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Introduction
Fiber-reinforced composite materials are used extensively, in 
particular in the aerospace industry and the use of compos-
ites is assumed to grow significantly in automotive industry 
in near future. There are also societal issues that have been 
raised for CO2 emissions reduction, where use of lightweight 
structures made by fiber-reinforced composites could help 
to achieve this goal. In these perspectives, the development 
of new manufacturing technologies has been the focus of 
the designers and manufacturers in recent years. Because of 
that, modeling and simulation of manufacturing of advanced 
composite materials has attracted a lot of attention in order 
to maintain control of and to reduce cycle times as well as the 
number of trial and error cycles. Specifically, in automotive 
industry, high volume production places higher demands to 
predict the cycle times. To this end, development of simula-
tion tools to model and predict the fundamental manufac-
turing phenomena happening during a process is necessary. 
Besides this, manufacturing simulation is a key to predict the 
final product properties.

Process modeling of composite materials, which during 
the manufacturing may be considered as a fluid-filled porous 

material, can be described, on the macro-scale as well as 
micro-scale, within the framework of the well-founded the-
ory of porous media (TPM), as described in the review by de 
Boer1. The application of the TPM to the modeling of com-
posite manufacturing was proposed and developed by many 
researchers over the years, cf.2–5 but only a few considered the 
complexity of the formulation in terms of the coupling effects 
between the flow and the deformation, cf.6–10 Some further 
advancements of TPM, cf.11,12 which deals with formulation of 
the mass balance in terms of logarithmic compaction strain 
measures, which is used to specify the compressibility of the 
different phases via the entropy inequality, has been used in 
this contribution. In addition, the analysis of the resin flow 
through a porous medium has been investigated by many 
researchers, cf. the review article by Hubert and Poursartip13, 
and it is well established that a true processing operation will 
result in a two-scale flow, cf.14 Then many studies were carried 
out considering the coupling effect between the flow motion 
and the fiber bed deformation, cf.4,9–11,14–18

In this contribution, the aim is to develop a formulation, 
which is physically beyond the formulation of the two models 
presented in Refs. 19,20, where they are developed based on 
the ideas described in Refs. 6,11.
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The intention is primarily to develop this simulation tool 
for research purposes since there is, to the author’s knowl-
edge, no commercial software capable of handling such a 
complex model. The idea of this simulation tool is to give the 
user the option to choose the boundary conditions, initial 
conditions, and material data depending on the process he 
has in mind to simulate, whereas the core of the method is 
to solve the time-dependent dual-scale compressible resin 
infiltration problem through the fiber preform assumed as 
a compressible volumetrically deformable porous material. 
Different deformation-dependent permeability models 
are also in place to choose from, depending on the type of 
the process and also the type of the preform (isotropic or 
anisotropic).

To describe the proposed objectives, the paper is out-
lined as follows: in section (2), the details of the homoge-
nized TPM are given. We introduce the assumptions and the 
micro-constituents of the wet-out problem, where governing 
equations are formulated with respect to them. Furthermore, 
constitutive relations are derived from a thermodynamical 
representation of the problem. In addition, the Darcy law is 
presented where the deformation-dependent permeability 

models are introduced. In section (3), finite-element discretiza-
tion is presented, the weak form and FE equations are derived 
and the solution procedure is explained. Then, in section (4) 
a number of different manufacturing methods are explained, 
simulated and results are presented. The results indicate that 
the method we have implemented numerically is capable 
of predicting the physical process behavior. The challenges 
that were addressed earlier are also represented during the 
simulation. Our experience with the method is that the for-
mulation is very sensitive to the chosen material parameters. 
In addition, the time stepping and the geometry discretiza-
tion affect the constitutive relations at different scales and in 
different ways. In section (5), the overall formulation and its 
features are discussed and finally some concluding remarks 
are presented in section (6). In this fashion, our formulation 
for simulating the composite manufacturing processes, which 
is based on the general continuum mechanical framework, 
cover a variety of processes such as liquid resin infusion (LRI), 
out of autoclave, and wet-press-forming prepregs. In fact, the 
different processes are identified in the continuum mechanical 
framework from the set of boundary conditions defining one 
and each of the processing methods.

Figure 1  Deformation of a two-phase continuum body. B0 represents the undeformed region of the solid phase and Bf

0
 represents 

the fluid reference configuration and at the meeting point x, at each time instant t in B, we have the mixture continuum of solid 
and fluid phases

Figure 2  Schematic view of flow motion through the channel and micro-infiltration between the fibers
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A homogenized TPM
General
In this section, we will reiterate on the biphasic TPM which at 
macro-level contains a mixture of solid and fluid phases. Based 
on this macro-scale continuum theory, we are describing the 
behavior at meso-scale consisting of the resin flow motion, 
resin flow front, preform deformation, and micro-infiltration 
through the fiber plies. The fiber bed during any manufac-
turing process is being considered as a (solid) porous fiber 
network. The pores are partially filled with resin and contain 
resin filled and unfilled void space. Figure 1 shows a schematic 
view of a two-phase continuum body that undergoes finite 
deformation. The resin flow through the preform is the single 
most important event happening during a process and the 
preform deformation is considered as coupled to the resin 
flow motion. This flow is of dual-scale nature, where we have 
to consider the micro-infiltration through the plies in addition 
to the macroscopic resin flow. During a process, two coupled 
flows may be present: inter- and intra-ply (bundle) flows. The 
inter-ply flow is the flow through the wide channels between 
the fiber tows, cf. Figure 2, whereas the flow between the fibers 
inside a fiber tow is the intra-ply flow, cf.21,22 Figure 2 shows the 
schematic flow motion in both scales.

Micro-constituents
The micro-constituents occupying the domain, with volume V, 
are considered homogenized. Below we have the assumptions 
and the respective notation for each media.

• � Compressible solid particles, p, with the volume fraction 
ϕp = Vp/V, representing the fibers.

• � Incompressible liquid constituent, l, with the volume 
fraction ϕl = Vl/V, representing the resin.

• � Voids, v, with volume fraction ϕv = Vv/V, embedded in 
the fiber plies.

• � Compressible gas constituent, g, with volume fraction 
ϕg = Vg/V, occupying the voids.

To ensure that each representative elementary volume is 
occupied by fluid and solid phases, we have the saturation 
constraint as

 

where ns and nf are the macroscopic volume fractions for the 
solid and fluid phase, respectively. In turn, the solid phase is 
considered subdivided into particle and void constituents. 

(1)ns + nf = 1 with ns = �p + �v & nf = �l + �g ,

Likewise, fluid phase is also subdivided into liquid and gas 
constituents.

The solid phase and its subconstituents of fiber 
particles and micro-voids
We can formulate the fiber content as a function of micro-sat-
uration degree ξs, defined as the degree of wet out within 
a representative fiber ply, ξs = (ϕp − ϕpd)/ϕp, and densities ρp 
and ρs leading to the formulation of the compaction strains. In 
that sense, we can divide the partially saturated fibers, namely 
particles, into a wet portion and a dry portion ϕpd. Figure 3 
represents fiber content volume fraction ϕ induced by fluid 
pressure at a certain level of saturation.
 

Assuming a typical vacuum-assisted process leads to 
nsρs = ϕpρp, where we come to

 

It may be noted that having the initial condition at ξs →  0 
leading to �0 = �s0∕�

p will also lead to �p → �s0∕�0, which in 
combination with equation (3) yields the compaction of the 
solid phase as a function of irreversible wetting factor ξs and 
the reversible fiber content volume fraction ϕ as
 

Taking the logarithm of equation (4) yields the additive 
decomposition of the total solid compaction strain ɛs as
 

where the reversible compaction strain ɛse and the irreversible 
wetting compaction ɛsp are presented, both as a function of 
the fiber content volume fraction ϕ and the micro-saturation 
ξs. In particular, the stationarity of the solid phase leads to 
ns�sJ = ns0�

s
0, whereby the solid volume fraction, in view of 

equation (5) where the solid compaction strain ɛs is defined, 
is governed by the relation

(2)

� =
�pd

�pd + �v
=

�p − �s�p

ns − �s�p
, where �s =

�p − �pd

�p
.

(3)� = (1 − �s)

(
�p

�s
− �s

)−1

.

(4)
�s0

�s
=

�0

�

1 − �s(1 − �)

1 − �s
(
1 − �0

) (1 − �s(1 − �)).

(5)

�s = log
[
�s0

�s

]
= log

[
�0

�

1 − �s(1 − �)

1 − �s
(
1 − �0

)
]
+ log

[
1 − �s

(
1 − �0

)]
= �se + �sp,

Figure 3  Hyperelastic packing of fiber content ϕ in dry region induced by fluid pressure of representative fiber ply in the fiber 
bed at a fixed value of micro-infiltration Ξs
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Now by introducing the logarithmic compressibility strain 
𝜀̇s = −𝜌̇s∕𝜌s and 𝜀̇f = −𝜌̇f ∕𝜌f , and combining equations (8) 
and (10) we get the local format of total mass balance of our 
binary mixture as
 

It should be noted that equation (1) and its rate are used to 
work out ṅs and ṅf .

In order to assess the liquid saturation degree ξf, we would 
refer you to Larsson et al.19 for extensive details. However, 
we formulate the liquid content as Ml  =  Jϕlρl, and keeping 
in mind that 𝜌̇l = 0. Assuming that the liquid velocity is the 
fluid velocity meaning that �l = �f  we represent the liquid 
mass balance as

 

where we also express this relation as the balance of liquid 
volume fraction
 

By combining this equation with equations (1) and (7) and the 
fact that ϕl = nfξf then we obtain the governing equation for 
the liquid saturation evolution as
 

where it can be noted that the sources governing the rate 
of the liquid saturation degree 𝜉̇ f  are (i) the volumetric solid 
deformation, (ii) the liquid divergence term ∇ ⋅ �d, (iii) the fluid 
volume fraction nf and also (iv) the solid compaction strain ɛs. 
In Section Flow front tracking problem, we use this relation as 
a governing equation to establish flow front tracking feature 
of this contribution.

Momentum balance
Considering the localized format of the momentum balance 
in the spatial format, we obtain the balance relations for qua-
si-static behavior of the mixture
 

where � = �s + �f  is the total Cauchy stress. In turn, � is 
related to the effective stress � and the fluid pressure p via 
the Terzaghi effective stress principle as � = � − p1.

Balance of energy and entropy
Similar to the binary mass and momentum balance relation-
ships, a binary balance of energy yields the change in the 
internal energy of the mixture material. Likewise, the entropy 
inequality for the mixture material is obtained for the isother-
mal behavior which combined with the energy equation lead 
us to
 

(11)∇ ⋅ �s − ns𝜀̇s − nf 𝜀̇f = −
1
𝜌f
∇ ⋅

(
𝜌f

𝜉 f
�d
)

.

(12)Ṁ l + J∇ ⋅ (𝜑l𝜌l�r) = 0,

(13)𝜑̇l = −𝜑l
J̇
J
− ∇ ⋅ �d with �d = 𝜑l�r .

(14)nf 𝜉̇ f +
(
J̇
J
− (1 − nf )𝜀̇s

)
𝜉 f + ∇ ⋅ �d = 0,

(15)� ⋅ ∇ + 𝜌̂ g = 0 ∀x ∈ B

(16)

D = �:l − nsp𝜀̇s + ns𝜌s 𝜓̇ s

�������������������������
Ds

+ nf 𝜀̇f − nf 𝜌f 𝜓̇ f

���������������

Dnvf

+
1
𝜉 f
�d ⋅

(
𝜌f � − ∇ ⋅ p

)
�������������

�
f
e

�������������������������

Di

≥ 0,

 

where J = det(�) and � = ��∕�� is the deformation gradi-
ent, cf. Figure 1.

The fluid phase considered as a gas-filled 
liquid
To represent the fluid content expressed in equation (1), the 
fluid mixture is formulated by defining ϕl = nfξf leading to the 
evolution of the liquid volume fraction as
 

where ξf is defined here as the liquid degree of saturation 
on the macro-level. Further assessment of the liquid satura-
tion evolution ξf leads us to the initial condition that ξf = 0 
will correspond to completely gas-filled pores as we have 
ϕg = nf(1 − ξf) = nf.

Governing equations
In order to simplify our model here, we further assume that the 
void motion is affine with the particle (solid) motion; and also 
the fluid content, which is considered generally compressible, 
and it can be reduced to one phase using the relation ϕl = nfξf. 
So the micro-level problem of four actual constituents in the 
volume of material is reduced to a two-phase continuum 
problem.

Balance of mass applied to solid and fluid 
phases
Due to the mass balance of the solid phase in the continuum, 
we have Ṁ s = 0 where, Ms = Jnsρs is the solid content. In par-
ticular, the stationarity of the Ms using equations (5) and (6) 
leads to
 

with �sbeing the solid-phase velocity.
The respective mass balance of the fluid phase, where 

we have Mf = Jnfρf, is non-stationary with respect to the solid 
phase due to the relative motion between the phases. It can 
also be noticed that the compressible fluid density ρf is written 
as ρf = ξfρl + (1 − ξf)ρg, using a linear mixture relationship and 
the definition of the liquid degree of saturation, whereby the 
fluid density is compressible due to gas density �g

[
p
]
 and the 

evolution of the liquid saturation degree.
The mass balance of the fluid (liquid and gas) phase has 

the form
 

where �d is the Darcian velocity defining the transport of liquid 
phase within the partially saturated continuum. We also obtain 
Ṁ f  based on the compressibility of the ρf and combine it with 
equation (9) to get
 

(6)ns = e
�s

J
ns0,

(7)𝜑̇l = ṅf 𝜉 f + nf 𝜉̇ f ,

(8)Ṁ s = J𝜌s
(
ns∇ ⋅ �s + ṅs + ns 𝜌̇

s

𝜌s

)
= 0,

(9)Ṁ f = J∇ ⋅

(
𝜌f

𝜉 f
�d
)

= 0,

(10)nf∇ ⋅ �s + ṅf + nf 𝜌̇
f

𝜌f
= −

1
𝜌f
∇ ⋅

(
𝜌f

𝜉 f
�d
)

.
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Neo-Hookean like material using isochoric–volumetric split 
written as
 

where �̂ = J −2∕3�t ⋅ �. The parameters involved in this expres-
sion are the packing exponent β and the ksE factor. We remark 
that, by having equation (21), the elastic small shear deforma-
tion properties of the fiber bed (represented by the elastic 
shear modulus G) are generalized into the finite deformation 
regime. As to the response due to volumetric deformation, 
it is assumed that this response is represented by the same 
packing law as is used for the fiber plies. In this case, the 
argument of packing is the fiber volume fraction �p = �

p
0∕J  

where �p0 is the initial volume fraction of particles. It should 
also be noted that the assumption of isotropy of the fiber bed 
response means that the fiber plies possess no preferred ori-
entation and may be justified within certain isotropy planes 
of loading of the fiber bed.

Solid compaction and micro-infiltration
It is concluded that the solid-phase compaction consists of an 
irreversible wetting process corresponding to the exclusion 
of voids in the micro-constituents and reversible component, 
basically due to elastic packing also induced by fluid pressure 
as shown in Figure 3. As to elastic fiber packing, we note that 
uniaxial compression tests of fiber beds have been studied 
quite extensively in the literature, e.g. Kim et al.23 In the present 
paper, the semi-empirical elastic fiber packing law proposed 
in Toll24 is directly generalized to the compressive response 
of the non-saturated region of a fiber bed consisting of voids 
and dry particles as
 

where p is the excess fluid pressure, relative to p0, acting on 
a representative fiber ply, as shown in Figure 3. Moreover, 
p0 = kE�

�

0 is the configurational fluid pressure in the ini-
tially non-saturated representative fiber ply. The homoge-
nized free energy is obtained from the energy equivalence 
nsρsψs = (ϕpd + ϕv) of the representative volume leading to
 

where the first equality is specified in material arguments 
ψs(ϕ, ξ), whereas in the last equality a change in arguments 
has been made using the continuum compaction strain ɛs and 
the elastic wetting strain ɛsp, which is at hand for the numer-
ical implementation. Moreover, we also introduced the ratio 
γ = ϕ/ϕ0 formulated in arguments γ(ɛs, ɛsp) as
 

Straightforward application of equation (20)2 yields the fluid 
pressures p (relative to the configurational pressure p0) as 
p = p0(γα − 1).

(21)

� s
mac(𝐂̂, J ) = � s,iso

mac (𝐂̂) + � s,vol
mac (J ) = G(𝟏:𝐂̂ − 3) + J k

sE
� − 1

(
�
p
0

J

)�

,

(22)p + p0 = kE�
� ,

(23)

� s
mes =

p0
�

(
1
�s

− �
1
�s0
�0

)(
�� − � log

(
�

��

0

)
− 1

)

=
1
�s0

p0
�

e� − �0

1 − ��0

(
�� − 1 − � log

(
�

��

0

))
, (1)

(24)� =
e�

p
− �0

e�(1 − �0) − �0(1 − e�
p
)
.

where the different terms Ds, Dnvf, and Di represent dissipation 
contributions due to solid deformation, fluid compressibility 
and Darcian interaction, respectively. The details regarding 
how equation (16) is formulated in terms of free energy ψ can 
be found in Refs. 19,20.

Constitutive equations
In this section, the constitutive equations with respect to the for-
mulated mass and momentum balance in the content of the two-
phase mixture will, in the view of equation (16), be formulated.

Compressible fluid-filled fiber network 
response
Using the dissipation inequality in equation (16), the proper 
stress response of the compressible (partly) fluid-filled fiber net-
work may now be formulated. To this end, we formulate the dissi-
pation produced by the solid phase for the entire component as
 

where the last expression is obtained after pull-back to the 
reference configuration B0, as dV is the infinitesimal volume 
element in B0, while dv is representing infinitesimal volume 
element in the current configuration B. It may be noted that 
the integrand JDs in equation (17) is rewritten in terms of the 
Kirchhoff stress � = J� and spatial velocity gradient l or the 
second Piola-Kirchhoff stress S and the right Cauchy–Green 
deformation tensor C and also the intrinsic fluid pressure p as
 

where, in particular, the last equality is obtained from mass 
conservation due to the stationarity of Ms = Ms

0 = ns�s0.
If we assume, for simplicity, hyper-elasticity of the effective 

stress response we obtain the dependence 𝜓̇ s(�, 𝜀, 𝜀p) in the 
free energy for the solid phase. In view of equation (18), the 
reduced dissipation is obtained as

 

where we assume an additive split of the free energy into 
macroscopic and mesoscopic parts. In view of equation (18), 
the final conclusion in equation (19) corresponds to the state 
equations
  

where � = � − J�−1p is the effective second Piola-Kirchhoff 
stress due to the Terzaghi effective stress principle. In the 
following, we subdivide the stress response in terms of the 
effective fiber bed response and the solid-phase compaction 
associated with micro-infiltration induced by fluid pressure.

Effective fiber bed response
The effective response of the fiber bed is considered 
hyper-elastic governed by the stored energy function for 

(17)⟨Ds⟩ = �
B

Dsdv = �
B0

JDsdV ≥ 0,

(18)JDs = 𝛕:𝐥 − nsp𝜀̇s − Jns𝜌s𝜓̇ s =
1
2
𝐒:𝐂̇ − Jnsp𝜀̇s − 𝜌̂s0𝜓̇

s,

(19)

𝜓̇ s(𝐂, 𝜀s, 𝜀sp) = 𝜓 s
mac(𝐂) + 𝜓 s

mes(𝜀
s, 𝜀sp) =

𝜕𝜓 s
mac

𝜕𝐂
:𝐂̇ +

𝜕𝜓 s
mes

𝜕𝜀s
𝜀̇s +

𝜕𝜓 s
mes

𝜕𝜀sp
𝜀̇sp,

(20)� = 2𝜌̂s0
𝜕𝜓 s

mac

𝜕�
,
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is the permeability factor due to shape and amount of void space 
at fully saturated conditions. We consider the permeability factor 
k in terms of the so-called Kozeny–Carman equation; cf. Gebart25, 
which is formulated as

 

where rs is the particle (or fiber bundle) radius, C ≈ 10 is the 
Kozeny constant and ϕ is the fiber volume fraction.

Anisotropic permeability.  A special model is developed 
by Rouhi et al.20 to account for (i) the macroscopic flow 
between the layers and (ii) the infiltration flow into the dry 
(mesoscopic) fiber plies, cf. Figure 2, as

 

where Kmes is the permeability through the fibers, KCh is the 
permeability through the channel, ϕl is liquid volume fraction 
and � = �⊗ �is the structure tensor related to the director 
field t, cf. Figures 2 and 4. The permeability through the chan-
nel is approximated considering the resistance to viscous flow 
within a rectangular channel, cf. Figure 5 

where �|| is the continuum stretch in the direction of t, H0 
is the half thickness of the initial prepreg, hs0 is the initial thick-
ness of fiber bed and hf0 is the half of the initial thickness of the 
channel between the plies.

Compressible liquid–gas response
In order to assess the pressure dependence in the fluid den-
sity ρf = ξfρl + (1 − ξf)ρg, it is assumed that the same pressure 
prevails in the liquid and gas constituents and that the highly 
compressible gas constituent is pressure dependent in the 
spirit of the ideal gas law, i.e. ρg  =  kgp, where typically the 
gas-compliance kg is determined by kg = mg/Rθ, where mg is 
the molecular mass of the gas, R is the universal gas con-
stant, and θ is the absolute temperature. It should be noted 
that the rate behavior of the fluid density is characterized in 
terms of the compression modulus of the liquid–gas mixture 
defined as
 

Indeed, the value of Kf increases for increased saturation and 
decreased gas-compliance kg. For continued saturation toward 
ξf → 1, we obtain that Kf → ∞ and ξf = 1 leading to fluid incom-
pressibility, i.e. ρf → ρl.

Flow front tracking problem
In those applications of the model, where we are dealing 
with a moving surface, one may generally distinguish one 
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r2
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(33)𝜌̇f =
1
Kf
ṗ + (𝜌l − 𝜌g)𝜉̇ f with Kf =

1
(1 − 𝜉 f )kg

.

In view of equation (22) we obtain, in compliance form, the 
compaction as a function of the wetting and the fluid pressure 
given as

 

Now, considering the rate form of equation (25) we formally 
obtain
 

where it was used that the wetting is a diffusive process repre-
sented by the viscous evolution 𝜀̇sp = −p∕𝜇. The parameter μ 
represents the viscous resistance for penetration of liquid into 
the bulk fibers, which is defined as
 

where ν is the fluid viscosity and ζ is the wetting length. The 
mesoscopic permeability Kmes for fiber plies, which is the perme-
ability through the fiber bed, is calculated based on the Gebart 
equation25 for hexagonal fiber packing where r is the fiber 
radius. Here, we also made the assumption that the fiber con-
tent ϕ is constant and in turn ϕ0 was used in Gebart equation.

Darcian solid–fluid interactions
The last contribution Di ≥ 0 of equation (16) represents dissi-
pation induced by drag interaction between the phases. To 
accommodate this dissipation, the effective drag force �fe (or 
hydraulic gradient with negative sign) is chosen to ensure 
positive dissipation via Darcy’s law
 

where �mac is the permeability tensor. In order to derive the 
permeability for the considered preform, we have different 
options which are tested and used in this routine.

Isotropic permeability model.  Based on the 
development in26, we formulate macroscopic permeability as 
a constant isotropic positive definite tensor �mac = k� where 
we have

 

where h is the distance between layers and �p0 is the initial 
particle volume fraction.

Deformation-dependent Kozeny–Carman 
model.  Once more assuming �mac as positive definite, we 
restrict to isotropic permeability condition, �mac = k� where k 
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ṗ

�������������������������������������������������
f (p.𝜀sp)ṗ
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where �d is represented by equation (28). Whereby the 
saturation degree variable is regarded as a local field variable 
� f = � f [�, t] or, simply, as an internal variable governed by (34).

Numerical solution procedure
In order to numerically solve the established framework, the 
finite-element representation of the involved primary fields 
and governing equations of momentum and mass balances 
are considered. To be able to formulate the respective weak 
form of the governing equations we identify the primary var-
iables for the coupled set of equations in (11) and (15) where 
a finite-element subdivision of the region D into elements De, 
e = 1,..., NEL is made. It is assumed that each element has the 
interpolation

(34)nf 𝜉̇ f +
(
J̇
J
− (1 − nf )𝜀̇s

)
𝜉 f + ∇ ⋅ �d = 0 ∀� ∈ D,

fluid-saturated portion B0 → B0[t] and one non-saturated 
one-phase portion C0 → C0[t] separated by the free surface 
boundary ΓI [t], as shown in Figure 6, in order to formulate the 
governing equations of the two different continua. However, 
as exploited in the foregoing subsections, one of the unique 
ideas of this contribution is to consider the motion of ΓI [t] in 
terms of the evolution of the fluid saturation field � f = � f [�, t].  
Clearly, at the initiation of a wetting process the initial condi-
tion is that � f [�, t] = 0 in order to define the one-phase non-
wet region, whereas the fully saturated region is defined by 
� f [�, t] = 1. We thereby replace the strictly discontinuous free 
surface problem by a smooth transition of the liquid front in 
terms of the evolution of the fluid saturation field 𝜉̇ f = 𝜉̇ f [�, t]
. Let us next identify and formulate the coupled problem 
between liquid saturation, momentum and mass balance 
pertinent to our mixture continuum. As to liquid saturation, 
we recall the relation (14) along with the Darcian flow model 
(28), which is to be satisfied locally according to

Figure 4  Flow channel with orientation t and fiber stacks

Figure 5  Distance between fiber layers and flow channel

Figure 6  Spatial configuration D = B ∪ C of mixture continua model along with traction continuity condition along free surface 
boundary. Note that the traction boundary condition implies that the fluid pressure is zero along ΓI in the strictly discontinuous 
situation
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where p̄ denotes the prescribed pressure on the external 
boundary.

Application
In order to numerically show the applicability of the formu-
lation for wide range of different processes, we will run a few 
examples. The simulated processes are representing setups 
of LRI and compression molding. The choice of the manufac-
turing methods to study will dictate the type of boundary 
conditions and material parameters to be used for numerical 
implementation.

Liquid resin infusion
Here, we have considered the planar infusion problem shown 
in Figure 7. The applied pressure load due to the vacuum is 
prescribed along all the external boundaries, except at the 
impermeable lower boundary. The solid deformation is also 
controlled via prescribed displacement, in particular, along 
the lower, impermeable boundary in the figure. The wetting 
process is driven by the Darcian solid–fluid interaction force as 
induced by the pressure gradient. This process is manifested 
by a migrating resin flow front represented by the saturation 
degree evolution with time in the porous fiber bed model. 
Typically, the migrating front of fully saturated integration 
points is developing quite fast in the beginning of the wet-
ting process, whereas later on in the infusion process the front 
speed reduces due to the diminishing pressure gradient at the 
front. In Figure 8, the deformation of the preform is shown 
along with the distribution of saturation degree and pressure. 
Preform deformation has a direct influence on the permeabil-
ity, porosity and the Darcian liquid flow advancement.

Figure 9 shows the global saturation degree versus time, 
where it is also compared with the cases that are studied 
in19, where the micro-infiltration and solid-phase compress-
ibility were not considered. As we can see, the saturation of 
the domain takes longer time to be completed in the current 
study since the resin infiltration through the fiber plies play a 
role as a sink for the resin flow. Figure 10 shows an example of 
a hat-stringer simulated also with vacuum infusion. The flow 
front and the preform deformation are captured by the routine 
even at the corners of the mold. It is clear also that the fluid 
pressure is compensating some part of the deformation as 
the flow advances.

Compression molding
In a press-forming process, we apply an elevated load, which is 
ramped up until certain compaction level and then it is relaxed. 
It affects the process time from being a matter of minutes to 
seconds. For this type of processes we consider a compressive 
relaxation test applied to a fluid-filled fiber network, which is 
related to press forming of vacuum-bag-only (VBO) prepregs. 
The analyzed planar specimen is shown in Figure 11 along 
with the applied loading consisting of a prescribed vertical 
displacement r on the top boundary and fixed displacements 
on the lower boundary of the plate. As to the fluid-phase 
boundary conditions, two different types are considered. The 
first case corresponds to macroscopically undrained condi-
tions, where all outer boundaries are considered impermeable 

 

where �̂e
u contains the element shape functions and 𝜙̂e is the 

vector element nodal placements. We then obtain the spatial 
velocity gradient as
 

where NI [�] are the element interpolation functions and φI 
are the corresponding element nodal placements.

Likewise, the fluid pressure field is approximated, i.e. it is 
assumed that each element has the interpolation

 

where e.g. �̂e is the vector nodal pressures. We thus obtain the 
pressure gradient as ∇p = �p�̂p where �p is the consequent 
pressure gradient interpolation matrix. The rate of pressure is 
relative to the solid reference configuration and is defined by
 

whereby the integrated nodal displacements �̂ and nodal 
pressures �̂ is assessed as
 

Then, the weak form is given as
 

 

where it was used that J̇ = ∇ ⋅ �. Here in turn P is the function 
space containing the virtual displacement field �[�], and S is 
the function space containing the virtual fluid pressure field 
�[�]. We also introduce prescribed nominal traction ̄�1 and flow 
Q on the outer surface Γ0.

The next step is to establish the set of discretized finite-el-
ement equations pertinent to the present choice of interpola-
tion of displacements and fluid pressure. In view of the weak 
form of momentum and mass balances (40)–(41) we obtain

 

where explicit expressions for the unbalances �e − � ext
e  and �e 

are obtained as
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represent a system of fiber plies of carbon fiber and epoxy resin 
and a complete list of material data can be found in Ref. 20.

Discussion
The aim of developing this framework is to show a general 
poromechanical model, solved by finite-element method, 
with constitutive equations in different scales, is capable of 
handling complex, coupled and interrelated phenomena 
happening simultaneously during composite manufacturing. 
Modeling challenges such as highly deformable preform and 
infiltration of the resin undergoing large elastic and inelastic 
deformations involving compressible as well as incompressi-
ble formulations are developed. The coupling effect between 
the flow and deformation of the preform is a source of com-
plexity and is considered, which is mostly treated by others 
as decoupled.

where there is no way that the resin can be drained during 
the process. The resin will be dispersed through the fiber plies 
and channels between the fiber tows. The second case is the 
partly drained condition, corresponding to drainage along the 
vertical boundaries of the specimen, where the fluid pressure 
is prescribed to zero in order to simulate the drainage of the 
excess resin. The prescribed displacement is thus considered 
as a controlled displacement r on the top boundary, which is 
ramped based on a chosen time step up to the total compres-
sion r/H = 0.2, where H is the height of the specimen. Figure 12 
shows an example of the simulation where the initial loading 
rate isṙ = −0.5 m/s.

The considered relaxation test for a VBO prepreg consid-
ered by setting ṙ = 0 (i.e. r is the rate of displacement) after the 
specimen has been compressed 20%. The results are shown in 
Figure 13, where on the basis of the above loading program we 
monitor the wet out in the specimen depending on the rate of 
initial loading ṙ and relaxation time for different loading rates 
for the undrained case. In addition, the permeability model 
discussed in equation (31) is used to model the macroscopic 
Darcian permeability. The routine is tested using other permea-
bility methods that are elaborated in the Section Darcian solid–
fluid interactions as well. In a previous contribution, results 
with respect to constant and deformation-dependent perme-
ability are represented, cf.19 The involved material parameters 

Figure 7  LRI of fiber bed principle for specimen subjected 
to vacuum induced pressure load

Figure 8  Preform deformation during infusion process along with current state of saturation and pressure distribution

Figure 9  Global saturation degree versus time where it is 
compared to results from Ref. 19
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Figure 10  Saturation degree distributions from FE-infusion simulation of hat stringer by RTM

Figure 11  Analyzed rectangular specimen with initial geometry and boundary conditions. Two cases are considered: (1) p = 0 
along the vertical boundaries defining the partly drained condition and (2) the vertical boundaries are impermeable defining 
the globally undrained condition (corresponding to p = unknown along the vertical boundaries)

Figure 12  Comparison between local saturation degree distributions obtained in relaxation tests for globally undrained and 
partially drained conditions at the initial loading rate ṙ = −0.5 m/s
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industrial tool for simulation of manufacturing processes. The 
technical details are in place, every corner of the routine is 
known, the physics are understood and implementation is 
complete. The possibility of extension of the model to 3D  
is also possible since most of the constitutive models are 
already implemented and simplified for a 2D problem. One 
can introduce new 3D elements and apply it in the routine. 
However, a higher order element is needed and necessary 
for 3D simulations. In addition, the proposed methodology, 
in terms of different choice of processes, needs verification 
and validation against experimental tests. At the same time, 
calibration of the material data with experimental response 
is also possible and will help the stability and accuracy of the 
simulation to increase.27

Conclusion
In this contribution, we have developed and implemented 
a generic simulation routine to be used for manufacturing 
modeling of composite materials. This work is the extension, 
improvement, optimization, and combination of our previous 
developments in the same area, cf.19,20 We have understood the 
essence of such a simulation tool for manufacturing methods 
and put effort to develop such a routine to be able to cover 
simulation of all these methods under the same umbrella.

To the author’s knowledge, there is no available general 
poromechanical formulation for composites processing 
methods. In that sense, we have developed a special porous 
media formulation in order to model a dual-scale coupled 
flow–deformation process with constitutive relations con-
cerning four different mechanisms governing all the processes 
involving (1) constitutive effective stress response of the fiber 
bed, (2) infiltration of resin into fiber plies, (3) elastic packing 
response of the plies, and (4) Darcy’s law governing the mac-
roscopic interaction between the two phases. In addition, if 
necessary, the model accounts for the non-saturated behavior 
typical for the transition region at the flow front between full 
and non-saturation.

Flow front tracking in combination with a deformable fiber 
bed during the infusion is in place which saves all the time 
and efforts from using external methods such as level set, etc. 
Defining the fluid saturation field � f [x, t] is the key to consider-
ing the flow front and distinguish between the fully saturated 
and unsaturated areas.

Liquid permeability which is the key in the macroscopic 
flow advancement by Darcy law is modeled by different 
approaches and is considered to be dependent on the defor-
mation and cover the isotropy and anisotropy of the preform.

Considering the microscopic structure of the preforms, we 
developed a dual-scale flow formulation, inter and intra-ply 
(bundle) flows. The inter-ply flow is the flow through the wide 
channels between the plies, whereas the flow between the 
fibers inside the plies is the intra-ply flow.

In addition, constitutive relations concerning constitutive 
effective stress response of the fiber bed and elastic packing 
response of the plies are also modeled and considered using 
available idealistic models.

Considering all the challenges present in the model, differ-
ent applications are considered and different manufacturing 
methods are tested using the routine. There are different fac-
tors that play important role during the simulations. Material 
data is one. The routine is quite sensitive to the material 
parameters. The choice of the data should be wise and realistic. 
The data used in our simulations are from the literatures in the 
case of vacuum infusion19; and those related to the press-form-
ing process are characterized from experiments.20 The relation 
between time step and element size is the second. The choice 
of the time step should be such that saturating an element, 
considering incompressibility of phases, liquid permeability, 
and post-flow modeling like porosity can be synchronized. 
For example, solving an element in one time step can alter 
the accuracy and results in numerical errors. We should also 
prevent overshooting or overfilling, where an element is going 
to be solved (or filled) in less than a time step.

For future development, there is potential for introduc-
ing a user interface to use this routine as both academic and 

Figure 13  Relaxation test at globally undrained condition with respect to different initial loading rates
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ρl  liquid-phase density
ϕ  fiber content
ϕo  initial fiber content
ϕp  particle volume fraction
ϕpd  dry particle volume fraction
ϕv  void volume fraction
ϕl  liquid volume fraction
ϕg  gas volume fraction
ɛs  solid compaction strain
ɛsp  irreversible wetting compaction
ɛse  reversible compaction strain
�f   solid-phase Cauchy stress
�s  fluid-phase Cauchy stress
ψs  solid-phase free energy
ψf  fluid-phase free energy
�  Kirchhoff stress
μ  viscous resistance
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of the Darcian velocity field. Also by introducing the dual-scale 
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Nomenclature
�  right Cauchy–Green deformation tensor
Di  dissipation induced by ‘drag’-interaction between 
phases
Ds  dissipation produced by (homogenized) solid- 
phase material
Dnvf  dissipation developed by fluid compressibility
�  deformation gradient
{\mathbf{g}}  gravity
�fe  effective drag force
J  Jacobian of the deformation gradient
k  stiffness correction factor
Kmes  mesoscopic permeability
�mac  positive definite permeability tensor
l  spatial velocity gradient
Mf  fluid total mass
Ms  solid total mass
Ml  liquid total mass
nf  fluid volume fraction
ns  solid volume fraction
ns0  initial unsaturated porosity
pI  element nodal fluid pressure
p0  configurational fluid pressure
p  fluid pressure
�  2nd Piola Kirchhoff stress
�̄1  nominal traction vector
V  continuum volume
Vp  particle volume
Vv  void volume
Vl  liquid volume
Vg  gas volume
�d  Darcian velocity
�f   fluid velocity
�r  relative velocity
�s  solid velocity
�l  liquid velocity
�  solid reference position
�  current position
α  microscopic packing exponent
β  macroscopic packing exponent
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ξf  macro-saturation degree
ρp  particle density
ρs  solid-phase density
ρf  fluid-phase density
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