise since we can calibrate the gain referenced to the junctions instead
of the microwave switch. For the project in Paper L, which required small error bars, a
calibration using an SNTJ would yield too large uncertainty.

5.5 Degenerate parametric oscillations

Parametric pumping at twice a resonant frequency is referred to as degenerate pumping.
This is effectively three-wave mixing, where a signal and an idler are at the same frequency.
In a quantum picture, it can be seen as a split of one pump photon with frequency ωp
into two equal signal photons in mode n of frequency ωn = ωp/2, implying that there is
always an even number of photons produced at ωn. When the pump strength overcomes
an instability threshold set by the mode loss rate Γn, the resonator starts oscillating at
ωn, even in the absence of an external drive at that frequency.

In Ref. [62], the equation of motion for the mode amplitude An for degenerate
parametric pumping in a rotating frame at ωp/2 = ωn + δ is derived as

iȦn +
(
δ + αn|An|2

)
An + εA∗n + iΓnAn = 0, (5.5)

where δ = ωp/2− ωn is the pump detuning, ε is the parametric pump strength, αn is the
Duffing parameter, and A∗n denotes the complex conjugate of An. The term αn|An|2 is
effectively increasing δ, equivalent to a lower resonant frequency. This is the Duffing, or
Kerr, effect due to the cubic nonlinearity of the current-phase relation of the SQUID.

In the steady state, Ȧn = 0, Eq. (5.5) has three solutions

I. The trivial solution An = 0. However, it is only stable for ε < Γn or |δ| >
√
ε2 − Γ2

n.
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Figure 5.3: (a) Theoretical steady-state intensities |An|2 of a degenerate Josephson
parametric oscillator as a function of pump detuning δ and amplitude ε. Inside region
I, only the ground state is stable (b). In region II, only the excited state is stable (c).
Finally, in region III, boths states are stable (d). (b-d) Phase-space distributions for the
three different stability regions.

II. The excited state solution |An|2 =
(
−δ +

√
ε2 − Γ2

n

)
/αn. This solution is stable

for ε ≥ Γn and δ ≤
√
ε2 − Γ2

n.

III. The third solution has the same amplitude and stability as 2, although its phase is
shifted by π radians.

The regions of stability can be visualized by plotting the excited state amplitudes, see
Fig. 5.3 (a). In the absence of nonlinearities, the oscillation amplitude would diverge and
increase indefinitely. However, due to the Kerr effect, δ increases as the amplitude |An|
increases, which stabilizes the oscillations.

The excited state of the degenerate parametric oscillator has two π shifted solutions,
see Fig. 5.3(c). Switching between the two states is possible [221] and has been observed
[75]. It has been proposed that one could create a coherent superposition of the two
states [217], forming a so-called Schrödinger’s cat state, which is a resource in quantum
information processing [209]. The frequency of the parametric oscillations is always
centered around ωp/2, and the switching rate between the states gives the frequency
width.

In Paper I, we demonstrate degenerate parametric oscillations in a doubly pumped
half-wavelength resonator with one SQUID in each end. This configuration allows for both
‘vibrating’ and ‘breathing’ pumping schemes, depending on the relative phase between
the pumps for the two SQUIDs. We observe that the threshold for exciting parametric
oscillations depends on the relative phase, with a minimum for a breathing mode. For
the vibrating mode, the threshold grows to infinity (or at least larger than what we can
experimentally measure).

5.6 Nondegenerate parametric oscillations

Nondegenerate pumping refers to when the pump frequency equals the sum of two resonant
frequencies. Then, the signal and idler are separated into two different modes, and the
pump frequency is ωp = ωn + ωm + 2δ, where m > n, and δ is the pump detuning. In the
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quantum picture, the photons are again created in pairs, so that if a photon is detected
in mode n, it is certain that there is a photon also in mode m. It is, therefore, easy to
understand that there could be entanglement in such a system.

Nondegenerate parametric oscillations have shown both two- and three-mode entan-
glement in the optical regime. The microwave nondegenerate parametric oscillations
demonstrated here have an important qualitative similarity to the optical ones, namely
a continuous degeneracy of the oscillator state. This degeneracy should lead to large
fluctuations under the effect of vacuum noise, and as a result of this, the state might be
non-Gaussian [222]. A non-Gaussian state is necessary for universal quantum computing
with continuous variables [223].

Similarly to the degenerate case, a quantum Hamiltonian (for the quantum operators
ân and âm) and a Langevin equation (for the classical mode fields An and Am) can be
derived in the corresponding rotating frames ωn,m + δ [76]

Ĥ

~
= −αn

2
(â†nân)2 − αm

2
(â†mâm)2 − 2αg(â†nânâm†âm)− ε(ânâm + â†nâ

†
m), (5.6)

and

iȦn + (ζn + iΓn)An + εA∗m = 0,

iȦm + (ζm + iΓm)Am + εA∗n = 0, (5.7)

where n and m correspond to two different modes, and ζn and ζm are effective detunings
equal to

ζn = δ + αn|An|2 + 2αg|Am|2,
ζm = δ + αm|Am|2 + 2αg|An|2. (5.8)

For simplicity, the geometric means of the dampings Γg =
√

ΓnΓm, and Duffing terms
αg =

√
αnαm, are introduced. The second terms in Eq. (5.8) are again the Duffing or Kerr

effects. Similarly, the third terms are equivalent to cross-Kerr effects. Both the Kerr and
cross-Kerr lead to larger effective detunings ζn, resulting in lower resonant frequencies, as
An increases.

In the steady state, Ȧn = Ȧm = 0, Eq. (5.7) can be solved to produce the following
expressions for the excited state intensities |An|2 and |Am|2:

|An|2 =
2Γm(δth(ε)− δ)

R
, |Am|2 =

2Γn(δth(ε)− δ)
R

, (5.9)

where R is a constant R = αnΓm + αmΓn + 2αg(Γn + Γm), and the pump-dependent
threshold detuning δth is given by

δth(ε) =
Γn + Γm

2

√
ε2

Γ2
g

− 1. (5.10)

The finite steady-state amplitudes is only stable for ε ≥ Γg and δ ≤ δth. The ground
state An = 0 is stable for ε < Γg and |δ| > δth, thus three different regions exist in δ-ε
space:
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I. For ε < Γg or δ > δth the ground states An = Am = 0 is stable.

II. For ε ≥ Γg and |δ| ≤ δth the excited states |An| and |Am| are stable.

III. For ε ≥ Γg and δ < −δth both states are stable.

These are the same regions as for the degenerate case, see Fig. 5.3.
Where the phase of the degenerate parametric oscillations had a bi-stability, the

nondegenerate parametric oscillations have a continuous degeneracy. The steady-state
phases of the mode fields are denoted by θn and θm. Their sum is given by

θn + θm = Θ ∈ {π/2, π}, tan Θ = −1/
√
ε2/Γ2

g − 1, (5.11)

while their difference θn−θm is undefined. Therefore, the intermode phases have continuous
degeneracies between −π and π.

In Paper K, we demonstrated nondegenerate parametric oscillations in a supercon-
ducting microwave resonator. The output intensities |Cn|2 are measured as a function
of the pump detuning δ and amplitude ε, see Fig. 5.4(a-b). The oscillations start at a
certain pump power, ε ≈ Γ, defining the instability threshold, and grow rapidly above that.
The observed intensities can be compared with the theoretical steady-state amplitudes
Eq. (5.9), see Fig. 5.4(c-d). We find good agreement inside regions I and II. However, in
region III, where the ground and excited states are both stable, the discrepancy is larger.
The model does not predict the probability of occupying the excited state; consequently,
Eq. (5.9) is the maximally achievable intensities. In the experiment, the resonator can
switch between the two states, yielding a lower intensity on average. For large negative
detunings, the observed probability for oscillations tends to zero.

We study the phase-space distributions for the two modes at the point in δ-ε space
indicated by the white circles in Fig. 5.4(a-b). We acquire quadrature voltages In(t) and
Qn(t), and calculate 2-D histograms, see Fig. 5.5 (a-b). The oscillations have a finite
average amplitude, while the phase is random, hence the large frequency noise.

To quantify if the observed state is quantum or classical, we would typically study
the variances of the different quadratures. However, the large fluctuations in phase
impose a problem as they introduce large variances of the individual quadratures. To
theoretically study the effect of vacuum noise on the system, and more specifically, its
quantum properties such as entanglement, we would linearize around the classical solution
and consider small deviations due to the noise. Here, however, the large fluctuations
in phase impose a problem as they are present already in the classical part, implying
that it is not possible to linearize the model. Therefore, we are not able to perform any
quantitative analysis of the noise in the quantum regime.

However, we can study the cross-quadrature histograms I3, I4 and Q3, Q4 in Fig. 5.5
(c-d). From those histograms, it is clear that I3 and I4 have equal signs, while Q3 and Q4

have opposite signs, implying that the phase sum is fixed as predicted from Eq. (5.11).
The question is, what drives the phase evolutions? In Fig. 5.5(e), the phase evolution

in time of the two modes is plotted, and the clear anti-correlation is observed. For
illustration, the phases of the local oscillators are set so that 〈θ3 + θ4〉 = 0. From the
phase evolution, the frequency noise spectrum Sy(f) is extracted, see Fig. 5.5(f). The
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Figure 5.4: Nondegenerate pumping of modes n = 3 and 4, at frequency ωp = ω3 +ω4 + 2δ.
(a-d) Experimentally observed and theoretical output intensities |Cn|2 vs. detuning δ and
amplitude ε of the applied pump tone. I-III indicate the three different stability regions
described in the main text.

(a) (b) (e)

(c) (d) (f )

Figure 5.5: Quadrature histograms of the nondegenerate parametric oscillations. Panels
(a-b) show the phase-space distributions for the two modes measured at the point indicated
by the white circles in Fig. 5.4. The color scale is proportional to the number of counts in
each bin of the digitized output. (c-d) Two out of four cross-quadrature histograms. All
histograms consist of 1 million samples each. (e) Evolution of the phases θn in time. (f)
The frequency spectrum of the nondegenerate parametric oscillations in mode 3. The solid
line is a combination of white and flicker noise.
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spectrum is a combination of 1/f and white noise. It is difficult to pinpoint the origin of
the noise, but it is well known that SQUIDs have a 1/f flux noise spectrum [224]. Flux
noise translates directly into frequency noise of the resonator, and therefore also into
frequency noise of the parametric oscillations.

5.7 Subharmonic oscillations

In Paper H, we study period-tripling subharmonic oscillations in a driven superconducting
resonator. We detect the output field at frequencies near the fundamental mode when
driving the resonator close to three times the fundamental mode. With an amplitude
exceeding an instability threshold, we observe three stable radiative states with equal
amplitudes, phase-shifted by 2π/3 rad.

Subharmonic oscillations are described by nonperturbative solutions to dynamical
equations, which appear abruptly and always coexist with a stable vacuum state. In this
respect, subharmonic oscillations distinctly differ from conventional parametric oscillations,
which gradually emerge as a result of vacuum instabilities. Although period-multiplication
in nonlinear equations is theoretically explained in textbooks, experimental demonstrations
of the phenomenon are not common. A few early observations of subharmonic generation
were performed in classical electrical circuits based on saturable inductors [225] and
varactors [226].

The Kerr nonlinearity in our circuits generates the downconversion from 3ω to ω.
However, that is not enough to describe the full picture of our device. The presence of
a mode close to 3ω leads to an enhancement of the effect, and we have to describe the
system by two coupled equations, one for each mode,

iȦn + (δn + iΓn + αnA
†
nAn + 2αA†mAm)An + α̃A∗

2

n = 0

iȦm + (δm + iΓm + αmA
†
mAm + 2αA†nAn)Am +

α̃

3
A3
n =

√
2Γm0Bm. (5.12)

The quantum Hamiltonian for a closed cavity (no photon loss) would be

Ĥ

~
=− αn

2
(â†nân)2 − αm

2
(â†mâm)2 − 2αg(â†nânâm†âm)

− α̃

3
(â†

3

n âm + â3
nâ
†
m) +

√
2Γm0(B2â

†
2 +B∗2 â2), (5.13)

where the â†
3

n âm term is responsible for the creation of three signal photons from one
pump photon.

Solutions to Eq. (5.12) include the trivial solution An = 0, which is always stable.
Three nontrivial solutions exist, all with the same amplitude but with their relative phases
of 2π/3 with respect to each other. The nontrivial solutions exist within an interval of
effective pump strengths, where the upper limit is given by

|Bm|2 ≈
2

7
(3ωn − ωm)2 |δ1|

α1Γ2
, (5.14)
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Figure 5.6: (a) The intensity of the subharmonic oscillation output signal as a function
of drive power and detuning. The oscillations are detected in region II. The dashed white
line that separates regions I and II corresponds to the theoretical boundary of existence
for the subharmonic oscillations. In region III, the oscillations, although they exist as
a solution to Eq. (5.12), are not visible because of the oscillator switching to the ground
state. (b)–(d) Histograms of the detected radiation quadrature voltages from the operating
points indicated by the white circles in (a). These histograms reveal three dynamic states:
(b) the ground state; (c) the ground state (in the middle) and the three excited states with
equal amplitudes and with phases differing by 2π/3; and (d), only the excited states.

which is plotted as the dashed white line in Fig. 5.6 (a). The lower limit is far below the
visible area. The reason why we do not see any signal in area III is that the oscillator is
predominantly in its ground state, even if the nontrivial states exist, similar to region III
for the nondegenerate parametric oscillations.

In Fig. 5.6 (a), we observe a distinct region in pump power and frequency detuning
where the subharmonic oscillations occur. Phase-space distributions for three different
pump conditions are shown in Fig. 5.6 (b-d). In (b), which is just inside region III, the
oscillator is solely in its ground state (even though the finite-amplitude solutions are
stable). In (c), the finite solutions are observed together with the ground state. Finally,
in (d), only the finite-amplitude solutions are observed. We see the clear 2π/3 phase-shift
between the three states.
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Figure 5.7: Phase-space histograms of period multiplication oscillations generated by
applying a microwave signal to the flux pump line at multiples N of the fundamental mode
frequency. (a) and (b) N = 2; (c) and (d) N = 3; (e) and (f) N = 4; (g) and (h) N = 5.
The output signals correspond to around 60 photons.

5.8 Period multiplication

So far, we have seen the creation of two and three photons from one pump photon.
In Paper J, we investigate parametric pumping at higher multiples, N , of a resonant
frequency. Again, a quantum Hamiltonian for a closed cavity without loss can be written
as

H

~
= −α1

2
(a†1a1)2 − εn

N
(a†

N

1 + aN1 ). (5.15)

The a†
N

1 term will create N photons in the resonator. The resonator state would be a
superposition state of N coherent states with relative phases of 2π/N .

We apply a pump tone for N = 2, 3, 4, 5, and record phase-space distributions, see
Fig. 5.7. We observe a qualitative agreement between the observed data and the model of
N photon creation. Depending on the exact parameters of the pump, the ground state
of the oscillator can also be stable (bottom row of Fig. 5.7). Since our measurements
are performed on an open cavity with photon loss, we do not expect to see any coherent
superpositions of the different coherent states (an N -headed cat state).

5.9 Entanglement in the dynamical Casimir effect

All parametric effects seen so far in this work have been implemented using one or more
resonances. An extreme limit is when the resonator–transmission line coupling is very
strong, which approaches the case of not having a resonator at all (i.e., the SQUID is
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coupled directly to the transmission line). Let us consider the case of nondegenerate
parametric oscillations. If we were to take Γn0 = Γm0 →∞, we would never be able to
reach the instability threshold and observe parametric oscillations. However, below the
threshold, there is parametric amplification [76, 211]. A SQUID coupled at the end of a
transmission line can, therefore, be used to amplify both signals and vacuum fluctuations.

Another view of a flux-pumped SQUID at the end of a transmission line is as a moving
mirror. A change of inductance is mapped to a change in electrical length. Using a
SQUID, effective length changes of more than 100 µm can be achieved. Together with a
fast modulation at GHz frequencies, we can achieve effective velocities of more than 10 %
of the speed of light.

At such high velocities, relativistic effects appear. One such effect is the dynamical
Casimir effect (DCE), which predicts that a moving mirror will create photons out of
vacuum [227]. A qualitative explanation is that in a quantum vacuum, virtual photons
get created and subsequently annihilated in pairs. If a mirror moves fast enough, it can
insert itself between such a photon pair and prevent the annihilation, creating two real
photons in the process. The DCE was demonstrated using SQUIDs in Refs. [228, 229]

To first order and assuming an ideal transmission line and zero temperature, the
output photon flux density at a frequency ω from the DCE radiation is [228, 230, 231]

n(ω) =
l2

c2
ω(ωp − ω) =

v2

c2

(
1

4
− δ2

ω2
p

)
, (5.16)

where l is the displacement length of the mirror, c is the effective speed of light in the
transmission line, v = lω is the speed of the mirror, and δ = ω − ωp/2. The relativistic
effect is obvious as n goes to zero when the speed of light goes to infinity.

In Fig. 5.8 (a), we plot the measured n as a function of the flux modulation amplitude,
with ΦAC = 20 mΦ0 corresponding to v/c0 = 0.31. Simply applying Eq. (5.16) with
the data starts showing discrepancy for higher modulation amplitudes. We explain this
discrepancy by the nonlinear relationship between flux and electrical length. At high
modulation amplitude, there is a significant generation of harmonics at 2ωp, 3ωp, .... This
leads to additional photon creation, and if we sum up the contributions of the first three
orders, we see good agreement up to the last data point.

In Paper L, we demonstrate an additional property of DCE that was not shown in
Ref. [228] due to insufficent calibration of the system gain and noise. Since the photons
get created in pairs symmetrically around ωp/2, we expect to see entanglement between
negative and positive detunings δ. Therefore, we use two digitizers to simultaneously mea-
sure the quadratures at two different frequencies symmetric around ωp/2, I+, Q+, I−, Q−.
By careful calibration of the system gain and temperature, we can extract the correlations
between two frequencies in units of photons.

Entanglement of two electromagnetic modes manifests itself as two-mode squeezing
below the Heisenberg limit (0.5 photons per mode), according to the Duan criterion [232].
We define

δIQ+ = 〈(I+ + I−)2〉+ 〈(Q+ −Q−)2〉 (5.17)

δIQ− = 〈(I+ − I−)2〉+ 〈(Q+ +Q−)2〉. (5.18)
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Figure 5.8: Demonstration of entanglement in the dynamical Casimir effect. (a) Average
photon spectral density generated as a function of flux-pump amplitude. A flux modulation
of 20 mΦ0 corresponds to an equivalent mirror speed of 31 % of the speed of light. A
model is used to fit the resulting photon rate taking the first three orders of the SQUID
nonlinearity into account. (b) The variance of two combinations of quadratures of two
modes. A variance of 1 corresponds to the vacuum fluctuations set by the Heisenberg limit.
A variance below that implies that the two modes are entangled.

We plot these two quantities as a function of the modulation amplitude in Fig. 5.8 (b).
Since we are combining the variances of two quadratures, the Heisenberg limit (the vacuum
fluctuations) is equal to 1. We observe that δIQ− goes below 1, well outside the error bars,
proving the entanglement between the two modes. At high modulation amplitudes, the
higher-order terms dilute the entanglement until it is no longer measurable. The dilution
is understood as two modes that are symmetric around ωp/2, are not symmetric around
2ωp/2 or 3ωp/2. The photons created by the harmonics are therefore not entangled at the
detection frequencies, but still get mixed in with the entangled ones from the fundamental
pump.

5.10 A single-photon generator

Finally, in Paper M, we propose a method of generating propagating single photons using
a superconducting qubit coupled to a transmission line. Propagating refers to that the
photon will be traveling in a wave packet along a microwave transmission line. This is
different from having a qubit or resonator in the |1〉 state. However, a single propagating
photon can be created by the decay of a qubit into a transmission line.

In our proposal, a transmon qubit (but it could be any superconducting qubit) is
strongly coupled at the end of an open transmission line. The open end acts as a mirror
to microwaves and ensures that the decay of the qubit is unidirectional. A qubit coupled
to a two-sided transmission line would emit to either side half of the time (however, it
would be unknown prior to measurement where the photon went). The goal is to first
excite the qubit by sending a coherent state, αin, which drives half a Rabi-oscillation
between |0〉 and |1〉, and then let the qubit decay into the transmission line. The issue
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Figure 5.9: (a) A proposed single-photon generate using a transmon qubit (red) and a
directional coupler. A coherent state αin(t) excites a qubit at the end of a transmission line
to the state |1〉. The reflected field αout(t) contains a coherent part and the emission from
the qubit. (b) Demonstration of the pulse cancellation with a qubit present. Measurement
of the output d(t) with (red) and without (blue) the cancellation drive β(t). The pulses
are 100 ns long and show a cancellation of −34 dB.

with this approach is that the coherent state will reflect in the mirror and get mixed with
the single photon. Our scheme, shown in Fig. 5.9 (a), uses a directional coupler, which
acts as an unbalanced beam splitter. The idea is that after the first coherent state αin

interacts with and excites the qubit, a second coherent state with opposite sign, β, can
be sent through the second arm of the beam splitter to cancel the first coherent state,
leaving only the single-photon in the output.

The outgoing field, d(t), is related to the inputs as

d = i
√

1− τ2
(
αin(t) +

√
Γrσ

−(t)
)

+ τβ(t), (5.19)

where τ is the transmission coefficient of the beam splitter, Γr is the radiative coupling rate
between the qubit and the transmission line, and σ− is the lowering operator acting on
the qubit. By choosing β(t) = −i

√
1− τ2αin(t), the coherent part is completely cancelled

and the output contains only the qubit contribution i
√

1− τ2
√

Γrσ
−(t). In the limit of

a perfect qubit excitation and τ → 0, the probability of having a single photon in the
output d is unity.

In Fig. 5.9 (b), we demonstrate the pulse cancellation scheme (in the absence of a
qubit), by sending 100 ns pulses through both ports of a directional coupler with τ = 0.1.
By adjusting the relative phase and amplitude between the ports, we achieve more than
−34 dB of cancellation.

The advantage of our proposed single-photon generator is its simplicity. It does not rely
on a fixed-frequency resonator, as in Refs. [233, 234]. This also implies that our generator
can change the frequency of its photon in-situ, by tuning the magnetic flux threading the
SQUID loop of the qubit, something that is less trivial in a resonator-based setup where
the frequency detuning between resonator and qubit is important. In Paper M, we show
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that the efficiency of generating single photons should approach 99 %, which would be
state-of-the-art for microwave single-photon generators.

Paper C utilizes a setup up like the one proposed here and is one step on the way to
realizing the suggested single-photon generator.
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Summary and paper contributions

In conclusion, we have successfully developed fabrication processes and measurement
setups yielding low-loss and high-coherence superconducting circuits. By incorporating
magnetic flux tunability, we have used these circuits to build a variety of different tunable
devices, such as resonators, qubits, and mirrors. Then, we used these devices to create
different microwave states and to demonstrate important concepts for gate-based quantum
computers. Achieving high-fidelity control and readout of our qubits has allowed us
to implement two quantum algorithms. Our low-loss circuits and high-fidelity control
have shown that it will be feasible to build an intermediate-scale quantum-information
processor using tunable superconducting circuits in the microwave domain, something
that is sought after by industry and academia alike all over the world.

In Paper A, we primarily studied the frequency noise of superconducting aluminum
resonators. While this type of study was not new, we extended the results by measuring
the noise at an excitation energy in the resonator equivalent to that of a single photon.
The energy level makes our study relevant to superconducting transmon qubits, where
frequency noise sets an upper bound on the qubit coherence time. I designed and
fabricated the sample, and contributed to the experimental setup, measurements, and
writing process.

In Paper B, we performed extensive benchmarking of qubit-coherence fluctuations
across days. By careful analysis of the fluctuations, we found that the spectrum of the
qubit relaxation time followed a combination of two Lorentzian noise processes. We
attribute these two Lorenzians to interacting two-level systems. I designed and fabricated
the sample. I also performed parts of the measurements, data analysis, and manuscript
writing. Note shared the first authorship.

In Paper C, we developed techniques for measuring the intrinsic relaxation and dephas-
ing rates of superconducting qubits directly coupled to transmission lines (waveguide-QED).
I designed and fabricated the device. I provided input on the experimental setup, the
measurements, the data analysis, and the manuscript.

In Paper D, we studied the quality factors of superconducting resonators fabricated
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on a piezoelectric substrate. We found that the quality factors are mainly limited by
a photon to phonon conversion. I contributed ideas to the sample design, fabrication,
measurements, analysis, and manuscript.

In Paper E, we demonstrated a single-shot readout of a superconducting qubit using a
degenerate parametric oscillator. The extracted readout fidelity was 98.7 %. I contributed
to device fabrication, experimental measurements, and data analysis. The Monte-Carlo
simulation of the readout fidelity was done solely by me.

In Paper F, we implemented density matrix exponentiation on a superconducting
quantum processor. I developed much of the software needed to perform the experiments,
specifically the virtual-Z gates and the gate compilation. I also contributed to the tuneup
protocols and the calibration of the quantum processor.

In Paper G, we showed that the NP-complete exact-cover problem could be solved
using the quantum approximate optimization algorithm. Using our low-loss two-qubit
processor with high gate fidelities, we iterated the algorithm up to level 2 with a success
probability of 96.6 %. I designed and fabricated the device, built the measurement setup,
performed and analyzed the experiments, and wrote the manuscript.

In Paper H, we observed subharmonic oscillation of a resonator when driven at three
times its resonant frequency. I developed much of the measurement software and provided
input on the data analysis and the manuscript.

In Paper I, we used a double tunable resonator to perform degenerate parametric
oscillations by pumping it using two pumps. We observed the predicted threshold
dependence on the pump phase difference. I developed much of the measurement software
and provided input on the sample design and fabrication.

In Paper J, we extended degenerate parametric oscillations to higher-order pumping.
We modulated a frequency-tunable resonator at up to five times its resonant frequency. I
developed much of the measurement software and performed preliminary measurements.

In Paper K, we observed nondegenerate parametric oscillations, which manifest
themselves as correlated signals in two modes. The nondegenerate parametric oscillations
were achieved by a parametric modulation at the sum of the two mode frequencies. We
studied the classical properties of the oscillations and showed an excellent agreement with
a theoretical model. I designed and fabricated the device, built the measurement setup,
and developed the necessary software. I also analyzed the data and wrote the manuscript.

In Paper L, we demonstrated that the radiation coming from a mirror moving in
vacuum at 10 % of the speed of light creates entangled photons. This is called the
dynamical Casimir effect. I fabricated the device. I also contributed to the device design,
experimental setup, data analysis, and the manuscript.

In Paper M, we proposed a new single-photon generator in the microwave regime.
Our proposal is built on a superconducting qubit and a directional coupler acting as a
beam splitter. The beam splitter provides cancellation of the signal used to excite the
qubit that then can decay and generate a single photon. I came up with the idea on how
to implement the idea in superconducting circuits and provided experimental data that
demonstrated the feasibility of the proposal.
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[229] P. Lähteenmäki, G. Paraoanu, J. Hassel, and P. J. Hakonen, “Dynamical Casimir
effect in a Josephson metamaterial”, Proceedings of the National Academy of
Sciences 110, 4234–4238 (2013).

[230] J. R. Johansson, G. Johansson, C. Wilson, and F. Nori, “Dynamical Casimir effect
in a superconducting coplanar waveguide”, Physical Review Letters 103, 147003
(2009).

[231] J. Johansson, G. Johansson, C. Wilson, and F. Nori, “Dynamical Casimir effect in
superconducting microwave circuits”, Physical Review A 82, 052509 (2010).

[232] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for
continuous variable systems”, Physical Review Letters 84, 2722 (2000).

[233] A. A. Houck et al., “Generating single microwave photons in a circuit”, Nature
449, 328–331 (2007).

[234] M. Pechal, L. Huthmacher, C. Eichler, S. Zeytinoğlu, A. Abdumalikov Jr, S.
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