
INCREMENTAL FAULT DIAGNOSABILITY AND

SECURITY/PRIVACY VERIFICATION

MONA NOORI-HOSSEINI

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2020

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Incremental Fault Diagnosability and Security/Privacy
Verification

MONA NOORI-HOSSEINI

Systems and Control Group
Department of Electrical Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, 2020

Incremental Fault Diagnosability and Security/Privacy Verification
MONA NOORI-HOSSEINI

ISBN: 978-91-7905-287-4

c© MONA NOORI-HOSSEINI, 2020.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4575
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Telephone: +46 (0)31 772 1000

This thesis has been prepared using LATEX.

Printed by Chalmers Reproservice
Göteborg, Sweden, April 2020

To my beloveds Behrooz,

Nickaan & Edwin

Abstract

Dynamical systems can be classified into two groups. One group is continuous-
time systems that describe the physical system behavior, and therefore are typically
modeled by differential equations. The other group is discrete event systems (DES)s
that represent the sequential and logical behavior of a system. DESs are therefore
modeled by discrete state/event models.

DESs are widely used for formal verification and enforcement of desired behaviors
in embedded systems. Such systems are naturally prone to faults, and the knowledge
about each single fault is crucial from safety and economical point of view. Fault
diagnosability verification, which is the ability to deduce about the occurrence of all
failures, is one of the problems that is investigated in this thesis. Another verification
problem that is addressed in this thesis is security/privacy. The two notions current-
state opacity and current-state anonymity that lie within this category, have attracted
great attention in recent years, due to the progress of communication networks and
mobile devices.

Usually, DESs are modular and consist of interacting subsystems. The interaction
is achieved by means of synchronous composition of these components. This syn-
chronization results in large monolithic models of the total DES. Also, the complex
computations, related to each specific verification problem, add even more computa-
tional complexity, resulting in the well-known state-space explosion problem.

To circumvent the state-space explosion problem, one efficient approach is to ex-
ploit the modular structure of systems and apply incremental abstraction. In this
thesis, a unified abstraction method that preserves temporal logic properties and pos-
sible silent loops is presented. The abstraction method is incrementally applied on
the local subsystems, and it is proved that this abstraction preserves the main charac-
teristics of the system that needs to be verified.

The existence of shared unobservable events means that ordinary incremental ab-
straction does not work for security/privacy verification of modular DESs. To solve
this problem, a combined incremental abstraction and observer generation is pro-
posed and analyzed. Evaluations show the great impact of the proposed incremental
abstraction on diagnosability and security/privacy verification, as well as verifica-
tion of generic safety and liveness properties. Thus, this incremental strategy makes
formal verification of large complex systems feasible.

Keywords: Incremental abstraction, Formal verification, Temporal logic, Fault di-
agnosability, Opacity, Anonymity, Automation, Discrete event systems.

i

ii

Acknowledgments

I feel extremely fortunate to have met so many wonderful, inspiring and kind peo-
ple on this PhD journey, whom I would like to express my sincerest thanks to.

First and foremost, I would like to express my most humble gratitude to my su-
pervisor, Professor Bengt Lennartson, for giving me the opportunity to work in his
research group. Your patience, motivation, and guidance helped me a lot. I appreci-
ate the life-lessons I learned from you, to simplify things which is when the miracle
happens, and also to enjoy what I am doing.

Thanks to all the seniors in the Automation group, Professors Martin Fabian, Knut
Åkesson and Petter Falkman, for all interesting technical and non-technical talks.
Martin, thanks for being so friendly and supportive. I also would like to thank the
former and current PhD students in the group and my friends in the Electrical Engi-
neering department for the fun time and laughs we had together and the great mem-
ories we have made.

I also would like to thank the co-authors of our papers, specially Maria Paola
Cabasino, Carla Seatzu and Christoforos N. Hadjicostis for sharing such valuable
knowledge and experiences. Furthermore, I would like to thank Xudong Liang, for
his great work during his master thesis in demonstrating the performance of our
methods. I would like to express my appreciation to the administration team, Mrs.
Agneta Kinnander, Mrs. Natasha Adler and Mrs. Madeleine Persson, for being so
helpful.

I would like to dedicate a special thanks to Martin Magnusson, my manager at the
Autonomous Drive Functions team at Volvo Cars, the most caring and understanding
person every employee would like to work with. My gratitude also goes to my friends
and colleagues at Volvo Cars for their friendship and the great environment they
have created to make the not easy period of learning new things at work, writing the
thesis at home, while raising two small kids, to become easier. It has been delightful
working with you.

In all different stages of your life, you need those friends who would help you
forget about all the pressure, and re-energize, I have been blessed with many and
with all my heart I am grateful to them. Thanks for all the good moments we had
together.

iii

My sincerest gratitude and love go to my family for all their support. Dad, thanks
for teaching me to be ambitious. I really missed the moments we spent together, spe-
cially the breakfasts you prepared for us on weekends. Mom, thanks for encouraging
me to think outside the box. I am always enjoying our phone calls. Your beautiful
voice is like a music to my ears. Golsa and Soroush, thanks for always being there for
us. The door of your home is always open to us and we are sure that we are pampered
there. Golshid and Mehrdad, thanks for all your help to our medical questions.

I am so grateful and blessed for the two angles, Nickaan and Edwin, that came to
my life during my PhD study. You make my days bright and joyful. Playing with you
is my meditation. Now, it comes to the most important person in my life. Behrooz,
I am so lucky to have you in my life. You have the most beautiful soul and the most
loving heart. I am proud of you, for so perfectly taking care of everything during the
time I was busy with my thesis. You are the kindest, funniest and smartest husband,
and dad for our kids that I could have imagined. We made it here and it was only
possible together. I love you!

Mona Noori-Hosseini

Göteborg, March 2020

iv

List of Publications

This thesis is based on the following publications:

[Paper A] Mona Noori-Hosseini, Bengt Lennartson, Maria Paola Cabasino and
Carla Seatzu. A survey on efficient diagnosability tests for automata and bounded
Petri nets. Proceedings of the IEEE International Conference on Emerging Tech-
nologies & Factory Automation (ETFA), pp. 1–6, 2013.

[Paper B] Mona Noori-Hosseini and Bengt Lennartson. Diagnosability verification
using compositional branching bisimulation. Proceedings of the 13th Workshop on
Discrete Event Systems (WODES), pp. 245–250, 2016.

[Paper C] Mona Noori-Hosseini and Bengt Lennartson. Incremental Abstraction
for Diagnosability Verification of Modular Systems. Proceedings of the IEEE In-
ternational Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 393–399, 2019.

[Paper D] Mona Noori-Hosseini, Bengt Lennartson and Christoforos N. Hadjicostis.
Compositional visible bisimulation abstraction applied to opacity verification. Pro-
ceedings of the 14th Workshop on Discrete Event Systems (WODES), pp. 434–441,
2018.

[Paper E] Mona Noori-Hosseini, Bengt Lennartson and Christoforos N. Hadjicostis.
Incremental Observer Abstraction for Opacity/Privacy Verification and Enforcement.
Submitted for possible journal publication. An invitation to submit a revised version
has been received, 2019.

Relevant work by the author, not included in the thesis

• Bengt Lennartson and Mona Noori-Hosseini. Visible bisimulation equiva-
lence – A unified abstraction for temporal logic verification. Proceedings of
the 14th Workshop on Discrete Event Systems (WODES), pp. 400–407, 2018.

v

• Mona Noori-Hosseini and Bengt Lennartson. Diagnosability verification us-
ing compositional branching bisimulation. Technical report, Department of
Electrical Engineering, Chalmers University of Technology, 2016.

• Mona Noori-Hosseini and Bengt Lennartson. Verification of diagnosability
based on compositional branching bisimulation. Proceedings of the 19th IEEE
International Conference on Emerging Technologies & Factory Automation
(ETFA), 2014.

• Mona Noori-Hosseini and Bengt Lennartson. Verification of diagnosability
based on compositional branching bisimulation. Technical report, Department
of Electrical Engineering, Chalmers University of Technology: R013/2014.

• Bengt Lennartson, Francesco Basile, Sajed Miremadi, Zhennan Fei, Mona
Noori-Hosseini, Martin Fabian, and Knut Åkesson. Supervisory Control for
State-Vector Transition Models—A Unified Approach. IEEE Transactions on
Automation Science and Engineering, 11(1), pp. 33–47, 2014.

• Tord Alenljung, Bengt Lennartson and Mona Noori-Hosseini. Sensor graphs
for discrete event modeling applied to formal verification of PLCs. IEEE
Transactions on Control Systems Technology, 20(6), pp. 1506–1521, 2012.

• Bengt Lennartson, Sajed Miremadi, Zhennan Fei, Mona Noori-Hosseini, Mar-
tin Fabian, and Knut Åkesson. State-vector transition model applied to super-
visory control. Proceedings of the IEEE International Conference on Emerging
Technologies & Factory Automation (ETFA), 2012.

vi

Acronyms

BB: Branching Bisimulation

BBSD: BB including State labels & explicit Divergence

BRG: Basis Reachability Graph

CSA: Current State Anonymity

CSO: Current State Opacity

CTL: Computational Tree Logic

DES: Discrete Event System

DFA: Deterministic Finite Automata

DSV: Divergence-Sensitive Visible bisimulation

FNC: Future Nondeterministic Choices

MBRG: Modified Basis Reachability Graph

PN: Petri Net

RG: Reachability Graph

SB: Stuttering Bisimulation

STS: Source and Target State

VBE: Visible Bisimulation Equivalence

vii

Contents

Abstract i

Acknowledgements iii

List of Publications v

Acronyms vii

Contents ix

I Introductory Chapters 1

1 Introduction and Overview of the Thesis 3
1.1 Problem Statement . 4
1.2 Research Questions . 6
1.3 Main Contributions . 7
1.4 Outline . 9

2 Preliminaries 11
2.1 Transition Systems . 11
2.2 Petri Nets . 14

ix

2.3 Observers . 16

3 Incremental Abstraction 19
3.1 Temporal Logic . 19
3.2 Visible Bisimulation Equivalence 21

Bisimulation Equivalences . 24
DSV Bisimulation Equivalence . 27

3.3 Abstraction of Modular Systems 29
3.4 Model Checking and Incremental Temporal Logic Verification . . . 32

4 Fault Diagnosability Verification 37
4.1 Faults and Diagnosers . 38

Fault Diagnosis . 38
Diagnoser . 39

4.2 Fault Diagnosability Verification 40
Decision Structures for Diagnosability Verification 41
Uncertain and Indeterminate Cycles 42

4.3 Diagnosability Verifiers . 44
Temporal Logic Specification . 48
Divergence . 49

4.4 Diagnosability Verification for Modular Systems 50
Modular Verifier . 50
Incremental Abstraction . 51
Transformation to a Nonblocking Problem 52

5 Opacity and Anonymity Verification 55
5.1 Background . 55
5.2 Observer Generation in a Modular Framework 57

Current State Opacity and Anonymity 59
5.3 Incremental Observer Abstraction in the Presence of Shared Unob-

servable Events . 62
Restrictions before Abstraction . 63
Algorithm . 65

5.4 Special Case: Local Unobservable Events 66
Detector . 67
Enforcement of CSO and CSA . 69

x

6 Summary of Appended Papers 71
6.1 Paper A . 71
6.2 Paper B . 72
6.3 Paper C . 73
6.4 Paper D . 73
6.5 Paper E . 74

7 Concluding Remarks and Future Research 75
7.1 Future Research . 76

References 79

II Papers 89

A A Survey on Efficient Diagnosability Tests for Automata and
Bounded Petri Nets A1
1 Introduction . A3
2 Preliminaries . A5
3 Diagnosability of Discrete Event Systems A6
4 Generation of Minimal Explanation A7

4.1 Minimal Explanation Notion A9
4.2 Modified Basis Reachability Graph Automaton A10

5 Different Verifier Automata . A11
5.1 V1 Verifier . A11
5.2 V2 Verifier . A11
5.3 V3 Verifier . A13
5.4 V4 Verifier . A13

6 Comparisons . A14
6.1 Comparing Verifiers Based on RG A14
6.2 Comparing Verifiers Based on MBRG A15

7 Conclusion . A15
References . A16

B Diagnosability Verification Using Compositional Branching Bisim-
ulation B1
1 Introduction . B3

xi

2 Preliminaries . B5
3 Diagnosability of Discrete Event Systems B6

3.1 Diagnosability Verification Algorithm B7
3.2 Temporal Logic . B8

4 Bisimilar Abstractions . B8
4.1 Branching Bisimulation Including State Labels B9
4.2 Generation of BBSD Partition B10

5 Compositional Abstraction . B13
5.1 General Compositional Approach B13
5.2 Synchronization . B14
5.3 Diagnosability Verification by Compositional BBSD Abstrac-

tion . B14
6 Conclusions . B15
References . B17

C Incremental Abstraction for Diagnosability Verification of Mod-
ular Systems C1
1 Introduction . C3
2 Preliminaries . C5
3 Diagnosability of Discrete Event Systems C7

3.1 Diagnosability . C7
3.2 Diagnosability Verification Algorithm C7

4 Scaleable Production System . C10
5 Incremental Abstraction for Diagnosability Verification C11

5.1 Transformation to Nonblocking Verification by Detectors . . C11
5.2 Cycle Detectors . C13
5.3 Conflict Equivalence Abstraction C14
5.4 Incremental Abstraction C15

6 Algorithm Evaluation . C16
7 Summary and Conclusions . C16
References . C18

D Compositional Visible Bisimulation Abstraction Applied to Opac-
ity Verification D1
1 Introduction . D3
2 Preliminaries . D5
3 Visible Bisimulation Equivalence D7

xii

4 Synchronous Composition . D10
5 Combined Hiding and Reduction D13
6 Event based Extension of CTL∗ D15
7 Opacity Verification . D16

7.1 Observer Synchronization D17
7.2 Current State Opacity for Modular Systems D18

8 Conclusions . D23
References . D24

E Incremental Observer Abstraction for Opacity/Privacy Verifica-
tion and Enforcement E1
1 Introduction . E3
2 Preliminaries . E8
3 Problem Statement . E11

3.1 Incremental Abstraction for Modular Systems E12
3.2 Incremental Observer Generation including Abstraction . . E12
3.3 Incremental Observer Generation with Shared Unobservable

Events . E13
3.4 Opacity and Privacy . E15

4 Efficient Generation of Observers E16
4.1 Incremental Observer Abstraction for Modular Systems . . E16
4.2 Incremental Observer Generation Algorithm E18
4.3 Transformation from Forbidden State to Nonblocking Veri-

fication . E19
5 Opacity and Anonymity for Modular Systems E22

5.1 Current State Opacity and Anonymity E24
5.2 Current State Opacity and Anonymity for Modular Systems E26
5.3 Transformation of Current State Opacity and Anonymity to

Nonblocking Problems . E31
5.4 Other Types of Opacity . E31

6 Observer Abstraction for Systems with Shared Unobservable Events E32
6.1 Incremental Observer Generation E32
6.2 Combined Incremental Observer Generation and Abstraction E33

7 Opacity Verification of a Multiple Floor/Elevator Building E43
8 Opacity and Anonymity Enforcement E49

8.1 Observer-based Supervisor Generation E49

xiii

8.2 Incremental Supervisor Generation by Nonblocking Preserv-
ing Abstraction . E51

9 Conclusions . E53
References . E53

xiv

Part I

Introductory Chapters

1

CHAPTER 1

Introduction and Overview of the Thesis

Physical phenomena of dynamical systems are generally modeled by ordinary or
partial differential equations, which include continuous variables. However, in our
everyday life of the increasingly computer-dependent world, many of the quantities
we deal with are discrete, and many of the processes are driven by instantaneous
events, such as sliding the screen key to unlock a smart phone, or pressing a button in
an automated teller machine. Systems are often event-driven, especially when digital
computers are involved. Typical examples are automated manufacturing systems and
communication networks. These systems should be able to adapt swiftly to changing
conditions and react rapidly to unpredictable events. Above all, these systems should
perform a desired behavior based on a specification and satisfy their users. The
occurrences of events in these systems can be nominal, such as opening a valve, or
can be unwanted, such as a sensor failure. These systems are called discrete event
systems (DES)s [1]. A DES includes different discrete states that are changed upon
the occurrence of events.

With the progress of computer-aided and large complex industrial systems, the
problems regarding safety assurance are growing. The applications of these sys-
tems are seen in our daily life. Aircraft electronic systems, computer systems, and
microwave ovens are common examples of the mentioned systems. All man-made

3

Chapter 1 Introduction and Overview of the Thesis

software and hardware systems are prone to faults, and fault occurrences may result
in catastrophic problems. One way to evaluate whether a system performs its nomi-
nal behavior is to verify the system specification. In order to achieve this, a model of
the system is required. The two main modeling formalisms of DESs are finite state
automata [2] and Petri nets [3].

To be able to detect if an unobservable fault has happened in a DES, the system
model must be diagnosable. This means that it is possible to detect all unobservable
fault events by a diagnoser in finite time. A main topic in verification of safety
properties for DESs is therefore verification of fault diagnosability. Diagnosability
is a necessary condition that must be satisfied to be able to construct a diagnoser.

More recently, security and privacy concerns have also been raised on the informa-
tion flow of large communication networks and their diverse applications in modern
technologies. One of the important information flow properties related to privacy
and security is called opacity. While diagnosability verification is about providing
sufficient information to a verifier to detect faults, privacy and security require in-
formation to an outside observer or intruder to be hidden, so that secrets are not
revealed.

1.1 Problem Statement

The main effort to be able to verify the aforementioned problems for larger systems
is to develop algorithms with reduced computational complexity. Since systems are
getting more complex, traditional test-based techniques might not be enough to en-
sure whether DESs perform their nominal task correctly. Formal verification tech-
niques are capable of guaranteeing a specification for larger state spaces, and can
mathematically prove whether requirement specifications are fulfilled or not. This
can be relatively easily done for small and simple DESs. However, for complex
DESs that are usually modular and consist of interacting subsystems, formal verifi-
cation procedures often need to check millions of states or even more. With limited
available time and memory, these problems lead to the state-space explosion problem
[4].

To mitigate the well-known state-space explosion problem, one way is to develop
algorithms and methods with polynomial complexity, and combine them with ef-
ficient abstraction methods. The application of the reduction methods on modular
systems can be done incrementally. This incremental abstraction method [5], [6] is
shown to be very efficient, having the important characteristic that it preserves the

4

1.1 Problem Statement

main property that needs to be verified.
A more detailed background review of both diagnosability verification and opac-

ity/anonymity verification is presented in the following paragraphs.

Fault diagnosability verification Discrete event systems are widely used, and
are naturally highly prone to faults. Thus, the knowledge about all faults that may
happen in a DES is crucial from safety and economical point of view. Faults in DESs
are modeled either explicitly by introducing fault events [7], [8], or indirectly by
considering deviations from language specifications [9]. The ability to detect faults
within a bounded time is called fault diagnosability [7], a property that must be valid
for all faults according to the given DES model. This is a necessary condition to be
able to construct a diagnoser for diagnosis of all faults in the model.

Since fault diagnosis is based on observers, the computation of a diagnoser has
exponential complexity [1], while there are polynomial algorithms that can deduce
about the diagnosability of a system [8], [10], [11]. However, although polynomial
time algorithms exist, the state space increases exponentially when modular systems
are composed. Thus, it is often too complex to analyze modular systems of industrial
size. The evaluation of diagnosability for complete modular systems can, however,
sometimes be simplified [12]–[14]. If, for instance, all subsystems are locally di-
agnosable, the total system is also diagnosable. Even if a modular system includes
subsystems that are locally non-diagnosable, the total system may still be diagnos-
able [12].

One interesting approach to tackle the computational complexity is to apply ab-
straction based techniques to reduce the state space of a system, still keeping enough
information to decide about diagnosability. Some recent results in this direction have
been presented both for automata and PN models [9], [15], [16], including techniques
for modular systems. In [9], the computational effort for diagnosability verification
is reduced by determine sufficient conditions, such that diagnosability of the original
system follows from diagnosability of an abstracted model. Moreover, it is shown
that if the abstracted system is not diagnosable, then the original system is not diag-
nosable if all observable events remain after abstraction. This requirement implies
that in general only limited abstractions can be expected for non-diagnosable sys-
tems. In [15], the problem is that the monolithic verifier must be built.

Opacity and anonymity verification With the rapid growth of communica-
tion networks and computer systems, cyber-security properties have attracted a lot

5

Chapter 1 Introduction and Overview of the Thesis

of attention. Opacity, as a security property [17], is dealing with hiding secrets from
malicious observers [18], [19]. It is a general and formal property that has been
widely investigated for DESs for finite automata [18], [20]–[22] and for PNs [23]–
[25]. A system is opaque if, for any secret behavior, there exists at least one non-
secret behavior that looks indistinguishable to the intruder [18], [26]. The security
notion is investigated for automata [19] using either state-based predicates [18], [19],
[25], [27], or language-based predicates [21], [24], [28]–[30].

There are different opacity notions, such as current-state, initial-state, and k-step
opacity [19]. In [31], it is shown that these different types of opacities can be trans-
formed to one another in polynomial time. This thesis focuses is on current-state
opacity (CSO). A privacy notion that is adapted from CSO is current-state anonymity
(CSA) [20], [30], which in [32] is used for location privacy. In this case, the servers
that access the user’s location information are considered as intruders.

An intruder with partial observation can be modeled as an observer of the system.
There are several works that exploit observer generation for opacity verification [31],
[33]–[36]. Given the exponential complexity of observer generation for verification
purpose, as well as the complexity of interacting subsystems in modular systems of
industrial size, state space explosion often occurs. Thus, reduction methods play an
important role in making opacity and anonymity verification procedures feasible. In
[37], a binary decision diagram technique [38] is used to abstract graphs to a mod-
erate size for verification of three different opacity variants. In [39], a bisimulation-
based method to verify the infinite-step opacity of nondeterministic finite transition
systems is proposed. Since this abstraction is based on strong bisimulation, it has a
minor reduction capability compared to abstractions where local events are hidden,
such as weak bisimulation [40] and branching bisimulation (BB) [41]. Also, in [36],
the conflict equivalence abstraction is used for opacity verification.

1.2 Research Questions

Based on the given background, different areas arise, for which further research is
required. To set the boundaries of the topics to explore, the following research ques-
tions are to be answered:

RQ1 How can polynomial diagnosability verification algorithms be used efficiently
for both automata and Petri nets?

RQ2 How can a general abstraction method be formulated for verification of sys-

6

1.3 Main Contributions

tems, including both state and transition labels?

RQ3 How can diagnosability verification be combined with incremental abstraction
for modular systems?

RQ4 How can opacity and anonymity verification for modular systems be combined
with incremental abstraction, especially when unobservable events are shared
between different subsystems?

1.3 Main Contributions

The following contributions are the result of the attempts to answer the research
questions above.

• (C1) In Paper A [42], the first research question RQ1 is examined. First, the
benefit of considering modular automata as PNs is demonstrated. A modified
version of a basis reachability graph called MBRG is then used as an efficient
reduction method. Based on the MBRG, which can be seen as a monolithic
but reduced representation of a PN or modular automata, different polynomial
diagnosability verifiers are compared. This includes an improvement of an ex-
isting verifier algorithm. A systematic evaluation on how complexity increases
based on the number of sequences and tokens in PNs is presented. It is also
demonstrated that theoretical complexity analysis, based on worst case sce-
narios, does not necessarily give the correct picture from a practical point of
view.

• (C2) The modeling formalism that is used for verification of both diagnos-
ability and opacity properties is called transition system, which includes both
state and transition labels. In fault diagnosability verification, the correspond-
ing necessary fault occurrence information is augmented to the states, and in
opacity/anonymity verification the information regarding the non-safe states is
stored as state labels.

With this background, a general and flexible abstraction method called branch-
ing bisimulation with state labels and explicit divergence (BBSD) is defined in
Paper B [43]. In Papers D [44] and E [45], this bisimulation is redefined, di-
rectly formulated as an equivalence relation and then called divergent-sensitive
visible (DSV) bisimulation. This bisimulation preserves the temporal logic

7

Chapter 1 Introduction and Overview of the Thesis

properties that verify diagnosability, opacity, and anonymity. Indeed, it pre-
serves CTL∗ except for the next operator, a fact that is also demonstrated on
a model checking problem in Chapter 3. It is also shown in Paper D that the
proposed abstraction approach, when being applied incrementally on a mod-
ular system, offers a significant state space reduction. The mentioned papers
answer RQ2.

• (C3) In Papers B and C [46], the third research question RQ3 is presented. In
these papers, the ultimate goal is to detect uncertain cycles, to be able to verify
fault diagnosability. When applying incremental abstraction methods, these
cycles may become silent and thus abstracted. Therefore, all uncertain cycles
must be preserved during the abstraction, meaning that the abstraction must
be divergence-sensitive. In Paper B, this is achieved by a generic incremental
abstraction technique for modular systems based on BBSD.

In Paper C, a new and simple transformation of a forbidden loop problem to
a forbidden state problem is presented. This is done by introducing a simple
detector automaton for each local forbidden cycle. The transformation to a
nonblocking problem by introducing detectors is a generic technique that can
be applied to a number of different verification problems, as in Paper E for
security/privacy verification.

• (C4) The evaluation of research question RQ4 resulted in Papers D and E. An
abstraction method for CSO verification of modular systems is proposed in
Paper D, based on visible bisimulation [47]. The CSO verification problem is
formulated as a temporal logic safety problem. The incremental abstraction
is adapted to opacity verification, and it shows great computational time im-
provement compared to standard methods. A key factor in this incremental
verification is that local observers can be generated before they are synchro-
nized.

Including also shared unobservable events, local observers cannot generally
be computed. A combined incremental observer generation and abstraction
for modular systems is then presented in Paper E. Some minor restrictions are
introduced to be able to prove that the combined incremental observer gen-
eration and abstraction works correctly. This procedure includes additional
temporary state labels, to avoid abstractions that may destroy the incremental
observer generation.

8

1.4 Outline

1.4 Outline

This thesis is divided into two parts. The first part gives the reader an overview of the
field of research, and a better understanding of the concepts developed in the papers
that constitute the second part of the thesis.

The first introductory chapter provides the background, problem statement, as well
as the research questions that have been the inspiration to the work and resulting con-
tributions. In Chapter 2, preliminaries and basic notions that are used in this thesis
are presented. Chapter 3 includes a general framework for modeling of modular dis-
crete event systems, as well as verification and abstraction methods suitable for such
systems. Chapter 4 focuses on fault diagnosability verification, and more specifi-
cally on incremental abstraction for diagnosability verification of modular systems.
Moreover, in Chapter 5, it is shown how verification of some current state opacity
and anonymity properties in modular systems can be performed in a modular and in-
cremental framework. A summary of the appended papers is provided in Chapter 6,
followed by some concluding remarks and directions for future research in Chapter 7.

9

CHAPTER 2

Preliminaries

In this chapter, some basic notions are introduced as a background for the rest of this
thesis. The main modeling formalism is transition systems. However, since bounded
Petri nets can represent modular automata and are used in Paper A, they are also
shortly presented in this chapter.

2.1 Transition Systems

A discrete event model, including both state and transition labels, is often called a
transition system [4], [48].

Definition 1 (Transition system): A transition system G is defined by a 6-tuple

G = 〈X,Σ, T, I, AP, λ〉,

where

(i) X is a set of states,

(ii) Σ is a finite set of events,

(iii) T ⊆ X × Σ×X is a transition relation, where a transition t = (x, a, x′) ∈ T ,

11

Chapter 2 Preliminaries

also denoted x a→ x′, includes the source state x, the event label a, and the
target state x′,

(iv) I ⊆ X is a set of possible initial states,

(v) AP is a set of atomic propositions, and

(vi) λ : X → 2AP is a state labeling function. 2

Automata and Kripke structures A transition system without state labels,
whereAP and λ are excluded fromG, is an automaton without marked (final) states,
also called a labeled transition system [49]. A transition system without transition
labels (events), where Σ is excluded from G, results in a Kripke structure.

State labels Each state label includes a set of atomic propositions that are valid
in the corresponding state. Typical state labels are marked and forbidden states,
graphically denoted by double circles and crosses, respectively. Blocking states,
from which it is not possible to reach a marked state, are examples of undesirable
forbidden states. In fault diagnosability verification in Chapter 4, the state labels N
and F are used to mark non-faulty and faulty states. In Chapter 5 on opacity and
anonymity, the state label N denotes a non-safe state.

Transition function and active event set The transition relation T can alter-
natively be defined as a transition function δ : X × Σ → 2X , where the image is
defined as δ(x, a) = {x′ ∈ X |x a→ x′ ∈ T}. Furthermore, the events that are in-
volved in output transitions from a given state x, also called active or feasible events
in state x, are included in the active event set Σ(x) = {a ∈ Σ | (∃x′ ∈ X)x a→ x′ ∈
T}. For a deterministic transition system, there is only one initial state, and for each
state x ∈ X and event a ∈ Σ, the number of elements in the image of the transition
function is less or equal one, i.e. |I|=1 and (∀x ∈ X)(∀a ∈ Σ) |δ(x, a)| ≤ 1.

Local and shared events In the composition of subsystems, see Def. 2, events
that are included in no synchronization with other subsystems are called local events,
while shared events are involved in more than one subsystem.

Modeling ε transitions The transition system G can be extended to include
transitions, labeled by the empty string ε. The ε label is explicitly used for local
unobservable events. Such events are not included in the alphabet Σ, while the total
alphabet is extended to Σ ∪ {ε}. A sequence of ε transitions x = x0

ε→ x1
ε→

12

2.1 Transition Systems

· · · ε→ xn = x′, n ≥ 0, is denoted by x
ε⇒ x′. A corresponding sequence, including

possible ε transitions before, after and in between events in a string s ∈ Σ∗, is
denoted by x

s⇒ x′. The epsilon closure of a state x is defined as Rε(x) = {x′ |x ε⇒
x′}, and for a set of states Y ⊆ X , we write Rε(Y) =

⋃
x∈Y Rε(x).

Projection A subset L ⊆ Σ∗ is called a language. Moreover, for the event set
Ω ⊆ Σ, the natural projection P : Σ∗ → Ω∗ is inductively defined as P (ε) = ε,
P (a) = a if a ∈ Ω, P (a) = ε if a ∈ Σ\Ω, and P (sa) = P (s)P (a) for s ∈ Σ∗ and
a ∈ Σ. Projections are especially used for unobservable local events.

Nondeterministic transition system A nondeterministic transition system
generally includes a set of initial states, ε labeled transitions, and/or alternative
transitions with the same event label. A transition function for an event a ∈ Σ
in a nondeterministic transition system is defined as δ(Y, a) = Rε({x′ | (∃x ∈
Rε(Y)) x a→ x′ ∈ T}). An extended transition function is then inductively de-
fined, for s ∈ Σ∗ and a ∈ Σ, as δ(I, sa) = δ(δ(I, s), a) with the base case
δ(I, ε) = Rε(I). Furthermore, the language for a nondeterministic transition system
is defined as L(G) = {s ∈ Σ∗|(∃x ∈ I) δ(x, s) 6= ∅}.

Local transitions and hidden τ events To obtain efficient abstractions, a spe-
cial τ event label is used for transitions with local observable events. The lack of
communication with other subsystems means that the τ event is hidden from the rest
of the environment. The closure of τ -transitions in a finite path x = x0

τ→ x1
τ→

· · · τ→ xn = x′, n ≥ 0 is denoted by x
τ⇒ x′.

Note the difference between ε and τ events. Unobservable local events are re-
placed by ε before an observer is generated, which removes any ε transitions. Ob-
servable local events are then replaced by τ to model that they are hidden, before
performing any abstraction. In process algebra, the replacement of any specific event
by the event τ is called hiding, cf. [40]. A transition system G where the events in
Σh are hidden and replaced by τ is denoted by GΣh

.

Synchronous composition The definition of the synchronous composition in
[50] is here adapted to τ events. Since the hiding mechanism only concerns local
events, τ -labeled transitions are local. Thus, such events in different subsystems are
not synchronized, although they share the same event label.

13

Chapter 2 Preliminaries

Definition 2 (Synchronous composition including τ events): Let Gi = 〈Xi,

Σi, Ti, Ii, APi, λi〉, i = 1, 2, be two transition systems. The synchronous composi-
tion of G1 and G2 is defined as

G1 ‖G2 = 〈X1 ×X2,Σ1 ∪ Σ2, T, I1 × I2, AP1 ∪AP2, λ〉

where

(x1, x2) a→ (x′1, x′2) ∈ T : a ∈ (Σ1 ∩ Σ2) \ {τ}, x1
a→ x′1 ∈ T1,

x2
a→ x′2 ∈ T2,

(x1, x2) a→ (x′1, x2) ∈ T : a ∈ (Σ1 \Σ2) ∪ {τ}, x1
a→ x′1 ∈ T1,

(x1, x2) a→ (x1, x
′
2) ∈ T : a ∈ (Σ2 \Σ1) ∪ {τ}, x2

a→ x′2 ∈ T2,

and λ : X1 ×X2 → 2AP1∪AP2 . 2

Modular systems A modular system consists of a number of interacting com-
ponents or subsystems Gi, i ∈ N+

n = {1, . . . , n}. The interaction is assumed to be
modeled by the synchronous composition, such that the total monolithic system is
given by

G = ‖i∈N+
n
Gi = G1 ‖G2 ‖· · ·‖Gn.

Although the number of states in the individual components |Qi| may be small,
the total number of states in the synchronized monolithic system is in worst case
Πn
i=1|Qi|. Furthermore, the observer, diagnoser or verifier generation adds more

complexity, especially due to the exponential complexity in the observer generation.
This fact strongly motivates the importance of utilizing reduction methods for mod-
ular systems.

2.2 Petri Nets

A place transition (P/T) net is a tupleN = (P, T, Pre, Post), where P is a set of nP
places, T is a set of nT transitions, Pre : P ×T → N and Post : P ×T → N are the
pre and post incidence functions that specify the arcs between places and transitions.
Furthermore, the incidence matrix is C = Post− Pre.

The marking vector M : P → N assigns to each place of a P/T net a non-negative
integer number of tokens. The marking of place p is denoted by M(p). A Petri net
(PN) 〈N,M0〉 is a P/T net N with an initial marking M0. A transition t is enabled
at M if M ≥ Pre(·, t), and may fire, yielding the marking M ′ = M + C(·, t). We

14

2.2 Petri Nets

write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk
is enabled at

M , and M [σ〉M ′ represents that the firing of σ yields M ′.

Reachability graph A markingM is reachable in 〈N,M0〉, if there exists a firing
sequence σ such that M0 [σ〉M . The set of all markings reachable from M0 defines
the reachable set of 〈N,M0〉, denoted R (N,M0). The reachability graph (RG) in-
cludes all reachable markings and the involved transitions. Since each value of the
marking vector defines a state, this graph can also be considered as an automaton or
a finite-state machine that is equivalent to the original PN.

Observable and unobservable transitions The set of transitions T is parti-
tioned into the set of observable transitions To and the set of unobservable transi-
tions Tu, such that T = To ∪̇Tu. The set of fault transitions Tf is a subset of Tu,
i.e. Tf ⊆ Tu. If there are r different fault classes, Tf can be partitioned into r

different subsets T if , where i ∈ N+
r .

Reduced model Among the set of transitions T , some transitions Ta ⊆ T can be
abstracted, resulting in an automaton that is smaller than the reachability graph RG.
In [51], the concept of minimal explanations and basis markings are introduced, and a
reduced basis reachability graph (BRG) is introduced for Ta = Tu. Thus, the result-
ing BRG only includes the observable transitions, but for diagnosability verification
the unobservable fault events can not be abstracted. With Ta = Tu \Tf a modified
basis reachability graph (MBRG) is achieved, which can be constructed without an
exhaustive enumeration of the total state space [51]. This reduced MBRG automa-
ton is used in Paper A as an abstraction method, from which different polynomial
diagnosability verifiers are generated and compared.

Comparison between transition systems and Petri nets A modular DES
can be represented as a set of synchronized automata, but also as one PN, where
shared events executed synchronously in different subautomata are represented as
one common transition in the PN model. In other words, a PN is able to explicitly
show a concurrent behavior, thus being more readable than automata and transition
systems, at least if the number of places and arcs are not too many. Some properties
can also be analyzed by linear algebra, without generating an explicit state space rep-
resentation, where the MBRG is such an example. On the other hand, there are more
well-established abstraction methods for transition systems, which will be further
discussed and illustrated in Chapter 3. Especially, the incremental abstraction proce-

15

Chapter 2 Preliminaries

dure that is also presented in Chapter 3 is a powerful reduction method for modular
transition systems.

2.3 Observers

In this thesis, security/anonymity verification is based on observers that are achieved
by subset construction [2]. There are several works that exploit observer generation
for opacity verification [31], [33]–[35]. Observers are deterministic finite automata
that determine the set of states that can be reached in a DES after an observable
event has been executed. Within a state of the observer a number of unobservable
events may be executed in the original DES. A diagnoser is a refined type of observer,
where specific fault state labels are introduced after the occurrence of faults in the
related DES.

Observer generation For a nondeterministic transition system G, where unob-
servable (local) events have been replaced by ε, a deterministic transition system
with the same language as L(G), called an observer O(G), is generated by sub-
set construction [2], where O(G) = 〈X̂,Σ, T̂ , Î, AP, λ̂〉, and X̂ = {Y ∈ 2X |
(∃s ∈ L(G))Y = δ(I, s)}, T̂ = {Y a→ Y ′ | Y ′ = δ(Y, a)}, and Î = Rε(I). The
relation between λ̂(Y) and λ(x) is application dependent, but the default assumption
is that λ̂(Y) =

⋃
x∈Y λ(x). An obvious alternative is λ̂(Y) =

⋂
x∈Y λ(x), an in-

terpretation that is applied in current state opacity. This topic is elaborated more in
Chapter 5.

Introduce the transition function δ̂(Y, a) def= δ(Y, a) and the extended transition
function, inductively defined as δ̂(Î , sa) = δ̂(δ̂(Î , s), a) with the base case δ̂(Î , ε) =
Î . It is then easily shown that δ̂(Î , s) = δ(I, s), see [2]. This means that L(O(G)) =
L(G).

Example 1. Consider the system G and its observer O(G) in Fig. 2.1. The events
{a, b, c} are observable while the event u is unobservable. Replacing uwith ε implies
that the initial state inO(G) includes both state 0 and 2 in G, and the nondeterminis-
tic alternative when a is executed gives the second block state {1, 3} in the observer.

2

16

2.3 Observers

G
0

1

2 3

a b

u
a

c

O(G)
{0, 2} {1, 3}

{1}

{3}

a
b b

c

c

Figure 2.1: System model G and its observer O(G).

Online observer synchronization When all unobservable events are local, the
observer of a modular system can be implemented as

O(G) =‖i∈N+
n
O(Gi).

This is shown in Paper E [45], for a general transition system. Thus, an observer
of a modular system can then be implemented by running local observers combined
with online synchronization. Possible transitions of the total observerO(G) are then
determined by evaluating the current state and possible transitions of all local ob-
servers O(Gi). Hence, there is no need to explicitly generate O(G), but only the
local observers and their current states.

This is a dramatic simplification compared to a traditional monolithic observer
generation that may save huge amount of memory depending on the size of the to-
tal observer. Moreover, since building a diagnoser boils down to building an ob-
server [52], this method can also be applied to the synchronization of local diag-
nosers, D(G) =‖i∈N+

n
D(Gi).

17

CHAPTER 3

Incremental Abstraction

This chapter presents a general reduction method, based on an equivalence relation
that preserves temporal logic system properties. The reduction method is utilized for
verification of safety and security/privacy properties. Since the systems to be verified
are assumed to be modular, an incremental reduction method is applied.

3.1 Temporal Logic

One of the verification methods is based on model checking, where it is evaluated
whether a temporal logical specification is satisfied. This can be done automati-
cally for transition systems, using a symbolic model-checker software tool such as
NuSMV [53].

The two most well-known temporal logics are linear temporal logic (LTL) and
computation tree logic (CTL). In LTL, temporal operators are provided for specifica-
tion of properties along a single (linear) path, while in CTL operators quantify over
the paths that are possible from a given state. The temporal operators in LTL are
G = always, F = eventually, X = next, and U = until, all four ranging over the states
along a particular path. Temporal operators in CTL are expressed in pairs, meaning
that the operators G, F , X , and U are joined with path quantifiers as prefixes, either

19

Chapter 3 Incremental Abstraction

the universal quantifier A or the existential quantifier E, which express all paths and
there exists a path, respectively [54].

An example of an LTL formula is pUq, which specifies that for a given path, p
holds in all states until q is valid. The CTL formula EF p specifies that there exists a
path where eventually p holds.

Syntax and semantics of CTL∗ The extended computation tree logic CTL∗

combines LTL and CTL in the sense that a path quantifier can prefix an assertion
composed of arbitrary combinations of the usual linear-time operators. The syntax
of CTL∗ formulas is separated into a grammar for state formulas and a grammar for
path formulas.

Definition 3 (Syntax of CTL∗): State formulas in CTL∗ are defined inductively
by the grammar

ψ ::= | > | p | ¬ψ | ψ1 ∧ ψ2 | ∃ϕ,
where p is an element in the set of atomic propositions AP , ψ, ψ1 and ψ2 are state
formulas, and ϕ is a path formula. Path formulas in CTL∗ are defined inductively by
the grammar

ϕ ::= | ψ | ¬ϕ | ϕ1∧ϕ2 | ϕ1Uϕ2 | Xϕ,
where ψ is a state formula, and ϕ, ϕ1 and ϕ2 are path formulas. 2

Additional ordinary propositional logic operators are derived operators, such as
ψ1 ∨ ψ2 = ¬ (¬ψ1 ∧ ¬ψ2). The eventually and always operators are defined as
F ϕ = >Uϕ and Gϕ = ¬F ¬ϕ, see further details in [4]. For a transition system,
the semantics of CTL∗ is now formally defined.

Definition 4 (Semantics of CTL∗): For a transition system G = 〈X,Σ, T, I,
AP, λ〉, state formulas ψ, ψ1, and ψ2 are evaluated in states x ∈ X , while path
formulas ϕ, ϕ1, and ϕ2 are evaluated along infinite paths ρ, starting in a state x ∈ X
at time instant t, and the path ρk denotes the suffix of ρ, starting at time instant
t+k. The satisfaction relation � for different state and path formulas are here defined
inductively as

(1) x � > ⇔ always,

(2) x � p ⇔ p ∈ λ(x),
(3) x � ¬ψ ⇔ x 2 ψ,
(4) x � ψ1 ∧ ψ2 ⇔ x � ψ1 and x � ψ2,

(5) x � ∃ϕ ⇔ there exists a path ρ such that ρ � ϕ,

20

3.2 Visible Bisimulation Equivalence

(6) ρ � ψ ⇔ x0 = first state in ρ and x0 � ψ,

(7) ρ � ¬ϕ ⇔ ρ 2 ϕ,
(8) ρ � Xϕ ⇔ ρ1 � ϕ,

(9) ρ � ϕ1∧ϕ2 ⇔ ρ � ϕ1 and ρ � ϕ2,

(10) ρ � ϕ1Uϕ2 ⇔ there exists a k ≥ 0 such that ρk � ϕ2,

and for all 0 ≤ j < k, ρj � ϕ1. 2

An example of a CTL∗ formula is the safety specificationEG(p∧q), which specifies
that there exists a path where both p and q hold in every state. Another example is the
liveness specification AGF p, which specifies that in all paths F p holds in all states.
This can also be expressed as “eventually p” is repeated forever, or in other words,
that p has to be true infinitely often.

3.2 Visible Bisimulation Equivalence

In this section, a unified abstraction for temporal logic verification, called visible
bisimulation equivalence is introduced. Equivalent states in the abstracted model
have the property that if a CTL∗ formula is true in one state, it cannot be false in an-
other equivalent state and vice versa. This is valid for all CTL∗ formulas, except for
formulas including the next operator X . This temporal logic is called CTL∗-X, and
abstraction of a transition model based on visible bisimulation equivalence preserves
all CTL∗-X properties.

Bisimulation [40] defines a relation between the states of two models. The basic
principle is that states are related if their next states are also related. Bisimulation
relations between states are also proved to be equivalence relations. Two bisimulation
relations that have a strong coupling to temporal logic are 1) branching bisimulation
for labeled transition systems with only transition labels (no state labels), [41], [55],
and 2) stuttering bisimulation for Kripke structures including only state labels [4].

In this thesis, these two formulations are unified in a bisimulation where both state
and transition labels are included. Two other similar formulations that also include
both state and transition labels are presented in [56] and [57]. They are, however,
based on traditional relation based bisimulation formulations. The first one in [56]
is called visible bisimulation. To emphasize that our alternative definition is directly
formulated as an equivalence relation, it is in Paper D, [47] called visible bisimula-
tion equivalence. All earlier bisimulation definitions are based on relations that are

21

Chapter 3 Incremental Abstraction

shown to be equivalence relations, sometimes including complex proofs, especially
for branching bisimulation [58]. To be able to directly apply our equivalence rela-
tion, the known properties for stuttering and branching bisimulation, especially the
fact that all CTL∗-X properties are preserved by this equivalence, are proved for this
equivalence formulation in Paper D, [47].

The basic definition of our visible bisimulation equivalence is inspired by an algo-
rithm for branching bisimulation called the signature algorithm [59]. However, that
paper is based on the ordinary relation based branching bisimulation, and shows how
the algorithm computes the expected relation based results. Our approach introduces
a definition that directly generates the properties we are interested in. Thus, the the-
oretical analysis is significantly simplified by our definition. A detailed formulation
and illustration of our visible bisimulation equivalence is presented in the rest of this
section.

Partition Π and block Π(x) To obtain reduced transition systems, states x, y ∈
X that can be considered to be equivalent in some sense, denoted by x ∼ y, are
merged into equivalence classes [x] = {y ∈ X |x ∼ y}, also called blocks. These
blocks, which are non-overlapping subsets of X , divide the state space into the quo-
tient set X/∼, also called a partition Π of X . The block/equivalence class including
state x is denoted by Π(x) = [x]. A partition Π1 that is finer than a partition Π2
means that Π1(x) ⊆ Π2(x) for all x ∈ X . It is denoted by Π1 � Π2.

Quotient transition system G/∼ Blocks are the states in reduced transition
systems, and the notion partition Π is used in the computation of this model, while
the resulting reduced model takes the equivalence perspective. The reduced model
is therefore called quotient transition system, and for a given partition Π it is defined
as G/∼ = 〈X/∼,Σ, T∼, I∼, AP, λ∼〉, where X/∼ = {[x] | [x] = Π(x)} is the set
of block states (equivalence classes), T∼ = {[x] a→ [x′] |x a→ x′} is the set of block
transitions, I∼ = {[x] |x ∈ I} is the set of initial block states, and λ∼([x]) = λ(x)
is the block state label function, where it is assumed that λ(x) = λ(y), ∀y ∈ [x].
The aim is to compute such reduced quotient transition systems, which still preserve
relevant properties that can be analyzed, for instance, by temporal logic.

Invisible and visible transitions To obtain efficient reductions, the event τ is
introduced as label for local transitions, included in no synchronization with other
transition systems. The lack of communication with other models means that the
τ event is hidden from the rest of the environment. Other events a 6= τ and cor-

22

3.2 Visible Bisimulation Equivalence

responding transitions are then said to be visible. For a given state partition Π, a
transition x τ→ x′ is invisible if Π(x) = Π(x′), while a transition x a→ x′ is visible if
a 6= τ or Π(x) 6= Π(x′). This means that a τ transition from one block to another is
visible, while a visible event a 6= τ can be a self-loop or a transition from one block
to another.

Divergent path, state, and block An infinite path x = x0
τ→ x1

τ→ x2
τ→ · · ·

is divergent if all states in the path belong to the same block, i.e. , xi ∈ Π(x) for
all i > 0. All states xi included in a divergent path are divergent states, denoted
by xi ↪→. A block that only includes divergent states is called a divergent block.

Stuttering transition A path x τ→ x1
τ→ · · · τ→ xn

a→ x′ is called a stutter-
ing transition, denoted by x�

a
x′, if Π(x) = Π(x1) = . . . = Π(xn), and a 6= τ or

Π(xn) 6= Π(x′), meaning that the first n transitions are invisible, while the last one
is visible.

Block transitions and event-target-blocks For a transition system with a
transition x a→ x′ and a partition Π, the corresponding block transition is denoted by
Π(x) a→ Π(x′), and the set of event-target-blocks for every state x ∈ X is defined as

ΓΠ(x) = { a→ Π(x′) |x a→ x′ ∈ T}.

Obviously, ΓΠ(x) includes all actual events a ∈ Σ and target block states Π(x′) that
are related to transitions x a→ x′ ∈ T from the source state x. Corresponding set of
visible event-target-blocks is defined as

ΓvΠ(x) = {�a Π(x′) |x�a x′}.

The element �
a Π(x′) in ΓvΠ(x) represents a stuttering transition x �

a
x′, which

indeed is a path including a set of invisible transitions within the block state Π(x)
followed by the last visible transition xn

a→ x′. The final state x′ belongs to a new
block Π(x′) 6= Π(x) if a = τ . If a 6= τ , x′ can also be a state in the current block,
i.e. , Π(x′) = Π(x). In that case, the visible transition is a self-loop block transition
Π(x) a→ Π(x′) = Π(x).

23

Chapter 3 Incremental Abstraction

Bisimulation Equivalences

Here, three specific partitions Π are introduced, with added complexity. All three
guarantee that related states x, y ∈ X , belonging to the same block state (equiva-
lence class), also have the same future behavior. The first case, called strong bisim-
ulation equivalence, means that only those states x and y in the original model can
be merged in a common block state Π(x), where every transition x a→ x′ is matched
by a transition y a→ y′ such that y ∈ Π(x). Furthermore, the target block states must
be equal, i.e. , Π(x′) = Π(y′) and, therefore, y′ ∈ Π(x′). In the second and third
alternatives, transitions are relaxed by also accepting stuttering transitions, where the
third case also takes care of divergent paths.

Definition 5 (Bisimulation Equivalences): Given a transition system G = 〈X,
Σ, T, I, AP, λ〉, including both state and transition labels, a partition Π that satisfies
the fixpoint

Π(x) = {y ∈ X |Π � Πλ ∧ ΓΠ(x) = ΓΠ(y)}, (3.1)

where Πλ(x) = {y ∈ X |λ(x) = λ(y)}, is

(i) a strong bisimulation equivalence when

ΓΠ(x) = { a→ Π(x′) |x a→ x′},

and states x, y ∈ Π(x) are strongly bisimilar, denoted by x ∼ y,

(ii) a visible bisimulation equivalence when

ΓΠ(x) = ΓvΠ(x) = {�a Π(x′) |x�a x′},

and states x, y ∈ Π(x) are visibly bisimilar, denoted by x ∼v y,

(iii) a divergence-sensitive visible (DSV) bisimulation equivalence when

ΓΠ(x) = ΓdΠ(x) = ΓvΠ(x) ∪ {↪→ |x ↪→},

and states x, y ∈ Π(x) are divergence-sensitive visibly bisimilar,
denoted by x ∼d y. 2

If states x and y are related as xRy, at the same time as their next states x′ and y′

belong to the same relation R, x and y are said to be strongly bisimilar. This well-
known relation, which is also proven to be an equivalence relation, see [40], is easily

24

3.2 Visible Bisimulation Equivalence

shown to generate the same partition as in Def. 5. The original relation is formulated
either for automata or Kripke structures, see [4], while our formulation includes both
state and transition labels in a unified framework. The visible bisimulation equiva-
lence in Def. 5 corresponds to branching bisimulation for automata, and stuttering
bisimulation for Kripke structures. These bisimulations are illustrated in the follow-
ing example.

Example 1. Branching, stuttering, and visible bisimulation A number of tran-
sitions with hidden τ events, followed by a visible event a, can be simplified, as
demonstrated forG1 in Fig. 3.1. Introducing the block state {0, 1, 2}, the two hidden
τ events are excluded in the corresponding quotient model, and only the visible a
event remains. This is an example of a branching bisimulation for transition systems
without state labels.

For Kripke structures, a similar reduction is possible. In that case, two or more
consecutive states in a path, with the same state label, do not keep more information

G1

0 1 2 3
τ τ a

G1/∼b

{0,1,2} {3}
a

G2

0

{p}

1

{p}

2

{p}

3

{q} G2/∼s

{0,1,2}

{p}

{3}

{q}
a

G3

0

{p}

1

{p}

2

{p}

3

{p}

4

{q}

5

{q}

6

{q}

7

{p}

τ a τ

τ

ττb
ω

G3/∼v

{0,1}

{p}

{2,3}

{p}

{4,5,6}

{q}

{7}

{p}

a

τ

b
ω

Figure 3.1: Transition system G1 without state labels and its branching bisimulation quotient
G1/∼b, Kripke structure G2 and its stuttering bisimulation quotient G2/∼s, and
transition system G3 with both state and transition labels, and its visible bisimu-
lation quotient G3/∼v .

25

Chapter 3 Incremental Abstraction

than one state with the same state label. This is illustrated in G2 in Fig. 3.1, where
the three first states with label {p} are reduced to one block state {0, 1, 2}, followed
by the final state with label {q}. Since transitions between states with the same state
label are called stutter steps, this reduction is an example of a stuttering bisimulation.

Also consider G3 in Fig. 3.1 that is a transition system including both state and
transition labels. The state labels generate the state label partition Πλ = {{0, 1, 2, 3},
{4, 5, 6}, {7}}, which, according to Def. 5 (ii), is not a visible bisimulation equiva-
lence. However, the finer partition Π = {{0, 1}, {2, 3}, {4, 5, 6}, {7}} is a visible
bisimulation equivalence, since this is the coarsest partition where the resulting sets
of event-target-blocks,

ΓvΠ(0) = ΓvΠ(1) = {�a {2, 3}},

ΓvΠ(2) = ΓvΠ(3) = {�τ {4, 5, 6}},

ΓvΠ(4) = ΓvΠ(5) = ΓvΠ(6) = {�b {7}},

ΓvΠ(7) = {�ω {7}},

are equal within each block. The resulting bisimulation quotient G3/∼v is also
shown in Fig. 3.1. 2

In Example 1, strong bisimulation equivalence gives no reduction, i.e. ,
G/∼ = G. Moreover, according to the definition of visible bisimulation, τ events
are only preserved in transitions to other blocks in the visible bisimulation quotient
model.

Bisimulation computation of Π by fixpoint iteration Observe that (3.1) is
a fixpoint, where each desired block Π(x) depends on sets of event-target-blocks
ΓΠ(x), which in their turn depend on the blocks Π(x) we are searching for. Fur-
thermore, these blocks include all states y ∈ Π(x) that satisfy the equality ΓΠ(x) =
ΓΠ(y) and Π is finer than Πλ. Thus, this definition of Π(x) determines the largest
possible block states for the actual fixpoint. This corresponds to the coarsest partition
of X , and the block states Π(x) are obtained by solving (3.1) as the greatest fixpoint
iteration

Πk+1(x) = {y ∈ X |Π � Πλ ∧ ΓΠk
(y) = ΓΠk

(x)},

until Πk+1(x) = Πk(x), see [60]. Then, no explicit state labels, corresponding to an
automaton model, gives the default value λ(x) = ∅ for all x ∈ X , and Πλ = X .

26

3.2 Visible Bisimulation Equivalence

Quotient transition system Given a partition Π, the quotient transition system
is defined on page 22. This applies to the strong bisimulation quotient G/∼, the
visible bisimulation quotient G/∼v , and the DSV bisimulation quotient G/∼d, with
one exception. For G/∼v and G/∼d, the transition relations are extended as

T∼v = {[x] a→ [x′] |x a→ x′ ∧ ([x′] 6= [x] ∨ a 6= τ)}

T∼d = {[x] a→ [x′] | (x a→ x′ ∧ ([x′] 6= [x] ∨ a 6= τ)
)
∨(

[x′] = [x] ∧ a = τ ∧ x ↪→
)
}.

For the transition system G3 in Example 1 and Fig. 3.1, the visible bisimulation
quotient G3/∼v is shown in the same figure.

DSV Bisimulation Equivalence

Generally, τ self-loops are examples of divergent paths, which only include invisi-
ble transitions that stay within one block. We remind that all states xi included in
a divergent path are divergent states, denoted by xi ↪→. Since the visible bisim-
ulation equivalence neglects such divergent paths, this bisimulation equivalence is
sometimes called divergent-blind visible bisimulation equivalence.

Divergent blocks and invisible cycles The DSV bisimulation equivalence
preserves, according to Def. 5 (iii), the divergent behavior, by separating states such
that either all states in a block are divergent, or no state in a block is divergent.
The following example illustrates this phenomenon. Moreover, it also shows how
the visible bisimulation equivalence can be adjusted to be able to also preserve the
divergent behavior, i.e. , generating a DSV bisimulation quotient G/∼d. Observe
that a cyclic path x = x0

τ→ x1
τ→ · · · τ→ xn = x is an invisible cycle, denoted by

x	, if it is a divergent path, that is xi ∈ Π(x) for 0 ≤ i ≤ n.

Example 2. Preserving divergent behavior by visible self-loops Consider the
transition system G in Fig. 3.2, including an invisible cycle, the τ self-loop. The
state label partition Πλ = {{0}, {1}}, which means that no state reduction occurs in
the visible bisimulation quotient G/∼v , and Π = Πλ. However, according to Def. 5
for visible bisimulation, the τ self-loop in state 0 disappears in G/∼v , since only τ
events in transitions to other blocks are preserved in the quotient model.

To solve this problem, a modified transition system G	 is formulated, where a
visible a	 self-loop is added for each invisible cycle in G. In this example, an a	

27

Chapter 3 Incremental Abstraction

G = G/∼d

0

1 {p}

τ

b

τ

G/∼v

0

1 {p}

τ

b

G	

0

1 {p}

τ

b

τ

a	

G	/∼v

0

1 {p}

τ

b

a	

Figure 3.2: Transition system G that is equal to the DSV bisimulation quotient G/∼d, the
visible bisimulation quotient G/∼v , the modified transition system G	 where
a visible a	 self-loop is added to the invisible τ self-loop in G, and the visible
bisimulation quotient G	/∼v .

self-loop is added in state 1, see Fig. 3.2. When the visible bisimulation equivalence
is applied on G	, and finally the a	 event is replaced by τ , the DSV bisimulation
quotient G/∼d is achieved. 2

DSV bisimulation by visible bisimulation with visible self-loops Con-
sider two transition systems, G = 〈X,Σ, T, I, AP, λ〉 and the modified G	, where
a visible self-loop x→

a	
x is added in G	 for each invisible cycle x	 in G. Then,

G/∼d = G	/∼v[τ := a].

This statement says that the DSV bisimulation quotient can be determined by com-
puting the visible bisimulation quotient of G	, and then replacing the a	 event
with τ . Example 2 and Fig. 3.2 confirm this procedure. Indeed, each invisible cycle
can be computed by a depth-first search algorithm, and then directly be collapsed to
a visible self-loop.

This method is a simplified alternative to adding a sink-state with a unique state
label and a τ self-loop, see [4], [55]. Additional τ transitions from all divergent states
in G are then also added to the sink-state. Our method utilizes the fact that we have
both state and transition labels, while earlier methods are based on Kripke structures,
where the event-based branching bisimulation is transformed to a stuttering bisimu-
lation problem, see [55].

28

3.3 Abstraction of Modular Systems

3.3 Abstraction of Modular Systems

To avoid state-space explosion in the synchronization of modular systems, an incre-
mental abstraction technique is applied. Local events are then hidden and abstracted
by the DSV bisimulation equivalence. As mentioned in the introduction of this sec-
tion, this equivalence preserves all CTL∗-X properties. Observe, however, that it is
the divergent sensitive version that is required, to preserve all CTL∗-X properties.

Incremental hiding and abstraction When subsystems are synchronized, more
local events are obtained, which implies that more events can be hidden and ab-
stracted. This hiding/abstraction method is repeated until all subsystems are synchro-
nized. Utilizing this incremental technique, state space explosion is avoided when a
reasonable number of events are local, or at least only shared with a restricted number
of subsystems. Most real systems have this event structure, where still some events
can be shared by all subsystems.

This incremental abstraction technique for modular systems can be traced back to
[5], but its application to local events was more recently proposed in [6], where it was
called compositional verification. In Papers B and C, this incremental abstraction is
adapted to fault diagnosability verification, and in Papers D and E, it is adapted to
opacity verification. In all cases, it shows great computational time improvement
compared to standard synchronization without abstraction.

Generic algorithm The incremental abstraction algorithm outlined above is pre-
sented in Algorithm 1. The abstraction operator A in GAΩi

on line 6 also involves
hiding, where local events are replaced by τ . The abstraction is only activated if
there are any local events in G.

The basis of this algorithm is general, applicable for opacity and diagnosability,
as well as temporal logic verification. However, for each verification problem, the
corresponding suitable input system has to be generated, which includes n arbitrary
subsystems, Gi, i = 1, . . . , n, of a modular system. In fault diagnosability verifica-
tion, the inputs are local verifiers V(Gi), and in opacity verification, the inputs are
local observers O(Gi). All unobservable events must then be local, while shared
unobservable events require some additional, but still minor, modifications of this
algorithm. These modifications are presented in Chapter 5.

Different abstractions Algorithm 1 can be applied to any abstraction that is con-
gruent with respect to synchronization and hiding. Examples of such abstractions are

29

Chapter 3 Incremental Abstraction

Algorithm 1: Incremental abstraction

1: input G1, . . . , Gn
2: πΩ := {{1}, {2}, . . . , {n}}
3: repeat
4: Choose Ω1,Ω2 ∈ πΩ according to some heuristics
5: Ω := Ω1 ∪ Ω2

6: GΩ := GAΩ1
‖GAΩ2

7: Replace Ω1 and Ω2 by Ω in πΩ

8: until Ω = N+
n

9: output GAΩ

Figure 3.3: Incremental abstraction of a modular transition system G = ‖i∈N+
n
Gi.

DSV bisimulation equivalence that preserves CTL∗-X properties and conflict equiv-
alence [61] that preserves nonblocking. This algorithm was proposed for conflict
equivalence abstraction in [6]. In Papers C and E, the efficiency of this abstraction
is shown, where different verification problems are transferred to nonblocking veri-
fication problems.

Heuristics In the selection of the sets Ω1 and Ω2 and corresponding transition
systems GΩ1 and GΩ2 , to be abstracted in Algorithm 1, a natural approach is to
first select a group of transition systems with few transitions. Among them, the two
systems with the highest proportion of local events are chosen to be abstracted. In
this way, a significant reduction of states and transitions is achieved by the abstrac-
tions [6].

Example 3. DSV bisimulation quotient for a buffer-resource system Consider the
transition system

G = R1 ‖B1 ‖R2 ‖B2 ‖R3 ‖Sp3,

where the subsystems are shown in Fig. 3.4. R1, R2, and R3 are resources that can
be either in their idle (0) or busy (1) state, while B1 and B2 are buffers of size 2,
located in between the resources. The last resource R3 has two alternative choices
when leaving the busy state. The choice could be to leave a part to one of two infinite
buffers, modeled by the alternative events b3 and c3. The specification Sp3 says that
the alternative b3 should be taken.

30

3.3 Abstraction of Modular Systems

Ri

0 1

{p}ai

bi

Bi

0 1

{p}

2

{p}

i = 1, 2

bi

ai+1

bi

ai+1

R3

0 1

{p}a3

b3, c3

Sp3

0 1

{p}a3

b3

Figure 3.4: Transition system G = R1 ‖B1 ‖R2 ‖B2 ‖R3 ‖Sp3.

The marked (goal) state of the total systemG is the initial state x = (0, 0, 0, 0, 0, 0),
which is the only state where the state label is empty, i.e. λ(x) = ∅ and x � ¬p.
All other states have state label {p}, since the union of state labels of the subsystems
becomes state label after synchronization.

The total abstracted transition system, denoted GA, is computed incrementally
applying the DSV bisimulation equivalence. The initial step is GA1,1 = (RA1 ‖B1)A .
This abstraction is based on the local events a1 and b1, followed by a2 as additional
local event in the abstraction (GA1,1 ‖R2)A. The event b2 is the new local event in the
next abstraction

GA1,2 = ((GA1,1 ‖R2)A ‖B2)A.

GA1,2

0 1

{p}

2

{p}

6

{p}τ

a3

τ

a3

τ τ

a3 a3

· · ·

GA

0 1

{p}

2

{p}τ

τ

τ

τ

Figure 3.5: Abstracted transition system GA1,2 and the final abstraction GA

31

Chapter 3 Incremental Abstraction

In the last step, (R3 ‖ Sp3)A is first computed, before the final abstraction GA =
(GA1,2 ‖ (R3 ‖ Sp3)A)A is obtained. Fig. 3.5 shows that the intermediate transition
system GA1,2 has seven states, while the final abstraction GA only has three states.
Without abstractions G has 108 states. Even for an arbitrary number of buffers and
resources, the number of states in the final abstraction is always three [47].

CTL∗-X formulas can now be evaluated on the final abstraction GA. For instance

x � EF ¬p holds for x = 0, 1,
x � AF ¬p does not hold for any state.

Since any CTL∗-X property in G is also preserved in GA, this implies that the first
formula also holds in the initial state of G, while the second formula also does not
hold for any state in G.

The reason for the deadlock state in GA is that the alphabet of the specification
ΣSp3 does not include the event c3, andR3 can therefore execute this event as a local
event without any synchronization with the rest of the system. To avoid this, the
alphabet ΣSp3 must also include the event c3. In that case, the deadlock state 2 in
GA disappears, but the formula x � AF ¬p still does not hold in any state, due to
the τ self-loop in state 1. 2

3.4 Model Checking and Incremental Temporal
Logic Verification

The computational efficiency of the incremental abstraction in Algorithm 1, apply-
ing the visible bisimulation equivalence (VBE) and the divergent sensitive visible
bisimulation equivalence (DVBE), will now be compared with some competitive al-
ternatives. The implementation of the VBE and DVBE fixed points in Def. 5 are
based on a minor adjustment and improvement of the routine SigRef [59], available
in the open source software package mCRL2, www.mcrl2.org. This implementation
is compared with the conflict equivalence (CE) algorithm, available in the software
tool Supremica [62].

Since DVBE preserves CTL∗-X, this abstraction is also compared with the sym-
bolic model-checker nuXmv [63], which provides a number of efficient CTL and
LTL verification algorithms. The default CTL and LTL algorithms in nuXmv are
based on BDDs and therefore here called CTLBDD and LTLBDD. For verification of

32

3.4 Model Checking and Incremental Temporal Logic Verification

LTL, a number of alternative more recent SAT-based algorithms are also available in
nuXmv. The most efficient and robust alternative to LTLBDD in our brief evaluation
was found to be the algorithm k-liveness [64], in nuXmv and here called LTLIC3.

The different algorithms are compared for two classical examples, Dijkstra’s din-
ing philosopher problem (DP) and a modified version of the buffer-resource system
in Example 3. DPN includes N philosophers and N forks, a modular system in-
cluding 2N subsystems, also available in Supremica [62]. Moreover, DPN:2 means
that the first and the second half of the philosophers including forks are synchronized
before they are delivered to the abstraction and verification routines. The number of
states in the two subautomata is then max ns,i, which for DP8:2 means that the first
abstraction has to act on a local model with max ns,i = 1378 states. The reason to
evaluate this alternative model structure is to investigate the efficiency when larger
subsystems are also included in a modular structure.

The second example is the buffer-resource system in Example 3, but here extended
with one more buffer B3 and one more resource R4 that has the alternative event c4
instead of R3 in Example 3. All three buffers have the same size, either 20 and 50,
and the models are called B20 and B50.

In Table 3.1, ns is the number of states without abstraction, and max ns,i is the
number of states in the largest local model. The first three verfication methods (VBE,

Table 3.1: Execution times in seconds for nonblocking (VBE, CE, CTLBDD) and liveness
(DVBE, LTLIC3, LTLBDD) verification. Different dining philosopher (DPN) exam-
ples are evaluated, where N = number of philosophers. Also two buffer-resource
(BM) models are examined, whereM is the size of the buffers. The best execution
times are given by bold numbers.

Model ns max ns,i VBE CE CTLBDD DVBE LTLIC3 LTLBDD

DP4 431 7 0.02 0.03 0.09 0.03 0.27 0.09
DP4:2 431 66 0.02 0.02 0.10 0.02 3.62 0.12
DP6 9007 7 0.05 0.03 6.90 0.08 0.47 3.21

DP6:2 9007 302 0.05 0.13 2.74 0.08 16.6 2.35
DP8 1.87 · 105 7 0.07 0.06 608 0.19 0.81 645

DP8:2 1.87 · 105 1378 0.25 17.3 103 0.37 176 125
B20 1.48 · 105 21 0.37 0.12 0.98 0.42 0.85 0.15
B50 2.12 · 106 51 4.91 1.01 1.02 5.03 3.14 0.73

33

Chapter 3 Incremental Abstraction

CE, CTLBDD) evaluate nonblocking, which in CTL is expressed as AGEF ϕm,
where ϕm holds in the marked (and in these examples the idle) state of the total
system. In the last three columns (DVBE, LTLIC3, LTLBDD), liveness properties are
evaluated. The LTL formula GF ϕm (ϕm holds infinitely often) is evaluated in the
DP examples. In the buffer-resource examples, the global deadlock states, marked
by the state label ϕd, are avoided by the extended alphabet, including c4 in the alpha-
bet of Sp4. The satisfaction of the LTL formula FGϕd is therefore verified in these
examples.

The resulting execution times in seconds for the different abstraction and verifica-
tion methods are given in Table 3.1, where the best nonblocking and liveness results
are shown by bold numbers. Observe that the temporal logic formulas are trivially
evaluated for the resulting abstracted models. For instance all abstracted DP models
are the same as GA in Fig. 3.5. To further evaluate the strength of VBE and DVBE
compared to CE, some additional larger DP models are evaluated in Table 3.2. Based
on the results in Tables 3.1 and 3.2, the following conclusions can be drawn.

1. When individual subsystems are large, VBE and DVBE are significantly bet-
ter than all other evaluated methods. The reason why CE takes longer time
for larger local models can be that this abstraction, although being a more effi-
cient abstraction in terms of number of states, is more time consuming in each
iteration compared to VBE.

2. For small subsystems CE is marginally better than VBE and DVBE. For the
buffer example, CE is significantly better. But observe that CE can only eval-

Table 3.2: Execution times in seconds for VBE, CE, and DVBE, evaluated for different num-
ber N of dining philosophers DPN . The best execution times are given by bold
numbers and O.T indicates out of time (>15 minutes).

Model ns VBE CE DVBE

DP4 431 0.02 0.03 0.03
DP10 3.9 · 106 0.10 0.17 0.42
DP20 1.5 · 1013 0.22 16.6 7.7
DP30 6 · 1019 0.34 O.T. 55.8
DP40 2 · 1026 0.46 O.T. 239
DP50 9 · 1032 0.63 O.T. 791

34

3.4 Model Checking and Incremental Temporal Logic Verification

uate nonblocking, while DVBE preserves CTL∗-X.

3. DVBE that also considers divergence-sensitivity, adds extra burden on the ab-
straction computation.

4. The BDD algorithms are sometimes efficient, but quite often they result in long
execution times, typically when the evaluated model has many variables.

5. Although LTLIC3 is never the best choice, it is robust and sometimes even
better than DVBE, but still sensitive to large submodels.

To summarize, the abstractions VBE and DVBE proposed in this thesis are often
the most efficient choice for verification of temporal logic properties. However,
further evaluations are necessary, and since VBE is sometimes significantly faster
than DVBE, it is useful to further investigate for which temporal logic formulas it is
enough to compute VBE without divergence sensitivity.

35

CHAPTER 4

Fault Diagnosability Verification

The behavior of DESs is partially observable through the execution of observable
events, while the unobservable part also plays an important role in verification of
safety properties. All DESs are prone to faults, and detection of faults as instances of
unobservable events is crucial in fault diagnosis. Ensuring safety and reliability for
complex modular systems is generally done by detection of faults and their isolation,
which has received considerable attention in past years.

In this thesis we are focusing on fault diagnosability verification that is performed
to decide a priori if all faults can be recognized within bounded time or not. One im-
portant problem in diagnosability verification of large modular systems is the com-
plexity issue. A part of the work in this thesis is an attempt to reduce the complexity
of modular DESs to verify diagnosability. The attempt is either related to finding
polynomial algorithms for the diagnosability verification, or to find abstraction meth-
ods to reduce the size of the system. First, we present some notions that are necessary
for fault diagnosability verification.

37

Chapter 4 Fault Diagnosability Verification

4.1 Faults and Diagnosers

Fault is an abnormal condition or a non-permitted deviation from acceptable behav-
ior. A software bug, a broken sensor, or a short circuit are some instances of faults.
In system modeling, depending on the problem, faults are usually considered as an
additional input, and are assumed to be unobservable events. On the other hand, the
termination of a system’s ability to perform a desired task is often called a failure,
for instance, when a system does not respond and gives wrong/unreasonable output
[65].

The following example illustrates the difference in interpretation between these
closely related notions. The result of a programmer’s error is a fault in a written soft-
ware, either in terms of a faulty instruction or data. When the program is running, the
fault becomes active and produces an error. If and when the error affects a delivered
service (in value and/or in timing of delivery), a failure occurs, cf. [66]. In some
scientific areas this distinction is important [67], while in the DESs community, the
two words “failure” and “fault” are used synonymously. In this thesis, we mainly use
the notion fault.

Fault Diagnosis

There are two notions of diagnosis problem; online diagnosis and offline diagnosis,
depending on whether the system to be diagnosed is in normal operation or not [7],
[67].

Offline diagnosis Offline diagnosis means that the system is not in normal func-
tioning and is in a test-bed [7]. For instance, in a repair shop, what a mechanics
does to an automobile can be considered as offline diagnosis. This is also called the
diagnosability problem, and refers to the ability to detect and identify faults within
a finite delay after its occurrence. In diagnosability verification, the whole structure
of the system and the complete characterization of the problem is available. Diag-
nosability verification is the basis of diagnosis, i.e., a fault can be diagnosed by a
diagnoser only if the system is diagnosable with respect to a fault class. The diag-
nosability notion is an essential property that must hold when real life applications
are constructed. However, even when a system is not diagnosable, a diagnoser may
still diagnose some fault classes [68].

Online diagnosis In online diagnosis, or simply fault diagnosis, [12], [69]–[71],
the system to be diagnosed is in normal operation. Hence, the operating state of

38

4.1 Faults and Diagnosers

the system is constantly changing. In this case, the system cannot be opened for in-
spection, and the available measurements are limited to the observed system outputs.
The whole diagnoser is not constructed, and the projection is generated only for the
specific trace that is generated by the system [7].

Due to the significant differences between fault diagnosis and diagnosability veri-
fication, the corresponding approaches are also different [67]. Fault diagnosis means
that a diagnosis state is associated to each observed string of events, where the states
can be normal, uncertain, or indeterminate (faulty). On the other hand, diagnosability
verification is about determining whether the system can detect all fault occurrences
in a finite number of steps, cf. [8], [10], [72], which is the main focus of this chapter.

Diagnoser

Diagnosers are modified observers that carry fault information by augmented labels,
attached to their states [7], [10]. One purpose of constructing diagnosers is to per-
form diagnosability verification. However, the state space of a diagnoser is in the
worst case exponential in the cardinality of the state space of the system model [8].
It is more efficient if we could deduce about a system’s diagnosability without hav-
ing to construct a complete diagnoser. Fortunately, there are polynomial algorithms
for this purpose, which are presented in the next section. However, the diagnoser
construction is elaborated more to clarify the basis of the diagnosability notion.

N and F state labels For the diagnosis of DESs, diagnosers use observable
events to detect and isolate faults. A diagnoser is constructed by traversing from
possible initial states of a transition system, and augmenting all states with either N
or F labels. A state label N is introduced, when no faulty transition is passed reach-
ing to that state. Whereas, the state label F is introduced if there is at least one faulty
transition on the way to reach to that state. As soon as a state label becomes F , all
reachable states after that state are also augmented with F . Then, the diagnoser is
obtained by generating an observer based on the extended state information. There
can be different fault classes in a model, which can be identified with different in-
dexes. However, in this thesis, without loss of generality, only one fault class in the
system is assumed.

Example 1. The transition system G in Fig. 2.1 in Chapter 2, with the event u
replaced by the alternative events u and f , is now labeled with state labels as GL in
Fig. 4.1. Here, the state labels are augmented to the state names. The events u and
f are unobservable, where f is also a fault event. The diagnoser D(G) of the system

39

Chapter 4 Fault Diagnosability Verification

GL

0N
1N

2N 3N

2F 3F

f

a b

a
c

u
a

c

D(G)
{0N, 2N, 2F}

{1N, 3N, 3F}

{1N}

{3N, 3F}

a b b

c

c

Figure 4.1: The labeled system model GL and its diagnoser D(G).

is also depicted in the same figure, generated as the observer of GL. There is a loop
over state {3N, 3F} that has different labels, and is called uncertain state. In the
following, this is elaborated in detail. 2

4.2 Fault Diagnosability Verification

When a system is designed, fault diagnosability verification is performed to decide a
priori if all faults can be recognized within bounded time or not. This is performed
on the whole system structure. Before defining the formal definition of fault diag-
nosability, the function that assigns labels to states is defined. A fault assignment
function is a mapping from Σ to state fault labels N or F , i.e., ψ : Σ → {F,N}. It
means that if σ /∈ Σf (Σf is the set of faulty events), it is projected to N , otherwise
it is projected to F . All reachable states after an F -labeled state, are also F -labeled.

Definition 6 (Diagnosability [8]): With respect to the event observation projec-
tion P and the fault assignment function ψ : Σ→ {F,N}, a systemG is diagnosable
if

(∃n ∈ N) (∀s, w ∈ L(G)) (∀m = st ∈ L(G)) :

ψ(sf) = F ∧ |t | ≥ n ∧ P (w) = P (m)

⇒ (∃r ∈ pr({w}) : ψ(rf) = F,

where sf and rf are the last events in the traces s and r, respectively, |t | is the length
of trace t, and pr({w}) is the set of all prefixes of w. Also, L(G) is the set of all
traces generated by G. 2

This definition implies that a system is diagnosable, if it is possible to detect all

40

4.2 Fault Diagnosability Verification

faults in the system within a bounded time, by observing a sequence of events. This
means that the event observations after each fault in the system should be distinguish-
able enough compared to other observed sequences where no fault has happened.

Language specifications In order to uniquely identify each fault based on only
observable events, the faulty behavior needs to be characterized. Language specifi-
cation [9], [15], [69], [73] is one of the approaches that is utilized to represent the
incorrect system behavior for fault diagnosability verification. In this approach, a
specification represents the non-faulty behavior of the system and every deviation
from that specification leads to a fault. There are some polynomial time algorithms
that are developed to solve language diagnosability problems [69], [73], [74].

Explicit fault events Another approach for representing the unwanted system
behavior is to include fault events [7], [75], where faults are shown as explicit events
in the same model. Some of the polynomial algorithms for explicit fault-event diag-
nosability are presented in [8], [10], [11], [14], [75]. In this thesis, the focus is on
this explicit fault-event approach, and Def. 6 is based on this faulty behavior charac-
terization.

A common drawback of the mentioned approaches is that the complete state space
of the system has to be enumerated, which is usually computationally infeasible.
Therefore, many diagnosability verification methods exploit the system structure in
order to avoid the explicit state representation of the overall system.

Decision Structures for Diagnosability Verification

There are three different structures for diagnosability verification. The first one is
the centralized structure, where the diagnosis is calculated based on one monolithic
diagnoser [7]–[10], [75]. In this structure, a centralized model is required to gener-
ate the centralized diagnoser. The computational complexity of this method is very
high for large systems. However, to deal with geographically distributed systems or
systems that are too large to be diagnosed with one single diagnoser, decentralized
and distributed structures are developed. Moreover, system decomposition has been
recognized as an important approach that mitigate the architectural complexity of
systems.

Decentralized structure The decentralized architecture [69], [76]–[79] is close
to the nature of a majority of technologically complex systems, such as communi-
cation and computer networks, manufacturing systems, and transportation systems.

41

Chapter 4 Fault Diagnosability Verification

These systems have several decision making sites that communicate with each other.
These sites know the whole model, and use a local diagnoser, with similar functions
and with possible communication between the local sites until reaching the same
diagnosis as with a centralized diagnosis design. There is also a coordinator that
decides about the final diagnosis. The main drawback is the ambiguity that may be
in deciding about fault occurrences, and the way the local sites interact with each
other. In [77] the notion of diagnosability is extended in order to better capture the
decentralized architecture, including local sites communicating with a coordinator.

The notion of codiagnosability is introduced for decentralized diagnosers in [69],
where it is required that the occurrence of any fault must be diagnosed within a
bounded delay by at least one local diagnoser, using it’s own observations of the
system behavior. This diagnosability notion is also used in other works for both
automata and PNs [11], [78], [80].

Distributed structure The last structure is the distributed structure [81]–[83],
where the distinction between this structure and the decentralized structure is some-
times not clear. It was first considered as a special case of the decentralized structure
in [77]. In this structure, in general, the local diagnosers merely use the local system
models, which is different to the decentralized case. In other words, each subsystem
only knows its own part of the global model and has local diagnosers to perform diag-
nosis locally. In distributed diagnosis approaches, each local diagnoser makes their
diagnosis decision based on only a subset of observable events, and they commu-
nicate these decisions to other local diagnosers. The level of coordination required
between the local diagnosers depends on how each local diagnoser is designed [84].

A modular structure [12], [73], [85] is a specific example of a distributed structure,
where each fault in the system must be uniquely identified by the modular component
where it occurs, and is solely based on event observations of that component [15].
This restriction reduces the computational complexity that is the major problem when
dealing with DESs. Finally, note that diagnosability verifiers with polynomial com-
plexity, which are presented in Sect. 4.3, can be adapted to the different structures
mentioned above.

Uncertain and Indeterminate Cycles

Now that the diagnosability property is formally defined, in this subsection it is
shown how it can be verified using diagnosers. Therefore, the notions of uncertain

42

4.2 Fault Diagnosability Verification

G1
0 1

f

a b

D(G1)
{0N, 1F} {1F}b

a b

G2
0 1

f

a, b

D(G2)
{0N, 1F} {1F}

a, b

a, b

Figure 4.2: The diagnosable G1 and its diagnoser D(G1) that includes a loop over the un-
certain state. The diagnosable G2 and its diagnoser D(G2) with no loop over the
uncertain state.

and indeterminate cycles in diagnosers are clarified through some examples.

Example 2. Consider G1 and its diagnoser D(G1) in Fig. 4.2 with f as an unob-
servable fault event, and a and b as observable events. As it is seen in D(G1), there
is a loop with event a over the state that includes both F and N labels. This state
is called an uncertain state, and a loop where all states are uncertain is an uncertain
loop.

The diagnoserD(G1) has one uncertain cycle, which corresponds to a cycle in G1
with only label N . Thus, G1 is diagnosable, since there is no other a loop in G1
including label F . Therefore, traversing the a loop in D(G1) does not violate the
ability to diagnose the fault, because there is no ambiguity in the inverse projection
from the a loop inD(G1) to the a loop inG1. In other words, to recognize whether a
transition system is diagnosable or not, it is necessary to consider both the transition
system and its diagnoser. First, find an uncertain cycle in the diagnoser, e.g. the a
loop in D(G1) in Fig. 4.2. Then, check the corresponding cycles in the transition
system G1, which is the inverse projection of that cycle in D(G1). If there is a cycle
in G1, merely with either N or F labels, the corresponding cycle in D(G1) is an
uncertain cycle, and the system is diagnosable. The diagnoser D(G2) depicted in
Fig. 4.2 does not have any uncertain cycle. Thus, the system G2 is also diagnosable.

2

Indeterminate cycles In general, a cycle in a diagnoser is called an indetermi-
nate cycle, if two cycles in the original systemG, one including only labelN and the
other one with only F , can be associated with a cycle of uncertain states in D(G).

43

Chapter 4 Fault Diagnosability Verification

G3
0 1

f

a a, b

D(G3)
{0N, 1F} {1F}b

a a, b

Figure 4.3: The non-diagnosable G3 with an indeterminate cycle in its diagnoser D(G3).

The presence of an indeterminate cycle implies violation of diagnosability.

Example 3. The diagnoser D(G3) in Fig. 4.3, has one uncertain a loop that corre-
sponds to two related cycles in G3 depicted in Fig. 4.3. The first one is the a loop
purely in state 0 where no error has occurred, and the second one includes a loops
also in state 1, in which case the fault has occurred. Obviously, the diagnoser can
not distinguish whether the system is in state 0 or state 1. In this case, the diagnoser
contains an indeterminate cycle, and the system is not diagnosable. 2

The following example illustrates further the importance of considering both sys-
tem and its diagnoser together, when reasoning about the diagnosability of a tran-
sition system. Although diagnosers of two different systems can be identical, their
corresponding systems may behave differently with respect to fault diagnosability.

Example 4. Consider Fig. 4.4, where both transition systems G4 and G5 contain an
uncertain b loop in their diagnosers. Although, the diagnosers are identical, however,
the b loop over the uncertain state, corresponds to only one b loop in G4, while, there
are two b loops in G5. In G5, state 1 is an N state, while state 4 is an F state. It
means that there is an indeterminate cycle in D(G5), and the system G5 is therefore
not diagnosable. 2

The diagnoser generation has exponential complexity, which makes it infeasible to
perform fault diagnosability verification for large DESs. To circumvent this problem
different polynomial algorithms have been developed for diagnosability verification
[8], [11], [86].

4.3 Diagnosability Verifiers

Fault diagnosis has been studied extensively for DESs since the early 90s. The basic
concept is provided in [7], where a language and fault event based approach for
online diagnosis and diagnosability verification is proposed, based on a diagnoser

44

4.3 Diagnosability Verifiers

construction. A similar state-based approach is later proposed in [75] for diagnoser
construction, where an automata modeling formalism is proposed. Diagnosis has
also been addressed by PN approaches in [72], [87].

The complexity of the method in [7] is exponential in the number of states and
doubly exponential in the number of fault types. Other approaches, that have been
developed later, address the complexity problem with polynomial algorithms, e.g.,
[8], [10], [11]. The diagnosability verification approach in [8] is automata-based,
but it does not construct a diagnoser. A diagnosability verifier for a model G is then
obtained by excluding the unobservable events, but still adding a state label L equal
to N before, and equal to F after a fault has occurred, similar as in the generation of
a diagnoser D(G). The resulting model Go is synchronized with itself, such that a
verifier

V(G) = Go ‖Go

is obtained.

Uncertain loops The verifier has states (x1 L1, x2 L2), where there are four pos-
sible combinations of N and F state labels. Any state in the verifier that includes
both an N and an F label is called an uncertain state, in the same way as a state in a

G4
0

12

34

a

f b

a f

c
b

D(G4)
{0N, 2F}

{1N, 3F, 4F} {4F}

a

b

c

c

G5
0

12

34

a

f b

a f

cb

D(G5)
{0N, 2F}

{1N, 3F, 4F} {4F}

a

b

c

c

Figure 4.4: The diagnosable G4 and its diagnoser D(G4), and the non-diagnosable G5 and
its diagnoser D(G5) = D(G4).

45

Chapter 4 Fault Diagnosability Verification

diagnoser is uncertain when it includes both N and F labels. If there are any loops
with only uncertain states in V(G), the system G is not diagnosable. The reason is
the two identical sequences of observable events in the two Go models that reach
to cycles, one including and the other one not including fault unobservable events.
Since the faulty and the non-faulty behaviors can not be distinguished in finite time
due to the cycles, the system is not diagnosable.

Polynomial complexity The computational complexity of this algorithm is poly-
nomial and of 4th order in the number of states forGo. Since all unobservable events
are excluded, a great reduction is obtained when there are many unobservable events.
An improved reduction to 2nd order in the number of states is obtained by a similar
algorithm in [10] where, on the other hand, the unobservable events are not removed.
Thus, the number of states is larger in the corresponding Go model, especially when
there are many unobservable events.

Synchronization of faulty and non-faulty model The method in [10] is fur-
ther improved in [11], where symmetry is utilized such that one of the Go models
includes only the non-faulty part (only N labels). This is illustrated in the following
example.

Example 5. The polynomial algorithm in [11] is utilized here to generate the verifier
of G4 that is depicted in Fig. 4.4 along with its diagnoser. Based on the verifier
algorithm, states are first augmented with N and F labels, depending on if a fault
has happened or not, as GL4 in Fig. 4.5. The F -labeled states are then considered to
be marked states. Backward reachability from all marked states is done, in order to
get the faulty part GF4 of the model. In this example, GF4 = GL4 . The non-faulty

GL
4 , G

F
4

0N

1N2F

3F4F

af

b

a f

c
b

GN
4

0N

1N

a

b

Figure 4.5: The faulty (GF
4) and the non-faulty (GN

4) parts of G4.

46

4.3 Diagnosability Verifiers

V(G4)
(0N, 0N)

(1N, 1N)(0N, 2F)

(1N, 3F)(1N, 4F)

af
b

a

b

f

V(G5)
(0N, 0N)

(1N, 1N)(0N, 2F)

(1N, 3F)(1N, 4F)

af
b

a f

b

Figure 4.6: The verifiers V(G4) and V(G5).

part GN4 , however, only has two states, and the verifier is obtained by computing
V(G4) = GN4 ‖GF4 , which is shown in Fig. 4.6. 2

Example 6. Consider the transition systems and the diagnosers in Fig. 4.4. Al-
though both systems have the same diagnosers, we have already observed that G4
is diagnosable while G5 is not. This is also confirmed in this example, by gener-
ating the verifiers of both systems, based on the algorithm in [11]. The faulty and
non-faulty parts of G4 are depicted in Fig. 4.5, and the verifiers for both G4 and G5
are shown in Fig. 4.6. As expected, V(G4) does not have any loop over uncertain
NF labeled states, meaning that G4 is diagnosable, while V(G5) has a loop over the
uncertain state (1N, 4F). Thus, G5 is not diagnosable. 2

In Paper A, a modified diagnosability algorithm is proposed that also reduces the
state space by exploiting symmetry as in [11], while unobservable transitions are
abstracted as in [8]. The notion of minimal explanations is also utilized, which is
involved in MBRG [51], a graph for diagnosability analysis of PNs. Minimal expla-
nations have a significant impact on complexity reduction, as they do not require an
exhaustive enumeration of the state space. Considering modular automata as PNs,
implies that the notion of minimal explanations also can be applied to automata-based
diagnosability methods.

It is shown in Paper A that when there are a significant number of unobservable
transitions, our proposed method gives better performance than [11] for systems with
moderate size. Increasing the number of unobservable transitions results in an obvi-
ous increase in the size of the verifier in [11], while it does not change the number
of states in our proposed verifier. However, for large systems, abstracting all unob-

47

Chapter 4 Fault Diagnosability Verification

servable transitions may generate a number of non-deterministic transitions in the
verifier proposed in Paper A. This fact is shown to increase the state space of the
verifier significantly for large systems.

Temporal Logic Specification

One possibility to verify fault diagnosis problems is to formulate a temporal logic
expression that is verified by model checking algorithms [4]. Model checking tech-
niques have been exploited for fault diagnosis of industrial systems in [88], [89]. In
[90], examples of faults violating a formal specification expressed in temporal logic
are presented, where LTL is used to express the fault specification. Also in [91], a
temporal logic-based approach for diagnosing the occurrence of a repeated number
of faults is developed. In [92], LTL is used as correctness requirement for fault detec-
tion of discrete-time stochastic systems. The temporal logic allows the correctness
properties to be specified completely, and also supports automatic translation into
automata. The work in [89] is on diagnosis of faults that recover once they occur,
where the verification method is reformulated as an LTL formula.

CTL formula for uncertain loops In this thesis, CTL is used to specify diag-
nosability based on the verifier in [11]. The existence of loops over uncertain states
in the verifier then needs to be analyzed, i.e. , if there are any loops with both N and
F labels in each state. If there exists at least one such loop over NF states in the
verifier, the system is not diagnosable.

Let the state formula Φ be true for uncertain states with NF labels. It means that
Φ does not hold in certain states (with NN or FF labels in the verifier). A system
is then not diagnosable if finally there exists at least one path where Φ is eventually
always true in the verifier. In CTL, that is expressed as EF EG(Φ). Thus, a system
is not diagnosable when EF EG(Φ) holds. On the other hand, since EG(Φ) ≡
¬AF (¬Φ) and EF (¬Φ) ≡ ¬AG(Φ), we find that

EF EG(Φ) ≡ EF (¬AF (¬Φ)) ≡ ¬AGAF (¬Φ).

Thus, a system is diagnosable if AGAF (¬Φ) holds, which means that all possible
paths from all reachable states in the verifier will finally have no uncertain states.

48

4.3 Diagnosability Verifiers

Divergence

The divergence property [50] for DESs with partial observations implies that there
are infinite sequences of transitions without any further interaction with the envi-
ronment. In [93], two properties, language divergence and marking divergence, and
their relation to diagnosability analysis of labeled PNs, are discussed. A related con-
cept is loop-preserving observer for diagnosability verification in [9], which ensures
that every loop in the original model also appear as loop in the abstracted model.

Divergence-sensitive abstraction In Sect. 3.2, visible bisimulation is intro-
duced as an abstraction method for modular systems. Local events are then hidden
by τ events and removed, as long as the abstracted system has an equivalent behavior.
In its basic form, visible bisimulation removes any divergent loops only including τ
events, while such loops are preserved in the divergence-sensitive version. Since di-
agnosability verification evaluates if there are any loops with uncertain states in the
verifier, the divergence-sensitive version of visible bisimulation is critical. This is
illustrated in the following example. In [43], [94], the divergence-sensitive version
of visible bisimulation is applied to diagnosability verification of modular systems.

Example 7. The verifier for G5 is depicted in Fig. 4.7. As it is seen, V(G5)
has a loop over the uncertain state (1N, 4F), which means that G5 is not diagnos-
able. However, when all events are local and have been replaced by τ , the loop over
(1N, 4F) will be removed by an abstraction that is not divergence-sensitive. Re-
moving this τ loop makes the system diagnosable, which is not correct. Thus, it is
important that any divergent loops are preserved in fault diagnosability verification,

V(G5)
(0N, 0N)

(1N, 1N)(0N, 2F)

(1N, 3F)(1N, 4F)

ττ
τ

τ τ

τ

Figure 4.7: The verifier V(G5), where the visible events in Fig. 4.6 have been replaced by
invisible τ events.

49

Chapter 4 Fault Diagnosability Verification

which is guaranteed by a divergence-sensitive abstraction. 2

The notion of divergence and an algorithm that preserves it, are described in Paper
B, where dummy states are introduced as a trick in the abstraction procedure.

4.4 Diagnosability Verification for Modular
Systems

Among all decision structures for diagnosability verification, monolithic diagnosabil-
ity is considered in this thesis. However, it is considered for a general case, where
the system G is modular and consists of n interacting subsystems, G =‖i∈N+

n
Gi,

which are locally either diagnosable or non-diagnosable. All unobservable events
Σui in the individual subsystems, including fault events, are assumed to be local. If
all subsystems in a modular transition system are diagnosable, then the total system
is diagnosable. However, if some subsystems are not diagnosable, the diagnosability
of the total modular system needs to be verified [12], [13].

Modular Verifier

The polynomial algorithm presented in [11] and illustrated in Example 5, is now
reformulated to also handle modular systems. According to the fault assignment
function, states of each subsystem Gi are augmented with state fault labels from
the set {N,F}, where the resulting transition systems are denoted by GFi . Then the
corresponding non-faulty parts,GNi , are constructed, where all states labeled by {F}
in GFi , and their related transitions, are removed. In GNi , all unobservable events in
Σui are also relabeled such that they are local in relation to GFi , but also to all other
subsystems. The verifier V(G) is constructed by the synchronous composition of the
two parts as

V(G) = GN ‖ GF ,

where GN =‖i∈N+
n
GNi and GF =‖i∈N+

n
GFi . If the verifier V(G) contains at least

one uncertain loop (cycle), it is not diagnosable. Also note that due to associative
and commutative properties of the synchronous composition [1], the verifier can be
rewritten as

V(G) = (‖i∈N+
n
GNi) ‖ (‖i∈N+

n
GFi) =‖i∈N+

n
(GNi ‖ GFi) =‖i∈N+

n
V(Gi). (4.1)

50

4.4 Diagnosability Verification for Modular Systems

This reformulation is important, since each pair GNi ‖ GFi may have a number of
local events. The modular abstraction, which is incrementally applied later, may then
generate a significant state space reduction, before synchronization with additional
subsystems is performed. This is explained in Chapter 3, and also further discussed
in this chapter. In [11] the coreachability of GF is also performed before the syn-
chronization with GN , which sometimes reduces the state space. However, it is not
applicable in our modular version, and thus, the coreachability procedure is not in-
cluded here.

State labels of verifiers The state labels that convey fault information may
change during the synchronous composition of local verifiers in a modular frame-
work. After every synchronization in (4.1), the union between the state labels, ac-
cording to the definition of synchronous composition, only results in the two state
labels N and {N,F}, independent of the number of synchronizations. In this thesis,
these state label sets are simply denoted as N and NF , respectively.

Only non-diagnosable local verifiers The work in [14] is an adaptation of
the algorithm in [11], where some minor improvements are suggested. There, the
focus is on diagnosable systems where a local non-diagnosable behavior in one sub-
system is blocked by another subsystem. For this reason, only the verifier of the
non-diagnosable local subsystem is generated based on the polynomial approach in
[11]. Then, the synchronous composition of the non-diagnosable verifiers with the
rest of the original subsystems is performed. This approach shows whether the non-
diagnosability on the subsystem level, can survive in the total modular system. In
other words, this approach verifies if the NF loops in local non-diagnosable veri-
fiers are preserved after being synchronized with the rest of the system or not.

Incremental Abstraction

Some recent works on abstractions applied to diagnosability verification have been
presented both for automata and PN modeling formalisms [95]–[97], including tech-
niques for modular systems [9], [15], [16], [43]. The idea of abstraction-based di-
agnosability for large-scale modular DESs is introduced in [9]. There, the com-
putational effort for diagnosability verification methods is reduced by determining
sufficient conditions, such that diagnosability of the original system follows from
diagnosability of an abstracted model. Moreover, it is shown that if the abstracted
system is not diagnosable, then the original system is not diagnosable if all observ-

51

Chapter 4 Fault Diagnosability Verification

able events remain after abstraction. This requirement implies that in general only
limited abstractions can be expected for non-diagnosable systems. Diagnosability
verification of modular systems with local specifications is considered in [15], where
the same abstraction as in [9] is applied.

Bisimulation abstraction Although some minor improvements are suggested in
the diagnosability algorithm in [14], more significant improvements are achieved by
introducing an incremental abstraction of the verifier in (4.1). In Paper B, branching
bisimulation including state labels is proposed as a generic incremental abstraction
method, where local events are hidden and then abstracted such that temporal logic
properties related to specific state fault labels are still preserved. The proposed algo-
rithm can be seen as an instance of Algorithm 1 in Sect. 3.3 where the input models
are the local verifiers V(Gi) in (4.1).

Transformation to a Nonblocking Problem

Since the diagnosability problem only includes two types of states, certain states with
label N and uncertain states with label NF , the problem to detect any undesirable
uncertain NF -cycles can be translated to a nonblocking problem. For this purpose,
one arbitrary transition in each NF -cycle is labeled with a pair of events; its current
event (σ) and an auxiliary unique event (wj), i.e., 〈σ,wj〉, for j = 1, . . . ,mi, where
mi is the number of all NF -cycles in one single local verifier V(Gi). The resulting
local augmented verifier, where such additional auxiliary events (wj) are added, one
for each NF -cycle, is denoted Vw(Gi).

Cycle detector For each NF -cycle j = 1, . . . ,mi in a local augmented verifier,
Vw(Gi), a unique three-state automaton GDij is introduced, which is called a cycle
detector. A cycle detector for the j-th NF -cycle is shown in Fig. 4.8. The parallel
composition of all such cycle detectors, GDi =‖j∈N+

mi
GDij , with Vw(Gi), results in

the extended local verifier, Ve(Gi) = Vw(Gi) ‖ GDi .

GD
ij

0 1 2
wj wj

Figure 4.8: NF -cycle detector.

52

4.4 Diagnosability Verification for Modular Systems

Extended verifier When the connected event 〈·, wj〉 in an NF -cycle has been
executed two times in a verifier, one complete NF -cycle has been passed. At the
same time, the cycle detector GDij that is synchronized with that loop by the shared
event wj has moved from the initial to the non-marked blocking state 2. Thus, pass-
ing one forbidden NF -cycle generates a blocking state in the corresponding cycle
detector. The total extended verifier is the parallel composition of all extended local
verifiers. If any blocking state remains in the total extended verifier

Ve(G) = Ve(G1) ‖ Ve(G2) ‖ · · · ‖ Ve(Gn),

this verifier has reachable blocking states, meaning that the original verifier V(G)
includes at least one NF -cycle, and its corresponding modular system G is non-
diagnosable.

Conflict equivalence abstraction In Paper C this extended modular verifier
is reduced by incremental abstraction. The efficient conflict equivalence abstraction
[61] that preserves nonblocking properties is then used in Algorithm 1 in Sect. 3.3.
Thus, if Ve(G) after this abstraction is nonblocking, the system G is diagnosable,
while a blocking abstracted verifier implies that G is not diagnosable.

53

CHAPTER 5

Opacity and Anonymity Verification

Some recent works have explored the analogy between opacity and diagnosability.
Opacity can be related to the lack of diagnosability [98]. This relation is formally es-
tablished in [30] using language-based opacity. In this chapter, the notion of current
state opacity (CSO) and its adaptation to location-based security, called current state
anonymity (CSA), are verified using incremental abstraction methods. The verifica-
tion is mainly performed considering the existence of shared unobservable events in
the system, followed by the special case where all unobservable events are local.

5.1 Background

Security and privacy concerns on the information flow of large communication net-
works and their diverse applications in modern technologies, are raised in recent
years. It means that external observers, also referred as intruders, should not ac-
quire the information flow in these services. There is huge amount of information
exchanged on a daily basis between users, which unauthorized people may not have
access to, and is referred to as secret. If for any secret behavior, there exists at
least one indistinguishable non-secret behavior to the intruder, the system is called
opaque [26].

55

Chapter 5 Opacity and Anonymity Verification

The opacity notion is introduced for DESs, using PNs as the modeling formalism,
first in [23] and then in [24]. It is also investigated for finite automata using either
state-based or language-based predicates as in [18], [19], [25], [27] and [21], [28]–
[30], respectively. In [31], the authors have shown that there exists a polynomial-time
transformation between different notions of opacity to CSO. In CSO, the intruder is
never certain that the current state of the system is within the set of secret states [18].
The intruder has full knowledge about the structure of the system. However, it only
partially observes the system [98]. Therefore, it can be modeled as an observer.

Observer abstraction To perform CSO/CSA verification in a modular system,
it is required to build the observer of the system. Given the exponential complex-
ity of the observer generation, state space explosion often occurs while performing
verification. Moreover, considering that a modular system consists of some interact-
ing subsystems, it indicates a demanding computational complexity, especially when
a large number of subsystems are interacting with each other. Therefore, abstrac-
tion methods can make it feasible to verify properties in complex modular systems.
The work by [37] utilizes binary decision diagrams (BDDs) to abstract graphs of
moderate size, as a method for the verification of three different opacity variants.
Moreover, they prove that opacity properties are preserved by composition, which
guarantees that local verification of these properties can also be performed. In [39],
a method based on strong bisimulation is proposed to verify the infinite-step opacity
of nondeterministic transition systems. The work in [36] also utilizes compositional
abstraction for verification of opacity problems.

Incremental observer abstraction Our work in Paper D proposes an abstrac-
tion method for CSO verification of modular systems based on visible bisimulation
abstraction [47]. In this method, both state and transition labels are integrated in the
same abstraction. The advantage of this method is that temporal logic properties are
preserved in the abstraction, and the opacity verification in Paper D is formulated as
a temporal logic safety problem.

Abstractions of observers including shared unobservable events in modular sys-
tems is handled for the first time in Paper E. Here, the challenging part is that com-
plete local observers can not be computed before some local models are synchro-
nized. The reason is that shared unobservable events can not be reduced in the ob-
server generation before they have become local after synchronization. In the same
way, observable events are abstracted when they become local after synchronization.
This means that the incremental abstraction in Algorithm 1 in Sect. 3.3 now must also

56

5.2 Observer Generation in a Modular Framework

include an incremental observer generation, where unobservable events are removed
when they become local. As a special case, when there are no unobservable shared
events, the problem can be transformed into a nonblocking problem and an efficient
abstraction can be incrementally applied for verification. This method is mentioned
in Paper E, but also in Paper C for fault diagnosability verification.

5.2 Observer Generation in a Modular
Framework

This section presents an incremental generation of reduced observers in a modular
setting, applied to opacity verification. Differences and similarities between CSO
and CSA are discussed, and shared unobservable events are included in the observer
generation.

A straightforward approach for opacity verification of a modular system G =
‖i∈N+

n
Gi is to compute the observer of the monolithic system G. The drawback is

then that incremental abstraction can not be utilized. However, when all unobserv-
able events are local, complete local observers O(Gi) can be generated. This may
be followed by incremental abstraction of the observable events, when they become
local after synchronization of the local observers.

Combined abstraction and observer generation Shared unobservable events,
on the other hand, can not be replaced by ε and removed in the observer generation,
before they have become local after synchronization. At the same time, observ-
able events should be abstracted as soon as they become local, to avoid state space
explosion. The proposed solution is to extend the incremental abstraction with an in-
cremental observer generation, meaning that an alternation between abstraction and
observer generation can be performed when subsystems are synchronized. This al-
ternation is repeated until all unobservable events are local and removed by observer
generation. However, some precautions are required in this alternating procedure, to
be able to accomplish local abstractions before the shared unobservable events are
removed. This is handled by including some additional temporary state labels, which
motivates for the more general and flexible visible bisimulation abstraction.

Incremental observer generation For a system G = G1 ‖ G2, the set Σε
includes all unobservable events in G that are replaced by ε. This set is a subscript in
the observer operator OΣε(G). The sets of local unobservable events in G1 and G2

57

Chapter 5 Opacity and Anonymity Verification

are Σε1 and Σε2, respectively. The set Σε12 includes the local unobservable events that
appear after the synchronization of O(G1) ‖ O(G2), which were previously shared
between O(G1) and O(G2). Thus, Σε = Σε1 ∪̇Σε2 ∪̇Σε12, and in Paper E it is shown
that an observer for G = G1 ‖G2 can be generated incrementally as

OΣε(G1 ‖G2) = OΣε
12

(
OΣε

1
(G1)‖OΣε

2
(G2)

)
. (5.1)

It means that shared unobservable events are preserved, until they become local. The
OΣε

12
operator first replaces all local unobservable events belonging to Σε12 by ε, and

then generates the final part of the observer OΣε(G1 ‖G2). This result is illustrated
in the following example.

Example 1. Consider the transition systems G1, G2, and G1 ‖ G2, as well
as their observers in Fig. 5.1, where u and v are unobservable events and u is
shared. This means that the sets of unobservable local event sets are Σε1 = {v},
Σε2 = ∅, and Σε12 = {u}. Synchronization of the two models confirms the fact
thatO{u,v}(G1 ‖G2) 6= O{v}(G1)‖O∅(G2), since the shared unobservable event u
becomes local first after the synchronization. This requires one more observer gener-
ation O{u}(·) to obtain the final observer that is equal to O{u,v}(G1 ‖G2). This fact
was recently also highlighted in [99]. 2

G1

0 1 2
u v

O{v}(G1)

0 {1, 2}u

G2 = O∅(G2)

0 1 2
a u

G1 ‖G2 (0, 0) (0, 1) (1, 2) (2, 2)a u v

O{v}(G1)‖O∅(G2) (0, 0) (0, 1) {(1, 2), (2, 2)}a u

O{u,v}(G1 ‖G2) = O{u}(O{v}(G1)‖O∅(G2))

(0, 0) {(0, 1), (1, 2), (2, 2)}a

Figure 5.1: Transition systems G1, G2, and G1 ‖G2, as well as their observers.

58

5.2 Observer Generation in a Modular Framework

Incremental abstraction and observer generation In the same way as local
unobservable events, included in a set Σε, are replaced by ε and then are removed
in the observer generation, local observable events in a system G, included in a
set Σh, are hidden by replacing them with the event τ , resulting in the system GΣh

.
This hiding, followed by the generation of a quotient transition system, results in

the abstracted transition system GΣh

/∼ def= GA
Σh

. This also means that GΣh

is

equivalent to GA
Σh

, denoted by GΣh∼ GAΣh

.
Every abstraction equivalence ∼ that is congruent with respect to synchronization

and hiding can be applied, but the system is assumed to include state labels. The
abstraction applied in this chapter is mainly the divergence sensitive visible bisimu-
lation equivalence that preserves CTL∗-X properties, see further details in Chapter 3.

Now, let Σh be partitioned in the same way as Σε, as Σh = Σh1 ∪̇Σh2 ∪̇Σh12. In
Paper E, it is then shown that an incremental abstraction combined with observer
generation can be formulated as

OΣε(G1 ‖G2)A
Σh

∼ OΣε
12

(
OΣε

1
(G1)A

Σh
1 ‖OΣε

2
(G2)A

Σh
2)AΣh

12
. (5.2)

The observable and unobservable events are incrementally replaced by τ and ε, re-
spectively, when they become local. The mix between step-wise abstraction and ob-
server generation means that the observer generation requires some restrictions in the
incremental abstractions. This is solved by introducing some additional temporary
state labels that are presented in Sect. 5.3.

Current State Opacity and Anonymity

In CSO, the observer states that exclusively include secret states are called non-safe,
while in CSA, the singleton observer states are considered as non-safe. The aim is,
therefore, to verify the existence of non-safe states in a system observer to conclude
about its opacity/anonymity. To augment the information regarding the non-safe
states to the local observers, the state label N is introduced and preserved during
abstraction. Here, a centralized architecture is considered, which includes one single
intruder that has full knowledge of the system structure. However, the intruder can
only observe a subset of the events, the observable events. In the following, local
and monolithic observers for both CSO and CSA verification of modular systems are
defined, and the differences in their state labels are explained.

59

Chapter 5 Opacity and Anonymity Verification

Current state opacity In CSO, the aim is to evaluate if it is possible to estimate
every secret states in a system, based on its observable events. For a transition sys-
tem G, let XS ⊆ X be the set of secret states. This system is called current-state
opaque if for every string of observable events s ∈ L(G), each corresponding block
state Y = δ(I, s) in the observer O(G) that includes secret states also includes at
least one non-secret state from the set X \XS . Such states are called safe states.

Thus, G is current-state non-opaque if and only if at least one block state in the
observer O(G) includes only secret states from G, and is therefore non-safe. The
label N is a state label for all non-safe states in O(G).

Current state anonymity With the increasing popularity of location-based ser-
vices for mobile devices, privacy concerns about the unwanted revelation of user’s
current location are raised. For this reason, the notion of CSO is adapted, and the
new notion called CSA is introduced in [32], which captures the observer’s inability
to know for sure the current locations of moving objects. A system G is current state
anonymous if for all strings s ∈ L(G), the size of all corresponding block states
Y = δ(I, s) in the observerO(G) is not a singleton (|Y | > 1). Such states are called
safe states.

Thus, G is current-state non-anonymous, if and only if at least one block state
Y in the observer O(G) is a singleton and is therefore non-safe. This is natural,
since more than one system state in each observer block state implies an uncertainty
in determining the exact location of a moving object. Finally, in the same way as
for CSO, the label N is a state label for all non-safe (non-anonymous) states in the
observer O(G).

The following example shows the observers for CSO and CSA, including their
different N (non-safe) state label interpretations.

Example 2. Consider the transition system G in Fig. 5.2 where the secret state set
XS = {0, 1}. The event u is unobservable and is therefore replaced by ε before
the observer generation. Although the observers are structurally equal, depending on
the verification problem, the interpretation differs concerning the non-safe states and
therefore, the state labeling. The block state {1} in the observer OCSO(G) has label
N, because state 1 is a secret state. On the other hand, both states 1 and 2 inOCSA(G)
have state label N , since both are singleton states.

Since G includes no subsystems, all events can be considered as local. The ob-
servable events a and b are, therefore, hidden and are relabeled with τ . In the vis-
ible bisimulation (VB) abstraction in OCSO(G)A{a,b}

, there is no reduction, while in

60

5.2 Observer Generation in a Modular Framework

G

0 1 2 XS = {0, 1}a

u

b

OCSO(G)
{0, 2} {1}

{N}

{2}a b
OCSA(G)

{0, 2} {1}

{N}

{2}

{N}
a b

OCSO(G)A
{a,b}

{0, 2} {1}

{N}

{2}τ τ
OCSA(G)A

{a,b}

{0, 2} {1, 2}

{N}
τ

Figure 5.2: A system model G, its two observers OCSO(G) and OCSA(G) when the event u
is unobservable, and their corresponding VB abstractions OCSO(G)A

{a,b}
and

OCSA(G)A
{a,b}

when a and b are local observable events.

OCSA(G)A{a,b}
, both N -labeled states are merged. 2

To summarize this part, a block state Y in the observer O(G) is non-safe and
is augmented with state label N , in CSO verification when Y ⊆ XS , and in CSA
verification, when |Y | = 1. These results are now generalized to modular systems.

CSO and CSA verification for modular systems For a modular system
G = ‖i∈N+

n
Gi we assume first that there are no shared unobservable events. Then,

the observer can be expressed as the composed observer O(G) = ‖i∈N+
n
O(Gi) in-

cluding block states Y = (Y1, . . . , Yn) that are non-safe and augmented with state
label N , if in

• CSO verification, at least one of the local block states Yi is non-safe and aug-
mented with N . Thus, the label of the block state Y = (Y1, . . . , Yn) is the
union of the labels of the local block states Yi, i ∈ N+

n .

• CSA verification, all block states Yi are non-safe and augmented with N .
Thus, the label of the block state Y = (Y1, . . . , Yn) is the intersection of
the labels of the local states. A state is, therefore, non-safe if all elements Yi
are singletons.

In the case of shared unobservable events, CSA verification is the same as above. For
CSO, on the other hand, the definition of secret states becomes more complex when

61

Chapter 5 Opacity and Anonymity Verification

shared unobservable events are involved, and we refer to Paper E for more details,
including a deeper discussion on possible practical interpretations of these abstract
formulations.

5.3 Incremental Observer Abstraction in the
Presence of Shared Unobservable Events

When incremental abstraction is combined with incremental observer generation due
to shared unobservable events, some restrictions must be included in the abstrac-
tions. Example 3 illustrates that abstraction before observer generation may generate
a wrong result. Before this example, two important remarks are given.

(i) Initial local observers are always assumed to be generated before every hiding
and abstraction. This means that, to simplify the notation, every transition sys-
tem G is by default an observer, although not explicitly expressed. Thus, G is
assumed to be deterministic, and all non-safe states are labeled by N .

(ii) Hiding and abstraction are always performed on deterministic systems. Hence,
alternative choices, including τ events after hiding, are interpreted as determin-
istic choices in observer generation. Restrictions will also be included such that
repeated observer generation and abstraction still means thatG can be regarded
as a deterministic transition system, although it may include alternative choices
involving τ events.

Example 3. A deterministic systemG is shown in Fig. 5.3, where the non-safe states
are labeled byN and the event u is unobservable, while the event a is observable. The
transition systemO{u}(G)A{a}

is obtained when the CSO observer generation is first
performed, with u replaced by ε, followed by the abstraction where {a} is replaced
by τ . When the opposite order is applied, the transition system O{u}(GA

{a}) is
obtained. Since abstraction can always be made after observer generation, the first
result is correct. Abstraction before observer generation means, in this example, that
states 1 and 2 are incorrectly merged, while the observer merges states 0 and 1, and
the CSO rule says that a block state with both non-safe and safe states results in a
safe state without state label N . 2

62

5.3 Incremental Observer Abstraction in the Presence of Shared Unobservable Events

G

0 1

{N}

2

{N}
u a

O{u}(G)
{0, 1} {2}

{N}
a

O{u}(G)A
{a}

{0, 1} {2}

{N}
τ

GA
{a}

{0} {1, 2}

{N}
u

O{u}(GA
{a}

)
{{0}, {1, 2}}

Figure 5.3: Different orders of observer generation and abstraction for transition system G.

Restrictions before Abstraction

In an alternating abstraction and observer generation procedure, Example 3 shows
that it is important to include some restrictions, when abstraction is performed be-
fore observer generation. Two specific restriction rules are introduced to solve this
problem.

Unique state labels before and after unobservable events For a system
including a set Σuo of unobservable events, the first restriction is to introduce tem-
porary unique state labels to the source and target transitions of every transition with
event label in Σuo. These states are called Σuo source and target states (STSs).
Adding unique state labels for all Σuo STSs means that VB abstraction does not
influence future observer generations in a negative way.

Example 4. The same transition system as in Example 3 is considered, where
unique state labels λus and λut are added to the source and target states of the transition
0 u→ 1. These STS labels prevent the VB abstraction GA

{a}
to merge the states 1

and 2, since they have now different state labels. The succeeding CSO observer
generationO{u}(G)A{a}

merges the source and target states of the transition 0 u→ 1,
and the obsolete Σuo STS labels are removed. The resulting observer O{u}(G)A{a}

in Fig. 5.4 now coincides with the correct observer O{u}(G)A{a}
in Fig. 5.3. 2

63

Chapter 5 Opacity and Anonymity Verification

G

0

{λu
s }

1

{N,λu
t }

2

{N}
u a

GA
{a}

{0}

{λu
s }

{1}

{N,λu
t }

{2}

{N}
u τ

O{u}(GA
{a}

)

{0, 1} {2}

{N}
τ

Figure 5.4: Unique Σuo STS labels λu
s and λu

t added to G, resulting in a correct observer
O{u}(GA

{a}
), where VB abstraction is performed before observer generation.

Future nondeterministic choices As mentioned in the beginning of this sec-
tion, any model that is abstracted can be assumed to be deterministic due to an initial
observer generation. After some synchronizations, however, additional local unob-
servable events may appear that are also replaced by ε. Additional nondeterministic
choices may then generate deviations depending on the order between abstraction
and observer generation. The following example illustrates this phenomenon.

Example 5. Consider the system G in Fig. 5.5, in which the unobservable event
u has become local after some synchronizations, and therefore has not been earlier
removed by observer generation. At this stage, only b is assumed to be shared, while
all other events are assumed to be local. The observer is generated for CSO. Since
state 6 inG does not have labelN , the block state {2, 6} inO{u}(G) is safe (no label
N). In the same way, since state 6 inGA

{a,c,d}
does not have labelN , the block state

{2, 3, 4, 6} in O{u}(GA
{a,c,d}) is also safe.

Obviously, this is not a correct result, since the correct abstracted observer
O{u}(G)A{a,c,d}

, where the abstraction is taken after the observer generation, in-
cludes the non-safe block state {3, 4}. This is not included inO{u}(GA

{a,c,d}), since
the abstraction has incorrectly joined the states 2, 3, and 4 before the observer gener-
ation. The reason for this problem is the nondeterministic choice that does not exist
from the beginning, but appears later when the unobservable event u becomes local.

2

This example illustrates that nondeterminism that is not present from the begin-
ning, called future nondeterministic choices (FNCs) in Paper E, can generate an ob-
server that is not correct if abstraction is performed before observer generation. In
that paper, it is argued that abstractions of subsystems should not be performed before

64

5.3 Incremental Observer Abstraction in the Presence of Shared Unobservable Events

G

0 1

2

{N}

3

{N}

4

{N}

5 6

b

u

a

c d

b

O{u}(G)

0 {1, 5} {2, 6} 3

{N}

4

{N}
a b c d

O{u}(G)A
{a,c,d}

{0, 1, 5} {2, 6} {3, 4}

{N}
b τ

GA
{a,c,d}

{0, 1}

{2, 3, 4}

{N}

5 6

b

u
b

O{u}(GA
{a,c,d}

)

{0, 1, 5} {2, 3, 4, 6}b

Figure 5.5: Observers with abstraction after and before observer generation. The correct ab-
stracted observer is O{u}(G)A

{a,c,d}
.

FNCs have been removed by synchronization of subsystems and observer generation.
To be able to guarantee this, a formal definition of FNCs is given in the same paper.
By that definition, it is possible to computationally decide if a system has any FNCs
or not.

To summarize this subsection, before any abstractions can be performed, first
any FNCs must have been removed by synchronization of subsystems and observer
generation. Then, unique state labels must be added before and after unobservable
events.

Algorithm

An algorithm for combined incremental observer generation and abstraction, in the
presence of shared unobservable events, is obtained by a simple generalization of
Algorithm 1 in Sect. 3.3. First, it is assumed that necessary local observers have
been generated and synchronized, such that no FNCs exist anymore. The resulting
observers are the input subsystems in Algorithm 1. Then, the only differences com-

65

Chapter 5 Opacity and Anonymity Verification

pared to the original algorithm are that, before line 3, unique state labels for STSs of
shared unobservable transitions are introduced in all submodels. Moreover, line 6 is
replaced by

GΩ := O((GΩ1)A ‖(GΩ2)A).

In all abstractions, new local observable events are hidden, and in all observer genera-
tions, new local unobservable events are replaced by ε. After the observer generation
on line 6, all obsolete state labels are also removed.

Finally, note that no observer generation is required when there are no shared
unobservable events in GΩ1 and GΩ2 . A complement, in the heuristics on selection
of the sets Ω1 and Ω2, is therefore to also focus on subsystems that have shared
unobservable events as early as possible. In this way, extra observer generations can
be significantly reduced.

5.4 Special Case: Local Unobservable Events

For a modular system, G = ‖i∈N+
n
Gi, with partial observation, when all unobserv-

able events are local, Σε12 = ∅, it is proven in [52], [100], and more simply in
Paper E, also including state labels, that an observer of the monolithic system O(G)
can be computed by the synchronous composition of the local observers of its sub-
systems. Thus, (5.1) is simplified to

O(G) = ‖i∈N+
n
O(Gi),

which also can be calculated by online synchronization as discussed in Chapter 2.
Moreover, (5.2) results in

O(G1 ‖G2)Σh

∼
(
O(G1)A

Σh
1 ‖O(G2)A

Σh
2)AΣh

12
.

The algorithm for incremental abstraction is ones again Algorithm 1 in Sect. 3.3,
where the input systems are now the local observers. After the generation of these
observers, there can be some observer states that are non-safe and therefore consid-
ered to be forbidden states. The aim is to verify the existence of such forbidden states
in a system, to conclude about its opacity/anonymity.

Since the problem only includes two types of states, safe and non-safe, these states
properties can also be expressed in terms of marked and non-marked states. An alter-
native to generic state labels and visible bisimulation equivalence is then to transform

66

5.4 Special Case: Local Unobservable Events

Gd
i

0 1

Σi

wi

Figure 5.6: Detector automaton Gd
i that inserts blocking states, corresponding to the forbid-

den states.

the forbidden state problem to a nonblocking problem. Thus, conflict equivalence ab-
straction [6], [61], which preserves nonblocking, can be used.

Detector

Let all non-safe states in each individual observer O(Gi) be augmented with a self-
loop. For CSO, these self-loops are labeled by wi, i = 1, . . . , n, and the resulting
local observers are called Owi(Gi). For each such observer, a two-state detector
automaton Gdi , shown in Fig. 5.6, is then introduced. It includes a marked state with
a self-loop on the set of observable events Σi in Gi and a transition via the event wi
to a non-marked state. The extended local observer

Oe(Gi) = Owi
(Gi)‖Gdi

then obtains non-marked blocking states added to every occurrence of a wi self-loop
in Owi(Gi). Thus, every forbidden state in O(Gi) results in a direct transition to a
blocking state in the extended local observer, while all original states inOwi

(Gi) be-
come marked inOe(Gi). If any blocking states remain in the total extended observer

Oe(G) = Oe(G1)‖Oe(G2)‖· · ·‖Oe(Gn),

this observer is blocking, and O(G) includes one or more non-safe states from a
CSO point of view. In CSA case, the transformation is simplified by choosing the
same self-loop label w for all observers O(Gi), i = 1, . . . , n, and the same w label
in every detector automaton Gdi . This means that a blocking state may be reached
first when all local observers have reached a non-safe state.

Example 6. Consider the subsystem Gi, i ∈ N+
n in Fig. 5.7, where vi is a local

unobservable event. Moreover, ci is a local observable event. The events ai and ai+1
are observable but shared between neighbor subsystems, except for the local events

67

Chapter 5 Opacity and Anonymity Verification

Gi

0 1 2

ai ai+1

vici

O(Gi)
0 1

{N}

{1, 2}

ai

ai+1

ci

ci

ai+1

Owi (Gi)
0 1 {1, 2}

ai

ai+1

wi

ci

ci

ai+1

Figure 5.7: Transition system Gi, its local observerO(Gi) including state label N at the non-
safe state, and local observer Owi (Gi) that is augmented with a wi-self-loop at
the non-safe state.

a1 and an+1. The local observer O(Gi) is also shown in Fig. 5.7.
The transition system Gi is assumed to have one secret state, state 1. Thus, the

observer state 1 is non-safe from a CSO point of view. This non-safe state with state

Gd
i

0

1

ai, ai+1, ci

wi

Oe(Gi)
(0, 0) (1, 0) ({1,2}, 0)

(1, 1)

ai

ai+1

wi

ci

ci

ai+1

Figure 5.8: The detector automatonGd
i that inserts an additional blocking state to the non-safe

state in Owi (Gi), as depicted in Oe(Gi) = Owi (Gi) ‖ Gd
i .

68

5.4 Special Case: Local Unobservable Events

label N in O(Gi) is a forbidden state to which a wi self-loop is added in Owi
(Gi)

in Fig. 5.7. Including the detector Gdi gives the extended local observer Oe(Gi) =
Owi

(Gi) ‖ Gdi , as depicted in Fig. 5.8, where the wi self-loop is replaced by a wi
transition to a blocking state. Utilizing the local observers, and combining them
with incremental abstraction shows the strength of the approach in comparison to
not using incremental abstraction, cf. Paper E. 2

Enforcement of CSO and CSA

In order to determine whether a system satisfies a given specification or not, the sys-
tem has to be verified, and if it fails, the system is restricted by synthesizing a super-
visor. This means that states from which it is not possible to reach a desired marked
state, are removed. Furthermore, any uncontrollable events that can be executed by
the plant are not allowed to be disabled by the supervisor [101], [102]. Thus, a su-
pervisor is synthesized to avoid blocking states and disabling uncontrollable events.
Such a nonblocking and controllable supervisor is also maximally permissive, mean-
ing that it restricts the system as little as possible.

In [103]–[106], it is shown how supervisory control can be adapted to enforce
opacity, to disable some system behavior before they reveal a secret. In Paper E, it is
shown for the first time how opacity and anonymity can be enforced by an observer
based on maximally permissive supervisor that is generated by incremental abstrac-
tion. This supervisor generation follows naturally as an extension of the original
forbidden state formulation of opacity and anonymity verification. The incremental
abstraction is based on a supervision/synthesis equivalence, proposed in [107]–[109]
as a natural extension of conflict equivalence [61].

69

CHAPTER 6

Summary of Appended Papers

This chapter provides a summary of the included papers.

6.1 Paper A

Mona Noori-Hosseini, Bengt Lennartson, Maria Paola Cabasino, Carla Seatzu
A survey on efficient diagnosability tests for automata and bounded Petri nets
18th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2013, Cagliari, Italy.

In this paper, the efficiency of different polynomial diagnosability verifiers is eval-
uated for systems modeled by Petri nets. Since modular automata also can be repre-
sented by Petri nets, the method is applicable to both modeling formalisms.

Three verifiers based on three different polynomial algorithms are presented and
compared to a fourth verifier, proposed in this paper. This verifier reduces the state
space of the labeled system, by exploiting symmetry and abstracting unobservable
transitions. All verifiers are generated based on either the reachability graph or the
modified basis reachability graph (MBRG), a graph that is specifically proposed for
diagnosability analysis of Petri nets. The importance of minimal explanations on the

71

Chapter 6 Summary of Appended Papers

performance of diagnosability verifiers is also shown. It is shown that the minimal
explanation notion involved in the MBRG has great impact also on automata-based
diagnosability methods.

The verifiers are compared in different aspects, and the results show that for small
and medium sized systems or systems with significant number of unobservable tran-
sitions, our proposed verifier is more efficient. The evaluation shows improved
computation times, often 1000 times faster or even more, when the most efficient
automata-based diagnosability algorithms are combined with minimal explanations.
Thus, significantly large systems can be analyzed when the most efficient automata-
based diagnosability algorithms are combined with minimal explanations.

6.2 Paper B

Mona Noori-Hosseini and Bengt Lennartson
Diagnosability verification using compositional branching bisimulation
13th Workshop on Discrete Event Systems (WODES), 2016, Xi’an, China.

This paper presents an efficient diagnosability verification technique, based on a
general abstraction approach. A general bisimilarity, called branching bisimulation
including state labels and explicit divergence, is introduced based on a simple and
efficient abstraction algorithm. Since this bisimulation preserves CTL∗-X formulas,
and diagnosability can be expressed as a CTL formula, this bisimulation is used in
a compositional framework for modular diagnosability verification. It is shown that
this compositional abstraction gives significant state space reduction, in comparison
to state-of-the-art techniques.

The proposed method is general, and can be used to verify any CTL∗-X formula
for a set of synchronized subsystems, especially if the coupling between the subsys-
tems only includes a few number of shared global events. This is illustrated by ver-
ifying non-diagnosability analytically for a set of synchronized subsystems, where
the abstracted solution is independent of the number of subsystems and the number
of observable events.

72

6.3 Paper C

6.3 Paper C

Mona Noori-Hosseini, Bengt Lennartson
Incremental abstraction for diagnosability verification of modular systems
24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2019, Zaragoza, Spain.

This work presents an efficient approach to tackle the state space explosion prob-
lem, making it possible to verify diagnosability of large modular systems within
a few seconds. In a diagnosability verifier with polynomial complexity, a non-
diagnosable system generates uncertain loops. Such forbidden loops are transformed
to forbidden states by simple automata-based detectors, which makes it possible to
use efficient abstractions incrementally. The forbidden state problem is trivially
transformed to a nonblocking problem by considering all states except the forbid-
den ones as marked states. This transformation is combined with one of the most
efficient abstractions for modular systems called conflict equivalence, where non-
blocking properties are preserved.

The incremental abstraction is applied to a scalable production system, includ-
ing buffers and machines. For this modular system, the proposed diagnosability
algorithm shows great results. Moreover, the computational time with and without
incremental abstraction shows the great performance improvement of the proposed
abstraction method.

6.4 Paper D

Mona Noori-Hosseini, Bengt Lennartson, Christoforos N. Hadjicostis
Compositional visible bisimulation abstraction applied to opacity verification
14th Workshop on Discrete Event Systems (WODES), 2018, Sorrento, Italy.

Visible bisimulation, proposed in this paper, is an equivalence-based definition of
combined branching and stuttering bisimulation. It is shown how this bisimulation
equivalence can be used to verify temporal logic expressions in an efficient way by
compositional reduction, which is here called incremental abstraction. This bisim-
ulation preserves all properties of a temporal logic called ECTL∗, where CTL∗ is
extended with events.

The presented bisimulation abstraction is applied to a set of synchronized subsys-
tems, where local events are identified incrementally and abstracted after each syn-

73

Chapter 6 Summary of Appended Papers

chronization. Since the bisimulation reduction is applied after each synchronization,
a significant part of the state space explosion in ordinary synchronization is avoided.
This incremental abstraction is used for opacity verification, where it is shown that
local observers can be generated before they are synchronized. This is a key factor
to be able to apply incremental abstraction to opacity verification for large modular
system. The efficiency of this method is illustrated on a modular opacity problem
with mutual exclusion of moving agents. The results show a great potential to solve
opacity problems for large modular systems.

6.5 Paper E

Mona Noori-Hosseini, Bengt Lennartson, Christoforos N. Hadjicostis
Incremental observer abstraction for opacity/privacy verification and enforce-
ment
Submitted for possible journal publication. An invitation to submit a revised
version has been received, 2019.

Verification of two security/privacy notions, current state opacity and anonymity,
is considered in this paper. An incremental observer generation for modular systems
is presented, where the computational complexity is alleviated by local observer gen-
eration and incremental abstraction. For the case that shared unobservable events are
also involved, a new combined incremental abstraction and observer generation is
proposed. This requires some precautions to be able to accomplish local abstractions
before shared unobservable events are removed by observer generation. Temporary
state labels are then added to achieve necessary restrictions.

The combined incremental abstraction and observer generation requires an ab-
straction that includes state labels and is congruent with respect to synchronization
and hiding. In this paper, visible bisimulation is used for that purpose. It is also
shown how current state opacity and anonymity can be enforced by a supervisor.
This is achieved by a natural extension of the verification problem to a supervisory
control problem based on forbidden states and incremental abstraction. Finally, a
modular and scalable building security problem with arbitrary number of floors and
elevators is presented, for which the efficiency of the proposed incremental verifica-
tion and synthesis procedures is demonstrated.

74

CHAPTER 7

Concluding Remarks and Future Research

The main goal of this thesis is to achieve efficient formal verification of safety and se-
curity/privacy properties in modular discrete event systems. The main issue in formal
verification of large and complex modular systems is the state space explosion, which
can be mitigated using abstraction methods. Different abstraction methods are pre-
sented. Moreover, incremental abstraction, as a technique that achieves step-by-step
reduction of modular systems, is applied. This method adds more reduction, in com-
parison to the methods that only abstract once. In this thesis, a general abstraction
technique, called visible bisimulation abstraction, is proposed. The purpose is to re-
duce transition systems that include both state and event labels. Visible bisimulation
preserves temporal logic and divergence properties when incremental abstraction is
applied.

This powerful incremental abstraction is used for fault diagnosability verification
of modular discrete event systems of industrial size. Some necessary considerations
are developed, in order to be able to apply incremental abstraction for diagnosability
verification using verifier techniques. Furthermore, it is shown that the diagnosability
problem can be transformed to a nonblocking verification problem using a three-state
detector. This implies that a very efficient incremental abstraction that preserves the
nonblocking property can be applied.

75

Chapter 7 Concluding Remarks and Future Research

It is also shown that different diagnosability verifiers can be applied for diagnos-
ability verification of Petri nets, when the Petri net model is transformed to an au-
tomaton by generating a modified basis reachability graph. This graph is generated
by performing abstractions on the Petri net, which generates a more compact repre-
sentation of the original model.

For current state opacity and anonymity verification of modular systems, an in-
cremental approach is utilized as well, which shows great improvements when the
previously mentioned abstraction methods are applied. As a nontrivial extension,
the existence of shared unobservable events in modular systems is also considered,
where the incremental abstraction is generalized to a alternating incremental abstrac-
tion and observer generation. In the analysis of this alternating procedure, it is shown
that some precautions are required to be able to accomplish local abstractions before
shared unobservable events are removed by observer generation. It is also shown
how current state opacity and anonymity can be enforced by a supervisor, that is
generated by identifying forbidden states and ones again applying incremental ab-
straction. For all problems considered in this thesis, it is demonstrated that different
proposed incremental abstractions result in efficient state space reductions, enabling
us to formally verify and synthesize large systems in a short time.

7.1 Future Research

Some possible extensions of this work are also observed:

• The proposed incremental verification of temporal logic formulas should be
compared with available model checking algorithms. Some examples show a
great potential for our method, applied to large modular systems.

• The incremental abstraction approach can be applied to temporal logic veri-
fication of Petri nets, and diagnosability verification of models with different
structures.

• Opacity verification can be extended to more general settings, for instance
having more than one moving object in a system.

• For synthesis purpose, visible bisimulation abstraction can be extended to in-
clude uncontrollable events.

• The combined incremental abstraction and observer generation can also be ap-
plied to opacity and anonymity supervisor enforcement, for modular systems

76

7.1 Future Research

including shared unobservable events.

77

References

[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.
Springer, 2008.

[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata The-
ory, Languages, and Computation, Second. Addison-Wesley, 2001, ISBN:
0201441241.

[3] M. P. Cabasino, A. Giua, and C. Seatzu, “Introduction to Petri nets”, in Lec-
ture Notes in Control and Information Sciences, Springer, 2013, pp. 191–
211.

[4] C. Baier and J. Katoen, Principles of Model Checking. MIT Press, 2008.

[5] S. Graf, B. Steffen, and G. Lüttgen, “Compositional minimisation of finite
state systems using interface specifications”, Formal Aspects of Computing,
vol. 8, no. 5, pp. 607–616, 1996.

[6] H. Flordal and R. Malik, “Compositional verification in supervisory control”,
SIAM Journal on Control and Optimization, vol. 48, no. 3, pp. 1914–1938,
2009.

[7] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneket-
zis, “Diagnosability of discrete-event systems”, IEEE Transactions on Auto-
matic Control, vol. 40, no. 9, pp. 1555–1575, 1995.

[8] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, “A polynomial algorithm
for testing diagnosability of discrete-event systems”, IEEE Transactions on
Automatic Control, vol. 46, no. 8, pp. 1318–1321, 2001.

79

References

[9] K. Schmidt, “Abstraction-based failure diagnosis for discrete event systems”,
Systems & Control Letters, vol. 59, no. 1, pp. 42–47, 2010.

[10] T.-S. Yoo and S. Lafortune, “Polynomial-time verification of diagnosability
of partially observed discrete-event systems”, IEEE Transactions on Auto-
matic Control, vol. 47, no. 9, pp. 1491–1495, 2002.

[11] M. Moreira, T. Jesus, and J. Basilio, “Polynomial time verification of de-
centralized diagnosability of discrete event systems”, IEEE Transactions on
Automatic Control, vol. 56, no. 7, pp. 1679–1684, 2011.

[12] O. Contant, S. Lafortune, and D. Teneketzis, “Diagnosability of discrete
event systems with modular structure”, Discrete Event Dynamic Systems,
vol. 16, no. 1, pp. 9–37, 2006.

[13] D. Myadzelets and A. Paoli, “Virtual modules in discrete event systems:
Achieving modular diagnosability”, Tech. Rep. https://arxiv.org/abs/1311.2850,
2013.

[14] B. Li, J. C. Basilio, M. Khlif-Bouassida, and A. Toguyéni, “Polynomial
time verification of modular diagnosability of discrete event systems”, IFAC-
PapersOnLine, vol. 50, no. 1, pp. 13 618–13 623, 2017.

[15] K. W. Schmidt, “Verification of modular diagnosability with local specifica-
tions for discrete-event systems”, IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 43, no. 5, pp. 1130–1140, 2013.

[16] M. P. Cabasino, A. Giua, and C. Seatzu, “Diagnosability of discrete-event
systems using labeled Petri nets”, IEEE Transactions on Automation Science
and Engineering, vol. 11, no. 1, pp. 144–153, 2014.

[17] R. Focardi and R. Gorrieri, “A taxonomy of trace-based security properties
for CCS”, in Proceedings The Computer Security Foundations Workshop VII,
IEEE Comput. Soc. Press, 1996, pp. 126–136.

[18] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in discrete
event systems”, in 46th IEEE Conference on Decision and Control, 2007,
pp. 5056–5061.

[19] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event systems
opacity: Models, validation, and quantification”, Annual Reviews in Control,
vol. 41, pp. 135–146, 2016.

80

References

[20] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity generalised
to transition systems”, International Journal of Information Security, vol. 7,
no. 6, pp. 421–435, 2008.

[21] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strategies
for secure discrete event systems”, in 47th IEEE Conference on Decision and
Control, 2008.

[22] ——, “Current-state opacity formulations in probabilistic finite automata”,
IEEE Transactions on Automatic Control, vol. 59, no. 1, pp. 120–133, 2014.

[23] J. W. Bryans, M. Koutny, and P. Y. Ryan, “Modelling opacity using Petri
nets”, Electronic Notes in Theoretical Computer Science, vol. 121, pp. 101–
115, 2005.

[24] Y. Tong, Z. Ma, Z. Li, C. Seactzu, and A. Giua, “Verification of language-
based opacity in Petri nets using verifier”, in American Control Conference
(ACC), 2016.

[25] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Verification of state-based opacity
using Petri nets”, IEEE Transactions on Automatic Control, vol. 62, no. 6,
pp. 2823–2837, 2017.

[26] S. Lafortune, F. Lin, and C. N. Hadjicostis, “On the history of diagnosability
and opacity in discrete event systems”, Annual Reviews in Control, vol. 45,
pp. 257–266, 2018.

[27] A. Saboori and C. N. Hadjicostis, “Coverage analysis of mobile agent tra-
jectory via state-based opacity formulations”, Control Engineering Practice,
vol. 19, no. 9, pp. 967–977, 2011.

[28] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Daron-
deau, “Concurrent secrets”, in 8th International Workshop on Discrete Event
Systems, 2006.

[29] F. Cassez, “The dark side of timed opacity”, in Advances in Information Se-
curity and Assurance, Springer, 2009, pp. 21–30.

[30] F. Lin, “Opacity of discrete event systems and its applications”, Automatica,
vol. 47, no. 3, pp. 496–503, 2011.

[31] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions of opac-
ity in centralized and coordinated architectures”, Discrete Event Dynamic
Systems, vol. 23, no. 3, pp. 307–339, 2013.

81

References

[32] Y.-C. Wu, K. A. Sankararaman, and S. Lafortune, “Ensuring privacy in location-
based services: An approach based on opacity enforcement”, IFAC Proceed-
ings Volumes, vol. 47, no. 2, pp. 33–38, 2014.

[33] A. Saboori and C. N. Hadjicostis, “Verification of k-step opacity and analysis
of its complexity”, IEEE Transactions on Automation Science and Engineer-
ing, vol. 8, no. 3, pp. 549–559, 2011.

[34] ——, “Verification of initial-state opacity in security applications of discrete
event systems”, Information Sciences, vol. 246, pp. 115–132, 2013.

[35] B. Wu and H. Lin, “Privacy verification and enforcement via belief abstrac-
tion”, IEEE Control Systems Letters, vol. 2, no. 4, pp. 815–820, 2018.

[36] S. Mohajerani and S. Lafortune, “Transforming opacity verification to non-
blocking verification in modular systems”, IEEE Transactions on Automatic
Control, in press, 2020.

[37] A. Bourouis, K. Klai, N. B. Hadj-Alouane, and Y. E. Touati, “On the verifi-
cation of opacity in web services and their composition”, IEEE Transactions
on Services Computing, vol. 10, no. 1, pp. 66–79, 2017.

[38] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-decision
diagrams”, ACM Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

[39] K. Zhang and M. Zamani, “Infinite-step opacity of nondeterministic finite
transition systems: A bisimulation relation approach”, in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), 2017.

[40] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.

[41] R. J. V. Glabbeek and W. P. Weijland, “Branching time and abstraction in
bisimulation semantics”, Journal of the ACM, vol. 43, pp. 555–600, 1996.

[42] M. Noori-Hosseini, B. Lennartson, M. P. Cabasino, and C. Seatzu, “A sur-
vey on efficient diagnosability tests for automata and bounded Petri nets”,
in IEEE 18th Conference on Emerging Technologies & Factory Automation
(ETFA), 2013.

[43] M. Noori-Hosseini and B. Lennartson, “Diagnosability verification using
compositional branching bisimulation”, in 13th International Workshop on
Discrete Event Systems (WODES), 2016.

82

References

[44] M. Noori-Hosseini, B. Lennartson, and C. Hadjicostis, “Compositional visi-
ble bisimulation abstraction applied to opacity verification”, IFAC: 14th In-
ternational Workshop on Discrete Event Systems (WODES), vol. 51, no. 7,
pp. 434–441, 2018.

[45] M. Noori-Hosseini, B. Lennartson, and C. N. Hadjicostis, “Incremental ob-
server reduction applied to opacity verification and synthesis”, Tech. Rep.
https://arxiv.org/abs/1812.08083, 2019.

[46] M. Noori-Hosseini and B. Lennartson, “Incremental abstraction for diagnos-
ability verification of modular systems”, 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA 2019), 2019.

[47] B. Lennartson and M. Noori-Hosseini, “Visible bisimulation equivalence —
a unified abstraction for temporal logic verification”, IFAC-PapersOnLine,
vol. 51, no. 7, pp. 400–407, 2018.

[48] C. Belta, B. Yordanov, and E. A. Gol, “Formal methods for discrete-time dy-
namical systems, studies in systems, decision and control”, Springer, vol. 89,
2017.

[49] R. Nicola and F. Vaandrager, “Action versus state based logics for transition
systems”, in Semantics of Systems of Concurrent Processes, Springer, 1990,
pp. 407–419.

[50] C. Hoare, “Communicating sequential processes”, Science of Computer Pro-
gramming, Prentice-Hall International, London, vol. 9, no. 1, pp. 101–105,
1987.

[51] M. Cabasino, A. Giua, and C. Seatzu, “Diagnosability of bounded Petri nets”,
48th IEEE Conference on Decision and Control (CDC), pp. 1254–1260,
2009.

[52] E. Fabre, “Diagnosis and automata”, in Control of Discrete-Event Systems:
Automata and Petri net Perspectives, ser. Lecture Notes in Control and Infor-
mation Sciences, C. Seatzu, M. Silva, and J. H. van Schuppen, Eds., Springer,
2012, pp. 85–106.

[53] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella, “NuSMV 2: An open source tool for sym-
bolic model checking”, in Computer Aided Verification, Springer, 2002, pp. 359–
364.

83

References

[54] M. Huth and M. Ryan, Logic in Computer Science, modelling and reasoning
about systems. Cambridge University Press, 2009.

[55] R. D. Nicola and F. Vaandrager, “Three logics for branching bisimulation”,
Journal of the ACM, vol. 42, pp. 458–487, 1995.

[56] R. Gerth, R. Kuiper, D. Peled, and W. Penczek, “A partial order approach
to branching time logic model checking”, Journal of the ACM, vol. 150,
pp. 132–152, 1999.

[57] N. Trčka, Silent Steps in Transition Systems and Markov Chains, IPA Disser-
tation Series 2007-08, Technische Universiteit Eindhoven, 2007, 1996.

[58] R. J. Van Glabbeek, B. Luttik, and N. Trčka, “Branching bisimilarity with
explicit divergence. the semantics of sequential systems with silent moves”,
Fundamenta Informaticae, vol. 93, pp. 371–392, 2009.

[59] S. Blom and S. Orzan, “Distributed branching bisimulation reduction of state
spaces”, Electronic Notes in Theoretical Computer Science, vol. 89, pp. 99–
113, 2003.

[60] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications”, Pa-
cific Journal of Mathematics, vol. 5, pp. 285–309, 1955.

[61] R. Malik, D. Streader, and S. Reeves, “Fair testing revisited: A process-
algebraic characterisation of conflicts”, in Automated Technology for Veri-
fication and Analysis, Springer, 2004, pp. 120–134.

[62] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - an integrated
environment for verification, synthesis and simulation of discrete event sys-
tems”, in 8th international Workshop on Discrete Event Systems, WODES’06,
2006, pp. 384–385.

[63] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S.
Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model checker”,
in, ser. Lecture Notes in Computer Science, vol. 8559, Springer, 2014, pp. 334–
342.

[64] K. Claessen and N. Sorensson, “A liveness checking algorithm that counts”,
in Formal Methods in Computer-Aided Design (FMCAD), G. Cabodi and S.
Singh, Eds., IEEE, 2012, pp. 52–59.

[65] B. Parhami, “Defect, fault, error,..., or failure?”, IEEE Transactions on Reli-
ability, vol. 46, no. 4, pp. 450–451, 1997.

84

References

[66] B. Randell, “On failures and faults”, in FME 2003: Formal Methods, Springer
Berlin Heidelberg, 2003, pp. 18–39.

[67] F. Lin, “Diagnosability of discrete event systems and its applications”, Dis-
crete Event Dynamic Systems: Theory and Applications, vol. 4, no. 2, pp. 197–
212, 1994.

[68] Z. Huang, S. Bhattacharyya, R. Kumar, S. Jiang, and V. Chandra, “Diagnosis
of discrete-event systems in rules-based model using first-order linear tem-
poral logic”, Asian Journal of Control, pp. 1–9, 2008.

[69] W. Qiu and R. Kumar, “Decentralized failure diagnosis of discrete event sys-
tems”, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Sys-
tems and Humans, vol. 36, no. 2, pp. 384–395, 2006.

[70] F. Basile, P. Chiacchio, and G. D. Tommasi, “An efficient approach for on-
line diagnosis of discrete event systems”, IEEE Transactions on Automatic
Control, vol. 54, no. 4, pp. 748–759, 2009.

[71] F. G. Cabral, M. V. Moreira, and O. Diene, “Online fault diagnosis of modu-
lar discrete-event systems”, in 54th IEEE Conference on Decision and Con-
trol (CDC), 2015.

[72] M. Cabasino, A. Giua, M. Pocci, and C. Seatzu, “Discrete event diagnosis
using labeled Petri nets. an application to manufacturing systems”, Control
Engineering Practice, vol. 19, pp. 989–1001, 2011.

[73] C. Zhou, R. Kumar, and R. S. Sreenivas, “Decentralized modular diagno-
sis of concurrent discrete event systems”, in 9th International Workshop on
Discrete Event Systems, 2008.

[74] T.-S. Yoo and H. E. Garcia, “Diagnosis of behaviors of interest in partially-
observed discrete-event systems”, Systems & Control Letters, vol. 57, no. 12,
pp. 1023–1029, 2008.

[75] S. Zad, R. Kwong, and W. Wonham, “Fault diagnosis in discrete-event sys-
tems: Framework and model reduction”, IEEE Transactions on Automatic
Control, vol. 48, no. 7, pp. 1199–1212, 2003.

[76] Y. Pencolé and M.-O. Cordier, “A formal framework for the decentralised
diagnosis of large scale discrete event systems and its application to telecom-
munication networks”, Artificial Intelligence, vol. 164, no. 1-2, pp. 121–170,
2005.

85

References

[77] R. Debouk, S. Lafortune, and D. Teneketzis, “Coordinated decentralized pro-
tocols for failure diagnosis of discrete event systems”, Discrete Event Dy-
namic Systems, vol. 10, no. 1, pp. 33–86, 2000.

[78] K. Schmidt, “Abstraction-based verification of codiagnosability for discrete
event systems”, Automatica, vol. 46, no. 9, pp. 1489–1494, 2010.

[79] Y. Wang, T.-S. Yoo, and S. Lafortune, “Erratum to: Diagnosis of discrete
event systems using decentralized architectures”, Discrete Event Dynamic
Systems, vol. 25, no. 4, pp. 601–603, 2013.

[80] N. Ran, H. Su, A. Giua, and C. Seatzu, “Codiagnosability analysis of bounded
Petri nets”, IEEE Transactions on Automatic Control, vol. 63, no. 4, pp. 1192–
1199, 2018.

[81] S. L. Ricker and J. H. van Schuppen, “Decentralized failure diagnosis with
asynchronous communication between supervisors”, in European Control
Conference (ECC), 2001.

[82] W. Qiu and R. Kumar, “Distributed diagnosis under bounded-delay commu-
nication of immediately forwarded local observations”, IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 38,
no. 3, pp. 628–643, 2008.

[83] H. Khorasgani, D. Jung, and G. Biswas, “Structural approach for distributed
fault detection and isolation”, IFAC-PapersOnLine, vol. 48, no. 21, pp. 72–
77, 2015.

[84] C. G. P. Zuniga, “Structural analysis for the diagnosis of distributed systems”,
PhD thesis, Automatic. INSA de Toulouse, 2018.

[85] R. Debouk, R. Malik, and B. Brandin, “A modular architecture for diagnosis
of discrete event systems”, in Proceedings of the 41st Conference on Deci-
sion and Control (CDC), 2002.

[86] T.-S. Yoo and S. Lafortune, “Polynomial-time verification of diagnosability
of partially observed discrete-event systems”, IEEE Transactions on Auto-
matic Control, vol. 47, no. 9, pp. 1491–1495, 2002.

[87] M. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete event
systems using Petri nets with unobservable transitions”, Automatica, vol. 46,
no. 9, pp. 1491–1495, 2010.

86

References

[88] A. Cimatti, C. Pecheur, and R. Cavada, “Formal verification of diagnosability
via symbolic model checking”, in Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI), 2003, pp. 363–369.

[89] A. Boussif and M. Ghazel, “Intermittent fault diagnosis of industrial sys-
tems in a model-checking framework”, in IEEE International Conference on
Prognostics and Health Management (ICPHM), 2016, pp. 1–6.

[90] S. Jiang and R. Kumar, “Failure diagnosis of discrete-event systems with
linear-time temporal logic specifications”, IEEE Transactions on Automatic
Control, vol. 49, no. 6, pp. 934–945, 2004.

[91] S. Jiang and R. Kumar, “Diagnosis of repeated failures for discrete event
systems with linear-time temporal-logic specifications”, IEEE Transactions
on Automation Science and Engineering, vol. 3, no. 1, pp. 47–59, 2006.

[92] J. Chen and R. Kumar, “Fault detection of discrete-time stochastic systems
subject to temporal logic correctness requirements”, IEEE Transactions on
Automation Science and Engineering, vol. 12, no. 4, pp. 1369–1379, 2015.

[93] A. Giua, S. Lafortune, and C. Seatzu, “Divergence properties of labeled Petri
nets and their relevance for diagnosability analysis”, IEEE Transactions on
Automatic Control, in press, 2019.

[94] M. Noori-Hosseini and B. Lennartson, “Verification of diagnosability based
on compositional branching bisimulation”, in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014.

[95] Y. Ru and C. N. Hadjicostis, “Fault diagnosis in discrete event systems mod-
eled by partially observed Petri nets”, Discrete Event Dynamic Systems, vol. 19,
no. 4, pp. 551–575, 2009.

[96] G. Jiroveanu and R. Boel, “The diagnosability of Petri net models using min-
imal explanations”, IEEE Transactions on Automatic Control, vol. 55, no. 7,
pp. 1663–1668, 2010.

[97] M. P. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete event
systems using Petri nets with unobservable transitions”, Automatica, vol. 46,
no. 9, pp. 1531–1539, 2010.

[98] S. Lafortune and F. Lin, “From diagnosability to opacity: A brief history of
diagnosability or lack thereof”, IFAC-PapersOnLine, vol. 50, no. 1, pp. 3022–
3027, 2017.

87

[99] T. Masopust, “Critical observability for automata and Petri nets”, Tech. Rep.
https://arxiv.org/abs/1808.00261, 2018.

[100] G. Pola, E. D. Santis, M. D. D. Benedetto, and D. Pezzuti, “Design of de-
centralized critical observers for networks of finite state machines: A formal
method approach”, Automatica, vol. 86, pp. 174–182, 2017.

[101] P. Ramadge and W. Wonham, “The control of discrete event systems”, Pro-
ceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[102] W. Wonham, K. Cai, and K. Rudie, “Supervisory control of discrete-event
systems: A brief history – 1980-2015”, IFAC-PapersOnLine, vol. 50, no. 1,
pp. 1791–1797, 2017.

[103] Y. Falcone and H. Marchand, “Enforcement and validation (at runtime) of
various notions of opacity”, Discrete Event Dynamic Systems, vol. 25, no. 4,
pp. 531–570, 2015.

[104] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for opac-
ity”, IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1089–1100,
2010.

[105] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strategies
via state estimator constructions”, IEEE Transactions on Automatic Control,
vol. 57, no. 5, pp. 1155–1165, 2012.

[106] S. Mohajerani, Y. Ji, and S. Lafortune, “Compositional and abstraction-based
approach for synthesis of edit functions for opacity enforcement”, IEEE Trans-
actions on Automatic Control, in press, 2020.

[107] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional Synthe-
sis of Maximally Permissive Supervisors Using Supervision Equivalence”,
Discrete Event Dynamic Systems, vol. 17, no. 4, pp. 475–504, 2007.

[108] S. Mohajerani, R. Malik, and M. Fabian, “A framework for compositional
synthesis of modular nonblocking supervisors”, IEEE Transactions on Auto-
matic Control, vol. 59, no. 1, pp. 150–162, 2014.

[109] ——, “Compositional synthesis of supervisors in the form of state machines
and state maps”, Automatica, vol. 76, pp. 277–281, 2017.

88

