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Abstract 

The global energy demand for providing cooling in buildings is expected to increase the next 

decades, along with a rapid growth in the number of air conditioners and chillers. A more 

energy efficient, economical and environmentally viable solution to this increased cooling 

demand, is district cooling. In Sweden, this technology has been developed since the mid-

1990’s and currently delivers about 1 TWh of cooling annually, to 40 cities. 

Common issues with district cooling are mainly related to the temperatures. First, a low 

temperature difference between the supply and return water, called low delta-T, persist despite 

extensive efforts by previous research to provide solutions. Second, low conventional supply 

and return temperatures remain, potentially as a result of limited knowledge about the 

temperatures used in the connected buildings. Previous research on the low delta-T has 

primarily focused on district cooling systems without heat exchangers separating the connected 

buildings from the distribution system. 

The purpose of this thesis was therefore to investigate issues with low delta-T in a district 

cooling system with heat exchanger separation and to explore potentials of using higher 

temperatures, by increasing the knowledge about the connected buildings. The investigation 

was based on analyses of operational data from both primary and secondary sides of the heat 

exchangers in 37 of the connected buildings in Gothenburg district cooling system. This system 

is designed for a delta-T of 10 °C and chilled water supply temperatures of 8 °C in the 

connected buildings. 

The delta-T in Gothenburg district cooling system varies between 6-8 °C, and the results 

showed that the main causes to this low delta-T were the following: a low temperature approach 

between the supply streams of the heat exchanger; operation in the saturation zone on the 

primary side of the heat exchanger; and low return temperatures from cooling coils and fan coil 

units in the connected building chilled water systems. The results also demonstrated that 75% 

of the recorded chilled water supply temperatures were higher than 8 °C when the outdoor 

temperature was 28 °C. If high temperature district cooling was used, more than 50% of the 

annual district cooling generation would be supplied by free cooling from the river. 
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Chapter 1: Introduction  

The introduction will provide some general information and a future outlook about the topic 

in this thesis, both from a global and a Swedish perspective. With this as a foundation, the 

research gap and problem formulation will be introduced and explained after which the aim 

and research questions will be defined. Lastly, delimitations and limitations of the study will 

be identified, and the structure of the thesis outlined. 

1.1 Global Development  

Buildings account for more than 55% of the total electricity usage globally, of which 65% is 

supplied by fossil fuels (IEA, 2019). To achieve a reduction in carbon dioxide emissions and 

mitigate climate change, the building sector must become more energy efficient and employ 

more low-carbon technologies. However, one of the fastest growing energy end-use sectors 

in buildings is space cooling due to the increasing electricity demand for equipment such as 

air conditioners and chillers. Today space cooling accounts for 18.5% of the global 

electricity usage, but is expected to increase to 37% by 2050 if not addressed (IEA, 2018). 

A technology that has the potential to reduce the electricity demand to provide cooling for 

buildings is district cooling (DC). Instead of building individual chillers, air conditioners 

and heat pumps, chilled water (CHW) is generated in a central cooling plant and distributed 

by large pumps and underground pipes to the connected buildings (Olama, 2017).  

To achieve carbon dioxide emission reductions for the building sector, the transformation to 

a renewable and sustainable energy system is essential. To support this transformation, a 

concept called Smart Energy Systems has been developed. It is based on a holistic approach 

by integrating sectors such as electricity, heating, cooling, industry, buildings and 

transportation, since they cannot be designed and operated without influencing one another. 

By integrating these sectors, more affordable and optimal solutions can be identified to aid 

the transformation of the current energy system into at future renewable based and 

sustainable energy system (Lund et al., 2017). 

District cooling is an important component of a future smart energy system since renewable 

energy can be integrated by the use of natural cooling sources such as the sea, lakes and 

rivers (see section 2.1.1 for details and more information). This reduces the primary energy 

need for chilled water generation in chillers. District cooling systems (DCS) can also 

successfully incorporate thermal energy storage, both daily and seasonally (Al-Noaimi et al., 

2019; Näslund, 2000), which increases the flexibility in terms of chilled water production 

matching the demand with fluctuating electricity prices (Inayat & Raza, 2019). In areas 

where the district cooling system is integrated with the district heating system, or has access 

to waste heat, synergies arise from using heat to produce chilled water by absorption chillers 

(S. Werner, 2017b). District cooling is therefore a crucial component to avoid both the 

increased need for electricity to provide cooling in buildings, but also to contribute to the 

transformation into a future sustainable energy system based on renewable energy 

(Dominković et al., 2017; Lund, Østergaard, et al., 2018). Similarly, as claimed by Inayat & 

Raza (2019), district cooling is “undoubtedly the future energy solution and the 

environmental solution” to provide cooling in buildings. 
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1.2 Swedish Perspective 

District cooling from a Swedish perspective is to a large extent linked to district heating. 

This is because district heating is a well-established and mature technology with large market 

shares which owners, mainly municipalities, developed most of the district cooling systems 

(S. Werner, 2017a; Westin, 1998). Compared to district heating, district cooling is very small 

and today there is a total of 36 companies delivering approximately 1.0 TWh of cooling 

annually to 40 Swedish cities (Johannesson, 2019). The highest delivery was almost 1.2 

TWh in 2018, because the summer that year was extremely warm and sunny compared to 

normal. The average temperatures were 1-3 °C above normal in the north, and 2-4 °C above 

normal in the south (SMHI, 2018). The delivered district heating the same year was equal to 

about 50 TWh (Burstein, n.d.). 

The principal drivers behind the district cooling development in Sweden was the CFC 

refrigerant ban and a growing need for space cooling in Swedish buildings. This space 

cooling demand has emerged as a result of designing for low heat losses which has led to a 

larger cooling demand in the summer (S. Werner, 2017a). As can be seen in Figure 1, the 

district cooling deliveries and the length of DC piping have gradually increased since the 

mid-90’s until today. Over the next 10 years, DC in Sweden is expected to grow by 50% 

(Dalin, 2019). 

 

Figure 1: Deliveries of district cooling in Sweden 1996-2018 in GWh along with total 

installed network lengths in km. Reproduced from “Fjärrkyla” by 

Johannesson (2019). 

In Figure 2, the DC production mix of the 24 largest DC providers in Sweden can be seen. 

The most common technology is heat pumps, representing 47% of the district cooling 

generated, and the second largest cooling source is free cooling (Abrahamsson & Nilsson, 

2013). As a result of available excess district heating during the summer months, synergies 

between district heating and cooling arise from having absorption chillers produce chilled 

water during the months with low heat demands, accounting for 11% of the Swedish DC 

production (Abrahamsson & Nilsson, 2013; S. Werner, 2017a). 
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Figure 2: Share of DC production technology in Sweden (figured modified from 

Abrahamsson & Nilsson, (2013)). 

The largest district cooling system in Sweden is located in Stockholm. It has a total installed 

capacity of 270 MW and constitutes 57% of the total Swedish district cooling market. The 

system comprises 250 km of piping and is mainly supplied by heat pumps and free cooling 

from the Baltic Sea. The second largest district cooling system is located in Gothenburg, 

with a total installed capacity of 70 MW and 30 km of piping. Instead of heat pumps, 

Gothenburg DC system is mainly supplied by absorption chillers running on waste heat. Free 

cooling from the river is also used, primarily in the winter. In 2018, Stockholm district 

cooling system delivered 420 GWh of cooling compared to around 100 GWh by Gothenburg 

DCS (Abrahamsson & Nilsson, 2013; Städje, n.d.; Stockholm Exergi, 2018). The work in 

this thesis is based on data from the district cooling system in Gothenburg. 

Barriers for further development of district cooling systems in Sweden were investigated by 

Palm & Gustafsson (2018), where the most critical parameter was the lack of knowledge of 

district cooling among the real estate owners and their tenants. This is a challenge that needs 

to be addressed in order for district cooling to maintain a competitive position to meet the 

increasing Swedish cooling demand (Sernhed et al., 2018). 

1.3 Problem Formulation 

The supply and return temperatures of district cooling systems have traditionally been, and 

are still, designed to be in the range of 4-8 °C supply and 13-16 °C return (IDEA, 2008). For 

the district cooling system to be cost efficient with regard to pumping, a temperature 

difference of 9-12 °C is optimal (Olama, 2017). However, previous research has shown that 

the system design temperature difference rarely is maintained over time, causing the district 

cooling system to suffer from the “low delta-T syndrome.” A low delta-T increases the 

energy usage since it causes additional chillers to operate and the distribution pumps to 

deliver a higher flow rate to satisfy the same cooling load (IDEA, 2008). Delta-T is a central 

concept in this thesis and will recurrently be referred to as low or high. 

Many studies have established solutions to resolve the low delta-T syndrome (Fiorino, 

1996), however, these studies have primarily focused on DCS with direct building 

connections or with heat exchanger separation primarily for static pressure relief in high rise 
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buildings (Gao et al., 2012). All district cooling systems in Sweden, as well as the one in 

Gothenburg, have indirect connections with heat exchangers separating the distribution 

system from the connected buildings. For such district cooling systems, there is a need to 

evaluate the causes and solutions to the low delta-T, since they may be different from DCS 

with direct connections. To do so, both sides of the heat exchanger need to be analyzed since 

it previously has been established that “the solution to common delta-T problems requires 

looking beyond the energy transfer station (ETS) into the building systems” (IDEA, 2008). 

For DCS with heat exchanger separation, such investigations become more complicated 

since the ownership of the systems on either side of the heat exchanger is separate. The 

district cooling provider usually has little information about the chilled water (CHW) system 

in the connected building. For that reason, there is a need to increase the knowledge about 

the connected buildings systems and their temperature requirements. 

Previous research on Swedish district cooling systems and the connected buildings have 

focused on recommendations on how the ETS should be designed and how the connected 

buildings should be controlled to achieve a more efficient usage of the district cooling. 

Källman et al. (2004) aimed to achieve an increased return temperature in the district cooling 

system by simulating three different heating, ventilating and air conditioning (HVAC) 

systems in an office building. The results showed that it was possible to achieve return 

temperatures higher than 16 °C on the primary side of the heat exchanger and 18 °C on the 

secondary side. Moreover, the results showed that return temperature requirements on the 

primary side should be a function of the building’s chilled water return temperature.  

Werner & Jonsson (2012) investigated measures to increase delta-T in two commercial 

buildings by simulations and measurements. It was shown that by restricting the maximum 

cooling power, delta-T could be increased. In a study by Fredriksen et al. (2016), it was 

demonstrated based on calculations that limiting the flow in the building chilled water 

system was an efficient method to increase the secondary return temperature compared to 

using outdoor temperature compensated supply temperature setpoints on the secondary side. 

These previous studies show that there are several suggestions and potential improvements 

that can be applied to buildings and energy transfer stations connected to DCS to ensure high 

temperatures. However, these studies were either based on theoretical evaluations or 

approached from either side of the heat exchanger in the ETS. For that reason, an assessment 

of the actual operation of both sides of the heat exchanger in an existing district cooling 

system is needed. 

A vast amount of research has been conducted focusing on the role of district heating in 

smart energy systems (Lund, Duic, et al., 2018; Lund, Østergaard, et al., 2018; Lund et al., 

2014), but district cooling has received less attention in this context. For DCS supplied by 

natural cold sources with temperature variations during the year, it is possible to increase the 

share of renewable energy by increasing the use of free cooling (Fredriksen et al., 2016). 

However, this  share is limited by the conventional low DC temperatures of 4-8 °C supply 

and 13-16 °C return. At the same time, the technological development of high temperature 

cooling (HTC) systems in buildings is advancing, utilizing chilled water temperatures of 16 

°C and up (Jiang et al., 2015). Building owners that implement HTC systems may choose 

other cooling sources than district cooling, for example, direct coupling to the ground for 

free cooling (Filipsson et al., 2020). Therefore, there is a need to explore higher temperatures 

in the district cooling system as well. 
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1.4 Aim of Licentiate Thesis 

The aim of this licentiate thesis is to investigate causes to the low delta-T between the supply 

and return water for the Gothenburg district cooling system, by increasing the knowledge 

about the connected building energy transfer stations and chilled water systems. The aim is 

also to explore higher temperatures in the district cooling system to increase the share of free 

cooling of the annual district cooling generation. 

1.4.1 Research Questions 

Based on the above, there are two main problems with the existing temperatures in district 

cooling systems: 

1. Low delta-T between supply and return temperature. 

2. Low supply and return temperatures. 

Even though these two problems are interrelated, they affect the district cooling system 

differently and are in this thesis investigated by different approaches. Problem number 1 has 

a direct impact on the energy efficiency and operating cost of the district cooling system and 

is approached by increasing the knowledge about the customers ETS and building CHW 

systems. Problem number 2 is of a more general nature for district cooling systems connected 

to natural cold sources with temperatures varying depending on the ambient temperature. In 

this thesis, problem 2 is approached by theoretically exploring the impact on the district 

cooling generation by different temperature levels with the increased knowledge about the 

customers’ systems as a foundation. Based on this, the following research questions are 

posed for the two problems stated: 

RQ 1a) What are the causes to low delta-T in an existing district cooling system with 

heat exchanger separation? 

RQ 1b) How can low delta-T in an existing district cooling system with heat exchanger 

separation be resolved? 

RQ 2) What are the potentials for higher temperatures in an existing district cooling 

system based on the temperature requirements of the connected buildings? 

These three research questions are treated in each of the appended papers where problem 1 

and research questions 1a and b are investigated in Paper I. In Paper II, the focus is on 

problem 2 and with the goal to explore research question 2. 

1.4.2 Delimitations and Limitations 

The context for this thesis is given in its entirety in Chapter 2, however, low delta-T and the 

temperatures in district cooling systems are closely linked to other aspects of the topic district 

cooling. For this reason, the following aspects have been omitted in this thesis: 

Cooling load predictions and calculations is an important aspect in regard to the operation 

and planning of district cooling systems, especially as a profitability measure and input to 

modelling of district cooling systems. However, different types of cooling loads in buildings, 

cooling load aggregations and methods of estimating and calculating cooling loads are not 

part of this licentiate thesis and have not been investigated. 
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Whether or not the district cooling system is the most optimal cooing provider for the 

buildings in Gothenburg, compared to building individual chillers, heat pumps or other 

solutions, is another delimitation of this thesis. Neither will other means of providing cooling 

or reducing the cooling demands in the connected buildings be explored. 

Another aspect of district cooling that has been excluded from this thesis is different 

hydraulic configurations of district cooling systems, such as pressure head profiles of the 

piping network, pumping schemes and distribution layouts. This is because the aim of this 

thesis is to explore the low delta-T in regard to the energy transfer stations and the connected 

buildings, and not with respect to the hydraulics of the distribution system. Also excluded 

from this thesis is the effect of thermal energy storage integration, replacement of chillers in 

the chilled water production plants or the integration of new cooling technologies. 

Limitations of the thesis that are outside the control of the researcher and constitute potential 

weaknesses in the study, include the nature of the data which the study is based upon. The 

data is operational as measured by permanently installed equipment and testing of data 

reliability and validity has been limited. Potential erroneous measurements could remain 

among the data which could negatively impact the results. However, such erroneous 

measurements have been judged to have a minor impact on the conclusions drawn (see 

section 3.4.2 for more details). 

1.4.3 Structure of the Thesis 

This licentiate thesis is structured as per the following: in Chapter 2 the frame of reference 

is provided, including a background to district cooling and building chilled water systems. 

Also provided in Chapter 2 is a literature review which serves as a foundation to the issues 

investigated in the appended papers. In Chapter 3, an elaboration of the research 

methodology is provided with a justification and explanation of the chosen research 

methods. Furthermore, the district cooling system in Gothenburg is described in Chapter 3, 

since this system represents the applied object of the studies in the two appended papers. 

The results and discussion are combined in Chapter 4 and in Chapter 5 the conclusion as 

well as answers to the research questions are provided. Lastly, in Chapter 6, future research 

is considered.  
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Chapter 2: Frame of Reference 

The frame of reference serves as the foundation of this thesis by alternating between 

providing background to the topic and reviewing previous work related to the research 

questions. First, information about district cooling and its components are presented as 

applied generally. Secondly, related work on district cooling temperatures and the low delta-

T syndrome are presented from the perspective of district cooling systems. Lastly, 

information about the connected buildings HVAC systems along with related work on the 

low delta-T syndrome and high temperature development is provided. 

2.1 District Cooling 

District Cooling is a technology where chilled water is generated centrally in large chiller 

plants and is distributed to connected buildings by underground pipes. A district cooling 

system consists of three main components: production plant, distribution system and 

connected building chilled water systems. The buildings are connected by means of plate 

frame heat exchangers in the energy transfer station, see Figure 3 (Olama, 2017; Skagestad 

& Mildenstein, 2002). District cooling systems can be supplied by natural cooling sources, 

absorption chillers running on waste heat and mechanical compression chillers with 

electricity as input (Frederiksen & Werner, 2014). District cooling is common in the United 

States, especially at university campuses, healthcare centers and airports. More recently it 

has also grown extensively in the Middle East, Asia and Europe (Tredinnick & Phetteplace, 

2016). 

 

Figure 3: Schematic of a district cooling system with its main components. 

DC is cost efficient in appropriate applications (Rezaie & Rosen, 2012), such as in cities 

where the cooling demand is aggregated by the large number of buildings. Also, different 

types of buildings make the accumulated cooling demand diverse and the production more 

efficient (IDEA, 2008). It has been shown that district cooling can contribute to reducing the 

need for fossil fuels to provide cooling in buildings (Rezaie & Rosen, 2012). DC also 

generates several benefits for both building owners and the city. The benefits for building 

owners include an eliminated need for individual chillers and heat rejection units in each 
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building, making more rentable space available. Furthermore, the need for operation and 

maintenance of chillers is reduced which enables them to focus on the core business 

(Frederiksen & Werner, 2014). The benefits for the city include an alleviation of noise 

pollution (Calderoni et al., 2019) and heat island effects caused by the heat rejection units. 

Moreover, fewer individual chillers reduce the usage of refrigerants, which supports the 

Montreal Protocol and Kigali Amendment. The aggregated need for electricity for chillers 

is also reduced since large chillers have the potential of achieving higher efficiencies than 

smaller units used in buildings (ASHRAE, 2013). 

District cooling has higher capital investments and operating costs compared to district 

heating and may not always be the most cost optimal option to provide buildings with 

cooling. If the DC chillers have the same efficiency as individual cooling systems, DCS is 

more energy consuming (Gang et al., 2017). Nevertheless, DC has the potential to achieve 

higher operating efficiencies compared to in-building chiller systems, as a result of the 

concentration effect of diverse cooling demands and the possibility of integrating natural 

cold sources (Jing et al., 2017; Shimoda et al., 2008). 

The number of district cooling systems around the world is unknown, however, at least 150 

systems are estimated to be in operation. The annual cold delivery from these DCS is 

approximately 83 TWh, where 67% is delivered in the Middle East, 27% in the US and the 

remainder in Japan and the EU (S. Werner, 2017b). In Europe, the cold deliveries by DCS 

were around 3.5 TWh in 2018, out of which roughly 30% were delivered by Swedish DC 

systems, 30% in France and 40% in the remaining European countries with DCS (Dalin, 

2019). 

2.1.1 Free Cooling 

District cooling can make use of available local natural cold sources by integrating them into 

the district cooling system, also referred to as free cooling. Natural cold sources are, for 

example rivers, lakes and the sea (Frederiksen & Werner, 2014; Skagestad & Mildenstein, 

2002). When the natural cold source used is the sea, it is also called sea water air conditioning 

(SWAC), divided into either shallow or deep SWAC. The difference between the two is the 

economically viable water temperature profile. Deep SWAC has access to sea water 

temperatures around 5 °C irrespective of ambient outdoor temperature. DCS with deep 

SWAC can therefore utilize free cooling all year round without the need for additional 

chillers. Shallow SWAC utilizes cold sources with temperatures that vary with the ambient 

temperature. For such DCS, free cooling is utilized 100% when the sea water temperature at 

the intake point is 5 °C. The remaining part of the year the sea water can be used as a heat 

sink for the chillers’ condensers (Hunt et al., 2019).  

Examples of DCS integrated with natural cold sources include the DCS in Stockholm, 

Sweden, which uses cold water from the Baltic sea. The DCS in Paris, France, uses the river 

Seine for 100% free cooling when the is water temperature is 8 °C or less, and the remaining 

part of the year as a heat sink for the condensers. In Toronto, Canada, deep lake water from 

83 m below the surface is used for free cooling independent of the outdoor air temperature 

(Calderoni et al., 2019). Similarly in Ithaca, United States, lake water is pumped from the 

depth of 73 m and used for free cooling all year round (Zogg et al., 2008). 

Deep or shallow SWAC is crucial for the integration of renewable energy sources in DCS 

(Gang et al., 2016; Inayat & Raza, 2019), where success factors are available seawater 

temperatures of the geographical location and the urban environment (Zhen et al., 2007). For 

DCS with shallow SWAC the share of free cooling is determined based on the supply and 
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return temperatures of the district cooling system. If the primary return temperature is 

increased, the share of free cooling can be increased accordingly (Fredriksen et al., 2016). 

2.1.2  Energy Transfer Station 

The thermal energy transfer between the DC distribution system and the connected building 

takes place in the energy transfer station (also called substation). There is both indirect and 

direct ETS and the choice of connection type is typically determined based on the district 

cooling system being a public utility or user owned (ASHRAE, 2013; IDEA, 2008; Olama, 

2017). If the DCS is user owned the building chilled water systems can be directly connected 

since the need for a contractual separation is unnecessary. However, if the DCS is publicly 

owned, with separate ownership of the connected buildings, the ETS connection has to be 

indirect by means of plate frame heat exchangers, see Figure 4. The indirect connection also 

serves as a safety measure in case of leakages (IDEA, 2008; Tredinnick & Phetteplace, 

2016). 

 

Figure 4: Outline of energy transfer station in district cooling system with indirect 

building connections by plate frame heat exchangers. Also shown are the 

general locations of the measurement equipment with energy meter and 

control valve located on the primary side and temperature sensors located on 

both sides of the heat exchanger. 

In DCS with indirect ETS connections, the district cooling system distribution side of the 

ETS is referred to as the primary side or the DC side of the heat exchanger. The connected 

building chilled water system is also called the secondary side of the heat exchanger or the 

CHW side of the system. Both terms for referring to either side of the heat exchanger are 

used in this thesis. 

Although the heat exchanger is needed in DCS with separate building ownership, it also 

creates a barrier between the primary and secondary sides with regard to information and 

data transfer. Even if the DC provider may own part or all of the ETS equipment, it is 

common that the DC provider has no access to the building chilled water systems’ data, nor 

that the building owners have access to the data measured by the DC provider (for example, 

see temperature sensor locations on either side of the heat exchanger in Figure 4). 

2.2 District Cooling System Temperatures 

Conventional district cooling systems are designed with supply temperatures between 4-7 

°C. This temperature is dictated by the connected cooling loads and limited by the 

performance of the DC plant and the distribution system. The cost effectiveness of a district 

cooling system is heavily dependent on the temperature difference between the supply and 

return, referred to as delta-T. A delta-T as high as possible is desired since it leads to smaller 
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pipe sizes and lower pumping costs. Typically, delta-T’s of 9-12 °C generate lower 

economical capital expenditure and lower pumping costs, but it is not uncommon that 

systems have been designed for lower delta-T’s such as 7 °C. Based on an optimal delta-T 

of 9-12 °C, the resulting design return temperature should be 13-19 °C. However, the DC 

return temperature is limited by the return temperatures from the energy transfer stations, 

which in turn are affected by the return temperature in the connected building chilled water 

systems. Design return temperatures are for this reason difficult to ensure and maintain 

(IDEA, 2008; Olama, 2017). 

For Swedish district cooling systems, general guidelines suggest design temperatures of 4-

10 °C supply and 14-20 °C return, with 6 °C as the supply benchmark temperature and 16 

°C as the return benchmark. Based on this, the recommended temperatures in the building 

CHW systems should be 6-14 °C supply and 16-20 °C return, with 8 °C as the supply 

benchmark and 18 °C as the return benchmark temperature. The building CHW systems 

benchmark temperatures are recommended for cooling coils in all-air HVAC systems. For 

air-water and all-water systems, such as chilled beams and fan coil units (FCU), supply and 

return temperatures of 14/17 °C are suggested (Energiföretagen Sverige, 2019). 

According to Skagestad & Mildenstein (2002), it is common that DCS vary the chilled water 

supply temperature based on the outside ambient temperature. This operation strategy allows 

an increased chilled water supply temperature as the system cooling demand decreases. 

However, the supply temperature always has to be sufficiently low to achieve the desired 

dehumidification of the supply air in the connected buildings, even for lower outside ambient 

dry bulb temperatures. As stated by Calderoni et al. (2019), there is a greater level of freedom 

in designing the building systems which dictate the associated DC supply and return 

temperatures when developing new buildings and districts. For existing district cooling 

systems, there are limited possibilities to affect the supply temperature, especially regarding 

the required supply temperatures in the connected buildings. However, this is something that 

is going to be challenged in this thesis. 

2.2.1 Systems with Direct Connections 

A widespread problem in district cooling systems is failing to achieve the design delta-T 

between the DC supply and return water (Olama, 2017). This is called the “low delta-T 

syndrome” and causes an excessive water flow rate in the distribution system in order to 

satisfy the cooling demand. This causes additional chillers to be started, resulting in an 

increased need for pump and chiller electricity, ultimately increasing the costs and wasting 

energy (IDEA, 2008). 

The low delta-T syndrome has been extensively researched in the past decades for district 

cooling systems with direct building connections, meaning there is no heat exchanger 

between DC distribution system and the connected buildings chilled water systems. Fiorino 

(1996), (1999) and (2002) explained twenty-five different ways to eliminate the low delta-

T, ranging from component selection criteria in the building chilled water systems to 

configurations of the distribution system. Kirsner (1997) and Waltz (2000) emphasized the 

need for variable flow in the distribution system and the building CHW system to respond 

to low delta-T operation. However, B. Rishel & Avery (2000) pointed out that valves used 

for constant flow usually are not compatible with the variable flow systems’ pressure 

differentials, leading to leakage flows and causing a low delta-T. 

Typical causes of the low delta-T syndrome are the use of 3-way valves (Griffith, 1987; 

Hartman, 2001; Luther, 2002; Taylor, 2002) as well as an improper selection of cooling 
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coils, control valves, setpoints and controls, such as not closing the shut off valves when the 

air handling unit’s (AHU) fans shut off (Taylor, 2002). Moreover, oversized valves, 

undersized actuators (Luther, 2002) along with valve and actuator combinations unable to 

operate at system pressures (Griffith, 1987), are additional potential causes of the low delta-

T syndrome in chilled water systems. G. Wang et al. (2006) emphasized the need of using 

2-way control valves in the connected building to avoid a low delta-T during part load 

conditions and that bypass connections between the chilled water supply and return in the 

building CHW systems need to be eliminated. 

The low delta-T syndrome is avoided by proper design and component selection, operation 

and maintenance (Lizardos, 1994; Taylor, 2002). For example, the DC distribution pipes 

have to be optimally sized, and the design chilled and condenser water temperatures have to 

be properly chosen (Taylor, 2011), something which could create problems with low delta-

T when expanding an existing DCS. A proposed solution to the low delta-T is to install a 

check-valve in the bypass line between the chillers and the DC distribution system (Kirsner, 

1998; Taylor, 2002). This solution has been experimentally tested and simulated, yielding 

energy savings in the DC system of 7-9% (Ma & Wang, 2011; S. Wang et al., 2010). Also, 

as opposed to a check valve, a differential bypass valve between the chiller loop and the 

connected cooling loads has been evaluated together with a sensor fault detection and 

diagnosis (SFDD) method applied to the return water temperature sensor in the chiller loop. 

The SFDD method was able to detect faults such as drift and precision degradation and could 

also be used to find relationships between sensor reading datasets thorough data clustering 

(Luo et al., 2019). 

Several case studies or retrofit assessments on how to resolve the low delta-T in entire district 

cooling systems have been carried out on a variety of DCS with direct building connections. 

To find effective solutions to resolve the low delta-T, an overview of the system is necessary 

(Griffith, 1987). It is equally important to review the original chilled water design when 

determining the causes to low delta-T and proposing retrofit solutions, so that the cause of 

the problem can be resolved instead of simply treating the symptoms (Luther, 2002). Some 

of the proposed solutions from retrofit assessments of DCS included conversion from 

constant to variable flow in the distribution system and building chilled water system, 

elimination of throttling valves through the chillers, change of control logic of chiller 

operation, replacement of undersized pipes in the distribution loop, correction of 

unintentional short circuits, replacement of cooling coil control valves with calibrated two-

way valves and reduction of the DC supply temperature to 5.5 °C (Hattemer, 1996; Hyman 

& Little, 2004; Kirsner, 1995; Kreutzmann, 2002; Reed & Davis, 2009; Taylor, 2006). 

Sun & Liu (2009) performed a case study in which a hydraulic simulation was carried out 

based on a survey and measurements of the DCS. It was determined that the distribution 

loop delta-T was considerably lower than the design value, especially during part load 

conditions. The proposed solutions to the low delta-T included different end-user and central 

chiller plant retrofits as well as control system optimizations. Another DCS case study 

combined with simulations showed that having a higher temperature difference on the 

secondary side, compared to the primary side, lead to average monthly energy savings of 5-

7% compared to DCS with equal temperature differences in both distribution system and the 

connected buildings’ systems (Lee et al., 2012). 
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2.2.2 Systems with Heat Exchanger Separation 

Previous studies on the low delta-T syndrome in DCS with heat exchanger separation have 

also been conducted. The DCS application of these studies has been a high-rise building 

where the primary purpose of the heat exchangers is to reduce the high static pressure. For 

this type of DCS, Gao et al. (2012) developed a fault detection and diagnosis (FDD) method 

for the low delta-T by detecting flow in the bypass line between the chiller loop and 

distribution system to the heat exchangers. It was shown that the low delta-T was caused by 

a too low setpoint of the outlet water after the heat exchangers. This led to a significant 

increase in chilled water pumping on the primary side of the heat exchangers which caused 

a low delta-T. The low delta-T increased when the setpoint on the secondary side of the heat 

exchangers was set to be reasonably higher in relation to the temperature on the primary 

side. 

Later on, Gao et al. (2016) developed a control scheme to handle the low delta-T in the same 

high rise DCS. The control strategy limited the flow rate in the by-pass between the chiller 

loop and the distribution system to the heat exchangers, as well as it reset the supply 

temperature setpoint after the heat exchangers to follow the variations of the supply 

temperature before the heat exchangers. For the same high-rise DCS, Gao, Wang, Gang, et 

al. (2016) also developed a model-based method for practical implementation. The method 

was based on operational data of the DCS to evaluate low delta-T operation when the energy 

consumption of the chilled water pumps increased. The model was capable to predict normal 

energy use by the chilled water pumps and the system water flow rate if no low delta-T 

syndrome occurred by considering the load ratio of individual AHUs in the building chilled 

water system. 

These studies show that issues related to low delta-T in DCS with heat exchangers separating 

the distribution system from the connected buildings become more complex to identify. 

Despite the multitude of proposed solutions and methods to resolve the low delta-T in district 

cooling systems the issue still prevails, something which may be closely related to the fact 

that no universal solution can be applied to all systems (Coad, 1998; Fiorino, 2002; B. J. 

Rishel, 1998). In the design phase of a district cooling system it is crucial to identify the 

types of loads to be served in the connected buildings. Also, the cooling loads need to be 

designed to achieve the return temperatures required by the district cooling system’s 

production plant. This is something often overlooked, especially in the early establishment 

phase of a district cooling system where customers are recruited by disposing of an old 

chiller for which the building chilled water system has been designed for. For this reason, it 

is essential each DCS has connection standards for the buildings and their chilled water 

systems (Coad, 1998). Moreover, for the customers to invest in equipment that optimizes 

and improves the performance of their chilled water systems, incentivized DC chilled water 

rates are needed (Moe, 2005). 

2.3  Building Chilled Water Systems 

In commercial buildings, the need to provide cooling arises from the requirements of thermal 

comfort and indoor air quality such as defined by the European Standard EN 16798-3:2017 

(CEN, 2017) and ASHRAE Standard 55 (ASHRAE, 2010). It is the task of the building’s 

HVAC system to monitor and regulate the indoor environment and ensure that the 

requirements are fulfilled by suppling or removing heat and moisture (sensible and latent 

loads) as well as removing pollutants generated by internal loads and the occupants of the 

building. 
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When it comes to providing space cooling, the HVAC system can be divided into four types: 

all-air systems, water-air systems (commonly referred to as air-water in the US), all-water 

systems and unitary refrigerant-based systems (not included among the buildings studied in 

this licentiate thesis) (McQuiston et al., 2005; Nilsson, 2003). The HVAC systems in the 

buildings included in this thesis are grouped according to Figure 5. All-air systems include 

air handling units with 100% outdoor air and cooling coils, water-air systems are composed 

of active chilled beams supplied with chilled water and primary air from the ventilation 

system and all-water systems are composed of fan coil units supplied with chilled water, but 

no primary air. 

 

Figure 5:  Classification and type of building HVAC system among the buildings studied 

in this thesis. 

In all-air systems, the indoor sensible and latent loads are removed together through cooling 

and dehumidification by the cooling coils. In order for dehumidification to occur, the chilled 

water temperature needs to be lower than the indoor air dew point temperature (Liu et al., 

2013) and commonly used temperatures are therefore 6-7 °C. In water-air systems with 

chilled beams, the cooling process takes place without dehumidification and a supply water 

temperature above the dew point temperature of the air is required. Fan coil units can be 

equipped with a condensation removal system, which allows the supply water temperature 

to be less than the dew point temperature (Nilsson, 2003). 

2.3.1 Faults & Low delta-T 

Similar to previous studies on low delta-T in district cooling systems, there are many 

previous studies on the low delta-T that have instead focused on the components of the 

building chilled water systems, such as cooling coils and fan coil units along with different 

strategies to overcome the low delta-T. For example, equipping cooling coils in AHUs with 

pressure independent valves coupled with a delta-T management strategy can double the 

cooling coils’ delta-T and increase the load-to-flow ratio (Henze et al., 2013). 

Thuillard et al. (2014) investigated possibilities of mitigating delta-T degradation by first 

establishing the flow rate saturation zone for which the delta-T decreased due to an 

unnecessarily high flow rate without providing additional cooling capacity. The low delta-T 

was then mitigated with three different control strategies for individual cooling coils: limit 

of chilled water flow, limit of delta-T, or a combination of both. It was shown that the most 

effective strategy to avoid entering the saturation zone was by a combination of both flow 

and delta-T limitations. 

Another flow limiting strategy was tested by Hartman (2001), where the flow through a 

cooling coil was controlled with a simultaneous monitoring of the return temperature. This 

was done because low delta-T can arise from overflow in individual cooling coils due to 

constantly changing pressure differentials. Similarly, Gao et al. (2011) developed a flow-

limiting technique ensuring the water flow in the AHUs cooling coils not to exceed that of 

the chiller loop in the DC distribution system. Z. Zhang et al., (2012) simulated delta-T 
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profiles with various waterside and airside conditions for cooling coils with different 

geometric configurations. The simulations showed that cooling coils exhibit a complex 

behavior which could be an explanation to why it is difficult to draw conclusions about the 

changing coil delta-T with changing cooling load. The flow limiting strategy to improve 

delta-T has also been tested on FCUs, where control valves were able to successfully limit 

the flow and improve delta-T, compared to using magnetic valves (Song et al., 2019). 

Faults are common in the operation of HVAC systems and are many times the reason to low 

delta-T in the building chilled water system, which consequentially could be transferred to 

the district cooling system. Identifying and resolving such faults are something several 

previous studies have investigated and proposed solutions for. Valenzuela del Río et al. 

(2016) developed a machine learning algorithm to detect abnormalities in a building CHW 

system by clustering chilled water data to classify it as normal or abnormal. Zhang et al. 

(2015) categorized different techniques to analyze data from building CHW systems 

supplied by district cooling, with the gol to identify better operational settings or operational 

faults to address. Gao, Wang, Shan, et al. (2016) developed a system level fault detection 

and diagnosis method to detect and diagnose the low delta-T syndrome in an HVAC system 

due to performance degradations of the AHUs and the heat exchangers. 

Focusing on the impact of cooling coils in HVAC systems, Yan et al. (2018) developed a 

fault detection and diagnosis method to identify possible causes of the low delta-T issue. It 

was based on a simplified cooling coil model to analyze the impact of operating parameters. 

The load distribution characteristic (also called coupling effect) between the different 

cooling coils was shown to be a critical factor influencing the chilled water system delta-T. 

These results serve as an explanation as to why the chilled water system delta-T always is 

lower than the delta-T of individual cooling coils, especially during part load operation. 

Chang et al. (2014) investigated the coupling effect of a chilled water system with fan coil 

units. This study also showed the delta-T was reduced during part load when a high coupling 

factor between the FCUs was present. The low delta-T occurred because of the chilled water 

being redirected to the end terminals with open valves, from the end terminals with closed 

valves. 

These previous studies show that problems with low delta-T and faults in HVAC systems 

can be resolved by different operating strategies. However, in order to know what operation 

strategy to implement it is crucial to first establish the causes of low delta-T and how the 

faults in building chilled water systems affect the primary side of the district cooling system. 

2.3.2 High Temperature Cooling Systems in Buildings 

High temperature cooling systems are a modified cooling technology that can improve the 

efficiency of the cooling process. This technology has rapidly advanced in the past decade 

through research and evaluation of proposed methodologies and applications (Jiang et al., 

2015; Li et al., 2014; Schmidt, 2009). In HTC systems, the sensible and latent cooling loads 

are decoupled and individually controlled by temperature and humidity independent control 

(Liu et al., 2013). A high temperature water-based cooling system such as radiant panels, 

handles the sensible cooling load. This system supplies chilled water temperatures of 

approximately 16 °C and up, compared to conventional temperatures of 6-8 °C. The 

dehumidification is managed by a separate ventilation system (Liu et al., 2013; Saber et al., 

2016). 

Iyengar et al. (2013) performed laboratory tests on an HTC system with a decentralized 

ventilation and sensible radiant cooling in Singapore. The HTC system was able to 
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successfully remove the sensible loads and dehumidify the incoming outdoor air. Saber et 

al. (2014) tested a radiant cooling system coupled with a decentralized dedicated outdoor air 

system in a laboratory located in a tropical climate. Chilled water supply temperatures of 8-

14 °C were used for the ventilation system and 17-19 °C for the radiant panels. It was shown 

that the ratio of sensible to latent cooling loads was approximately 0.5 and that the sensible 

heat ratio increased to 0.6 in the afternoon, where 30% of the sensible cooling load was 

handled by the supply air units and the remainder by the radiant panels. 

High temperature cooling systems have been installed in various commercial properties (T. 

Zhang et al., 2014) and previous studies have evaluated their operation. Zhao et al. (2011) 

evaluated the operation of an HTC system in an office building in Shenzhen, China. The 

latent loads were removed by a liquid desiccant outdoor air handling unit driven by heat 

pumps, and chilled water temperatures of 17.5 °C were supplied to dry fan coil units and 

ceiling panels to handle the sensible loads. The HTC system was able to achieve significant 

energy-savings compared to a conventional HVAC system, at the same time as a comfortable 

indoor environment was provided despite hot and humid outdoor conditions.  

In a study by Lun Zhang et al. (2015), a radiant floor cooling system coupled with 

displacement ventilation was compared with a conventional jet ventilation system for two 

different airport terminals. The radiant cooling system was supplied by 16-20 °C chilled 

water and the ventilation system comprised a liquid desiccant outdoor air handling unit. The 

results showed that the HVAC energy utilization was 34% less in the HTC system compared 

to the conventional system. This was made possible by reducing the losses from mixing of 

hot and cold fluids, and by removing the heat gain from solar radiation directly. 

Filipsson et al. (2020) evaluated the operation of an HTC system in a Swedish office building 

along with the indoor air temperatures. The HTC system consisted of self-regulating active 

chilled beams supplied by a chilled water temperature of 20 °C, and air handling units for 

dehumidification supplied by 17 °C chilled water. It was demonstrated that the HTC system 

could provide the building with enough cooling without exceeding desired indoor air 

temperature levels during the record warm summer of 2018. These previous studies on HTC 

systems demonstrate that although conventional low temperatures may be required for latent 

loads, cooling of indoor spaces can comfortably be achieved by higher temperatures as well. 

High temperature cooling systems in buildings enable usage of new types of cooling sources, 

such as coupling to the ground for free cooling (Filipsson et al., 2020), utilization of cooling 

towers for free cooling and more efficient low temperature lift chillers (Liu et al., 2013; 

Saber et al., 2016; Seshadri et al., 2019). For example, a chilled water temperature of 16 °C 

reduces the temperature difference between the refrigerant’s condensing and evaporating 

temperatures in the chiller, which increases the coefficient of performance (COP) around 

50%, compared to conventional chillers supplying 7 °C chilled water (T. Zhang et al., 2014). 

Also, it has been shown that the COP and cooling capacity of a mechanical vapor chiller can 

improve about 3.5% for each 1 °C of increased chilled water temperature (Thu et al., 2017). 

With the technological development of HTC systems in buildings advancing, it is important 

DC utility owners support this development with incentives for the customers. This is to 

avoid foregoing any new customers or experiencing a withdrawal of existing customers that 

choose HTC systems for their buildings. Moreover, if a majority of the DC customers 

implements HTC systems in their buildings, supplying a low conventional DC temperature 

of 6 °C may become redundant and inhibit a larger share of natural free cooling to be used.  
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Chapter 3: Research Methodology  

In this chapter, an elaboration of the research methodology is provided with departure in the 

worldview guiding the researcher. This establishes the foundation for the research strategy 

chosen, which successively serves as a justification for the chosen research and data 

collection methods, in conjunction with background information about the applied district 

cooling system used in the study. Lastly, the data analysis method is explained in detail. 

3.1 Theoretical Framework 

Research is the systematic process of establishing knowledge that does not yet exist within 

a field, thereby expanding the prevailing knowledge base with a novel contribution (Deb et 

al., 2019). This systematic process involves a set of methods or tools to reach the end goal 

of establishing new knowledge. The research methods should not be confused with 

methodology, which is the theoretical and philosophical assumptions behind the methods 

and that which is being investigated. The methodology provides the foundation to the 

choices made in the research process since it influences the researcher’s ideas on what 

methods to use. It involves the philosophy of science grounded in questions concerning 

epistemology and ontology, where ontological questions concern the study of things that 

exist in the world and epistemological questions are about what constitutes knowledge 

(Ahmed et al., 2016; Chalmers, 1999).  

Answers to epistemological and ontological questions are found within a paradigm, which 

is a belief system or worldview that guides the researcher (Ahmed et al., 2016). Examples 

of paradigms are idealism, realism and pragmatism which contain different ontological 

beliefs about the study of things that exist in the world. Idealism and realism are two 

opposing positions, whereas pragmatism is an ontological neutral position (Yu & Strobel, 

2011). Pragmatism allows the researcher to focus on the problem and adopt any approach to 

understand it (Creswell & Creswell, 2018). The research in this thesis is conducted within 

the field of applied engineering where a problem (low delta-T and low temperatures), 

encountered in the operation of an engineered system (the district cooling system) is being 

studied. For this reason, pragmatism is the worldview guiding this research process. 

The intended audience of the research also shapes the choice of the research design (Creswell 

& Creswell, 2018). The primary intended audience for this thesis is utility companies, such 

as Göteborg Energi AB, who own and operate district cooling systems. The vision for this 

thesis is therefore to bring some practical value and applicability for utility companies to 

further improve the operation of their district cooling systems. Also, the scientific 

community, conducting research on district cooling systems and smart energy systems, is 

also an intended audience of this thesis. 

3.2 Research Strategy 

The research strategy is chosen based on the above theoretical framework, but also according 

to the nature of the problem (Creswell & Creswell, 2018). Based on previously established 

knowledge of the problems investigated in this thesis, both sides of the system (the district 

cooling system and the connected buildings) need to be investigated. The problems (as 

described in section 1.3) are related to the operation of both the district cooling system and 

the connected building. The strategy to investigate the problem is therefore chosen based on 
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the type of data available from the system, which is empirical operational data, based on 

measurements of reality. 

Different methods of reasoning to build or test theory are undertaken depending on the nature 

of the research and the data it is based upon. Such methods include induction, deduction and 

abduction. Abductive reasoning is a combination of deduction and induction (Ahmed et al., 

2016), where deductive reasoning is used when a hypothesis is tested. In inductive reasoning, 

the point of departure is observations made or facts from which theories are derived from 

detecting patterns (Creswell & Creswell, 2018). As already mentioned, empirical data, based 

on measurements from the reality, is used in this research. Given this type of data, inductive 

reasoning is therefore the chosen research approach to first systematically investigate the 

data and then build a theory upon it. 

With this research approach, the research activities can be categorized as exploratory, 

descriptive and explanatory. Exploratory research refers to the stage in which data about a 

certain phenomenon is collected with the output being possible associations between 

variables. Descriptive research involves describing patterns based on the exploratory phase, 

with the goal of developing empirical generalizations. Explanatory research involves the 

development and testing of explicit theory based on the empirical generalizations (Peecher 

& Solomon, 2001). The research activity is closely linked to the type of research question 

posed. Therefore, based on the research questions in section 1.4.1, the research approach of 

this thesis is a combination of exploratory and descriptive research activities to attempt to 

provide answers to them. In Paper I, the focus is on the descriptive stage of the research, 

whereas the focus of Paper II lies in the exploratory phase. 

3.3 Gothenburg District Cooling System 

District cooling in Gothenburg, Sweden (57.7089° N, 11.9746° E) was established in 1993 

by installing distributed cooling islands throughout the city. In 2002, the cooling islands 

were connected by underground pipelines into a network which today is about 30 km long. 

The district cooling system is currently composed of two separate networks, which can be 

seen in Figure 6, along with two remaining cooling islands (not shown). The larger of the 

two networks has an installed capacity of 54.7 MW and supplies the central downtown area 

of Gothenburg towards the south. The smaller network supplies the commercial area of 

Lindholmen on Hisingen with a total installed capacity of 15.6 MW. The work with 

connecting the two systems with a pipeline underneath the river will be completed in 2021 

and is part of a 15-year plan of doubling the total installed capacity, based on a projected 

increase of the cooling demand in the city. 
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Figure 6: Map of Gothenburg district cooling system with approximate locations of 

pipelines and chilled water production units. 

In the base load plant in the larger system, free cooling is available via heat exchangers 

between the river and the district cooling system. Free cooling is utilized 100% when the 

temperature of the river is ≤ 5 °C, which occurs from December to April. When the river 

temperature is > 5 °C, it pre-cools the returning DC water prior to entering the compressor 

chillers. The chilled water production mix, when the river temperature is more than 5 °C, 

consists of absorption chillers utilizing district heating and electric compression chillers. The 

annual chilled water production is based on approximately 47% absorption chillers, 31% 

compression chillers and 22% free cooling. Compared to the Swedish national DC 

production mix, the share of absorption chillers in Gothenburg DCS is significantly higher, 

which is a result of abundant waste heat in the district heating system in the summer.  

The cooling demand of the connected buildings is to a large extent dependent on the outdoor 

temperature and varies between different years depending on the outdoor air conditions. In 

Figure 7, the aggregated annual cooling demand of the connected energy transfer stations in 

Gothenburg DCS can be seen for the year of 2018. The data is based on hourly average 

values, with a maximum hourly demand of 56.6 MW. 
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Figure 7: Cooling demand of 2018 based on all connected energy transfer stations 

connected to Gothenburg district cooling system. The data is based on hourly 

average values. 

Both the large and the small district cooling system are designed for supply and return 

temperatures of 6 and 16 °C from May to October (Göteborg Energi AB, n.d.). In Figure 8, 

the supply and return temperatures to and from the base load production plants of both 

systems can be seen from April to October of 2018. The supply temperatures deviate slightly 

from the design temperature, whereas the return temperatures never reach the design level 

of 16 °C and instead are approximately 12 °C from May in the larger system and 14 °C in 

the small system, with 24-hour fluctuations depending on day- and nighttime operation.  

 

Figure 8:  Left: Supply and return temperatures of the large district cooling system and 

Right: the small district cooling system. The temperatures are measured at the 

base load production plants during the months of April to October of 2018. 

There are approximately 160 buildings connected to both district cooling systems. All 

buildings are commercial and the type of business in the buildings range from offices, retail, 

restaurants, education facilities, cultural and recreational activities as well as hotels and 

hospitals. In this licentiate thesis, 37 of these buildings, belonging to seven of the largest 

property owners in Gothenburg, are included from which data has been individually 

collected. Almost all buildings, with the exception of a couple of older ones, have one 

connection point to the DCS which is in the energy transfer station, typically located in the 
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basement of the building. The ETS is owned and maintained by the property owner, although 

the utility provider owns and maintains the energy meter on the primary side. 

3.4 Data Collection Method 

As explained above, the research strategy has been developed based on empirical data from 

both the district cooling system and some of its connected buildings. Since the district 

cooling system and the buildings are owned and managed by different entities, the data 

availability and accessibility of the connected buildings was unknown in the initial design 

phases of the research strategy. However, the data availability of the district cooling system 

was known. The data collection method was therefore initiated by exploring the accessibility 

and availability of the potential data from the connected buildings. This was done by 

examining the connected buildings to the district cooling system and determining the most 

appropriate ones, primarily based on property owner. Property owners with four or more 

buildings connected to the district cooling systems were selected and contacted, and 

depending on interest, availability and the possibility of cooperating in the study, the 

buildings were selected.  

The subsequent step in the data collection method was to obtain operational data from the 

buildings which owners had agreed to cooperate. Based on this method, the buildings 

included in this thesis have been selected, as opposed to conducting a random sampling. 

Ultimately, seven different property owners agreed to cooperate in this study and a total of 

37 buildings were selected based on available and accessible data. 

3.4.1 Data Availability 

The data were collected from the databases of the district cooling provider and the property 

owners building management systems (BMS), see Figure 9 for location of temperature 

sensors and measurement equipment. The district cooling production plant data was obtained 

for the years of 2017-2018 and the data from the building energy transfer stations was 

collected from April-September of 2018. 

 

Figure 9:  An outline of the district cooling system with production plant, energy transfer 

station and connected building chilled water systems. Each part of the system, 

marked with a dashed line, represents a section that has been investigated in 

this thesis for which data has been collected and analyzed. 
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The building ETS data were collected both from the district cooling provider, the primary 

side, and from the property owners BMS, the secondary side. The data type is automatic 

hourly meter readings as measured by permanently installed equipment. In Table 1, details 

of the measurements and equipment of the district cooling production plant can be found. In 

Table 2 and Table 3 information about the data from the building ETS is listed, collected 
both from the district cooling provider’s database and the connected buildings’ BMS. 

Table 1: Data measured by permanently installed equipment in the district cooling 

plant and stored in the database of the district cooling provider. 

Data Variables from District Cooling 
Production Plant  

Unit Measurement 
Reading Interval 

Measurement Device 

Generated cooling power from 

production plant, Q̇ 

MW 1/h, hourly 
average 

Energy Meter Integrator 

Supply temperature, tDC supply, distr. °C 1/h, 
instantaneous 

Thermowell RTD 
temperature sensor 

Return temperature, tDC return, distr. °C 1/h, 
instantaneous 

Thermowell RTD 
temperature sensor 

River temperature, triver °C 1/h, 
instantaneous 

Thermowell RTD 
temperature sensor 

 

Table 2:  Data collected from the district cooling side of the heat exchangers in the 

energy transfer station, as measured by permanently installed equipment and 

stored in the database of the district cooling provider. 

Data Variables from Primary Side of 
Energy Transfer Station 

Unit Measurement 
Reading Interval 

Measurement Device 

Cooling power, Q̇ kWh/h 1/h, hourly 
average 

Energy meter integrator 

 Chilled water flow rate, V̇ m3/h 1/h, hourly 
average  

Ultrasonic flow sensor 

Supply temperature, tDC, supply °C 1/h, 
instantaneous 

Thermowell RTD 
temperature sensor 

Return temperature, tDC, return °C 1/h, 
instantaneous 

Thermowell RTD 
temperature sensor 

Delta-T between supply and return, 
ΔtDC 

°C 1/h, 
instantaneous 

Energy meter integrator 

 

Table 3:  Data collected from the building chilled water systems, as measured by 

permanently installed equipment, stored by each building management 

system. 

Data Variables from Building 
Management Systems (BMS)  

Unit Measurement Equipment 

Control valve signal % 2-way pressure balanced globe valve 

Outdoor temperature, tout °C RTD temperature sensor 

Supply temperature, tCHW, supply °C Thermowell RTD temperature sensor 

Return temperature, tCHW, return
1 °C Thermowell RTD temperature sensor 

Supply temperature subsystems  
(cooling coils, FCUs, chilled beams)1 

°C Thermowell RTD temperature sensor 

Return temperature subsystems  
(cooling coils, FCUs, chilled beams)1 

°C Thermowell RTD temperature sensor 

1
Not available in all buildings investigated. 



23 

 

3.4.2 Data Uncertainty 

Any misrepresentative data, indicating that the building chilled water system is turned off or 

that the building’s cooling demand almost is zero has been removed. This included removal 

of data points when the chilled water flow rate was less than the lowest interval of the flow 

meter as well as data measurements for when the signal from the control valve actuator was 

zero. 

Some of the downloaded data was corrupt or missing, for example, due to loss of connection 

between measurement equipment and storing software. The data were recorded during 2017 

and 2018 with summer conditions that differed significantly. The summer of 2018 was much 

warmer than normal, with a total of 25 days with outdoor temperatures > 25 °C and a 

maximum recorded outdoor temperature of 34.1 °C. The summer of 2017 had a maximum 

temperature of 26.3 °C and only nine days with outdoor temperatures > 25 °C (SMHI, n.d.). 

The energy meter in each energy transfer station is based on European Standards EN 1434 

and has an accuracy of ±0.5%, typical for district cooling applications (Tredinnick & 

Phetteplace, 2016). The temperature sensors are based on standard EN 60751 and have 

accuracies of ±0.4% and a resolution of 0.01 °C. For a temperature difference of 10 °C, the 

standard allows deviations of the energy meter up to ±0.8% and ±1.4% for the temperature 

sensors. The maximum tolerance for the water flow is 5%, but according to Swedish 

standards, flow meters are allowed a higher tolerance in operation. Measured water flow rate 

data less than the lower operating range, qi, for each flow meter was removed during the data 

preprocessing step. 

The uncertainty of the energy meter is also related to the resolution of the integrator, which 

either is high (decimals) or low (integers in increments of 10 or 100 kW). For energy transfer 

stations with a low-resolution integrator, the cooling power was instead calculated based on 

measured temperature difference and water flow rate. Potential sources of error for the 

temperature measurements originate from the fact that the sensors are paired and not 

individually calibrated with respect to the absolute temperature. 

Although there is a wide variety of measurement equipment manufacturers among the 

studied buildings, all water temperatures have been measured by RTD temperature sensors, 

immersed in the pipes with accuracies of ±0.3-0.4 °C. The outdoor temperature sensors have 

an accuracy of ±0.3 °C. However, the main source of error for the outdoor temperature is 

the location of the sensor. 

3.5 Data Analysis Method 

Many previous studies of DC temperatures, and specifically the low delta-T, have been 

approached by deductive reasoning. For example, in papers developing fault detection and 

diagnosis strategies to overcome the low delta-T syndrome, a hypothesis on what is causing 

the low delta-T has been investigated. The low delta-T has also been explored based on 

theoretical inductive reasoning, however, generally, little time has been spent on exploratory 

data analysis (C. Zhang et al., 2018). As described in section 3.2, induction is the chosen 

method of reasoning in this thesis to build theory from the data. Moreover, with the goal of 

this thesis being of practical application, exploratory data analysis (Tukey, 1977) combined 

with data visualization (Sahay, 2017) and domain knowledge, were chosen as the data 

analysis method. Data visualization has previously been used in a study by Valenzuela del 

Río et al. (2016), where the visualization of operational data provided general trends and an 

initial identification of abnormalities of the building CHW data. Also, in a study by Thuillard 
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et al. (2014), visualization was used to investigate the saturation zone of the chilled water 

data. 

The visualization and analysis of the data have been combined with domain knowledge (also 

referred to as tacit knowledge) of the chilled water systems. The tacit knowledge was mainly 

incorporated by means of workshops where both utility provider and building owner 

provided input based on their experiences and knowledge to the visualization of the chilled 

water data and the patterns identified. Based on this tacit knowledge, the exploratory data 

analysis has been inductively analyzed to describe the patterns identified with the aim of 

developing empirical generalizations. 

3.5.1 Data Visualization 

According to Linyu Zhang et al. (2015), an effective way of visualizing measured building 

chilled water data is to utilize multivariate visualization with different data variables plotted 

against each other. By using this method, it has previously been established that important 

variables for analyzing the operation of building CHW systems are chilled water flow rate, 

cooling power and outdoor temperature (Valenzuela del Río et al., 2016). Based on this, but 

also limited to the available data as summarized in Table 1, Table 2 and Table 3, the chilled 

water data has in this thesis been visualized accordingly: 

1) Performance of primary side of energy transfer station: 

The variables cooling power Q̇, primary delta-T ΔtDC, and chilled water flow rate 

V̇, are measured by the DC provider and available from the primary side of each 

ETS (see Table 2). These variables have therefore been selected to analyze the 

performance of the ETS from the primary side based on the method utilized by 

Thuillard et al. (2014), with cooling power and chilled water flow rate being 

normalized. The purpose with this graph is twofold: 1) to determine the 

performance of the ETS by identifying the trend of delta-T with an increasing 

chilled water flow rate and 2) find the best performance point of the ETS and 

identify the saturation zone. The capacity of the heat exchanger in the ETS is a non-

linear function of the flow rate due to the impact of delta-T and is related to the 

chilled water flow being constant or variable on either or both sides of the heat 

exchanger. For a variable flow on both sides of the heat exchanger, delta-T slightly 

decreases for an increased flow (Skagestad & Mildenstein, 2002). For a certain 

chilled water flow rate, the cooling power transferred across the heat exchanges 

reaches a maximum. However, the amount of chilled water required to increase the 

cooling power from 90% to 100% could be disproportionately large. In the study 

by Thuillard et al. (2014), a reference point at 85% normalized cooling power was 

used. To find the best performance point of the energy transfer stations in this study, 

a normalized cooling power of 90% has been selected. The highest delta-T for this 

cooling power was identified and the corresponding flow rate. This point is referred 

to as the best performance point, where an increase beyond 90% of the normalized 

cooling power can be considered only a marginal increase. Any chilled water flow 

beyond the best performance point does not contribute to an increased cooling 

power, but instead typically leads to a deteriorated delta-T and is therefore called 

the saturation zone (Thuillard et al., 2014), see area marked with a dashed line in 

Figure 10. 
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Figure 10: Illustration of saturation zone (area marked with dashed lines) for an increased 

cooling power, increased chilled water flow and with decreasing delta-T. 

2) Comparison of primary and secondary sides of the energy transfer station: 

In order to find the causes to a low delta-T on the primary side, it is crucial to 

analyze the temperatures on both sides of the heat exchanger in relation to an 

independent variable. According to the available data in Table 2 and Table 3, the 

independent variable could be cooling power, chilled water flow rate, control valve 

signal or outdoor temperature. As per the results of Valenzuela del Río et al. (2016), 

the outdoor temperature was identified as an important variable when determining 

the functioning of chilled water systems. It affects the cooling power of the 

buildings, although there are more variables influencing this as well, such as solar 

radiation and occupancy. However, using the outdoor temperature as the 

independent variable also enables a comparison between the different buildings and 

was therefore chosen as the independent variable for the visualization. 

 

3) Buildings chilled water temperatures: 

Box plots is an easy way to summarize large sets of data to display the most 

frequently occurring patterns (Tukey, 1977). For this reason, the information about 

the buildings chilled water supply and return temperatures have been visualized by 

means of boxplots for different outdoor temperatures. 

 

4) District cooling generation from free cooling and chillers: 

The data from the district cooling plant as described in Table 1, has been visualized 

annually for different supply and return temperature levels. The purpose of this is 

to explore the effects different temperature levels would have on the amount of free 

cooling as a share of the annual district cooling generation. 

3.5.2 Heat Exchanger Temperatures 

In order to analyze the visualized data from the energy transfer station, four different 

temperature differences need to be defined. According to Figure 11, (showing the 

temperature sensor locations in the ETS) there is one delta-T on either side of the heat 

exchanger, ∆tDC and ∆tCHW, as well as there is a temperature difference between the supply 

sides, ∆t1, and the return sides, ∆t2, of the heat exchanger. 
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Figure 11: Temperature differences in the energy transfer station, separating the district 

cooling distribution system from the building chilled water system. 

The temperature differences on either side of the heat exchanger are defined as: 

∆𝑡𝐷𝐶 = 𝑡𝐷𝐶,𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑡𝐷𝐶,𝑠𝑢𝑝𝑝𝑙𝑦           (1) 

∆𝑡𝐶𝐻𝑊 = 𝑡𝐶𝐻𝑊,𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑡𝐶𝐻𝑊,𝑠𝑢𝑝𝑝𝑙𝑦            (2) 

 

Figure 12: Temperature diagram for a counterflow heat exchanger. 

The temperature differences between the supply and return sides of the heat exchanger, also 

called the temperature approaches across the heat exchanger, illustrated in Figure 12, are 

defined as: 

∆𝑡1 = 𝑡𝐶𝐻𝑊,𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑡𝐷𝐶,𝑠𝑢𝑝𝑝𝑙𝑦            (3) 

∆𝑡2 = 𝑡𝐶𝐻𝑊,𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑡𝐷𝐶,𝑟𝑒𝑡𝑢𝑟𝑛            (4) 

The general design guidelines for DC connected building CHW systems suggest tCHW, supply= 

7-8 °C and tCHW, return= 18 °C. Although the temperature approaches, ∆t1 and ∆t2, in a plate 

frame heat exchanger can be as low as 1 °C between single-phase streams (Thulukkanam, 

2013), 1-2 °C is typically utilized for district cooling applications (Energiföretagen Sverige, 

2019). With tCHW, return of 18 °C and ∆t2 = 2 °C, tDC, return of 16 °C is attainable according to 

Eq. (4). 
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Chapter 4: Results and Discussion 

In this chapter, the results are presented combined with a discussion. They have been divided 

into three sections as marked in Figure 9, focusing on different parts of the district cooling 

system and its connected buildings as well as following the order of the appended papers. 

Section 4.1 includes the results pertaining to the data from the Energy Transfer Stations 

(paper I). In section 4.2 the results of the Building Chilled Water Systems are presented 

(paper I and II). Lastly, in section 4.3, the results from the District Cooling Production Plant 

are presented (paper II), exploring how the DC production is affected by higher temperatures 

in the district cooling system. 

4.1 Energy Transfer Stations 

The results from the energy transfer station of the 37 buildings studied include data from 

both the DC provider (primary side) and the building owners’ BMS (secondary side). First, 

the primary data are shown, followed by a comparison of data from both primary and 

secondary sides. Only a few examples of some selected buildings are shown to illustrate the 

trends observed. A categorization based on building type was not possible since each 

building was unique with regard to building characteristics, business type, cooling demands, 

type of HVAC system, end terminals and HVAC system operation strategy. 

4.1.1 Primary Side of Heat Exchanger 

As described in section 3.5.1, the performance of the primary side of the heat exchanger has 

been analyzed by identifying different delta-T trends, the “best performance point” and the 

following saturation zone for each of the studied buildings energy transfer stations. The 

different delta-T trends across the chilled water flow rate range, with associated cooling 

power can be categorized into the following, with examples illustrated in Figure 13a-d: 

a) Delta-T decreasing with increasing chilled water flow rate and cooling 

power (Building 8). 

b) Delta-T mainly constant with chilled water flow rate and cooling power 

(Building 28). 

c) Delta-T increasing (or slightly increasing) with increasing chilled water 

flow rate and cooling power (Building 23). 

d) Others: none of the above trends observed (Building 17). 
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Figure 13: Performance of the primary side of the energy transfer station indicating 

different delta-T trends with increasing chilled water flow rate and cooling 

power: categories a)-d). 

The worst performing ETS were found in categories c) and d) with mainly low primary delta-

T’s. The best performing ETS, with the highest primary delta-T’s, were found in category 

b). In Figure 14, the share of each delta-T category among the studied buildings can be seen, 

with category a), a decreasing delta-T for an increased chilled water flow rate and cooling 

power, being the most common. 

 

Figure 14: Share of each delta-T category among the studied buildings’ energy transfer 

stations. 

a) b) 

c) d) 
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As explained in section 3.5.1, an increased chilled water flow rate that does not contribute 

to an increased cooling power, but instead leads to a deteriorated delta-T is called the 

saturation zone. This saturation zone can be seen in Figure 13a-d for flow rates beyond 90% 

or more of the cooling power, and it was also observed in almost all the studied buildings. 

The point for which the normalized cooling power is 90% or more, immediately prior to 

entering the saturation zone is the “best performance point.” For each building ETS in Figure 

13a-d, this point corresponds to a normalized flow rate of 0.62, 0.71, 0.41 and 0.63, along 

with a ∆tDC of 8.1, 11.5, 3.5 and 6.9 °C. What this means is that an increase in flow rate 

beyond the best performance point does not lead to a significant increase in cooling power, 

but instead causes ∆tDC to decrease below its maximum. This zone may be related to a low 

temperature approach between the supply sides, if the primary supply temperature for 

example increases during some hours without the secondary supply temperature following. 

A graphical representation of the best performance point of the studied buildings can be seen 

in Figure 15. 

 

Figure 15: Best performance point of the studied buildings’ energy transfer stations. Each 

point represents a delivered cooling power of 90% or more of measured 

maximum. Some buildings were omitted due to unrealistic temperature 

measurements and energy integrators with a too low resolution. 

According to Figure 15, it is evident that a majority of the buildings can utilize a chilled 

water flow rate lower than the measured maximum to deliver a cooling power of 90% or 

more. For this reason, flow restrictions may be suitable to implement in the ETS to avoid 

operation in the saturation zone with an excessive water flow rate being utilized at the 

expense of a deteriorated delta-T. 

4.1.2 Primary and Secondary Sides of the Heat Exchanger 

As described above, a comparison between the temperature levels of both sides of the heat 

exchanger is presented in this section. The comparison makes it possible to investigate the 

causes of low delta-T on the primary side, since knowledge about the temperatures on the 

secondary side is needed in order to do so. For example, in Figure 16a, the primary delta-T 

(∆tDC) starts to decrease for tout > 19 °C. In contrast, the secondary delta-T (∆tCHW) in Figure 

16b starts to slightly increase for the same outdoor temperature. The reason for the low 
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primary return temperature can be further investigated by calculating the temperature 

approaches, Δt1 and Δt2, as described in section 3.5.2. For tout ≥ 25 °C, the average Δt1 is 0.5 

°C with a corresponding average Δt2 of 7 °C. This shows that a low temperature approach 

between the supply sides of the heat exchanger causes a large temperature approach between 

the return sides and consequently a low delta-T on the primary side. A potential reason to 

this could be that the tCHW, supply setpoint is too low in relation to the tDC, supply. This then 

results in a Δt1 ≤ 2 °C and consequently causes a low ∆tDC due to an increased primary chilled 

water flow rate, as correspondingly shown by Gao et al. (2012). To resolve the issue with 

low primary delta-T in such ETS’, Δt1 needs to be increased by ensuring the setpoint of the 

secondary supply temperature is kept at a minimum of +2 °C above the primary supply 

temperature at all times, as recommended by the DC design guidelines (Energiföretagen 

Sverige, 2019). 

 

Figure 16: Supply and return temperatures shown as a function of outdoor temperature 

for Building 8. Left (a): Primary side chilled water data as measured by the 

DC provider. Right (b): Secondary side chilled water data as measured by the 

BMS. 

In Figure 17b, the building CHW system delta-T, ΔtCHW, is very low for all outdoor 

temperatures, in contrast to Figure 16b. However, ΔtDC on the primary side of the heat 

exchanger does not deteriorate with an increasing outdoor temperature, but remains fairly 

constant between 6-9 °C. This could be explained by the low temperature approach between 

the return streams on both sides of the heat exchanger, Δt2, which is an average of 0.6 °C for 

tout ≥ 25 °C. Simultaneously, the temperature approach between the supply streams, Δt1, is 

3.6 °C for tout ≥ 25 °C, much larger than the DC design guidelines of 1-2 °C (Energiföretagen 

Sverige, 2019). Therefore, a large Δt1 allows for a Δt2 ≤ 2 °C, which in turn enables the 

highest possible tDC, return for this ETS. However, the primary return temperature in building 

3 is lower than 16 °C, and to resolve the low ΔtDC issue a higher tCHW, return needs to be 

achieved by upgrading the CHW system. 
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Figure 17: Supply and return temperatures shown as a function of outdoor temperature 

for Building 3. Left (a): Primary side chilled water data as measured by the 

DC provider. Right (b): Secondary side chilled water data as measured by the 

BMS. 

In Figure 18, temperature approach, Δt2 can be seen as a function of temperature approach 

Δt1 for 26 of the investigated buildings’ energy transfer stations. The temperature approaches 

are average values for tout ≥ 25 °C. 

 

Figure 18: Temperature approach between supply streams of the heat exchanger, ∆t2, as 

a function of temperature approach between the return streams, ∆t1, for 26 of 

the investigated buildings’ energy transfer stations. 

According to Figure 18, six buildings had an average Δt1 ≥ 2 °C, but also an average Δt2 > 2 

°C. These six buildings also have primary return temperatures of 15 °C or less for tout ≥ 25 

°C. For these six buildings, a large Δt1 is insufficient to achieve high primary return 

temperatures. Potential reasons could be fouled heat exchangers which require a higher Δt1 

to achieve a lower Δt2, or that the building CHW system needs to be upgraded through 

revised control strategies, balancing of the system and potentially replacing components. 

Nine of the buildings in Figure 18 had an average Δt1 > 2 °C which was associated with an 

average Δt2 ≤ 2 °C. The primary return temperatures for these buildings were between 13 
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and 17.5 °C which correspond to the highest possible tDC, return for these ETS’. The remaining 

buildings in Figure 18 had an average Δt1 < 2 °C, out of which five buildings had a 

corresponding average Δt2 ≤ 2 °C and five had a Δt2 > 2 °C. All these buildings had primary 

return temperatures of 14 °C or less. However, three of the buildings with Δt2 > 2 °C had 

average building CHW return temperatures of 17.5 °C or more which were not transferred 

to the primary side, potentially due to Δt1 being less than 2 °C. 

Based on the above analysis, it is crucial to evaluate the temperature approaches of the heat 

exchanger to determine its performance and to evaluate potential causes to the low delta-T. 

For some ETS’, the recommended temperature approach of 2 °C is inadequate to avoid a 

low primary delta-T. For such ETS, a more in-depth evaluation of the heat exchanger as well 

as the building’s chilled water system needs to be done. For ETS’ where the primary return 

temperature is reduced as a result of a Δt1 < 2 °C, an adjustment of the secondary supply 

temperature setpoint may be a sufficient solution to resolve the low primary delta-T issue. 

It is also evident that the connection standards for the ETS and incentives for the DC 

customers, as pointed out by Coad (1998) and Moe (2005), have not been enforced or 

implemented for the connected buildings in Gothenburg district cooling system. On the 

contrary, this was not a suitable option to attract customers in the early development stages 

of the DCS in Gothenburg, where the progress was dependent on the number of new 

customers choosing district cooling instead of their own chillers. 

4.2 Building Chilled Water Systems 

In Figure 19, the supply (CHWS) and return (CHWR) temperatures of the studied buildings’ 

chilled water systems are presented by means of boxplots. The temperatures have been 

measured on the secondary side of the heat exchanger in the ETS. The median value is 

represented by the middle line, the upper and lower limits of the box correspond to the upper 

and lower quartiles, and the dashed lines mark the maximum and minimum observations 

with the outliers (blue and red crosses) located below or above, extending more than 1.5 

times the interquartile range away from the upper and lower quartiles. 

As previously mentioned, the design guidelines recommend 8 °C for the CHW supply 

temperature. However, as can be seen in the left diagram in Figure 19, this value is found in 

the lower quartile for outdoor temperature categories 14 to 30 °C. This means that 75% of 

the recorded CHWS temperature values are higher than 8 °C. The lowest median CHW 

supply temperature occurs for tout=28 °C and is equal to 9.3 °C. For the same outdoor 

temperature, 25% of the CHW supply temperatures are 11 °C or higher (corresponding to 

the upper quartile). This indicates that some building CHW systems use supply temperatures 

greater than 8 °C for summer outdoor conditions. 

Another observation from Figure 19 is that the median CHW supply temperature decreases 

as the outdoor temperature increases, from approximately 13 °C to 9 °C from the lowest to 

the highest outdoor temperature category. This indicates that many CHW supply 

temperatures are outdoor temperature compensated, as described by Skagestad & 

Mildenstein, (2002), which was also confirmed by the information about the building CHW 

systems’ operation. It was found that the CHW supply temperature was controlled in 

different ways depending on cooling demand and the type of business in the building as well 

as occupancy, end terminals and building management system. In general, three methods of 

regulating the CHW supply setpoint were found among the studied buildings: 1) constant, 
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2) outdoor temperature compensated and 3) calculated based on the building’s cooling 

demand. 

 

Figure 19: Boxplot of the building chilled water supply and return temperatures for 11 

outdoor temperature categories. Each temperature category contains different 

numbers of data points due to different operating conditions among the 

buildings, where each data point is an hourly measurement recorded during 

April to September of 2018. Left: chilled water supply (CHWS) temperatures. 

Right: chilled water return (CHWR) temperatures. 

For the CHW return temperatures in the right diagram in Figure 19, a larger spread among 

the values for all outdoor temperature categories can be observed, compared to the CHW 

supply temperatures. Moreover, with the design guidelines recommending the CHW return 

temperatures to be 18 °C, the upper quartile value is between 17.5-18.5 °C for all temperature 

categories, meaning that 75% of the CHWR temperatures are lower than the design 

guidelines. This indicates three potential scenarios: 1) the CHW systems have not originally 

been designed for district cooling; 2) the design guidelines have been disregarded; or 3) the 

operation of the CHW system needs to be revised and upgraded. 

In Figure 20, a compilation is shown of the majority of the building chilled water systems’ 

composition, with subsystems, end terminals and associated temperature ranges. The 

temperature ranges were based on average temperatures, when the outdoor temperature was 

≥25 °C, for buildings with individual monitoring and data available for the subsystems. The 

CHW systems were typically composed of a combination of an all-air system with a water-

air or an all-water system, with chilled beams or fan coil units as end terminals. A 

combination of all three types was also frequent. The cooling coils were located either inside 

the air handling unit (AHU) or in the supply air duct. Of the 37 buildings, three buildings 

had CHW systems with only cooling coils for AHUs and two buildings had CHW systems 

composed of only FCUs and/or chilled beams. 
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Figure 20: Typical composition of building chilled water systems connected to the 

district cooling system with subsystems and associated supply and return 

temperature ranges. The ranges are based on average temperatures for each 

subsystem with available data, as observed when the outdoor temperature is 

25 °C or more. 

The required chilled water temperatures in a building’s chilled water system is decided by 

the type of end terminal installed. According to Figure 20, the supply temperature range was 

relatively large for the cooling coils. However, only eight buildings, with a total of 17 

different subsystems, had individual monitoring with data available for the cooling coil 

temperatures. Out of these, only 11 subsystems measured the return temperature as well. The 

temperature ranges shown are for this reason based on only a few of the 37 buildings 

included in the study. For the remaining buildings without individual monitoring for the 

AHUs, the cooling coil supply temperature was the chilled water temperature as measured 

directly at the outlet of the heat exchanger (tCHW, supply in Figure 20). 

Similar to the cooling coils, only six buildings with a total of 11 subsystems had separate 

monitoring of the FCUs. Some of the FCU subsystems had low supply temperatures, which 

was also commonly observed for the AHU cooling coils. However, some of the FCU 

subsystems had higher supply and return temperatures which likewise was observed for 

some of the cooling coils, but typical for the chilled beam subsystems. 

Individual data available for the chilled beam subsystems were more common, at least for 

the supply temperature since this is regulated based on the dew point temperature of the air. 

19 buildings had data available for a total of 28 systems, out of which 19 had data available 

for the return temperature as well. For chilled beams, temperatures higher are obvious due 

to dew point regulation, yet, some fan coil unit systems and cooling coils also used such high 

temperatures. Despite the chilled beam subsystems using high temperatures, the 

accumulated return temperature of the building chilled water system (tCHW, return in Figure 19 

left and Figure 20) was not significantly affected by the chilled beam subsystem. Instead the 

return temperatures from the AHU cooling coils influenced the accumulated return 

temperature of the CHW system. This is because the share of the chilled beam subsystem is 

smaller than the subsystem supplying cooling coils in the AHUs. Therefore, the advantage 

of the chilled beam system’s higher supply and return temperatures is diminished in 

conjunction with the other subsystems of the building CHW system. 
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Based on the buildings’ CHW subsystem temperatures encountered in Figure 20, it is evident 

that low conventional supply temperatures of 7-8 °C are needed for some cooling coils and 

FCU subsystems. However, significantly higher temperatures are used as well for all three 

types of subsystems. Common for all three types of subsystems is that both supply and return 

temperature ranges are large, compared to the range recommended by the design guidelines 

(Energiföretagen Sverige, 2019), as well as there is substantial overlap between the three 

subsystems temperature ranges.  

4.3 District Cooling Production Plant 

In this section, the results based on data from the district cooling plant are presented. In 

section 4.3.1, the DC cooling production is based on the actual DC supply and return 

temperatures from 2017 and 2018 and in section 4.3.2, the DC cooling production is based 

on new proposed higher temperatures. 

4.3.1 Free Cooling with Present Temperatures 

In the upper diagram of Figure 21, the actual supply and return temperatures as measured in 

the district cooling system in 2018, along with the river temperature and cooling generated, 

result in an annual production mix as seen in the lower diagram. The green area represents 

the annual cooling production by free cooling from the river, equal to 22.4%. The grey area 

represents the cooling produced by the chillers. Based on data from 2017, the share of free 

cooling was 28.1%. 

 

Figure 21: Upper: Actual district cooling system supply and return temperatures and river 

temperature of 2018. Lower: Cooling power generated by the base load plant, 

shown as average daily values based on the temperatures from the upper 

diagram, separated into free cooling and chiller generated cooling (absorption 

and/or compressor chillers). 

triver 

tDC, return, distr. 
tDC, supply, distr. 
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If the low delta-T in the district cooling system was resolved, and a return temperature of 16 

°C would be maintained throughout the year, the share of free cooling (based on actual river 

temperature and cooling generated) would be 28.1% for 2018 and 34.2% in 2017. 

4.3.2 Potential Free Cooling with Higher Temperatures 

Based on the results from section 4.2 and the reviewed literature in section 2.3.2, high 

temperature district cooling (HTDC) with supply temperatures of 12-14 °C and return 

temperatures of 20-22 °C are proposed. These increased temperature levels complement the 

temperature reduction in district heating systems (Lund et al., 2014) and the development of 

district cooling systems as part of a future smart energy system by allowing for the 

integration of more renewable energy (Lund et al., 2017). If a supply temperature of 12 °C 

and a return temperature of 20 °C were used in the district cooling system, the share of free 

cooling would be equal to 43.5%, see Figure 22 (based on actual river temperatures and 

cooling generated in 2018). The share based on river temperatures and cooling generated in 

2017 would be equal to 54.5%, equal to almost a doubling of free cooling for each year. 

 

Figure 22: Upper: Theoretical high supply and return temperatures of the district cooling 

system and actual river temperature for the year of 2018. Lower: Cooling 

power generated by the base load plant, shown as average daily values based 

on the temperatures from the upper diagram, separated into free cooling and 

chiller generated cooling (absorption and/or compressor chillers). 

One of the intentions with smart energy systems is to deliver heating and cooling to more 

energy efficient buildings (Lund, Østergaard, et al., 2018). The purpose of high temperature 

district cooling is therefore to adapt to the modified cooling demands in buildings where 

high temperature cooling systems are implemented. Another main feature of smart energy 

systems is the integration of renewable energy sources (Lund, Østergaard, et al., 2018). This 

triver 

tDC, return, distr. 
tDC, supply, distr. 
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is enabled by high temperature district cooling since it increases the utilization of natural 

free cooling.  

In many of the connected buildings, the supply temperature setpoint is outdoor temperature 

compensated, which means that the supply temperature is higher when the outdoor 

temperature is lower. This opens up for possibilities of utilizing higher temperatures in the 

district cooling system during parts of the year, especially during the transition period from 

free cooling to chillers and vice versa, occurring during spring and fall. During this period, 

the river is too warm for 100% free cooling, at the same time as there is a heating demand, 

which prohibits the use of absorption chillers for district cooling generation.  
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Chapter 5: Conclusions 

The aim of this thesis was to investigate causes to the low delta-T in Gothenburg district 

cooling system by increasing the knowledge about the connected building energy transfer 

stations and chilled water systems. The investigation was done by collecting and analyzing 

data from both sides of the heat exchanger in the energy transfer stations of 37 buildings 

connected to the district cooling system. Guiding the research process was three research 

questions, where question 1a) was stated as follows: 

RQ 1a) What are the causes to low delta-T in an existing district cooling system with heat 

exchanger separation? 

The results showed that the low delta-T in an existing district cooling system with heat 

exchanger separation is caused by: 

• Limited use of connection standards for the energy transfer stations and 

building chilled water systems. 

The early development of the district cooling system was dependent on the 

number of customers connecting to the district cooling system. For that 

reason, the building’s compatibility with district cooling was often 

disregarded. 

 

• A low temperature approach between the supply streams of the heat 

exchanger. 

For example, secondary chilled water setpoints that violated the required 

temperature approach between the supply sides of the heat exchanger, 

caused the primary return temperature to decrease. In many energy transfer 

stations, the higher the temperature approach between the supply sides, the 

lower the temperature approach between the return sides. If the 

temperature approach between the supply sides was too low (less than 2 

°C), high secondary return temperatures that existed on the secondary side 

were not being transferred to the primary side. 

 

• Operation in the saturation zone on the primary side of the heat exchanger. 

The saturation zone occurs at the expense of a low delta-T since the cooling 

power decreases for an increased chilled water flow rate. This increased 

chilled water flow rate therefore caused a low delta-T. 

 

• Low return temperatures from cooling coils and fan coil units in connected 

building chilled water systems. 

Many of the studied building chilled water systems exhibited low return 

temperatures that also caused a low return temperature on the primary side. 

By investigating the temperatures in the building chilled water subsystems, 

it was evident that the subsystems with the lowest return temperatures were 

cooling coils in air handling units as well as fan coil unit systems. 

 

• Secondary supply temperatures that are non-optimized based on the 

building’s prevailing cooling demand and/or in conjunction with 

secondary setpoints that are non-outdoor temperature compensated. 
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Many of studied buildings had supply temperatures that were outdoor 

temperature compensated. In the absence of this, some low primary delta-

T could therefore be due to secondary supply temperatures that are 

unnecessarily low for the building’s prevailing cooling demand. This 

caused low return temperatures on both sides of the heat exchanger and a 

low delta-T. 

Research question 1b) was the following:  

RQ 1b) How can low delta-T in an existing district cooling system with heat exchanger 

separation be resolved? 

The analysis indicated that the low delta-T in an existing district cooling system with heat 

exchanger separation can be resolved by considering the following recommendations: 

• Consistent use of connection standards for the energy transfer stations and 

building chilled water systems. 

The continued development of the district cooling system needs to take the 

building’s compatibility with district cooling into consideration during the 

design phase. 

 

• Evaluate the temperature approaches of the heat exchanger in the energy 

transfer stations and adjust if necessary and possible. 

Two different scenarios for this solution have been identified: 

For energy transfer stations where the primary return temperature is reduced 

as a result of a temperature approach less than 2 °C between the supply sides, 

ensuring that the secondary supply temperature setpoint is appropriately 

higher than the primary supply temperature, may be a sufficient solution to 

resolve the low delta-T. 

For energy transfer stations with adequate temperature approaches, but 

nevertheless a low delta-T, a more in-depth evaluation of the heat 

exchanger, the building chilled water system and the building’s actual 

cooling demand need to be done to resolve the low delta-T, potentially 

optimizing the secondary supply temperature based on different cooling 

demands and/or outdoor temperatures. 

 

• Restrict the flow on the primary side of the heat exchanger to limit operation 

in the saturation zone. 

 

• Ensure that there are economic incentives for the customers to actively work 

with increasing the temperatures in their building chilled water systems. 

The aim of this thesis was also to explore higher temperatures in the district cooling system 

to increase the share of free cooling of the annual district cooling generation, with the 

following research question guiding the process: 

RQ 2) What are the potentials for higher temperatures in an existing district cooling system 

based on the temperature requirements of the connected buildings? 

This research question was explored based on the results from the increased knowledge of 

the connected building chilled water systems and by analyzing data from the district cooling 
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production plant. The results showed that the potentials for higher temperatures in an 

existing district cooling system are the following:  

• Increasing the building chilled water supply temperature with 1-2 °C.  

When the outdoor temperature was 28 °C, the lowest median building 

supply temperature was 9.3 °C. For the same outdoor temperature, 25% of 

the building supply temperatures were 11 °C or higher. This indicates that 

higher temperatures than the recommended design guidelines of 8 °C to a 

large extent are used, which opens up for possibilities to use higher 

temperatures in the district cooling system as well (provided that the 

temperature would be sufficient for all connected buildings). 

 

• The use of outdoor temperature compensated supply temperatures in the 

connected building chilled water systems. 

This enables possibilities, based on the same principle, for higher supply 

and return temperatures in the district cooling system as well. This could be 

attractive for parts of the year, for example during the transition period from 

free cooling to chiller generated cooling. 

 

• Addressing building return temperatures that are lower than 18 °C. 

75% of the building chilled water return temperatures were lower than the 

design guideline’s recommended temperature of 18 °C. Although some 

cooling coils in AHUs and fan coil unit systems had low return 

temperatures, it was also shown that these subsystems have the potential to 

be designed and/or operated with higher temperatures as well. 

 

• Utilizing district cooling supply and return temperatures of 12 and 20 °C 

would almost double the share of free cooling of the annual cooling 

generation, in comparison to the actual temperature levels. 

Higher district cooling temperatures, and in particular high supply 

temperatures, may not be feasible in certain climates and for all district 

cooling systems and buildings. However, as shown in this thesis, it is 

important to reconsider the use of conventional low district cooling 

temperatures and, if possible, pursue higher temperatures in existing district 

cooling systems, with higher return temperatures as a minimum effort. 
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Chapter 6: Future Research 

One of the most significant outcomes of this research project is that the problems and 

possible improvements have been presented and discussed during workshops between 

Göteborg Energi and their customers. This has fostered a joint interest in improving both 

sides of the district cooling system. Göteborg Energi now has the intention to install more 

sensors in the district cooling system (part of a general digitalization plan). The sensors are 

intended to be used for supervision and with time, to diagnose and improve the performance 

in cooperation with the customers. Göteborg Energi also has the intention to invest in 

consultants that will support their customers to improve their systems. Both these efforts will 

enhance the conditions for future research.  

Although some causes to the low delta-T syndrome in a district cooling system with heat 

exchangers have been identified, the issues remain. Therefore, strategies on how to resolve 

them need to be implemented to systematically work on eliminating the low delta-Ts. This 

thesis provides a foundation for the continuation with the work to resolve the low delta-T 

syndrome. There are several areas in which the presented results can be applied and 

extended, for example it could be of value to test and evaluate the solutions identified. Such 

solutions include flow restrictions on the primary side and adjustments of secondary chilled 

water supply temperature setpoints. If carried out, the tests should also comprise proper 

follow-up and documentation to confirm the intended improvements. 

In this study, 37 of the connected buildings were analyzed, but approximately 120 remain. 

Therefore, it could be beneficial to develop an energy transfer station diagnosis method to 

quickly audit the performance of the remaining buildings. Also, for the customers to actively 

work with increasing the temperatures of their chilled water systems, they need incentives 

to do so. Göteborg Energi has already initiated the process of replacing old contracts and 

tariffs with new ones and for further development on this, the presented results can be of 

use. Furthermore, proper follow-up is essential to achieve the intended improvements for 

Göteborg Energi and their customers.      
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