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Abstract: Soot is an important component for heat transfer in combustion processes. However,
it is also a harmful pollutant for humans, and strict emissions legislation motivates research on
how to control soot formation and release. The formation of soot is known to be triggered by high
temperature and high pressure during combustion, and it is also strongly influenced by the local
stoichiometry. The current study investigates how the formation of soot is affected by increasing
the oxygen concentration in the oxidizer, since this affects both the temperature profile and partial
pressures of reactants. The oxygen-to-fuel ratio is kept constant, i.e., the total flow rate of the oxidizer
decreases with increasing oxygen concentration. Propane is combusted (80 kWth) while applying
oxygen-enriched air, and in-flame measurements of the temperature and gas concentrations are
performed and combined with available soot measurements. The results show that increasing the
oxygen concentration in the oxidizer from 21% to 27% slightly increases soot formation, due to higher
temperatures or the lower momentum of the oxidizer. At 30% oxygen, however, soot formation
increases by orders of magnitude. Detailed reaction modeling is performed and the increase in soot
formation is captured by the model. Both the soot inception rates and surface growth rates are
significantly increased by the changes in combustion conditions, with the increase in soot inception
being the most important. Under atmospheric conditions, there is a distinct threshold for soot
formation at around 1200 ◦C for equivalence ratios >3. The increase in temperature, and the slower
mixing that results from the lower momentum of the oxidizer, have the potential to push the
combustion conditions over this threshold when the oxygen concentration is increased.

Keywords: combustion; flame; soot; oxygen-enrichment; propane

1. Introduction

Emissions of soot from combustion processes in engines, boilers, and other industrial processes can
have hazardous effects on human health and are detrimental for the environment [1–4]. The allowed
limits of particulate (PM) matter emission in the industrialized world have become stricter over the
past decades, and even more stringent legislation is expected in the near future. An illustration of
upcoming legislation is the European Union (EU) Directive 2016/2284/EU [5], which, e.g., states that
the EU should reduce its emissions of PM2.5 by 20% (compared to 2005 levels) in the time period of
2020–2029, and by 49% for any year after 2030. Although secondary measures exist for mitigation of
soot and larger PM, such as filters and electrostatic precipitators, it is often expensive or impractical to
install such measures, depending on the specific application. Furthermore, the presence of soot can
be beneficial, as it increases heat radiation and can promote more efficient heat transfer. Therefore,
understanding and controlling soot formation in combustion systems are topics of great interest.
Apart from burners and engines, the formation of carbonaceous nanoparticles is also important for
material sciences, e.g., the use of nanotubes [6–8].
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The formation of soot is a complex process that comprises several steps. These steps are described
in detail in reviews of soot formation [9–12], so only a brief overview is provided here. The first step
is fuel pyrolysis and the production of radicals and intermediate gas species. Some of the species
produced during fuel pyrolysis may, depending on the reaction conditions, react further and form
larger compounds, e.g., polycyclic aromatic hydrocarbons (PAH), which are crucial for soot formation.
The species emerging from fuel pyrolysis are strongly dependent upon the fuel used, as fuels that
contain aromatic components (e.g., diesel) are more prone to form PAHs than aliphatic fuels, such
as methane and propane. The second step is the formation of the initial soot particles, often referred
to as ‘soot inception’ or ‘nucleation’, which encompasses the transition from the gas phase to the
particulate phase. This step is not fully understood, since there is no defined demarcation between soot
precursors and soot particles. In physical terms, mature soot particles typically have diameters >10 nm,
while nascent particles are often assumed to have diameters in the range of 1–5 nm [13,14]. Previous
studies have indicated that these early particles are liquid-like and easily flattened [15], and they are
thus sometimes referred to as nanoparticles or nano-organic carbon rather than soot particles [16].
Chemically, soot particles and soot precursors consist mainly of carbon and some hydrogen. Nascent
particles may have hydrogen-to-carbon (H/C) ratios of ≥0.5, although as the soot matures it undergoes
dehydrogenation, such that the H/C ratio of mature particles is typically ≤0.125 [17]. The last step in
the formation of soot is growth, which occurs either through surface addition of gas-phase molecules
(e.g., C2H2, C6H6 or PAH) or by coagulation with other soot particles. Surface addition adds mass
to the particles, although the number of particles remains constant, whereas coagulation keeps the
total mass constant but decreases the number of particles. Particles may coalesce into larger spherical
particles or agglomerate to form soot aggregates. Soot aggregates are typically chain-like clusters of
soot particles of >100 nm in length.

Oxidation of soot particles and soot precursors occurs concomitantly with these steps and is, thus,
a competing mechanism. The availability of oxygen in soot-forming regions is an interesting parameter
as it is inherently related to temperature, which is a key parameter in determining the reaction rates.
If oxygen participates rapidly in exothermic reactions with species that are not essential for soot
formation, the temperatures may increase significantly while the oxygen levels remain low, thereby
favoring soot formation rates over oxidation rates. The formation of soot is, therefore, significantly
affected by the mixing of the oxidizer and fuel, as well as the partial pressure of oxygen in the oxidizer,
which is especially interesting for combustion systems that use oxygen enrichment or pressurization.
Oxygen enrichment, which may be used to increase the peak-flame temperature, decrease flue gas losses,
or reduce equipment size, is applied in some industrial applications (e.g., glass manufacturing and
aluminum recycling) and in oxy-fuel combustion for carbon capture. Several studies have investigated
oxygen-enriched combustion for co-flowing diffusion flames experimentally [18–33], and many have
noted a significant increase in soot formation when the oxygen content in the oxidizer was increased
(due to higher temperatures and reaction rates). As for the impact of pressure on soot formation in
laminar flames, the soot volume fraction appears to scale in proportion to the total pressure in terms of
a power-law, i.e., ∝ Pn. The value of n is often reported to lie between 1.0 and 1.5 at pressures below
approximately 20 atm, depending on the fuel and combustion system used, and it decreases slightly
with increasing pressure [34]. Some studies have noticed a sudden increase in soot formation (sudden
change in flame color from blue to yellow) when increasing from atmospheric pressure to slightly
higher pressures [35,36].

Most work on oxygen-enhanced and pressurized diffusion flames have been conducted at small
scale (<1 kWth) and with laminar conditions in an open space. The current work investigates the effects
of oxygen-enrichment on soot formation in larger-scale (80 kWth) confined turbulent diffusion flames,
to assess relevance to industrial processes. The experimental results are discussed and supported with
detailed reaction modeling based on our present understanding of soot formation processes.
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2. Methodology

The work in this paper is based on experiments conducted in the 100-kWth oxy-fuel unit at
Chalmers University of Technology, Gothenburg, Sweden (Figure 1). The unit has a top-mounted
burner and can apply standard air combustion, oxygen-enhanced air combustion, as well as oxy-fuel
combustion of gaseous and solid fuels. The burner has a central fuel channel and two annular swirl
registers. The inner swirl register has a swirl angle of 45◦ and a swirl number of 0.74, while the outer
swirl register has an angle of 15◦ and a swirl number of 0.22. The swirl numbers have been calculated
using the so-called ‘alternative swirl number’, which does not require information about the static
pressure or velocity profiles. See, e.g., Ref [37] for more details and the equation used. Further details
regarding the Chalmers unit can be found elsewhere [38,39]. In the present study, the effect of using
oxygen-enriched air for propane combustion was explored. The fuel input was set to 80 kWth (1.73 g/s
of propane) and the stoichiometric ratio (λ) was kept constant at 1.15.
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Figure 1. Schematic of the 100-kWth oxy-fuel unit at Chalmers University of Technology. Illustration
(a) presents dimensions and overall layout of the unit, with M1–M8 indicating measurement ports.
Illustration (b) depicts the burner design with corresponding diameters and swirl angles. All distances
are given in mm.

In-flame gas concentration measurements were performed with a cooled probe connected to a gas
analysis system. The central pipe of the probe, through which the gases were extracted, was electrically
heated so that the temperature was kept above 140 ◦C to avoid condensation. The probe was
traversed in ports M2–M5 with seven radial positions, from the wall to the center line, in each
port. The measurement ports M2-M5 were located 239, 361, 531, and 801 mm from the burner,
respectively. The gas analysis system used paramagnetism (O2), non-dispersive ultraviolet sensors
(SO2), non-dispersive infrared sensors (CO and CO2), and chemiluminescence (NO and NO2). In-flame
measurements of temperature were performed with a suction pyrometer (thermocouple type B).
Soot measurements using laser-induced incandescence (LII) and a scanning mobility particle sizer
(SMPS) were available for this unit from previous work [40,41]. The LII-measurements were performed
at port M3 and the SMPS measurements were performed at ports M2–M5. The LII technique is
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based on heating soot particles by exposing them to laser pulses and measuring the increased light
emission from the particles with a CCD (Charged Coupled Device) camera. The SMPS technique
is an intrusive method where particles are extracted from the flame and the particle distribution
determined based on the mobility of charged particles in electrical fields. Further details about how
these measurement techniques work and how they were setup are available in the work by Simonsson
et al. [42], Gunnarsson et al. [40], as well as Bäckström et al. [41]. The experimental conditions, such as
fuel input and burner, were the same in these papers as in the current work.

2.1. Cases

The test matrix used for this study is shown in Table 1. All the cases were conducted using
atmospheric pressure and with a global stoichiometry (λ) of 1.15. Oxidizers with an oxygen content
of up to 35% were tested. In-flame gas measurements were performed for air (case Air-21) and
oxygen-enriched air with 32% O2 (Air-32). Soot measurements were, unfortunately, not available
for the experiments with oxygen concentrations of 32% or 35% (Air-32 and Air-35) due to practical
problems with optical access during those conditions.

Table 1. Test matrix. The number in the case-name indicates the oxygen concentration in the oxidizer.
The last column refers to the availability of soot measurements from previous work.

Cases
O2 Injection Oxidizer Flow O2 in Oxidizer O2 in Flue Gases In-Flame Gas

Measurements
Soot Measurements

g/s g/s vol% Dry vol% Dry LII SMPS

Air-21 0 30.99 21 2.95 Yes Yes Yes
Air-25 1.45 26.18 25 3.57 No Yes No
Air-27 2.01 24.31 27 3.89 No Yes No
Air-30 2.72 21.97 30 4.37 No Yes No
Air-32 3.11 20.65 32 4.70 Yes No No
Air-35 3.62 18.96 35 5.20 No No No

2.2. Model

A plug flow reactor (PFR) model is used to investigate the flame chemistry under specified
conditions. The PFR has two inlets: one for the fuel (C3H8), and one for the oxidizer. The oxidizer
is introduced gradually to the PFR to simulate the availability of oxygen that the fuel experiences
during mixing. The amount of added oxidizer at certain distances from the inlet point is set by
the user and is referred to as the “injection profile”. The axial temperature profile is also set by the
user, i.e., the temperature profile is not calculated by the model. Although this makes the model
non-predictive, it is set up in this way so as to avoid errors related to estimating heat losses to the walls
and to allow use of the in-flame temperature measurements as input to the model. The kinetics of
combustion and soot formation are described by the detailed reaction mechanism of Richter et al. [43].
The mechanism consists of 6654 reactions, which describe conventional gas-phase reactions, the PAH
chemistry, and soot particle growth and oxidation. The molecules are divided into groups that differ
with respect to size, termed BIN1–BIN20, with the smallest molecules (C24H12) grouped in BIN1 and
the largest (C12972032H1622016) in BIN20. All the BINs can be activated by H abstraction, to form BIN
radicals that are more reactive than the parent BINs. The rate constants for reactions that involve large
PAHs, PAH radicals, BINs, and BIN radicals are based on the rate constants for benzene and phenyl
reactions and scaled according to size, given that larger molecules/particles have more active sites.
The authors of the mechanism differentiate between large PAHs and soot particles after BIN4, i.e., BIN 5
is considered to be the first soot particle. The main difference between BINs 1–4 and BINs 5–20 in the
model is that BINs 5–20 can agglomerate directly with each other, while BINs 1–4 must form radicals to
react with other BINs. In the current work, all the BINs are considered as soot, in order to include large
molecules that may form during the transition from gas-phase precursors to solid-phase particles.

The model is implemented in the Chemkin software, and all species are treated as gas components.
The Chemkin solver calculates the reaction rates at each step in the PFR using the law of mass action.
Thermodynamic data is used for the reversible reactions. The resulting reaction rates and mole



Energies 2020, 13, 191 5 of 22

fractions of all species at every distance are given as output from the model. Since soot particles
may agglomerate into larger soot particles, the total molar fraction of soot can decrease even though
the amount of soot remains the same. For this reason, it is often preferable to express the soot level
as a volume fraction (fv). Another relevant parameter is the number density of soot particles (Np).
Conversion from the mole fraction to these units is performed with the following equations:

fv = xsoot
Msoot

Mtot

ρtot

ρsoot

cm3
soot

cm3
tot

 (1)

Np = xsoot
NAρtot

Mtot

#particles

cm3
tot

 (2)

where x is the mole fraction, M is the molar mass, ρ is the density (1.8 g/cm3 for soot), and NA is the
Avogadro constant. The total mole fraction of soot (xsoot) is obtained by adding the mole fractions of all
the particle sizes. The molar mass of soot (Msoot) is obtained from a weighted average of the molar
masses of BINs 1–20, based on the current size (Bin) distribution.

2.3. Interpretation of Experimental Results

For the interpretation of the experimental results, conditions resembling those in Case Air-21 and
Case Air-32 are modeled. The used temperature profiles and oxidizer injection profiles are shown in
Figures 2 and 3. For Air-21, the temperature measurements are used to define the temperature profile
in the model. The oxidizer injection profile is then set so that the calculated CO profile from the model
fit the CO measurements for Air-21. The concentration of CO is chosen for tuning the model since CO
is an important indication of the local stoichiometry in the experimental flame. This method has been
applied successfully in previous studies [44,45] to describe the combustion conditions and the chemistry
of nitrogen, sulfur and alkali as well as hydrocarbon oxidation. In the case of Air-32, temperature
measurements were not available due to measurement issues related to large amounts of soot clogging
the suction pyrometer. Due to the lack of temperature input, two simulations are performed for
Air-32. The first simulation is called Air-32-NoFit and uses the same oxidizer injection profile as
in Air-21, but with 32% oxygen (retaining λ = 1.15), and the same temperature profile. The second
simulation is called Air-32-Fit and uses a modified oxidizer injection profile and temperature profile.
The profiles for Air-32-Fit are set so that both the calculated CO and soot levels fit the CO and soot
measurements. The reported temperature and injection profiles in Figures 2 and 3 for Air-32-Fit are a
combination of profiles that manages to capture the measured CO and soot levels. Since there might be
other combinations of temperature and injection profiles that also fit the measurements, a sensitivity
analysis is performed (described in Section 2.4). To summarize, the difference between Air-21 and
Air-32-NoFit is that the latter has a higher concentration of oxygen in the oxidizer (or to be more
precise, less nitrogen), and the differences between Air-32-NoFit and Air-32-Fit lie in their injection and
temperature profiles.
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Figure 2. Temperature profiles used in the model. The temperature profile for Air-21 is based on
measurements made for the Air-21 case (filled circles). The Air-32-Fit profile (dashed line) is speculative
and indicates how the process could proceed. The calculated soot levels become close to the measured
soot levels with this profile.

Energies 2020, 13, 191 6 of 21 

 

speculative and indicates how the process could proceed. The calculated soot levels become close to 

the measured soot levels with this profile. 

 

Figure 3. Oxidizer injection profile. The total amount of oxidizer injected in the Air-21 case (solid line) 

is 31.0 g/s and in the Air-32 Fit case (dashed line) it is 20.7 g/s. 

In the investigation of combustion chemistry, the flames are divided into four distinct zones. 

Zone 1 stretches from the inlet of the PFR to the location with peak PAH mass concentration. This 

zone is crucial for soot formation, as it is here that the soot precursors are formed. Zone 2 is defined 

as the region between the PAH peak and the BIN1 peak. This zone represents the soot inception zone, 

i.e., where soot starts to form as a result of increased PAH growth. Zone 3 begins at the point where 

BIN1 peaks and ends where the CO levels reach zero, i.e., up to the end of the flame. The fourth (final) 

zone stretches to the end of the reactor and represents the post-flame zone. The rate of production 

(mol/cm3/s) of each species and reaction that occurs at each position in the PFR is given as output 

from the model. This rate can be integrated over a volume (e.g., the volume of a zone) to obtain the 

net production/consumption rate (mol/s) of a certain species. 

2.4. Sensitivity Analysis and Φ-T Maps 

A sensitivity analysis is performed to investigate the impacts on soot formation of different 

temperature and injection profiles. The eight profiles (four temperature profiles and four injection 

profiles) shown in Figure 4 and Figure 5 are tested individually and the results are compared to the 

results obtained for the Air-21 profiles. As soot formation occurs in the early sub-stoichiometric part 

of the flame, the focus is on the first 40 cm, and due to the already low level of soot formed in Air-21, 

only those conditions that promote soot formation are investigated. In the temperature analysis, 

profiles A–D have increased temperature gradients and temperature peaks, with profile D being the 

case with the steepest gradient and highest peak. In the injection profile analysis, the profiles Mix1–

Mix4 have lower injection rates than the Air-21 profile, with Mix4 showing the lowest rate. The 

oxidizer is normal air (21% O2) in all the runs. The isolated effect of increasing only the oxygen content 

(without increasing the temperature) is touched upon in the Air-32-NoFit case but is not investigated 

further in the sensitivity analysis. 
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is 31.0 g/s and in the Air-32 Fit case (dashed line) it is 20.7 g/s.

In the investigation of combustion chemistry, the flames are divided into four distinct zones.
Zone 1 stretches from the inlet of the PFR to the location with peak PAH mass concentration. This zone
is crucial for soot formation, as it is here that the soot precursors are formed. Zone 2 is defined as
the region between the PAH peak and the BIN1 peak. This zone represents the soot inception zone,
i.e., where soot starts to form as a result of increased PAH growth. Zone 3 begins at the point where
BIN1 peaks and ends where the CO levels reach zero, i.e., up to the end of the flame. The fourth (final)
zone stretches to the end of the reactor and represents the post-flame zone. The rate of production
(mol/cm3/s) of each species and reaction that occurs at each position in the PFR is given as output from
the model. This rate can be integrated over a volume (e.g., the volume of a zone) to obtain the net
production/consumption rate (mol/s) of a certain species.

2.4. Sensitivity Analysis and Φ-T Maps

A sensitivity analysis is performed to investigate the impacts on soot formation of different
temperature and injection profiles. The eight profiles (four temperature profiles and four injection
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profiles) shown in Figures 4 and 5 are tested individually and the results are compared to the results
obtained for the Air-21 profiles. As soot formation occurs in the early sub-stoichiometric part of the
flame, the focus is on the first 40 cm, and due to the already low level of soot formed in Air-21, only those
conditions that promote soot formation are investigated. In the temperature analysis, profiles A–D
have increased temperature gradients and temperature peaks, with profile D being the case with the
steepest gradient and highest peak. In the injection profile analysis, the profiles Mix1–Mix4 have
lower injection rates than the Air-21 profile, with Mix4 showing the lowest rate. The oxidizer is
normal air (21% O2) in all the runs. The isolated effect of increasing only the oxygen content (without
increasing the temperature) is touched upon in the Air-32-NoFit case but is not investigated further in
the sensitivity analysis.Energies 2020, 13, 191 7 of 21 
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Figure 5. Oxidizer injection profiles used in the sensitivity analysis.

Fuel-to-air ratio vs. temperature maps (Φ-T maps) are created for premixed propane/air
combustion, by performing simulations in isothermal perfectly stirred reactor (PSR) models with
different temperatures and stoichiometries. Note that Φ represents the fuel-to-air equivalence ratio, i.e.,
the inverse of the λ term commonly used for burners. Φ-T maps are commonly used in diesel-related
research and summarize the effects of temperature and stoichiometry on the formation of soot or other
compounds. The maps used in the present work are created for fuel-to-air equivalence ratios of 0.1,
1.0, 2.0, 3.0, 4.0, 5.0, and 6.0, and for temperatures in the range of 800–2200 ◦C with 50 ◦C increments.
The PSR is 1 dm3 and the propane flow is 1 g/s (residence time varied between 90 ms and 330 ms
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depending on temperature). The outlet mass flow of a component is divided by the volume of the
reactor to calculate the net formation rate in mg/cm3/s. The effect of pressure (1, 2, and 5 bar) is also
investigated using Φ-T maps.

3. Results & Discussion

This section is divided into the following three sections: the experimental results; simulations that
involve applying the model to two experimental cases (Air-21 and Air-32) and the sensitivity analysis.

3.1. Experimental Results

The in-flame measurements of O2 and CO for Air-21 and Air-32 are shown in Figures 6 and 7 by
means of filled contour maps, mirrored at the centerline. Both the O2 and CO measurements indicate
that Air-32 forms a broader flame and a generally less-oxidizing environment. High concentrations of
O2 in Air-32 are only observed close to the inlet of the oxidizer. Regarding Figure 7, the CO levels in
Air-32 are 2–3-fold higher along the centerline and 5–100-fold higher at 100 mm from the centerline,
as compared to Air-21. One factor that contributes to the higher CO levels is the lower level of
nitrogen present in Air-32, which naturally leads to slightly larger fractions of all the species. However,
two more important secondary effects of the decreased amount of nitrogen in the oxidizer need to be
considered. First, the resulting increases in reaction rates (caused by the larger fractions of reactants)
likely increases the early temperatures and CO production rates and, thereby, the CO concentration.
Second, the momentum of the oxidizer jet is decreased, and in Air-32 the jet may not penetrate the
flame as well as in Air-21, leading to slower conversion of CO. The lower momentum also explains the
broader flame in Air-32. Both a high early temperature and a less-oxidizing environment promote
soot formation.

Unfortunately, temperature measurements in the earliest part of the flame are not available to
confirm that the temperature is higher early on, since measurement inside the quarl is not possible.
Furthermore, the temperature measurements in Air-32 were problematic due to the suction pyrometer
becoming clogged with soot particles, which creates uncertainty regarding the measured temperatures.
Figure 8 compares the temperature measurements performed at port M3 for Air-21 and Air-32,
and although the values for Air-32 are uncertain, the increase in the temperature gradient occurs
further from the centerline than in Air-21, which is consistent with the broader flames observed in
Figures 6 and 7.
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Figure 8. In-flame temperature measurements conducted at port M3 (36 cm from the burner) for the
Air-21 and Air-32 cases.

Figure 9 presents images of the flames for the Air-21 and Air-30 cases acquired at port M3. While
LII-measurements were not available for Air-32, there was no visual difference in the flame between
Air-30 and Air-32, and the soot levels are assumed to be similar. The photographs in the top panels
of Figure 9 were taken with a conventional camera using an exposure time of 1 ms. Air-30 creates a
significantly more luminous flame than Air-21, and the soot radiation fills up the entire field of view,
whereas in Air-21 large areas of the image are black. Visually, the human eye experiences the flame in
Air-21 as mostly blue. However, to capture this, the exposure time needs to be longer, leading to a
blurrier image. The bottom panels in Figure 9 show the LII images taken with a CCD camera (which
captures the incoming LII-signal from the particles in the laser sheet). The local peak soot volume
fraction (in M3) measured in Air-21 was around 30 ppbv, while that measured in Air-30 was around
6000 ppbv. Similar to the photos obtained using the conventional camera, the LII images show that
the soot is more spread out in Air-30. The images taken with the conventional camera and the CCD
camera were not taken at the same time.
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Figure 9. Photographs of the flames in the Air-21 and Air-30 cases, taken with an exposure time of
1 ms. The CCD camera captures the incoming LII-signal from the soot particles in the laser sheet.

The impact of oxygen content in the oxidizer on soot formation, based on LII-measurements,
is summarized in Figure 10 over the range of 21%–30% O2. The NO emission from the unit exhibited
an interesting behavior and is included as an easily measured component that provides information
about the flame chemistry, even though it was only measured at the outlet. As the oxygen content
increased up to 27%, the soot levels remained low and the NO levels increased. However, between
oxygen contents of 27% and 30%, the soot formation increased by orders of magnitudes and the levels
of NOx emission decreased drastically. A similar shift in soot level has previously been observed in the
same unit when applying oxy-fuel combustion (a mixture of O2 and CO2 as oxidizer, instead of O2 and
N2), albeit with around 40% O2 in the oxidizer [46]. That higher O2 levels (40% instead of 30%) are
required for the sudden increase in soot levels in oxy-fuel combustion suggests that this is a thermal
phenomenon, since CO2 has a higher heat capacity than N2 and achieves a lower temperature for the
same specific heat duty. It is worth mentioning that the LII measurements were only performed in
port M3 and that the soot concentration peak is likely to be located at different distances from the
burner in each case. It is thus possible that the soot measurements occur at different relative locations
in the different flames. However, the drastic increase in measured soot concentration after the O2

content reach 30% indicates a complete change in flame type, which is also indicated by the sudden
decrease in outlet NO concentration. The increase in outlet level of NO with increasing O2 content
in the oxidizer up to 27% is expected, since both the temperature and partial pressure oxygen will
increase and facilitate thermal NO formation. The reason for the sudden decrease in outlet NO between
27% and 30% O2 is less clear. Possible explanations for this include cooling of the flame through heat
radiation as a consequence of the increased amount of soot, increased heterogeneous reduction of NO
by soot, or a fundamental change in flame chemistry and radical pool composition. As mentioned in
Section 1, similar effects have been observed by other authors [33,47]. Although the nitrogen chemistry
is interesting in its own right, it requires significant attention and deserves its own investigation,
and the present study thus focuses on soot formation.
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investigate the combustion chemistry causing this occurrence. At this point, it must also be pointed 

out that significant levels of soot were present at the outlet in the experiments, i.e. not all soot was 
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during the early stages of combustion, there are about three orders of magnitude more particles 

present for Air-32-Fit than for Air-21. The number of particles then quickly drops for Air-32-Fit, 

Figure 10. Measured outlet NO concentrations and normalized soot volume fractions at port M3 as a
function of the oxygen content in the oxidizer.

The time-log of one particular test run of Air-30 is presented in Figure 11, where the shift to a
sooty flame is signaled by the drop in outlet NO concentration. The shift to a sooty flame did not occur
immediately after shifting to the higher inlet concentration of oxygen at time 0. Instead, it occurred
after stable operation at Air-30 for around 20 minutes. This supports the notion that the shift is a
thermal effect, as the quarl at the burner inlet may not have been sufficiently warm initially to “activate”
the shift to a sooty flame. The small increase in outlet O2 concentration (about 0.5 vol.%), which is
likely due to the incomplete oxidation of soot, should also be noted.
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3.2. Interpretation of Results for Air-21 and Air-32 Cases

Figures 12–14 present the calculated values from the model for CO, O2, and soot for the Air-21,
Air-32-NoFit, and Air-32-Fit cases, as compared with the corresponding measured values. There
is a good fit between the modeled and in-flame measurements of CO and O2, which is expected
since these measurements were used to determine the injection profiles. Since Air-32-Fit used the
soot measurement as input to derive the temperature and injection profiles, a good fit is naturally
achieved for soot as well (Figure 14). The fact that the model manages to capture the excessive
levels of soot observed in the experiments, without inducing extreme changes in the temperature and
injection profiles, is encouraging and strengthens the model. That there is good agreement between
the calculated and measured soot values in the Air-21 case also indicates that the model possesses
some predictability for soot formation (assuming that BINs 1–4 can be considered soot). Air-32-Fit
overestimates the outlet O2 concentration (at 240 cm) by about 0.8 vol.% compared to the measured
value (Figure 13). Thus, in the model, there is a significant amount of unburnt fuel (in the form of soot)
at the outlet. A possible reason for this is that the used reaction mechanism, which was developed
for fuel-rich conditions and focuses on soot oxidation by O and OH, under-predicts the amount of
soot that is oxidized in the oxygen-rich regions. Soot oxidation by O2 is absent from the mechanism,
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and the soot is therefore not oxidized at all in the post-flame region. If there are O2-rich regions in
the flame as well, the model underpredicts the oxidation of soot in such regions. However, since the
model captures the drastic increase in soot formation, it is nonetheless of great interest to investigate
the combustion chemistry causing this occurrence. At this point, it must also be pointed out that
significant levels of soot were present at the outlet in the experiments, i.e., not all soot was oxidized
in the experiments either. The soot number density profiles shown in Figure 15 reveal that during
the early stages of combustion, there are about three orders of magnitude more particles present for
Air-32-Fit than for Air-21. The number of particles then quickly drops for Air-32-Fit, signifying rapid
coagulation. For the Air-32-NoFit cases, there is about one order of magnitude more particles initially
compared to the Air-21 case, and no significant particle coagulation is observed.
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Figure 16 presents the mass flows of BINs 1–20. Comparing Air-21 and Air-32-Fit, two important
differences stand out. First, in Air-21, BIN1 predominates, while in Air-32-Fit, the soot particles grow
quickly to the largest size (BIN20). This is in accordance with the results obtained for the number
density profiles (Figure 15). Second, the total soot mass flow is about 3000-fold higher in Air-32-Fit.
There are two possible reasons for the increase in soot mass: (1) an increase in soot inception rate, or (2)
an increase in the net surface growth rate. While an increase in soot inception rate will not increase the
soot mass significantly on its own, it will increase the number of particles that can accumulate mass
through surface growth. To investigate the importance of soot inception and surface growth, a reaction
analysis is conducted for the four flame zones described in the Methodology section. Tables 2 and 3
present the net production rates of BIN1 (here considered as nascent soot) and C2H2 (arguably the
most important species for surface growth), respectively. The net production of BIN1 in the first two
zones is 200-times higher for Air-32-Fit than for Air-21. Since the total mass of soot is about 3000-fold
higher, the increase in surface growth rate should be about 15-times higher in Air-32-Fit compared to
Air-21. Thus, the increase in soot inception rate appears to be more important than the increase in
surface growth rate. It is also interesting to note in Tables 2 and 3 that the production of BIN1 occurs
concomitant with the production of C2H2 (both are positive in Zone 2) for Air-32-Fit, which is not the
case for Air-21.

Figure 17 presents the concentration profiles of C2H2, PAHs, and CO in the flame, as well as
the locations of the four zones, and it is evident that Air-32-Fit differs mainly with respect to higher
early concentrations of all species, as well as a more compressed Zone 2, i.e., the PAH peak and the
BIN1 peak are much closer to each other in Air-32-Fit. When Zone 2 ends, i.e., when BIN1 peaks,
the C2H2 concentration is nine times higher and the PAH concentration is 140-times higher. Therefore,
an increase in surface growth rate of about 15 seems reasonable. The decrease in C2H2 in Zone 2 for
Air-32-Fit, as shown in Figure 17, is simply the result of a dilution effect of the injected oxidizer.

The only difference in input between Air-21 and Air-32-NoFit is the lower level of nitrogen present
in the oxidizer for Air-32-NoFit, which naturally leads to higher concentrations of all the other gases.
This in turn increases the rates of all the reactions. In Figure 16, it appears that this increase in reaction
rates increases 5–6-fold the soot mass. This is in accordance with the earlier conclusions drawn from
the experimental results, i.e., that the secondary effects (increased temperatures and decreased mixing
rate) are more important than the isolated effect of the decreased level of nitrogen. In Air-32-NoFit,
BIN1 predominates but rapid coagulation appears to occur in the post-flame region, as low levels of
mainly BIN20 are produced.
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Figure 16. Mass flows of BIN1-BIN20 for the Air-21, Air-32-No Fit, and Air-32-Fit cases.

Table 2. Rates of production of BIN1 in combustion zones 1–4. Values shown are in mg/s.

Cases Zone 1 Zone 2 Zone 3 Zone 4

BIN1
Air-21 6E-04 0.027 −0.002 0.002

Air-32-NoFit 0.003 0.178 −0.041 −0.014
Air-32-Fit 0.038 5.483 −5.524 0

Table 3. Rates of production of C2H2 in combustion zones 1–4. Values shown are in mg/s.

Cases Zone 1 Zone 2 Zone 3 Zone 4

C2H2

Air-21 84.6 −38.3 −46.3 0
Air-32-NoFit 73.61 −25.00 −48.60 0
Air-32-Fit 154 93 −247 0
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From the analysis so far, the main reason for the drastically increased soot formation appears
to be that soot inception is significantly enhanced in Air-32. We have defined soot inception as the
production of BIN1, which in the mechanism, is formed from 600 different reactions involving PAH,
PAH radicals, and smaller hydrocarbons. According to the simulations, the main reactions leading
to the formation of BIN1 involve one large PAH (mainly acenaphthylene or some form of pyrene)
radical reacting with a smaller hydrocarbon (usually C6H6 or C2H2). All these species are available
at significantly higher concentrations in Air-32-Fit than in Air-21 and Air-32-NoFit. It is however
not a trivial task to implicate any one reaction pathway in the sudden increase in soot formation.
A qualitative analysis can, however, be made with the use of Φ-T maps. Figure 18 shows the Φ-T map
for propane/air, as calculated by the mechanism, with lines representing Air-21 and Air-32. The lines
are plotted according to the amount of oxygen that has been injected at each step of the PFR, as well as
the current temperature at that step. The map shows regions in which the net formation of benzene (an
important precursor), BIN1 (the first soot species), and the sum of BINs 1–20 (total soot) predominate
in terms of propane combustion according to the model. The Φ-T maps themselves do not show the
progress of the combustion, since every point on the map represents the net formation rate under
constant, premixed conditions (i.e., temperature and gas composition). In a diffusion flame, as well
as in the PFR simulations, the conditions change rapidly and the residence time at each step varies.
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Although care should be taken when comparing premixed combustion systems with diffusion flames,
it is clear that the temperature-stoichiometry conditions in Air-32 are more beneficial for soot formation.
The Φ-T map reveals a steep gradient of soot formation at about 1200 ◦C for equivalence ratios >3,
which corresponds well to the step-like change in soot formation observed in the experiments when an
oxygen content of 30% was reached.
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Figure 18. Φ-T map for propane with air, displaying the filled contours for benzene, BIN1, and soot
formation. The colors are capped at 0.001 mg/cm3/s for benzene and BIN1 and at 0.1 mg/cm3/s for soot,
i.e., values that are higher than these have the same color.

It is clear from both the experiments and the modeling that the flames formed in Air-21 and Air-32
differ significantly not only in soot formation but also in flame chemistry. Figures 19 and 20 present
the concentration profiles of H and OH in the simulations since these are fundamental to the flame
characteristic. Both H and OH concentrations rise earlier in Air-32 which is reasonable due to the
higher early temperatures. However, since the soot formation process also advances more rapidly in
Air-32, the concentrations of H and OH radicals are not very different between the cases when related
to the soot formation progress. It is however interesting to note that OH levels are significantly lower
in the main part of the flame. This can potentially be an important part in explaining the decrease in
NO formation observed in the experiments.Energies 2020, 13, 191 16 of 21 
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3.3. Sensitivity Analysis

This section is divided into two parts. First, the impacts of altering the temperature and injection
profiles are evaluated and discussed. Then, the connection between oxygen-enrichment and total
pressure is assessed.

3.3.1. Temperature and Injection Profiles

Panels a–d in Figure 21 present the soot volume fraction profiles and the soot number density
profiles resulting from the sensitivity analysis. From the temperature analysis, it can be concluded that
soot formation is more sensitive to the temperature gradient than to the peak temperature. This is
clear from comparing the results from Air-21 and profiles A and B. Profile A has the highest peak
temperature (see Figure 4) and results in slightly higher soot formation than Air-21, while Profile B
has the same peak temperature as Air-21 but has a steeper temperature gradient, which results in
significantly higher soot formation. Profiles B and C show almost identical temperature gradients,
although profile C reaches a higher peak temperature. However, this does not result in higher soot
formation. When temperature profile D is used, soot formation is increased by about two orders of
magnitude and thus appears to have crossed a soot-forming threshold. From the mixing analysis,
it can be seen that lower mixing gradients increase soot formation. With injection profile Mix4, the rate
of soot formation reaches levels similar to those seen when temperature profile D is used in the
temperature analysis.

In both profile D and Mix4, the soot number density is reduced and, thus, indicates significant
particle coagulation. When injection profile Mix3 is used, the number density profile decreases more
slowly than it does for Mix4, indicating a slower and more continuous particle coagulation process.
Panels e-f in Figure 21 show the sensitivity runs plotted against the Φ-T maps for propane. As expected,
the run using profile D and the run using Mix4 are closer to the sooting region than the other lines.
According to the maps, profile D looks like it is going through more of the sooting region than
Mix4, although the amount of soot is almost the same when one considers the soot volume fraction.
This is likely an effect of the difference in residence time between the soot-formation regions. For the
high-temperature case (profile D), the residence time in the soot-forming regions is relatively short due
to the gas expansion.
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Figure 21. Soot profiles for the sensitivity cases. (a) soot volume fraction profiles for cases where
the temperature profile is changed; (b) soot volume fraction profiles for cases where the injection
profile is changed; (c) soot number density profiles for cases where the temperature profile is changed;
(d) soot number density profiles for cases where the injection profile is changed; (e,f) the combustion
processes plotted in Φ-T maps for the sensitivity cases. Yellow shading indicates benzene, orange
shading indicates BIN1, and black shading indicates total soot. See Figure 18 for scales.

3.3.2. Pressure Dependence

There is a strong connection between increasing oxygen content (while keeping λ constant) and
increasing total pressure, since both lead to an increase in the partial pressures of the oxygen and
fuel. Figure 22 shows the soot-forming threshold of 0.1 mg/cm3/s for three Φ-T maps created using
pressures of 1, 2, and 5 bar for propane/air (black lines), as well as one map with pressure of 1 bar
and 42% oxygen (purple line). Focusing on the pressure, it is clear that the sooting region expands
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to lower temperatures when the pressure is increased from 1 bar to 5 bar, with the biggest difference
seen between 1 bar and 2 bar. This agrees well with the results of Bento et al. [36], who observed a
steep increase in soot formation for laminar propane diffusion flames when going from 0.1 MPa to
0.2 MPa, which they at the time did not explain. Increasing the total pressure to 2 bar is the equivalent
of increasing the oxygen content from 21% to 42% (if λ is kept constant), and although the soot-forming
region (purple line in Figure 22) stretches down to less fuel-rich stoichiometries than the case with
2 bar, the lower temperature limit has moved to the same temperature (around 1200 ◦C). This confirms
that similar effects can be expected when one increases the pressure as when one increases the oxygen
content. However, the effects are not identical, since pressure and oxygen-enrichment have different
effects on flame shape and residence times.
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4. Conclusions

Experiments with oxygen-enriched air applied to an 80-kW confined swirled propane flame
were performed to investigate the effects on combustion conditions and soot formation. In-flame
temperature and gas composition measurements were performed and combined with available soot
concentration measurements to characterize the flame. The experiments reveal that soot formation
expresses a threshold dependence for the inlet oxygen concentration (and the conditions related to the
inlet oxygen concentration). The response in terms of soot formation to increased oxygen concentration
is weak until the O2 concentration in N2 is around 30%, at which point a dramatic increase in soot
formation occurs.

The drastic increase in soot formation is also seen in a state-of-the-art reaction mechanism for
soot formation applied to the relevant conditions. The relationship between temperature and local
stoichiometry (i.e., mixing), both of which are conditions affected by the inlet O2 concentration, controls
the point of the soot-formation threshold. The modeling indicates that the triggers for the increase in
soot formation are (primarily) an increased soot inception rate and (secondarily) increased surface
growth rates. Although the modeling confirms the observed effect on soot formation by changes in
combustion settings, the underlying mechanism is not fully understood. For future work, further
investigations of PAH chemistry and interactions with, for example, the radical pool, are recommended.
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