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For pedestrians, the risk of dying in a traffic accident is highest on rural roads, which are often characterized by a
lack of sidewalks and high traffic speed. In fact, hitting the pedestrian during an overtaking attempt is a common
crash scenario. To develop active safety systems that avoid such crashes, it is necessary to understand and model
driver behavior during the overtaking maneuvers, so that system interventions are acceptable because they
happen outside drivers’ comfort zone. Previous modeling of driver behavior in interactions with pedestrians
primarily focused on road crossing scenarios. The aim of this study was, instead, to address pedestrian-over-
taking maneuvers on rural roads. We focused our analysis on how drivers adjust their behavior with respect to
three safety metrics (in order of importance): 1) minimum lateral clearance when passing the pedestrian, 2)
overtaking speed at that moment, and 3) the time-to-collision at the moment of steering away to start the
overtaking maneuver.

The influence of three factors on the safety metrics was investigated: 1) walking direction (same as the
overtaking vehicle or opposite), 2) walking position (on the edge of the vehicle lane or 0.5 m away from the edge
on the paved shoulder), and 3) oncoming traffic (absent or present). Seventy-seven overtaking maneuvers in
France from the naturalistic driving study UDRIVE and 297 maneuvers in Sweden from field tests were analyzed.
Bayesian regression was used to model how minimum lateral clearance and overtaking speed depended on the
three factors. Results showed that drivers maintained smaller minimum lateral clearance and lower overtaking
speed when the pedestrian was walking in the opposite direction, on the lane edge, or when oncoming traffic was
present. Minimum lateral clearance and time-to-collision were only weakly correlated with overtaking speed.
The regression models predicted distributions similar to those actually observed in the data. The time-to-colli-
sion at the moment of steering away was comparable in value to the time-to-collision used by Euro NCAP for
testing active safety systems in car-to-pedestrian longitudinal scenarios since 2018.

This study is the first to analyze driver behavior when overtaking pedestrians, based on field test and nat-
uralistic driving data. Results suggest that pedestrian safety is particularly endangered in situations when the
pedestrian is walking opposite to traffic, close to the lane, and when oncoming traffic is present. The Bayesian
regression models from this study can be used in active safety systems to model drivers’ comfort in overtaking
maneuvers.

1. Introduction

Globally, pedestrians represent 22 % of all traffic fatalities, albeit
with large regional differences (World Health Organization, 2018). In
the European Union (EU), pedestrians account for 21 % of all traffic
fatalities. The fatality risk to pedestrians is highest on rural roads,
which often lack sidewalks and have high traffic speed (European Road
Safety Observatory, 2016; Zegeer and Bushell, 2012).

A botched overtaking of a pedestrian walking along the road is a
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common crash scenario. Although it is defined differently in different
national crash statistics, the following figures should provide some idea
of its prevalence. In the EU, this scenario accounts for 10 % of all pe-
destrian fatalities (Liibbe, 2015). Differences inside the EU do exist: in
Great Britain this rate is 24 %, in Germany 5%, and in France 8%
(Wisch et al., 2013). In Sweden, the STRADA crash database (Howard
and Linder, 2014) reports that between 2003 and 2010, 8% of all pe-
destrian injuries in crashes with motorized traffic occurred when the
pedestrian was walking on the right side of the road. In the US, this
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same scenario is the second most predominant pedestrian crash sce-
nario, accounting for 27 % of all vehicle-pedestrian crashes
(Yanagisawa et al., 2017). In China, the scenario of a pedestrian moving
along the road (in the center or beside a two-lane road) accounted for
26 % of the pedestrian fatalities between 2011 and 2014 (Chen et al.,
2015).

Pedestrian safety in overtaking scenarios on rural roads can be ad-
dressed by improving: 1) infrastructure, 2) traffic regulation, and 3) in-
vehicle safety systems. Infrastructure solutions typically consist of se-
parated walking zones such as sidewalks (Laird et al., 2013; World
Health Organization, 2018). On the other hand, traffic regulations focus
on the lateral clearance during overtaking maneuvers and give re-
commendations about pedestrian’s walking behavior. In fact, the
Vienna convention on road traffic (signed and ratified by 78 countries)
recommends that single pedestrians on a shared road be advised to walk
in the opposite direction of the traffic (United Nations, 1968). Swedish
and French traffic regulations request that pedestrians walk on the left
side, i.e. facing the traffic, when there is no sidewalk (Trafikforordning,
Ch. 7, § 1, and Code de la route, Art. R.412-36, respectively).

The development of in-vehicle safety systems is influenced by the
European new car assessment program (Euro NCAP), which has been
testing active safety systems for pedestrian protection since 2016
(Schram et al., 2015; Van Ratingen et al., 2016). Since 2018, the Euro
NCAP test protocol includes the longitudinal car-to-pedestrian adult
(CPLA) scenario, relating to our overtaking scenario (Euro NCAP,
2019). The program’s testing includes intervention systems such as
autonomous emergency braking (AEB) and warning systems such as
forward collision warning (FCW). Automatic emergency steering (AES)
systems are planned to be included for assessment in 2020 (Euro NCAP,
2018). Both intervention and warning systems need to be precisely
tuned, so that drivers do not receive alerts or interventions that are
either too early or unnecessary (Brannstrom et al., 2013; Lubbe and
Davidsson, 2015; Lubbe and Rosén, 2014). Recent studies of automated
steering maneuvers involving pedestrian interactions suggest that
steering away earlier and maintaining longer lateral distances (com-
pared to manual driving) results in better driver acceptance (Abe et al.,
2018).

Studies have suggested that modeling driver behavior—and in
particular, driver’s comfort— would provide information that could be
used to make interventions and warnings more acceptable to drivers
(Brannstrom et al., 2013; Summala, 2007). In 2011, Ljung Aust and
Engstrom presented a framework for modeling drivers’ comfort zone,
which represents the spatiotemporal region in which the driver does not
feel discomfort (Ljung Aust and Engstrom, 2011). The underlying as-
sumption is that active safety warnings and interventions will be in-
trinsically more acceptable when drivers have surpassed their comfort
zone boundaries (Brannstrom et al., 2014).

To assess drivers’ comfort zone when they are overtaking a cyclist,
previous studies (Dozza et al., 2016; Kovaceva et al., 2018), proposed
that overtaking maneuvers be divided into four phases: approaching,
steering away, passing, and returning. Because no similar work has
been done for pedestrian-overtaking maneuvers, in this study we used
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and further refined this definition. To date, existing research on driver-
pedestrian interaction has primarily focused on intersection scenarios
(Lubbe and Davidsson, 2015; Lubbe and Rosén, 2014; Ren et al., 2016),
while overtaking scenarios have not been addressed yet (to our
knowledge). This work addresses that research gap.

The main aim of this study was to leverage field test (FT) and nat-
uralistic driving (ND) data to investigate how three different factors
influenced minimum lateral clearance and vehicle speed during pe-
destrian-overtaking maneuvers. We hypothesized that these measures
would be smaller when: 1) the pedestrian was traveling in the same
direction as the vehicle (instead of the opposite direction), 2) the pe-
destrian walked on the lane edge (instead of 0.5 m away from the edge
on the paved shoulder), 3) there was an oncoming vehicle meeting the
overtaking driver (instead of no vehicle). A secondary aim of this study
was to fit similar Bayesian regression models for each of the two da-
tasets with respect to the three factors in order to predict how drivers
choose minimum lateral clearance and speed when overtaking a pe-
destrian. We further g vehicle meeting the overtaking driver (instead of
no vehicle). A secondary aim of this study was to fit similar Bayesian
regression models for each of the two datasets with respect to the three
factors in order to predict how drivers choose minimum lateral clear-
ance and speed when overtaking a pedestrian. We further discuss pos-
sible advantages of Bayesian models for modeling driver behavior from
datasets collected in different environments and for improving active
safety systems. As a tertiary aim, we also measured TTC when drivers
steered away, since this could be compared to the TTC used by Euro
NCAP.

2. Material and methods

This study analyzed how drivers overtake pedestrians using two
datasets: 1) ND data from the UDRIVE study (Barnard et al., 2016), and
2) FT data from an ad hoc experiment (Fig. 1). Since the two datasets
were obtained in two fundamentally different set ups (ND un-
obtrusively, FT in a planned experiment), and different environments,
we will analyze them separately in the results section. ND data have
higher ecological validity but are confounded by a large variety of
environmental factors (Bargman, 2016). FT data are controlled for
environmental factors at the expense of their ecological validity (Boda,
2017). By comparing results from both datasets (in the discussion sec-
tion), we build cumulative evidence to support our results.

Overtaking maneuvers were initially separated into three driver
strategies: accelerative (reducing the speed to that of the pedestrian and
waiting until the oncoming vehicle has gone by, then accelerating past
the pedestrian), flying (maintaining speed and passing the pedestrian
ahead of the oncoming vehicle) and piggybacking (imitating a lead ve-
hicle’s overtaking behavior). These definitions were inspired by pre-
vious research on overtaking of vehicles and cyclists (Matson and
Forbes, 1938). No accelerative maneuvers were observed in our data-
sets due to the great difference in speed between vehicle and pedes-
trian. Further, piggybacking maneuvers were excluded from the ana-
lysis, as well as maneuvers from heavy vehicles. We excluded

Naturalistic Event Video Vehicle Pedestrian
driving selection annotation trajectory trajectory
Data analysis
Comfort zone -1 and modelling
LiDAR 2D Road filter and Cluster Cluster
to 3D global ground removal identification tracking

T T
Data sets Data preparation

T
Driver model

Fig. 1. Data processing steps to prepare and utilize naturalistic driving and field test data for driver modeling.
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piggybacking maneuvers because a second vehicle was involved which
could have influenced the driver’s behavior. Similarly, heavy vehicles
were ignored because Dozza et al. (2016) showed that truck drivers
behave differently than car drivers when overtaking cyclists and we
were concerned that the behavior difference may apply to pedestrian-
overtaking maneuvers as well. Thus, only flying overtaking maneuvers
from personal vehicles are part of this analysis, although some of these
maneuvers included mild braking.

2.1. The UDRIVE naturalistic driving study

This study obtained ND data collected in South Eastern France from
30 passenger cars from UDRIVE, the largest ND study in Europe. The
drivers were known and had given consent for their data to be used in
this study. Requirements on participation in the study were based on
experience (minimum annual driving distance of 10,000 km), age
(three age groups: 18-25, 26-45 and 46-70) and gender (minimum of
40 % per gender). The vehicles used in the UDRIVE study were Renault
Megane, Renault Clio 3 and Renault Clio 4. Each vehicle was equipped
with a data acquisition system which recorded data from 7 cameras,
IMU sensors, GPS, MobilEye smart camera, CAN data and sound level.
For further information about the collection of the data, please consult
the overview of the main results of the UDRIVE project by Van Nes et al.
(2017). (Barnard et al., 2016; Lai et al., 2013)

The signals from the UDRIVE dataset used in this study included
GPS location, CAN data, video data (indoor and forward-facing cam-
eras), and MobilEye data. The MobilEye camera pointed to the forward
roadway, providing relative pedestrian position and speed within its
field of view ( = 25°). Overtaking events were selected and annotated,
adapting a procedure from Kovaceva et al. (2018).

2.1.1. Event selection

We selected segments, i.e. time series of data, which fulfilled the
following criteria: 1) MobilEye detected a single pedestrian, 2) the
vehicle speed was above 20 km/h, and 3) the lateral position of the
pedestrian in the vehicle reference frame (i.e. from the MobilEye
camera perspective) when the lateral acceleration of the vehicle was at
its maximum was greater than the pedestrian’s average lateral position.

2.1.2. Video annotation

The video of each selected segment was manually analyzed to verify
that a pedestrian-overtaking maneuver had taken place. The reasons for
excluding segments were: MobilEye obstacle misdetection (typically,
traffic signs classified as pedestrians), pedestrian walking on a dedi-
cated path (such as a sidewalk), or presence of another road user in the
scene (usually, vehicles parked close to the pedestrian).

Each segment containing an overtaking maneuver was further an-
notated by two analysts during a time span of about two weeks. Video
annotation from the driver facing in-cabin camera in combination with
the steering angle signal from CAN, identified the start of the over-
taking maneuver (when the driver started to rotate the steering wheel
to evade the collision with the pedestrian). Video annotation from the
front view camera classified 1) pedestrian walking direction (same or
opposite to the traffic), 2) pedestrian walking position (lane edge or
road shoulder), 3) oncoming traffic (presence or absence), and 4) the
pedestrian velocity (categorized as standing, 0 km/h; walking, 5 km/h;
or running, 9 km/h). To estimate comfort zone, we calculated the ve-
hicle and pedestrian trajectories (Fig. 2).

2.1.3. Vehicle trajectory

Because of its limited field of view, the MobilEye camera eventually
lost track of the pedestrian during the overtaking maneuver. Fig. 2
shows the kinematic variables used to reconstruct the vehicle’s and
pedestrian’s trajectories after the pedestrian disappeared from the
camera’s field of view.

The vehicle trajectory in two-dimensional space was computed by
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Fig. 2. Vehicle and pedestrian kinematic variables in the global frame.

. . . L)
integrating the vehicle speed, Xeh, expressed as follows:

e [Vveh,x] . [COS(%}, + a(5))]

Xeh = Yy Sin(Pg, + a(8)) O

where Vien » and Vien,, are the longitudinal (x) and lateral speeds (y) of
the vehicle, respectively. V.o, is the magnitude of the vehicle speed
vector, o the sideslip angle, § the wheel steer angle, and ¥, the
heading angle (Rajamani, 2012). Since none of the events contained
excessive steering input from the driver, « was neglected. V,, and ybveh
were obtained from the CAN bus and the onboard gyroscope, respec-
tively. To estimate the position of the vehicle, first the heading angle
rate 3, was integrated; then the longitudinal and lateral values in the
global frame could be estimated with one more trapezoidal integration.

2.1.4. Pedestrian trajectory

MobilEye provided the pedestrian position in the vehicle reference
frame while the pedestrian was within the field of view. Once the pe-
destrian was no longer visible, we calculated the pedestrian trajectory
from the traveled distance and converted the trajectory to the global
frame.

The traveled distance p,.,q was obtained by forward Euler integra-
tion:

Pped [tk] = Dpeq [ti-11 + Vpea (B — ti—1). )

Eq. (2) includes the estimated traveled distance at time ¢, DPped [te],
based on the previous distance at time #,_; (assuming the pedestrian
velocity Vjeq to be constant during the whole maneuver). At time t,
when the pedestrian left the field of view, the traveled distance
(pped [to]) was set to zero. Because MobilEye did not always measure of
pedestrian velocities accurately, the velocity it provided was compared
with the video-annotated velocity. For 58 out of the 83 events, the
annotated velocity differed by 2 km/h or more from the MobilEye ve-
locity and was taken instead. Due to sudden deviations in the MobilEye-
detected pedestrian positions, the pedestrian’s trajectory during the
overtaking maneuver was approximated with a line. The slope of the
line, corresponding to the heading angle of the pedestrian ¥4 in the
global frame, was estimated with the random sample consensus
(RANSAC) algorithm (Fischler and Bolles, 1981). The line was designed
to include the mean position in the x and y directions, X4, obtained
from the MobilEye detected positions. Eq. (3) shows how the pedestrian
position in the global frame was calculated from the traveled distance
and the RANSAC-estimated heading angle.

- cos(z,bped)
Xped = Xpe .
ped ped %ed Sln(¢ped) 3)

2.2. Field test data from ad hoc experiment

Field test data were collected in an experiment on a public road in
Sweden. We therefore equipped a pedestrian with a data logger to
measure the overtaking maneuvers by drivers.
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Table 1
Sensors connected to the data logger.
Sensor Product Sample rate Resolution
LiDAR Hokuyo UXM-30LAH-EWA 20 Hz Range: 1 mm, angular: 0.125°
IMU PhidgetSpatial 1044_0 250 Hz Accelerometer: 76.3 g, Gyroscope: 0.02°/s, Magnetometer: 3 mG
Camera Creative Live! Cam Sync HD 15 fps 640 X 480 px
GPS receiver Globalsat BU-35354 1Hz Accuracy < 2.5m 2D root mean square
Flag button ITW 59-111 push button 10 Hz N/A

2.2.1. Hardware

Table 1 lists the hardware components of the data logger used in the
field experiment. The main computing unit was a Raspberry Pi 3 Model
B, running Ubuntu 16.04.4 LTS. The Raspberry Pi was chosen because
of its low cost relative to its computation power and its previous usage
in research (Ambroz, 2017; Dozza et al., 2017). The Adafruit DS1307
Real Time Clock was used to keep the correct time after a reboot. A USB
drive stored the data. The pedestrian was equipped with a flag button
(to add time marks to the recorded data—typically when being over-
taken by a vehicle) and a GPS receiver (to estimate global position). A
web camera was added to record video. A LiDAR sensor with a 190-
degree field of view provided a two-dimensional scan of the environ-
ment around the pedestrian. An inertial measurement unit (IMU) was
added to estimate orientation. The camera, LiDAR, and IMU were cased
together, so that all these sensors experienced the same kinematics.
Together, these five sensors comprised the data logging system worn by
the pedestrian. A detailed description of the hardware and the 3D
models for the casing parts is publicly available' .

2.2.2. Software

The data logger software was based on a robot operating system
(ROS) package and written in Python. ROS is an open-source, modular
framework for software development in robotics applications or any
other hardware platforms which involve reading sensor values or ac-
tuation (Quigley et al., 2009). Fig. 3 shows the ROS package archi-
tecture of the data logger. The software was based on a central node,
datalogger, implementing a state machine with the states idle, record,
and shutdown. The data logger was controlled by an HTML interface
which could be accessed wirelessly (e.g., from a phone).

Service

Topic

Angular rate
Magnetic field

User

2.2.3. Experimental protocol

Field data were collected on two days in March 2018 in the early
afternoon, with clear sight conditions and temperatures around 2 °C, on
the Tuvevégen road in Tuve, Sweden (GPS coordinates of the center of
the stretch of road used are 57.763763° longitude, 11.936956° lati-
tude). The road was about 1 km long, straight, and had two lanes (each
3.5m wide). The speed limit was 70 km/h. The pedestrian wore the
logging system attached at the hip (Fig. 4a) and walked according to
four scenarios (Fig. 4b and c) created by combining two factors: 1)
whether or not the pedestrian walked facing traffic and 2) whether the
pedestrian walked on the line delimiting the lane or on the road
shoulder (0.5 m away from the line).

In all scenarios, the LiDAR was facing the road. Hence, when
switching pedestrian direction, the data logger needed to be transferred
to the opposite hip. The camera was facing the overtaking vehicles in
their approaching phase. For safety, a team was close by and connected
to the pedestrian via phone at all times during data collection.

2.2.4. Data processing

To compensate for the rotation movement of the LiDAR and to sa-
nitize the data, we followed four main steps, according to the workflow
represented in Fig. 1.

2.2.4.1. LiDAR 2D to 3D global. A Madgwick filter for an attitude and
heading reference system (Madgwick, 2010) was used to estimate the
LiDAR orientation. The filter takes accelerometer, gyroscope and
magnetometer readings (from the IMU) as input and calculates the
orientation in a quaternion representation, using an optimized gradient
descent algorithm. The LiDAR and IMU data were then processed with
the Point Cloud Library (Rusu and Cousins, 2011) to obtain a 3D
representation of the data. Artefacts from the yaw movement induced

command

Velocity

Frame

D —
-—

Button state

Fig. 3. Data logger software overview; The ROS architecture allows a user to send commands via a web site and record all topics in a ROS bag file.

L https://github.com/ruvigroup/div_datalogger.
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Data logger

Fig. 4. Field test data collection. Panel (a) shows the field test scenario. Panels
(b) and (c) clarify the pedestrian’s walking position: shoulder and line, re-
spectively. Traffic and walking directions are indicated with black and white
arrows, respectively.

by walking were cancelled out.

2.2.4.2. Road filter and ground removal. The point cloud contained a
substantial amount of noise, due to the environment (mainly vegetation
next to the road and reflection from the road itself). The noise due to
vegetation was removed by taking away the points in the rectified and
transformed point cloud outside of eight meters, measured
perpendicular to the walking direction of the pedestrian. The point
cloud was also limited in the vertical direction to filter out any
reflection from the ground.

2.2.4.3. Cluster identification. The resulting point cloud contained
detections of multiple vehicles—for example, when there was a
vehicle piggybacking or oncoming. To identify individual vehicles, we
used a k-d tree object as the search method for a Euclidean cluster
extraction algorithm (Rusu, 2010).

2.2.4.4. Cluster tracking. The clusters identified on individual frames
were then tracked across time and assigned unique identifiers. Using
Approaching

Steering away Passing
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RANSAC, we estimated the cluster speeds, which we combined with the
GPS speed of the pedestrian to retrieve the absolute speed of each
vehicle.

Since the speed of overtaking vehicles was assumed to be constant
during the maneuver, vehicles were automatically classified as piggy-
backers when the time headway to the previous vehicle was lower than
3s. Each overtaking event was checked to determine if an oncoming
vehicle was present in the scene (from 20 m behind the pedestrian to
120 m in front). Cluster size was used to filter out large vehicles like
trucks and buses.

2.3. Comfort zone

Comfort zone was expressed in terms of minimum lateral clearance
(MLQC), i.e. the minimum distance between the vehicle and pedestrian,
shown in Fig. 5. The figure also shows the four phases of the overtaking
maneuver: 1) approaching, 2) steering away, 3) passing, and 4) returning,
adapted from Dozza et al.'s 2016 work. For the ND data, time-to-colli-
sion (TTC) to the pedestrian at the beginning of the steering away phase
was computed.

2.4. Data analysis and modeling

Using Bayesian regression models (BRMs), we analyzed MLC and
overtaking speed in order to address our hypotheses and to derive
models which could be used in active safety systems. BRMs approx-
imate the posterior density of a model within certain parameters con-
ditioned on data by making use of MCMC (Markov chain Monte-Carlo)
sampling methods, and are therefore able to express the uncertainty of
parameter estimates (Feinberg and Gonzalez, 2012). BRMs can be fitted
to data with arbitrary distributions and a nested structure or hierarchy
of populations (Biirkner, 2017; Hoff et al., 2006; Kruschke, 2014;
Morando, 2019). In the discussion section, we will argue how using a
Bayesian modeling approach could improve driver adaptation in active
safety systems. TTC was used to relate our results to the CPLA scenarios
used in Euro NCAP for the evaluation of active safety systems.

The R Project’s software was used to fit the BRMs, using the package
brms, version 2.8.0 (Biirkner, 2017). The three binary factors con-
sidered were: pedestrian walking direction Xy (0 = opposite,
1 = same), pedestrian walking position X,.s (0 = shoulder, 1 = line)
and oncoming traffic X,,. (0 = absent, 1 = present).

At first, a model including all possible two- and three-way interac-
tions between the three factors was fitted. The model was then im-
proved by excluding the parameters with only a small impact on the
response. Leave-one-out cross-validation (LOOCV)—and in particular
the expected predictive accuracy—was used to verify the improvement
(Vehtari et al., 2017). Each BRM was fitted in brms using the No-U-Turn
sampler (Hoffman and Gelman, 2011) with eight chains and weakly
informative (default) prior distributions for the parameters (Biirkner,
2017). Each chain comprised 10,000 samples; the first 5000 were used
for warm-up by the sampler and thereafter discarded from the analysis.
The number of iterations was chosen large enough to guarantee con-
vergence of the chains. We verified the convergence by inspection of

Returning

Fig. 5. Comfort zone measures minimum lateral clearance (MLC) and time to collision (TTC) during an overtaking maneuver (here shown with oncoming traffic). The

overtaking maneuver is divided into four phases.
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the trace plots of the chains, and an Rhat value close to 1 (Biirkner,
2017). Drawing samples from the fitted models allowed us to quantify
the differences between the two outcomes for each binary factor in the
form of 95 % highest density intervals (HDIs).

The 95 % HDIs of the model responses obtained from the Bayesian
models describe the uncertainty in MLC and overtaking speed in terms
of credibility. The 95 % HDI can be compared to a region of practical
equivalence (ROPE), an interval that specifies “practical” null values,
and on that basis the null hypothesis can be either accepted, rejected, or
left unresolved, in an alternative to null hypothesis significance testing
from frequentist statistics. According to the methods for Bayesian hy-
pothesis testing proposed by Kruschke (2018), only if the HDI falls
completely outside of the ROPE can the null hypothesis be rejected, and
only if the HDI falls completely inside the ROPE can the null hypothesis
be accepted.

2.4.1. Bayesian model of minimum lateral clearance

Since drivers always maintained a positive MLC from the pedes-
trian, resulting in a skewed data distribution, a log-normal distribution
was chosen to model MLC. In Eq. (4), the model for the i th response
variable MLC;; of the dataset with index j, with j € {FT, ND}, is
shown:

MLG;,; ~ Lognormal (yy ¢ j 1 Omrc,)s 4)

where [y ¢ ;; is the log-normal mean of the model of the i th response
variable for dataset j, called the predictor. oyic; is the standard de-
viation of the log-normal distribution, assumed constant over all re-
sponses of dataset j. The predictor for the FT dataset is:

Mnicrri = XMLCFTi Bures )

where S, ¢ is the vector of population-level parameters and Xy c rr the
corresponding design matrix. 8, contains the parameters to be fitted,
and (for the full model with all interactions) is defined as:

ﬂMLC = [BO Bdir Bpos Bonc Bdir*pos Bdir*onc Bpos*onc Bdir*pos*onc]T’ 6)

Where the subscript 0 stands for the intercept of the model, dir for
walking direction, pos for walking position and onc for oncoming
traffic. The * operator marks an interaction between factors. Each row i
of the design matrix, Xyic rr;, is accordingly defined as:

XMLC,FT,i = [1 Xdir,i Xpos,i Xonc,i Xdir,i Xpos,i Xdir,i Xonc,i Xpos,i Xonc,i Xdir,i Xpos,i Xonc,i]-
)

The design matrix contains the factor values for each row of data, i,
where Xy, represents the factor walking direction (0 = opposite,
1 = same), X, the factor walking position (0 = shoulder, 1 = line),
and X, the factor oncoming traffic (0 = absent, 1 = present).

Since the ND dataset—in contrast to the FT dataset—contained
multiple events from the same drivers, driver identity (ID) was included
as a group-level effect (Biirkner, 2018), resulting in the predictor:
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2
e = XMLeND,i Bure + Zmic,pittvicip, Umrcip ~ N (0, oypcpl)-
(8

In Eq. (8), Xmic,np,; is the i th row of the design matrix and defined
in accordance to Eq. (7). uympcp contains the group-level effect of each
driver (with driver identity ID) on the intercept of the predictor. uycp
is modelled to be sampled from a zero-centered, multivariate, normal
distribution with standard deviation oyycp, and Zyicp,; is the i th row
of the corresponding design matrix Zyc p.

2.4.2. Bayesian model of overtaking speed

The speed of the vehicle V,, when overtaking the pedestrian was
modeled from ND and FT data. We chose a Student's t-distribution to
include more outliers, under the assumption that the data distribution
was approximately symmetrical and had a fatter tail than a normal
distribution.

Vieng,i ~ Student— t(fy ;. ovj Vv, 9

where u, i is the location, oy; the scale, and vy; the degrees of
freedom.

The predictors of the BRMs for FT and ND data are described by Egs.
(10) and (11), respectively.

My rri = Xvrri By (10)

My npi = Xvpi By + Zy v, Uy~ N(O, Ué,IDI)-

an

Both predictors include the i th row of the design matrix Xy; and
parameters @, analogous to the MLC model. Eq. (11) also includes the
group-level effect of the driver identity, uy 1p, and the corresponding
design matrix Zy ip.

3. Results

In the following, we will present an overview of both datasets and
the results for MLC and overtaking speeds across conditions and for
each data set.

3.1. Data overview

ND data from UDRIVE provided 83 pedestrian-overtaking man-
euvers. FT data provided 481 pedestrian-overtaking maneuvers. Six
maneuvers from ND data and 184 from FT data were excluded from the
analysis because they included either vehicles piggybacking or heavy
vehicles. The ND data used for analysis consisted of 77 maneuvers,
performed by 23 drivers. The FT data used for analysis consisted of 297
maneuvers, which were assumed to be performed by individual drivers.
MLC and overtaking speed are represented for ND and FT data in Tables
2 and 3, respectively.

Table 2

Means (with standard deviations within parentheses) for minimum lateral clearance (MLC) and overtaking speed from naturalistic driving data.
Walking direction opposite same
Walking position shoulder line shoulder line
Oncoming traffic absent present absent present absent present absent present
Number of events 3 8 14 5 3 9 20 15
MLC [m], mean (std) 1.46 (0.45) 1.40 (0.43) 0.98 (0.35) 0.89 (0.23) 1.82 (0.36) 1.60 (0.67) 1.07 (0.47) 0.90 (0.37)
Overtaking speed [km/h], mean (std) 63.3 (10.9) 55.4 (8.7) 59.4 (19.4) 47.3 (13.6) 60.0 (18.9) 60.4 (10.1) 49.1 (11.7) 45.9 (12.9)
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Table 3
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Means (with standard deviations within parentheses) for minimum lateral clearance (MLC) and overtaking speed from field test data.

Walking direction opposite same

Walking position shoulder line shoulder line

Oncoming traffic absent present absent present absent present absent present

Number of events 31 17 55 71 23 18 54 28

MLC [m], mean (std) 1.87 (0.44) 1.57 (0.29) 1.54 (0.44) 1.28 (0.34) 2.00 (0.47) 1.83 (0.47) 1.76 (0.44) 1.52 (0.33)

Overtaking speed [km/h], mean (std) 63.6 (7.2) 58.2 (8.1) 59.2 (9.2) 56.0 (7.3) 60.1 (7.5) 57.2(7.2) 59.6 (9.2) 57.9 (10.0)
3.2. Minimum lateral clearance Table 4

Fig. 6 shows the influence of the pedestrian walking direction, pe-
destrian walking position, and the presence of oncoming traffic on MLC.
The Pearson correlation coefficient revealed a small positive correlation
between MLC and overtaking speed for FT data (r = 0.25). For ND data,
the correlation was similar (r = 0.22).

All three binary factors influenced MLC within a 95 % HDI in FT
data. For ND data, MLC trends (in relation to the three factors) were
consistent with FT data, albeit not within a 95 % HDI. Table 4 shows the
estimates of the optimized model (after the exclusion of all interac-
tions). The model parameters for the full MLC model with all interac-
tions for ND and FT data are included in Table Al in Appendix A.

LOOCYV verified that the optimized MLC models in Table 4 were
indeed better fits than the complete models, as indicated by the dif-
ference in expected predictive accuracy. The accuracy was higher by
2.9 (with 1.2 standard error) and 3.2 (with 1.1 standard error) for FT
and ND data, respectively, compared to the full models.

Table 5 shows the effects on MLC of the differences in possible
outcomes for the three factors, as medians—for ND and FT data and
their models. The table also reports the 95 % HDIs of the models. The
validity of our models is supported by the fact that all median differ-
ences of all effects for ND and FT data fall within the 95 % HDI of our
models.

Parameter distributions of the optimized models for minimum lateral clearance,
fitted from naturalistic driving (ND) and field test (FT) data. Medians are re-
ported together with the lower and upper limits of the 95 % highest density
interval (HDI), 1-95 % HDI and u-95 % HDI, respectively. o ip is the standard
deviation of the group-level effect driver identity (ID), and oy the standard
deviation parameter of the log-normal distribution.

Parameter ND model FT model
Median 1-95 % HDI  u-95 % Median 1-95 % HDI  u-95 %
HDI HDI
Bo 0.18 —-0.03 0.38 0.48 0.43 0.53
Biir 0.04 -0.15 0.22 0.14 0.08 0.21
ﬁpos -0.37 —-0.53 —-0.22 -0.14 —-0.18 —-0.09
Bone -0.11 -0.31 0.09 -0.16 -0.22 -0.09
OMLC,ID 0.17 0.00 0.36 N/A N/A N/A
OMLC 0.38 0.31 0.46 0.27 0.25 0.29

3.3. Overtaking speed

Fig. 7 shows the relation between overtaking speed and the three
factors pedestrian walking direction, pedestrian walking position, and
presence of oncoming traffic.

From the FT model, the parameters walking direction, walking po-
sition, and oncoming vehicle presence influenced speed within the 95 %
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Fig. 6. Minimum lateral clearance for naturalistic driving and field test data, factorized by walking direction, walking position, and oncoming traffic presence. The
notches show the +/-1.58/VN interquartile range (IQR, including the number of observations, N) around the medians (thick horizontal line), and the “+”-signs
represent outliers. Lower and upper hinges show the 25th and 75th percentiles and vertical lines represent +/-1.5 IQR from the hinges.
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Table 5

Median differences in minimum lateral clearance (MLC) between population-level effect outcomes of the model. Lower and upper 95 % highest density intervals
(HDIs) are reported as -95 % HDI and u-95 % HDI, respectively, for naturalistic driving (ND) and field test (FT) data. Each median for ND and FT data is the

difference in median between the two effect outcomes.

Factor (difference in outcomes) ND data [m] ND model [m] FT data [m] FT model [m]
Median Median 1-95 % HDI u-95 % HDI Median Median 1-95 % HDI u-95 % HDI
Walking direction (opposite — same) 0 0.03 -0.27 0.35 -0.25 -0.28 -0.43 -0.14
Walking position (line — shoulder) —0.48 —-0.59 —-1.02 —-0.21 -0.33 —-0.36 —-0.53 -0.19
Oncoming traffic (present — absent) —0.05 0.07 -0.23 0.39 -0.31 -0.3 —0.44 -0.16
HDI. Like the ND data’s model for MLC, the ND data’s model for speed Table 6

did not show any credible trends. The estimates of the full models for
overtaking speed are presented in Table A2 in Appendix A.

Table 6 shows the estimates of the optimized speed models for FT
and ND data as median values of the location parameter of the Student's
t-distribution. LOOCV verified that these reduced models were better
fits than the complete models. The expected predictive accuracy was
higher by 2.3 (with 1.8 standard deviation) and 2.3 (with 2.8 standard

Parameter distributions of the optimized models for overtaking speed, fitted
from naturalistic driving (ND) and field test (FT) data. Medians are reported
together with the lower and upper limits of the 95 % highest density interval
(HDI): 1-95 % HDI and u-95 % HDI, respectively. oy,ip is the standard deviation
of the group-level effect driver identity (ID) and oy is the scale parameter of the
Student’s t-distribution. The number of degrees of freedom of the Student’s t-
distribution is denoted by vy.

deviation) for FT and ND data, respectively. Parameter ND model FT model
Table 7 reports the 95 % HDI of the models and shows the differ- Median 195 % HDI  1.95 % Median 195 % HDI  1.95 %

ences between the outcomes of the factors on overtaking speed for ND HDI HDI

and FT data and models, respectively, as medians. The validity of our

models is supported by the fact that all median differences of all effects Bo 59.87  53.45 66.34 61.07  59.47 62.62

for ND and FT data fall within the 95 % HDI of our models. Walking Bair —-3.40 -10.07 3.26 —-035 -2.26 1.49

position cannot be described as a significant factor when the ROPE is Bpos —689 -12.05 —1.66 —-150 -2.87 —0.08

centered around zero, since the 95 % HDI for the corresponding dif- Bone —5.62  -12.42 0.98 —-379 =570 —-1.92

ference includes zero as well (and hence ROPE and HDI would overlap). ov.ip 269 0.00 6.87 N/A - N/A N/A
oy 12.96  10.54 15.52 7.35 6.43 8.30
% 2257  3.57 50.34 11.64  3.50 24.87

3.4. Time to collision

Fig. 8 shows the TTC at the beginning of the steering away phase for
all 48 overtaking maneuvers in the ND dataset without braking. (Of the
83 maneuvers considered for the other measures, 25 with mild braking
were excluded, since we assumed that the braking indicated that the
driver was aware of the situation and would not have benefited from a
warning.) The mean TTC is 3.68s (median 3.13s and standard

deviation 2.26 s). The dashed line marks the 1.7-s threshold—the latest
time at which an FCW system should warn the driver, according to Euro
NCAP (Euro NCAP, 2019). Four of the 48 (i.e. 8.3 %) steering man-
euvers were performed below this threshold. Walking direction did not
influence TTC significantly; in fact, two out of 23 (8.7 %) drivers
steered away at TTCs less than 1.7 s when the pedestrian was walking in
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Fig. 7. Overtaking speed for naturalistic driving and field test data, factorized by walking direction, walking position, and oncoming traffic presence. The notches
show the +/-1.58/VN interquartile range (IQR, including the number of observations, N) around the medians (thick horizontal line), and the “+ ”-signs represent
outliers. Lower and upper hinges show the 25th and 75th percentiles and vertical lines represent +/-1.5 IQR from the hinges.
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Table 7
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Median differences in overtaking speed between population-level effect outcomes of the model. Lower and upper 95 % highest density intervals are reported as 1-95
% HDI and u-95 % HDI, respectively, for naturalistic driving (ND) and field test (FT) data. The medians for ND and FT data are the differences in medians between the

two effect outcomes.

Factor (difference in outcome) ND data [km/h]

ND model [km/h]

FT data [km/h] FT model [km/h]

Median Median 1-95 % HDI u-95 % HDI Median Median 1-95 % HDI u-95 % HDI
Walking direction (opposite — same) 5.8 4.9 —4.2 14.1 -0.3 -0.3 -2.9 2.5
Walking position (line — shoulder) —8.6 -8.1 —-17.8 1.6 —-2.6 —-2.4 —-5.3 0.4
Oncoming traffic (present — absent) -2.8 -2.9 -11.9 6.1 —-4.4 -3.9 -6.5 -1.2

1.7 s (Euro NCAP) Walking direction

|:| opposite

] same

0 5 10 15
Time to collision [s]

Fig. 8. Time to collision (TTC) at the beginning of the steering away phase for
flying overtaking maneuvers in the naturalistic driving dataset. The dashed line
marks the 1.7-s threshold on TTC required by Euro NCAP. The notches show the
+/-1.58/VN interquartile range (IQR, including the number of observations, N)
around the medians (thick horizontal line), and the “+ ”-signs represent out-
liers. Lower and upper hinges show the 25th and 75th percentiles and vertical
lines represent +/-1.5 IQR from the hinges.

the opposite direction, and two out of 25 (8.0 %) steered away at TTCs
less than 1.7 s when the pedestrian was walking in the same direction.
The Pearson coefficient for the correlation between TTC and overtaking
speed resulted in a small positive correlation (r = 0.20).

4. Discussion
4.1. Driver behavior

Our study has shown that MLC was larger when the pedestrian
walked in the direction of the overtaking traffic rather than the opposite
direction, while overtaking speed remained unchanged. This result is in
line with that reported by Ren et al., who concluded that driver inter-
action with pedestrians in crossing situations is affected by eye con-
tact—however, with the effect that the safety of the pedestrian is re-
duced rather than increased (2016). This result also confirms that
walking in the opposite direction, as required in traffic regulations
(United Nations, 1968), is perceived as safer by drivers. As a result,
drivers are comfortable decreasing MLC to pedestrians who are facing
them—an unintended behavioral change that can be explained as risk
compensation (Jonah et al., 2001; Rudin-Brown and Jamson, 2013;
Wilde, 1982).

When pedestrians walked on the edge of the lane (i.e., line sce-
nario), drivers maintained a smaller MLC than when pedestrians
walked further from the lane (i.e., shoulder scenario). The difference in
the FT data’s MLC for the two conditions (median 0.33 m) was, how-
ever, smaller than the actual difference between the pedestrian’s two
positions (0.5 m). Thus, drivers in the shoulder scenario did not deviate
from their trajectory as much as in the line scenario. Overtaking speed
was lower when pedestrians walked closer to the traffic, confirming
that drivers did perceive the situation as less risky when pedestrians
walked on the road shoulder. The fact that MLC and speed were less
influenced when the pedestrian was further from the lane may, again,
be explained in terms of risk compensation (Wilde, 1982)—or simply by
the fact that the pedestrian was so far from a possible collision path that
the driver was not concerned (Woodworth and Sheehan, 1971).

In the presence of oncoming traffic, drivers drove closer to the pe-
destrian. The same behavior has previously been found when drivers
overtook cyclists in both FT (Dozza et al., 2016) and ND (Feng et al.,
2018; Kovaceva et al., 2018) data. This behavior, in line with the lit-
erature on risk homeostasis (Damasio, 1995; Néitanen and Summala,
1974; Summala, 1988), can be explained in terms of the field of safe
travel being “compromised” by the combined interactions with cyclist/
pedestrian and the oncoming traffic (Gibson and Crooks, 1938).

In this study, overtaking speed decreased in the presence of on-
coming traffic (albeit significantly only for FT data). In contrast to re-
sults reported by Kovaceva et al. (2018) and in line with those of Dozza
et al. (2016), no correlation between MLC and overtaking speed was
found in this study for either of the datasets. This suggests that drivers’
spatial comfort zone does not depend on speed when overtaking pe-
destrians, although pedestrians may perceive higher speeds as more
dangerous. The decrease in variance of MLC, caused by the presence of
an oncoming vehicle, hints that drivers reacted more similarly to each
other as they were forced towards the boundary of their comfort zone,
possibly because of a ceiling effect caused by the criticality of this si-
tuation constraining the margins for maneuvering (Yerkes and Dodson,
1908).

4.2. Active safety

Active safety systems may support drivers overtaking pedes-
trians—for instance, by warning of a potential crash with the pedestrian
(FCW) or by actively avoiding it. Active avoidance could mean auto-
matically braking or steering (the latter intervention assumes, of
course, that no oncoming traffic is in proximity). The design of these
interventions needs to facilitate tuning them to drivers’ comfort zone, in
order for them to be acceptable (Liibbe, 2015). Models such as the one
proposed in this paper may help compute the acceptable thresholds for
system interventions and explain how these thresholds depend on fac-
tors such as oncoming vehicle presence, pedestrian position, and pe-
destrian direction. Indeed, a single threshold for systems activation may
not fit all drivers, because not all drivers are the same: for instance,
some are more aggressive than others (Jonah, 1997). For this reason,
Bayesian regression models would be useful for representing an in-
dividual driver’s behavior in a probabilistic manner; values for MLC and
overtaking speed could be sampled from the modeled distributions.
These values could be used by an adaptive safety system, which could
then customize warnings and interventions to individual drivers. The
distribution could be updated after each pedestrian-overtaking man-
euver to improve acceptance.

In automated driving, specifically during automated steering man-
euvers to overtake pedestrians, our models can inform path planning
depending on the factors pedestrian’s walking position and direction.
By sampling MLC and overtaking speed values from the Bayesian pos-
terior distribution from this study (conditioned on the given scenario),
an automated vehicle can perform an overtaking maneuver which is
likely to be perceived as comfortable by the driver. According to Abe
et al. (2017), a driver’s comfort zone should be more conservative in
automated driving compared to manual driving, to increase perceived
safety. Our Bayesian models can be sampled accordingly to achieve
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precautionary safety in automated driving and used in virtual simula-
tions as a driver model (Bargman et al., 2017).

For the CPLA scenario, Euro NCAP sets a minimum TTC of 1.7 s
before which an FCW system must warn a driver (Euro NCAP, 2019).
Our study showed that about 92 % of the drivers in the ND dataset
steered away from the collision path with the pedestrian before this
threshold, independent of the pedestrian’s walking direction. Hence,
8% of the drivers would have received a false warning, assuming that
they performed the maneuver within their comfort zone.

4.3. Naturalistic and field test data

The trends of MLC from both ND and FT data were similar across
conditions, although MLC was generally lower in the former. Most of
the results from the ND data (difference in outcomes, Tables 5 and 7)
had larger uncertainty than the results from FT data and therefore did
not allow to determine significance (Kruschke, 2018). This is probably
due to the small size of the ND dataset, the repetitions of drivers, and
the fact that these data were confounded by environmental factors
which were not present in the FT data. However, our ND data have
higher ecological validity than our FT data (Bargman, 2016). The fact
that these two datasets, although collected in very different conditions,
showed the same trends proves that combining results from different
datasets can provide effective and compelling evidence (Boda et al.,
2017).

4.4. Limitations

As noted, one limitation of this study is the intrinsic nature of ND
data, which are rife with uncontrolled environmental factors con-
founding the results. The dearth of significant findings from these data
is probably due to the small number of overtaking maneuvers in the ND
dataset, as well.

Another limitation is that drivers from two different geographical
regions (i.e., France and Sweden), who may have different attitudes to
pedestrians, contributed to the ND and FT data, respectively. It can also
be argued that individual drivers in France were more exposed to pe-
destrian-overtaking maneuvers, since some of them accounted for
multiple overtaking events in the ND data but each overtaking man-
euver in the FT data was probably performed by a different driver.

Furthermore, the measurement setup in the ND data (MobilEye
camera system) was different (and possibly less accurate for the esti-
mation of MLC) than the LiDAR used in FT. Hence, the MLC difference
between ND and FT data might be attributable to not just a regional
difference, but also a difference between the sensors used.

In this study, it was assumed that drivers performed the overtaking
while they were within their comfort zone. This might not have been
the case under certain conditions and for certain drivers, because driver
comfort zone partly depends on driver state (Birgman, 2016) and
personality (Jonah, 1997; Ulleberg, 2001) which were not measured.

4.5. Future work

In this study, we modeled drivers’ comfort zone when they were
overtaking a pedestrian. However, the comfort of the pedestrian during
the maneuver was not investigated. Future studies should also quantify
the pedestrian’s comfort and behavior. In addition, future research
should estimate the latest point (in terms of time or distance) when the
collision can still be physically avoided. This information could further
support the design of acceptable warning and intervention systems that
help drivers, as they approach a pedestrian, avoid an uncomfortable
situation (for the driver or the pedestrian), or even a collision. Finally,
future studies should include driver demographics so that we can un-
derstand the extent to which variability in overtaking maneuvers across
drivers can be explained by driver characteristics.
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5. Conclusions

Our results show that the driver’s comfort zone during pedestrian-
overtaking maneuvers depends on the walking direction of the pedes-
trian and the walking position with respect to the lane, as well as on the
presence of oncoming traffic, confirming our hypotheses. These results
can be explained in terms of risk compensation. Although speed slightly
decreased when 1) the pedestrian moved in the same direction, 2) the
pedestrian was closer to traffic, and 3) oncoming traffic was present,
lateral clearance significantly decreased, suggesting that the risk com-
pensation was subjective (for the driver) and not necessarily objective
(for all road users). Therefore, policymakers may use this information
to justify and promote regulations on MLC stratified by speed, in order
to increase drivers’ awareness of the large effect that oncoming traffic
has on their behavior and induce them to increase MLC when over-
taking pedestrians.

This study is the first to analyze and model the driver’s comfort zone
when overtaking a pedestrian. We presented a novel methodology for
assessing the comfort zone, considering ND data collected from the
driver’s perspective and FT data from the pedestrian’s. Leveraging on
the high ecological validity of the ND and the large sample of FT data,
this study obtained more solid results than either of the datasets alone
would have provided.

The driver comfort zone, as statistically described in this study,
could be used to increase drivers’ acceptance of the threat assessment
and decision making performed by active safety systems. When the
activation thresholds for warning systems (e.g., FCW system) or inter-
vention systems (e.g., AEB or AES systems) are set close to the comfort
zone boundary, systems’ interventions are more likely to be accepted by
the drivers.

In the CPLA scenario of Euro NCAP, the current threshold for TTC is
1.7 s. Our results indicate that 8% of the FCW activations using this
threshold would be false warnings. This new information could be
useful to Euro NCAP as it seeks to design test scenarios for commercial
active safety systems that do not exceed the threshold for acceptability.

Bayesian regression modeled the uncertainty in drivers’ comfort by
giving full posterior distributions of parameters and responses. By in-
corporating prior knowledge, such models can be used to make active
safety systems adaptive to individual drivers and driver states and to
support virtual assessment.
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Appendix A

Table Al
Properties of posterior distribution parameters of the full model for MLC model from naturalistic driving (ND) and field test (FT) data, including median and lower
and upper limits of the 95 % highest density interval (HDI).

Parameter ND data model FT data model
Median 1-95 % HDI u-95 % Median 1-95 % HDI u-95 %
HDI HDI
Bo 0.13 -0.15 0.42 0.49 0.44 0.55
Bair 0.15 -0.21 0.49 0.11 0.02 0.20
Bpos -0.28 —-0.63 0.08 -0.15 —0.24 —-0.07
Bone —-0.04 -0.39 0.30 -0.17 —0.26 —0.08
Beirpos -0.21 -0.71 0.30 0.06 —0.06 0.19
Biirronc -0.13 —-0.58 0.33 0.05 —0.08 0.20
Bposronc 0.02 -0.47 0.50 0.00 -0.13 0.13
Bairpos*onc 0.05 -0.59 0.68 —0.04 -0.23 0.16
OMLC,ID 0.20 0.00 0.40 N/A N/A N/A
OMLC 0.39 0.31 0.47 0.27 0.25 0.29
Table A2

Properties of posterior distribution parameters of the full model for overtaking speed model from naturalistic driving (ND) and field test (FT) data, including median
and lower and upper limits of the 95 % highest density interval (HDI).

Parameter ND data model FT data model

Median 1-95 % HDI u-95 % Median 1-95 % HDI u-95 %

HDI HDI
Bo 61.10 52.38 70.25 61.61 59.81 63.35
Biir -6.13 —18.57 6.20 -1.61 -4.21 1.04
Boos —2.88 —15.20 9.40 -2.96 —5.53 —0.49
Bone -10.11 —21.68 1.87 —4.60 —7.41 -1.86
Birepos -5.28 -23.35 11.91 2.89 -0.81 6.64
Biirtonc 8.34 -7.09 24.55 1.97 -2.07 6.10
Bpostone -2.73 -19.20 13.68 1.42 —2.51 5.34
Bair*postonc 1.05 —-21.27 23.06 —1.88 -7.71 3.96
ov,ID 2.89 0.00 7.33 N/A N/A N/A
% 13.01 10.46 15.62 7.41 6.47 8.35
vy 23.38 3.34 51.04 12.38 3.68 26.884
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