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1 Introduction

Simple finite-dimensional Lie superalgebras were classified by Kac in ref. [2]. Among them
are the peculiar Cartan-type superalgebras W (n) and S(n), where W (n) is the derivation
algebra of the associative superalgebra of (point-wise) forms in n dimensions under the
wedge product (the Grassmann algebra on n generators), and S(n) C W(n) is a scale-
preserving subalgebra. These superalgebras are non-contragredient, meaning that they do
not have a presentation in terms of generators and relations which is symmetric, up to
signs, under the interchange of generators at positive and negative levels.



In ref. [3], we introduced a set of generators and relations for W(n) and S(n), with
an antisymmetry between positive and negative levels, by modifying the presentation of
the contragredient Lie superalgebra A(0,n — 1) = sl(1|n). This construction starts with
the Dynkin diagram of A(0,n — 1) = sl(1|n) but can be applied to other similar Dynkin
diagram as well. In general it leads to a so called tensor hierarchy algebra (THA) [4], a
Lie superalgebra that is an infinite-dimensional super-extension of a Kac-Moody algebra g.
The Cartan-type superalgebras of Kac are obtained as the special cases W (A,_1) = W(n)
and S(A,—1) = S(n). The corresponding contragredient Lie superalgebra is a Borcherds
superalgebra #(g) such that #B(A,—1) = A(0,n —1). In ref. [3] we studied in detail the
case of finite-dimensional g. The main purpose of the present paper is to extend this study
to the case where g is extended by an additional node in the Dynkin diagram to a possibly
infinite-dimensional Kac-Moody algebra g™ (the precise definition depends in addition to
g on the choice of a dominant integral weight A, in a way that will be clarified later).

The invention of the THA’s was motivated by the need to accommodate the embedding
tensor of gauged supergravities in the algebra [4, 5]. It has subsequently become clear [6-9]
that they are also needed as an algebraic basis for models of extended geometry [10]. In
certain simple cases, where so called ancillary transformations do not appear, only the
corresponding Borcherds superalgebra is needed. In ref. [8] we derived an Lq.-algebra from
it, encoding the gauge structure in the absence of ancillary transformations. The more
general situation demands that a THA is used. We refer to the accompanying paper [1]
for details on extended geometry, and for details about gauge transformations (generalised
diffeomorphisms) and dynamics in such models.

The paper is organised as follows. In section 2, we review the Chevalley-Serre con-
struction of the corresponding Borcherds superalgebras %(g"). This presentation is then
generalised, using the same Dynkin diagram, to the THA’s in section 3. Section 4 deals
with the tensor product between the adjoint of g and any highest weight representation,
using the multiplicity formula of Parthasarathy, Ranga Rao and Varadarajan [11]. This
tensor product is needed to determine the content of a THA in a double grading, where
each grade forms a g-module. A g-covariant description is then given in section 5, and a
sequence of subalgebra embeddings of THA’s is described in section 6. The g-covariant
description leads to a remarkable algebraic identity involving projectors on irreducible sub-
modules of the tensor product R(\)®adj, which is verified explicitly in a series of examples
in section 7. We end with conclusions in section 8.

The accompanying paper [1] deals with the application of the tensor hierarchy algebras
S(g™) constructed here to extended geometry, both the gauge structure (in the form of an
Lo algebra) and the dynamics. In order for both papers to be reasonably self-contained,
their contents have a certain overlap.

2 The Borcherds superalgebra %4

We start with a finite-dimensional semisimple Lie algebra g or rank r, which we assume to
be simply laced, and a dominant integral weight A, which we assume satisfies (A, A) # 1
in a normalisation where the simple roots «; of g have length squared (a;, ;) = 2. The



A

Figure 1. Two equivalent Dynkin diagrams for Z(g"), W(g") and S(g*). Removing the “grey”
node in the first diagram yields the Dynkin diagram of g7.

assumption that A is dominant integral means that the Dynkin labels A, = (), «;) are
non-negative integers (not all zero). The Dynkin labels are the coefficients of A in the
basis of fundamental weights A;, defined by (A;, ;) = d;5. A dominant integral weight A
defines a highest weight representation, which is denoted R(\), with A as highest weight,
The dual (conjugate) representation with lowest weight —\ is denoted R(—\) = R(\). We
use the same notation for the representations and the corresponding modules. In concrete

examples they may also be denoted by their dimension, written in boldface.

The Borcherds superalgebra 2 = %(g") can be constructed by adding two nodes to
the Dynkin diagram of g. This can be done in two different but equivalent ways, related
by an “odd Weyl reflection” [12] as shown in figure 1. In ref. [8] we considered # as
constructed from a Dynkin diagram of the second type, with two grey nodes. Here we will
instead construct £ from a Dynkin diagram of the first type, with only one grey node. A
difference in notation compared to ref. [8] is that we label the r nodes in the Dynkin diagram
of g (or the corresponding simple roots) by an index i that takes the valuesi =2,...,r+1
rather than ¢ =1,2,...,r.

Thus, to the Dynkin diagram of g we first add a white node 1 connected to node i by
\; lines, extending g to g™. This first extending node corresponds to a simple root oy of
the same length as the simple roots of g (even when it is connected with multiple lines,
which means that there are no arrows). Then, the Dynkin diagram of g% is extended by
a grey node 0 connected to node 1 with a single line, and disconnected from all nodes % of
g. The corresponding simple root «g is a null root. This Dynkin diagram corresponds to
a Cartan matrix By, (a,b=0,1,...,7 + 1) where By; (i,j =2,3,...,r + 1) is the Cartan
matrix of g and

Bi;=Bj1i=-X\i, Bo=DBiw=-1, Bu=2, By=Boy=DByp=0. (21)

To each node a we associate three generators ey, fq, hq. Among these 3(r + 2) gen-
erators, eg and fy are odd, the others even. Now £ is defined as the Lie superalgebra
generated by the set {eq, fa, ha} modulo the Chevalley-Serre relations

[has €] = Bavey,  [ha, fo] = —Bavfo,  [€a; fo] = davhy , (2.2)
(ad ey) " Bav () = (ad fo) 7 Pab (f) = 0. (2.3)
Note that we use the notation [-,-] for the brackets, also between two odd (fermionic)

elements, when it is symmetric.

When we extend g to & we also extend the Cartan subalgebra h of g to a Cartan
subalgebra 7 of %. The set of simple roots «, constitute a basis of the dual space F*
with an inner product given by the Cartan matrix, (aq,ap) = Bgp. Since we assume that



g is simply laced, the Cartan matrix B;; is symmetric and all the simple roots have the
same length squared, which we normalise to 2. It should however be straightforward to
generalise our results to situations where g is not simply laced, as long as A has vanishing
Dynkin labels for the short roots (i.e., if node 1 is disconnected from nodes representing
short roots). We write 1(a) = hq, for the isomorphism 1 : h* — h given by ¥ (a;) = h;.

The Borcherds superalgebra % can be decomposed into a direct sum of subspaces,
labelled by pairs of integers (p, q) where p and ¢ are the eigenvalues of —hg and

(A A) = 1)hg — hy = hy, (2.4)

respectively. We will refer to them as level and height, respectively.! This is a consistent
(Z x Z)-grading in the sense that the subspaces at even and odd p + ¢ belong to the even
and odd part of the Lie superalgebra, respectively. Since g is a subalgebra at (p, q) = (0,0),
the subspace at any definite pair of integers (p,q) forms an g-module. Our notation for
these modules is given in table 1. As can be seen there, all modules come in pairs, except
for those at level p = 0. For all other pairs of integers, any irreducible module that appears
at (p, q) also appears at either (p,q+1) or (p,q—1). This “doublet structure” follows from
the fact that eg, fo, hg form a Heisenberg superalgebra,

[eo, fo] = [fo, €0] = ho, [ho, o] = [ho, fo] =0, (25)
that commutes with g. In ref. [8] we defined corresponding raising and lowering operators.
In the notation that we use here, the definitions take the form?

o Ae A=l ),
D

b : A A =—[A e, (2.6)

for any element A at level p # 0. It follows from the Chevalley-Serre relations that they
satisfy

#2=p2=0, #h+ bt =1, (2.7)

and commute with the adjoint action of any element in g. We introduce basis elements
Eyr and FM for the odd subspaces at (p,q) = (1,0) and (p,q) = (—1,0), respectively,
which form the g-modules R(—\) and R(A). Accordingly, E]ﬁ\/[ and F"M (denoted Ej
and FM in refs. [8, 13]) are basis elements for the even subspaces at (p,q) = (1,1) and
(p,q) = (—1,—1). For the subalgebra g at (p,q) = (0,0) we introduce basis elements Ty,
where the adjoint index can be raised by the inverse %? of the Killing form Nag = (T, Tp).
At (p,q) = (0,0) we also have a two-dimensional abelian subalgebra that commutes with
g. As basis elements, it is convenient to choose k = hg+ h1 + h) and k= hi+ h). Also the

"We will occasionally talk about “levels” with respect to other Z-gradings too, and also about the
“height” of a root or a weight in the usual meaning.

*Note that, unlike in ref. [8], the raising operator is here associated with an “f generator”, and the
lowering operator with an “e generator”. This is a consequence of the “odd Weyl reflection” that relates
the two diagrams in figure 1 to each other.



n=>0
qg=3 E’,g n=1
g=2 Ry Ry o By n=2
g=1 1 R Ro®Ry | Ry®Ry | [n=3
g=0 Ry l1®adjd1 Ry Ry R
o )

Table 1. The general structure of the superalgebra %(g*). Red lines are the usual levels n = p—gq
in the level decomposition of #(g"), and form g™-modules.

p=-—1 p=0 p=1
g=1 fo B,
q=0 M k T, k| Eu
q=-—1 M €o

Table 2. Basis elements for #(g*) at p = —1,0, 1.

generators ep and fp at (p,q) = (0,—1) and (p, q) = (0,1), respectively, are clearly singlets
under g since node 0 is disconnected from the nodes 2,3,...,r+1. At levels p = 0, £1 (the
local part of the Lie superalgebra with respect to this Z-grading) we thus have the basis
elements shown in table 2.

Of particular interest are modules R and Rg. Ry contains the symmetric tensor
product of two Ry’s, except the lowest one, which is removed by the relation [eg, eg] = 0,
so that

Ry = V2R(=)\) © R(—2)). (2.8)

Rj contains the antisymmetric tensor product of two R(—A\)’s, with the modules corre-
sponding to Serre relations in g™ containing two e;’s removed, i.e.,

Ry =NR(-)\) e P R(-2r— ) (2.9)
A =1

(we use V and A for symmetric and antisymmetric tensor products).



The (anti-)commutation relations are

(T Bra] = =(ta)rV En (To By] = —(ta) N Exy
[k, Ear] = =(A, M) B [k, By = (2= (O, A))EM
[k, Ey] = <1 - (A N)En [k, BR] = (1= (\, ) B,
[fo, EN] = [fo, ER] =0,
eo, En] = leo, E%] = E (2.10)
[Ta,FN] _ ( a) NFM [ O“FbN] — (ta) NFbM7
[k, FN] = (A, A PN [k, FPN] = (A, 2) = 2) PN,
[k, FN] = (A \) — ) N, [k, FPN] = (A, A) PN,
[fo, N]Z ; [fanbN]Z
[eg, FN] = [eg, F*N] = (2.11)
[En, FN] = —(to‘)MNTa + 60Nk, [E%,, PPN = —(tO‘)MNTa + 60Nk,
[Enr, FPN] = 60N eo (B, PN = 60N fo . (2.12)

3 Modifying % to a tensor hierarchy algebra

In the Borcherds superalgebra, there is never a nontrivial module Ri. A direct motivation
from extended geometry to introduce a tensor hierarchy algebra comes from the need for
such a module in order to describe ancillary transformations [1].

In ref. [3], two different Lie superalgebras W (g") and S(g"), both called tensor hierar-
chy algebras, were defined in the case of finite-dimensional g™. We will here give a slightly
different definition, valid also for infinite-dimensional g* (but still finite-dimensional g).
The algebra needed in extended geometry [1] is S(g"), but in accordance with ref. [3] we
first give the definition of W (g™), and then explain how the definition of S(g*) is obtained
from it.

Our investigation will exclude the case (A, A) = 1, which happens when g = D, and
A = Ay, so that R(\) is the vector representation. This case is somewhat degenerate
(see egs. (5.13) and (6.4)), for example in the sense that the embeddings of section 6 are
not valid. The corresponding tensor hierarchy algebras are still well-defined, and should
be relevant for double geometry. However, some aspects, especially the identification of
ideals, require a special treatment, which we will not deal with here.

3.1 The tensor hierarchy algebra W

The tensor hierarchy algebras W = W(g") and S = S(g") are defined from the same
Dynkin diagram and Cartan matrix B, as %, corresponding to an (r + 2)-dimensional
vector space with a basis consisting of simple roots «, and inner product (ag, ap) = Bgp.
However, the assignments of generators to the nodes in the Dynkin diagram is different.
The generators of W are obtained from those of Z in the following way. The even
generators e;, f;, hq and the odd generator ey are kept, but the other odd generator fy



is replaced by r + 1 odd generators fp,, where a = 0,2,...,r + 1. Henceforth, whenever
foa appears we assume a # 1, and whenever f, appears we assume a # 0. Otherwise,
if nothing else explicitly stated, the indices a,b,... will take the values 0,1,2,...,7 + 1.
The default values of the indices 4, j,... will be 2,3,...,r + 1. We introduce a consistent
(Z x Z)-grading with level p and height ¢ as for 4.

In the definition of W we now first define an auxiliary algebra W as the Lie superalgebra
generated by the set {eq, fa, foa, ha} modulo the relations

[has €] = Bapes , [ha, fo] = —Bav fo , [a, fo] = Savh (3.1)
(ad eq)'~Par (ey) = (ad fa) 7P (fy) = 0. (3.2)
€0, foa] = [has foo) = —Baofoo, e [fj, foall = 0ijBajfoj .  (3.3)
le1, foa] = [f1, [f1; foall = [foa, foo] = 0. (3.4)

In the first two lines we recognise the relations (2.2) (but now with the assumption that
the smgle index on f does not take the value 0).
Let W( ;) be the subspace of 1% spanned by all elements of the form

(X1, [z2, ..., [tN—1,2N] - ]] (3.5)

for some integer N, where each x; € {eq, fa, foa, ha} (j = 1,2,...,N) and among the N
elements x;, the generators e; and f; appear i and j, times, respectively. (Henceforth, we
will occasionally write a multi-bracket of the form (3. 5) simply as [z1, ...,ZN_1,ZN]. ) The
algebra W has a Z-grading W = @pez i5)

such that ¢ — j = p. Let J be the maximal ideal of W intersecting Wg trivially (obtained

W where W is the sum of all subspaces W(

by taking the sum of all ideals with this property). We define W as the quotient obtained
from W by factoring out this ideal, W = W /J.

We will see that fWV(LO) = W, and ’WV(OJ) = W_;. This is not obvious. Since there are
no relations [e;, foa] = 0 for i = 2,3,...,7 + 1, the Lie superalgebra W does not admit a
triangular decomposition. When we consider basis elements of the form (3.5) for N > 2,
we cannot assume that either all z; € {e,} or all z; € {f,, fop}. Moreover, if one of the
elements x; is equal to e, and another one is equal to f, (if a # 0) or some fy, (if a = 0),
then it is in general not possible to rewrite any such expression using [eq, fp] = dapfp OF
leo, foo] = hp so that both disappear. It is however possible in special cases: for any a
when g is finite-dimensional [3] and, as we will see, for ¢ = 1 when g is finite-dimensional.
(What we will show explicitly is the corresponding statement for the subalgebra S, but it
can be shown in the same way for W.)

In ref. [3], where g was assumed to be finite-dimensional and A a fundamental weight
A = Ag, the tensor hierarchy algebra W was defined similarly from an auxiliary algebra
W, but with the Z-grading associated to node 0 rather than to node 1. It was then shown
that, in the case of g = A, and A = Ag, where W is the finite-dimensional Lie superalgebra
of Cartan type W (r + 2), the ideal J intersecting the local part trivially was generated by
the relations

[foas foo] = [fois [fos, [1]] = [(fo2 — foo): [foj, fil] =0 (3.6)



for i,5 = 3,...,r + 1. Here we have instead included the relations [fo,, fo] = 0 already
in the definition of W and the ideal that we factor out is the maximal one intersecting
Wg trivially, where the Z-grading is associated to node 1 rather than node 0 (the relations
involving f; are contained in this ideal). The reason is that we have W(l,o) = Wl and
V[N/(OJ) = W,l in this Z-grading, as discussed above.

Another difference in comparison with the relations in ref. [3] is that, among the
relations

[eaa [eaa fObH = [faa [fay anH =0, (37)

there, we have only included [f1, [f1, foa]] = O here. The other ones follow in fact from the
relations above. For [eg, [eq, fop]] = 0 with @ = 0 or a = 1, this was noted already in ref. [3],
and also that [e;, foo] = [fi, foa] = 0 if Bjs = 0. Suppose now that B;; = —1. Then

2[es, [eis fosl] = [ed, [eis [ej, [f5 fosl]]]
= 2[ei, [e5, [es, [f5, fos]ll] — [ej, les, e, [f, fos]ll] = 0 (3.8)
and finally
—[ei, [ei, foil] = les, [eds [eqs [fis fos]]]]
= les, [es, [f3, [eq, fos]l]]
= [es, [hi, [es, fos]l] + [eas [fis [ess [eas fos]]]] = 0. (3.9)
In the same way, one can show that [f;, [fi, foa]] = 0.

3.2 The tensor hierarchy algebra S

It is easy to see that if we remove the generators fy; and the relations that involve them,
but keep foo, then we recover & from W (identifying foo with fp). Conversely, we can
remove the generators fyg and hg and the relations that involve them, but keep fp;. Then
we obtain the tensor hierarchy algebra S. Thus S is defined, via an auxiliary algebra S ,
in the same way as W above but without the generators fyg and hg and the relations that
involve them. We assign values of p and ¢ to the generators as in W.

In W we can define operators f and b satisfying (2.7), by replacing fo by foo in (2.6).
In S this is not possible since there is no generator fyg in S that could be identified with fy
in #. One might think that this would mean an absence in S of the “doublet structure”
present in A at nonzero levels. However, it is in fact still present in S (we do not have a
proof to all levels in the general case, but the opposite seems extremely unlikely), and it
even extends to level p = 0.

We will show that it is indeed possible to define an operator f on the subalgebra of S
generated by {e;, fi, €0, foi, ha} such that § satisfies (2.7), with b still defined by (2.6). First
we set

hiﬁ = —foi, hlti = fox, eOﬁ = % =hi+hy, fOiﬁ = V. (3'10)



It then follows that #? = 0 and #b + b = 1 on these generators, and that [z, eo]* = [z, eof],
where z is any element in g.

Let us write ko' = — foo. In order to extend the operator f to the root vectors e, of g
(corresponding to positive or negative roots), we note that

(047 B) [eaa va] = (0477) [eaa fO,B] (3'11)

for any root a of g and ,v € h*. This was shown in ref. [3] in the case when «, 8,7 are
simple roots, and it is straightforward to show it also in this general case. We can then
unambiguously set

S S
- (Oé,ﬁ)[ wa()ﬁ] (312)

[S%e

for any root « of g and any 8 € g* such that (a, 8) # 0. As shown in ref. [3] (with 8 = p),
this implies that

[, 4] = [z, y)f (3.13)
for any x,y € g. We also set e;* = 0 and

1

i
h =

[f1, foxl - (3.14)
Another result from ref. [3] that we will use is

[6047 [e—au fOBH - (O[, /B)an (315)

for any root a of g and any 8 € h*.

3.3 Local part of S

We will now study the subspaces of S at levels p = 0,£1 and decompose each of them
further into subspaces at different heights ¢. It will be useful to consider also a Z-grading
of g with respect to A\. We let g(, be the subspace of g spanned by all root vectors e,
corresponding to roots a such that (a,A\) = ¢, and, if £ = 0, the Cartan generators h;
of g. We thus have g = 7 9()- We also write, for example, g(<1) = @i 9(r). For
homogeneous elements x in g with respect to this Z-grading we call this degree A-level
and denote it by £(x), so that x € g(y)). The Dynkin diagram of gy C g is obtained
by removing the nodes ¢ in the Dynkin diagram of g that are connected to node 1 in the
extension to gT, i.e., the nodes with \; # 0.

I~n the notation introduced above for W, the algebra S contains subspaces §(070), §(1,0)
and S(g 1) at levels 0, 1 and —1, respectively. The subspace S(q ) is the subalgebra generated
by all generators but e; and f;. We will also denote it by S’ below. The subspace S1,0)
is spanned by multi-brackets that contain precisely one e; and no f;, whereas, conversely,
S(o,1) is spanned by multi-brackets that contain precisely one f; and no e;. In the multi-
brackets that span S(; ¢y, the only e; generator can always be put in the innermost position
by the Jacobi identity. When considered as spanned by such multi-brackets, we say that



the S(1,9) is the S’-module generated by e, and denote it by S’(e;). We will use the
corresponding notation, g(a), for the g-module generated by some element a in S (or in
the algebra currently under investigation).

At this point it is not clear that the algebras W and S are non-trivial, i.e. that the
relations (3.1)—(3.4) generate a proper ideal of the free Lie superalgebra generated by
{ea, fas foa, ha} and not the whole free Lie superalgebra itself. This will be shown in
section 5. We will anticipate this result and proceed under the assumption that W and S
indeed are non-trivial.

3.3.1 The subalgebra S’
We start by examining the contents of the subalgebra S’ of S. At height ¢ = 0, it contains

the subalgebra generated by {e;, fi,h1}. This is g ® (%) of g, the direct sum of g and a
one-dimensional Lie algebra spanned by k. At height ¢ = 1 and ¢ = —1 it contains the
g-modules g(ep) and g(h*) generated by ey and all fy;, respectively. The first one is a singlet
since ey commutes with all e;, f;. The second one is gf, which is isomorphic to g itself, the
adjoint module, according to (3.13). Since [eg, g*] = g, there is no other g-module in S’ at
height ¢ = 0 or ¢ = +1. Furthermore, since [eg, eg] = 0, the algebra S’ does not contain
any non-trivial element at height ¢ < —2. To see that S’ does not contain any non-trivial
element at height ¢ > 2 either, we use (3.11). We then get [[eq, fos], foy] =[ea; [fos, foy]] =0

if (a,7y) = 0, and otherwise

—~

a, B) (@, B)

[[ea’ fO,B}v fO’Y] = (OZ,’}/) Hea) fO’Y]? fO’Y] = 2(0&, '7) [eaa [fO’ya fO’YH =0. (316)
From this it easily follows that [gf, g*] = 0. We summarise:
S =(eo)® (k) g g, (3.17)

where the g-modules on the right hand side appear at heights ¢ = —1, 0, 0 and 1, respec-
tively. At this point, it is not yet clear that (3.17) is the full content of S at level p = 0 since
a priori there might be elements in S 1), S(2,2), ... that are not contained in S = S0,0)-

We will however see that this is not the case. It suffices to show that [fi, §(1,0)] C S(0,0-

3.3.2 The subspace S,

Before studying the full subspace S1 we first study S0 C 51 in order to show that
[fl, S(l,O)] - 5(070), which implies that S = S(l,O)-
The subspace S(; ) of S is spanned by all elements of the form

[817[82?“'7[SN—la[SN;el]]"'H (318)

where s1,...,sy_1 € S’ for some N > 0. It follows from the relations in S’ that any
such expression can be written as a sum of other ones, which are “normal-ordered” in the
following sense:

$1,...,5Pp €9,
SP+15--+3SP+Q € gﬁa
SP+Q+1;- -, SP+Q+R = €0, (3.19)
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where P,QQ,R > 0 and P+ Q + R = N. We note that any such nonzero expression
is antisymmetric in spyi,...,Spqq since [gﬁ,gﬁ] = 0 and we may also without loss of
generality assume that it is symmetric in s1,...,sp. Furthermore, because of the relation
[eo, [€0, €1]] = 0 we can assume R to be either 0 or 1. We will see that this holds also for @,
and we will also restrict the A-levels of the elements in g and g¥. First we will show that
[0<)f,e1] = 0.

Consider [z, e1], where x € g. From the relations [k, e1] = —[foi,e1] = 0 we know
that this is zero if  belongs to the Cartan subalgebra h of g. If x is a root vector e, of a
root « such that (o, \) < 0, then [eqn,e1] = 0 and

2t ea] = (ijnea, foslse1] = m’lﬁ)([ea, omerl] — Logs leaer]) =0, (3.20)

for some 5 € h* such that (o, 3) # 0. Thus [g(go)ﬁ,el] = 0. If z is a root vector e, of a
root « such that (a, \) = 1, then [eq, e1] # 0, but still [eq, [eq, e1]] = 0. This implies

(adeq)?(adey) — 2(adey)(ader)(ad ey) + (adey)(adeq)? =0, (3.21)

and then, using (3.15),

o1, ea’] = ~lex, [eas fool]

2
= i[ela [ea, [eou [e—a, anm]
1 1
= 5[6047 [617 [eou [e—ou anm] - 1[6047 [eou [617 [6—047 anHH
= lean le1. foall = §leas eas e o1, foalll] = 0. (3.22)

Thus [g(gl)ﬁ, e1]=0. Since [g(<0), e1] =0 and [g(y), g(g/)ﬂ] :9(£+€’)ﬁ we can now refine (3.19) to

S$1,.--,8P eg(}l)?
SP+1y-++5,SP+Q € 9(22)ﬁ7
SP+Q+15---3SP+Q+R = €0 - (323)

Next we will show that [fl,g@l)ﬁ] = 0. Acting on (3.22), where (o, \) = 1, twice with
f1 we get

0= [f1, fi,e1,ea’] = —[f1, b1, ea’] — [, f1, ea?] + [e1, f1, f1, €0’
= (2(()‘7 O‘) - 1) + 2)[f17 6au]
=2(}, a)[fl,eaﬁ}, (3.24)

where we have used that
1

1. f1r60f) = 7 g5 o Fron o) = @:B)[ea,fa, fir fog) = 0 (3.25)
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for some (3 such that («, 8) # 0. Thus [fl,g(l)ﬁ] =0. If z € g for £ > 2, then 2! is a sum

of terms [x1, ..., 2, fo,] where x1,...,2¢ € g(1) and
fro21, e, foy) = @1, -+ o1, f1, 70, foy) = 0. (3.26)
Thus [fl,g@l)ﬁ] = 0. Since in particular [f1,g(>9) ] =0, and also [f1,8=1)] = 0, we get
[f1,81, ---,8N,€1] = [81, ..., 8N, f1,e1] = —[s1, ..., 8N, 1] € 5 (3.27)

when we act with f; on (3.18), assuming (3.23). We conclude that [f1, 5(1,0)] - §(070) and
it follows that

571 - S(O,l) 5 g{) = 5(070) 5 §1 = g(l,O) . (328)
In the same way as in (3.27), for any =,y € g(=2), We get

[f17817 “ee 75Nal‘ﬁayﬁuel] — _[517 "')Sviﬁvyﬁvhl] . (329)

This is proportional to [s1, ...,s N,:rﬁ,yﬁ] which is zero, since [z, ¥ is. It follows that
(2%, [y, e1]] generates an ideal of S that is contained in @D,>1 Sp, and then it must be zero in

S since S is obtained from S by factoring out the maximal ideal that intersects So trivially.
Thus [g%, [g%, e1]] = 0 in S. Furthermore, since

[xﬁayﬁ7€07el] = _[xﬁayvel] - [;Cﬁ 607yﬁ761]
= 7[xﬁ7yael] + [fL’ yﬁ 61] + [BO)xﬁ,yﬁyel]
= —[lz,y)f,e1] — [y, 2*, e1] + [z, e1] = 0, (3.30)

we have [gﬁ,gﬁ,eo,el] - g([gﬁ,el]) and [gﬁ,gﬁ,gﬁ,eo,el] =0. We get

S1 = g([eo, e1]) + a(e1) + a([g, €0, e1]) + a([g?, e1])
=g(er’) + aler) + a([g*, ex’]) + a([g, e1]) - (3.31)

Here we can replace g([gf, e1°]) by g([gf, e1]’). We then get

S1=g(er’”) +aler) + 9([e%, e1]’) + g ([, e1]) , (3.32)

where g can be replaced by g(>1) and g can be replaced by g(>g)ﬁ. We will see later that
this sum of g-modules is direct. The g-modules on the right hand side appear at heights
q=20,1, 1 and 2, respectively.

3.3.3 The subspace S_;

We now turn to level p = —1 and the subspace S_1 = S’(f1). It is spanned by all elements
of the form

[517 "'7SN>f1] (333)
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where s1,...,sy_1 € S’ for some N > 0, and, according to what we have already shown,
we may assume

81,.++,8P € g(<-1) >
SP+1,---,5P+Q € g(<0)ﬁ (3.34)
where P,Q > 0 and P + Q = N. We will show that [g?, g%, g%, f1] = 0, which means that
@ < 2 in any nonzero expression of the form (3.33). According to the results above, it is
sufficient to show that [eq, S"([g%, g%, g%, f1])] = O since that implies that S'([g%, g%, g, f1])

generates an ideal of S contained in @p§—1 Sp, which must be trivial. The vector space
S'([g*, g%, g%, f1]) is spanned by elements of the form

xﬁ7yﬁ7zﬁ7fl] (335)

where z,y,z € g and s1, ...,sy are elements in S’ that we can assume satisfy (3.23)
with R = 0,1. If R = 0 (that is, if sy # ep), then we may as well assume that
s1, ...,sn satisfy (3.34). Since [el,g(gl)ﬁ] = 0 (in particular [el,g(go)ﬁ] = 0, see (3.20))

[61,81, ..., SN,

and [e1, g(<—1)] = 0 we then get

[61,81, "'7SN7xﬁ7ytiazﬁ7f1] = [317 "'aSN7xﬁ7yﬁ7Zﬁ7elvf1]
= [s1, ...,SN,xﬁ,yﬁ,zﬁ,hl] =0. (3.36)

If R =1 (that is, if sy = ep), then the expression (3.35) is equal to

le1, 81, -y sn—1, €0, 2%, 45, 2% fi] = —[er, 51, .oy sn_1, 7,y 2P fA]

+[61,817-'~35N717 'Y,z ’fl]

— le1, 81, -y sn—1, 2%y 2, fi], (3.37)

which in turn can be written as a sum of terms of the form
le1, 51, .-, sn, 25, oF, f1] (3.38)
where z,y € g and sy, ..., sy satisfy (3.34). This can be shown to be zero in the same way

as [e1, 51, ...,sn,zf, 4, 2%, f1] in (3.36).
Thus we have [gf, g%, g°, f1] = 0, and it follows that

S-1=g(f1) +o([¢*, A1]) + o([e", 6, f1]) - (3.39)

As we will see, it is convenient to rewrite this sum of g-modules. First, since

[ ay fl] [xﬁay eOafl]
[:Cﬁvy fl ] [xvyﬁvflﬁ] - [eoaxﬁayﬂaflﬁ]
= [[Z‘,y] afl ] + [yvxﬁaflﬁ] - [9673/ﬁ7f1ﬁ] y (340)

we have g([g, o%, f1]) = o([g¥, f1¥]). Second, it will turn out to be convenient to write
a([g", f1]) as a sum of the two submodules g(f1#) and g([g?, f17]"). We thus arrive at

S_1=g(f1) +a(f%) +a(lg*, 1)) + o ((e", 7)) . (3.41)
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where g can be replaced by g(<_1) and g can be replaced by g(go)ﬁ. The g-modules on the
right hand side appear at heights ¢ = —1, 0, 0 and 1, respectively.

In the above derivation of the content of Si; in terms of g-modules, we have relied on
the definition of S as the superalgebra obtained by factoring out the maximal ideal in S
intersecting So trivially. We know that in many cases [3], the ideal contains a part generated
by [foi, [foj, fi]] for all 4, j such that A\; = A; = 0. We also know that in some cases there is
an additional part generated by elements at positive levels p > 2, see section 5.4. Although
we have not been able to derive the content of Si; in terms of g-modules using only the
defining relations (and [ fo;, [fo;, f1]] for A; = A; = 0) we have no proof that it is impossible.
This possibility of course does not affect the results (3.32) and (3.41).

4 The tensor product R(A) ® adj

We will now determine the g modules that appear in the local part of .S, that is, on the
right hand sides of (3.17), (3.32) and (3.41). At p = 0 we already know that g* is an adjoint
g module, and that ey and k span two singlets. At p = 1 it is easy to see that g(elb) and
g(e1) are lowest-weight modules with lowest weights —A,

gler”) ~gler) ~ R(—\). (4.1)

Likewise, at p = —1 it is easy to see that g(f) and g(f,*) are highest-weight modules with
highest weights A,

a(f1) = g(fif) = R(Y). (4.2)
It remains to determine the modules

a(le% 1)) = g([e", e1)) (4.3)
at p =1 and

s(le", /") ~ a([e", 111) (4.4)

at p = —1. These modules must be contained in the tensor products R(—\) ® adj and
R()\) ® adj, respectively. We will therefore in this section study the tensor product R(\) ®
adj and its decomposition into a direct sum of irreducible submodules. (It is of course
sufficient to study one of the two tensor products in detail.)

We thus consider the tensor product R(A) ® adj, where A is an arbitrary dominant
integral weight. Clearly, all irreducible representations occurring in the tensor products
with non-zero multiplicity are R(A + 7), where -« lies in the root lattice.

Denote the multiplicity of R(v) in R(u) ® R(A) by mult(R(n) ® R(M), R(v)). The
multiplicity formula of Parthasarathy, Ranga Rao and Varadarajan (PRV) [11] reads

mult(R(A) ® R(u), R(v)) = dim {v € R(p)y—»x: el’-\iHv =0 for all z} , (4.5)

where R(u), denotes the subspace of R(u) at weight v. The roles of A and p can of course
be interchanged in the formula. A state v € R(u),_) such that ef‘iﬂv = 0 for all ¢ will
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be called PRV state below. A PRV state is in general not a highest weight state for the
corresponding irreducible representation in the tensor product, but always a part of it.
Applied to the tensor product under consideration, we get

mult(R(\) ® adj, R(A + 7)) = dim {v € adj, : (ade;)* v =0 for all i}. (4.6)

This shows that the multiplicity can only be non-zero when v € T' J {0}, where I is the
root space of g. It also immediately follows that non-zero multiplicities of R(A+7), v # 0,
equal 1, due to the non-degeneracy of the root decomposition of the (finite-dimensional)
Lie algebra g.

First consider PRV states v for v # 0. For i such that \; = 0, we need e;v = 0,
which means that + is a highest root at some A-level. For i such that A\; # 0, we have
ei, [ei, v]] = 0 for such roots, with the only exception £ = —1, v = f; for an ¢ with \; = 1.
When v = 0, we need elements in the Cartan algebra, which are annihilated by all e; for
which \; = 0. These are linear combinations of h; for A; # 0, namely the fundamental
weights A, and they trivially satisfy the remaining conditions.

Thus, we have shown that

(\0)
R\ ®adj=NRN e P P RHA+19) (4.7)
(=—(\0) v cH,
(#—1

where Hy is the set of highest roots at A-level ¢, and N is the number of non-zero A\; (N =1
for A a multiple of a fundamental weight).

At a given /¢, there may be several roots in Hy. All A-levels from —(\,0) to (A,0)
occur, except £ = —1, assuming A is not a multiple of a smaller integral dominant weight.
If A =n), the relevant \-levels are —n (XN, 0), —n((N,0) +1),...,n(N,0).

We introduce the notation

Ry = @ RO+ (4.8)
~OeH,
for ¢ # 0,—1 and
Rgy=NRMN & @ RO++7), Ry ={0} (4.9)
’Y(O)GHO

so that R(\) ® adj = @éi{)(kﬂ) R). We will show that

(A.0)

s ®ac) = P Ry, (4.10)
=1

where v is a lowest weight state in R(A). Any element in v) ® g(>) must belong to the
module on the right hand side of (4.10), since the complementary submodule @f o) B
of R(\) ® g is spanned by states of lower weights. Thus the left hand side of (4 10) is
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contained in the module on the right hand side. Conversely, the highest weight state in
any submodule Ry must be a linear combination of vy ® e,v and elements in

g-(0a) @94 (ey0) Co-(a@ar(e,m)) +oa @ g (o+(ey)) (4.11)

of weight A + ), where g+ denote the Borel subalgebras of g spanned by {e;} and {f;},
respectively. But the only elements in vy ® g_ (g+(ey<g)) of weight X+~ are multiples of
U\ ® €. Thus the highest weight state in any module R, belongs to g(vx ® g(=p)) and
it follows that the module on the right hand side of (4.10) is contained in the module on
the left hand side. We conclude that (4.10) holds.

Let us now return to the modules in (4.3) and (4.4). We have seen that [zf, f1¥] is zero
for € g=1). Also, if z € by, where b, is the subspace of h spanned by h,, then we have
[2F, f1%] = 0 since 2[fox, [for, f1]] = [[for, foal, fi] = 0. On the other hand, if = is a root
vector x € g(g) Or T € g(<_2), then [z, f1¥] is nonzero. This can be seen by acting with
first eg and then e;. We then get

le1, €0, 2, f1f] = ((1 - (A&))E@ - 1) .3 (4.12)

where £(z) is the A-level of z. If {(z) < —2 for some nonzero x € g then (A, \) > 1 since
the only case where (A\,\) < 1is g = A,, A = Ay (or A = A,), which leads to a 3-grading
9=9(-1) D9 D9 (this can be checked by inspecting the inverse Cartan matrices for
simply laced Lie algebras g) and then

(1 - ()\’1)\)>€(a:) 1<l (4.13)

Also for = € b’, where b’ is a subspace of h such that h = by @ b’ (if N > 1) it is easy to
check that [zf, f1%] # 0. Tt follows that

RN ®g
E gy o E g ) ~
g([g 7f1 ] ) 9([9(@) 7f1 D g(w ®g(>1)) @9(1})\ ® h)\)
0
~ P RyoRWN. (4.14)
t=—(\0)
Similarly, at level p = 1 we find that
-2
R(—)) ® _
o(leh.erl) ~ o(lghoer)) ~ DV EE o (Y Ry, (415)

glu_) ® g(<1))
where u_y is a lowest weight state in R(—\). This is the representation R .

5 Construction from g-representations

5.1 Local superalgebra in terms of g-modules

We have shown that if S is non-trivial, then its local part decomposes into a sum of g-
modules according to (3.17), (3.32) and (3.41). In order to show that S indeed is non-trivial
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we will now construct a non-trivial Lie superalgebra that satisfies the relations (3.1)—(3.4)
if the generators are identified with certain elements in it. In this construction we use the
fact that there is a Z-graded Lie superalgebra % = @pez
vector space %1, generalising the universal Z-graded Lie algebra associated to a vector

U, associated to any Za-graded

space [14, 15]. The subspaces %_, for p > 0 are defined recursively as consisting of all
linear maps % — %—_p+1, and the brackets are such that [A, a] = A(a) for A e %_, (p > 0)
and a € 74. In particular, %y = gl(71). The subalgebra ®p20 U, is freely generated by %;.

In this case, we let %4 be the direct sum of four g-modules, pairwise isomorphic with
an isomorphism §. Two of the four g-modules transform in the representation R; = R(—=))
and are denoted by U and U, respectively. The other two transform in Ry and are denoted
by U and U ﬁ, respectively. Thus

m=UsUtaUaU!. (5.1)
According to the discussion in the preceding section, we consider the module U as the
quotient
~ U
J-_ %8 (5.2)

gle1 ® g(<1))

where e is a lowest weight state of U. We let L be the natural map U ® g — ﬁ, so that
L(u® ) = 0 if and only if z € g(<y).

Since 74 is a g-module, we can consider g as a subalgebra of %y = gl(%). We then
define an odd subspace gt of % isomorphic to g, an odd element ey € % and an even
element k € % by

[, L(u ® y)f] =
[ (U®Z/]=[90LU®y)]ti L([z,u] © y)f + L(u ® &, y])*
[, uf] = ~L(u® z)F,
[0, u] = —[z,uf ~ Lu® ), (5-3)
leo, L{u® 2)f] = —L(u © z)
[eo, L(u @ 2)] = 0,
[60,Uﬁ] =u,
[eo, u] =0, (5.4)
[k, L(u® )] = (3— (\A)L{u® ),
[k, Llu®@z)] = (2= (\\)) L(u @ z),
[k, uf] = (2 — (A, \)uf,
kyu] = (1— (A \))u. (5.5)

It is then casy to check that the subspace (eo) @ (k) @ g @ g of % closes under the

super-commutator and thus form a subalgebra. The brackets are given by
[z, 9] = [z, )%, leo, 2] = —z, [k, a*] = af [k, e0] = —eo (5.6)

and [eg, eo] = [¢f, o] = [eo, 9] = [k, g] = 0.
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We define ea by e; = (elb)ﬁ and define an element f; € %_; recursively by

[f1,e1"] = —eg
[froe] = by — &
W) -1z it L(z) > 2,
[flaL(€1®$)]—{O ) <1,
oo )] — (U(x) — Dzt if  f(x) > 2,
[f1, L(ex ® )]—{O i) <1, (5.7)
where £(z) is the A-level of z, and
[f1,€i(u)] =0,
[f1, ei(w)] = [es, [fr.wf]],
[f1, L([ei, u] @ x)] = [es, [ ( o)]] = [f1, L(u @ [eq, x])]
[f1, L([ei, u] @ WZMJ ®2)f]] = [f1, L(u @ [es, a])F]. (5-8)

It is straightforward to show that f; is well defined and then that all the relations (3.1)-
(3.4) are satisfied with fo; = —h;¥ and hy = h), — k. Thus there is a surjective isomorphism
from S to the subalgebra of % generated by f; € %_1 and %. It follows that the Lie
superalgebra S indeed is non-trivial, the sums in (3.17), (3.32) and (3.41) are direct, and
the g-modules that appear can be decomposed into highest and lowest weight modules
according to the discussion in the preceding section.

5.2 Covariant description

Let Ej; be a basis of U. We set Loy = —L(Ey @ Ty), so that Ly is a basis of U (as
before, T, is a basis of g). Similarly to S’(e1) = %1 at p = 1, we decompose the subspace
S’(f1) of 71 at p = —1 into g-modules as

S'(f)=VaeVvieveVvt (5.9)

where V transforms in R(\) with lowest weight state f; and basis F*. Then we can
identify V' with the quotient

V&g
9(f1 ®gz1)) ®o(fi @ hy)

(5.10)

and let ® be the natural map V@ g — V. If we now set O(FM @ T,) = —®,M, then the
brackets in S involving g* and the modules at level p = +1 can be written on tensorial
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form as

[ EM]—taMNEN+LaMa
[ E ] aM’
(T, Lon) = [Ta,Lﬁm = fapg"Lins — tarr™ Ly
7%, Lﬁ vl = (5.11)
[Tg,HbM]:t MHN+q) M’
[ToﬁuHM] = (I)ﬁaM’
T8, 5N = —[To, M) = — fog7 @M Mot N
7%, @4 M) =0, (5.12)
[HbMaEN] :_5]\/ 607
[HM B4 = tan™ T — 65Mk
1
HM E — (1= t*NMT, + Mk
1
HM Ef o Mt 5.13
[ ) N] (/\,)\) N a ( )
[HbMaLaN] = 760&]\[6 T,Ba
[HM | LE ) = —Lan®M T},
[HM Loy] = —lan®MTY,
[HMvLiN] :07 (514)
[(I)oz 7EN] = SpﬁN,Oc TB;
@M, BYy] = 7N MTE,
[(nga EN] = _SoﬁN,aMTg )
(@M By =0, (5.15)
Larr, @57N] = [Loar, @5V = (L, 05" = [LE . @5Y] =0, (5.16)

BM and ¢ MﬂN . These tensors will be some linear com-

for some invariant tensors £,y
binations of projectors on the modules appearing in L and ®. The coefficients in these
linear combinations are completely determined. One may think of L and ® as defined by
their appearances in the first equations in (5.11) and (5.12). The normalisation is then
fixed, and the tensors ¢ and ¢ are determined. As we will see in section 5.3, they are even
seemingly over-determined, and exist thanks to a peculiar identity.

An alternative way of deriving the content of S_; is to note that the basis elements
Ejr for Ry = R(—\) have a covariant Serre relation in g([eg, e0]) = R(—2\), so that the
bracket [Eyr, Ey] lies in Ry = V2R; © R(—2)). Any element at (p,q) = (—1,0) must
respect the ideal in R(—2)). This allows for the introduction of generators ®,™ with
brackets [En, ®,M] = ¢ NyaM T3, where ¢ is a linear combination of projection operators
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p=-—1 p=0 p=1
q=2 LiM
g=1 e foo Th | By Lau
¢g=0 | FM oM GM | | T, k Eu
q=-—1 M €o

Table 3. Basis elements for W(g™%) at p = —1,0, 1.

p=-—1 p=0 p=1
q=2 LiM
g=1 oL M T EY, Lo
g=0 | &, HM| T, Eu
q=—1 HM €o

Table 4. Basis elements for S(g*) at p = —1,0, 1.

on the irreducible modules in ®. They respect the ideal in R(—2\) if

tﬁ(MPSOﬂN),aQ = (tg ® @Ba)<MN>PQ =0, (5.17)

or equivalently, (0% ® t%)yn{F@ = 0, where (MN) denotes projection on R(£2)).
Eq. (5.17) is the condition for the representation of the embedding tensor, or the “big
torsion representation” in extended geometry.3

Let us check which of the representations in R(\)®adj that respect the Serre relations.
Consider an irreducible submodule R()\—i-’y(e)), where v is a highest root at A-level £. The
Serre relations will automatically have vanishing bracket with an element in this module if

R+ +9) @ R(=2\) 3 R(—=N), ie., if
RA+~9)Y® R(\) 2 R(2)). (5.18)

Applying the PRV formula (4.5) for the multiplicity of R(2\) in the tensor product on the

3 Although we have not performed a complete analysis, we have noted that in cases when \ is attached
to a short root, there is typically no solution to this algebraic condition.
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left hand side, we obtain

mult(R(A + ) @ R(\), R(2)))
— dim {u € RO sy : €y — 0 for all z} . (5.19)

This multiplicity is obviously 0 for ¢ > 0, since R(A) does not contain any states with
the same or higher A-level than the highest weight state. For the module R(\) we have
mult(R(A) ® R(\), R(2\)) = 1. We arrive at the statement that ® respects the Serre
relations at level 2 if it contains the irreducible modules

(A.0)
(N-1DRN @ P RO+ o P B RA-8), (5.20)
yEHo (=2 BeLy

where Hj is the set of highest roots at A-level 0 and Ly the set of lowest roots at A-level £.
This is the same sum of irreducible modules as was already shown to constitute g ([gﬁ, flﬁ]")
in eq. (4.14).

Using the covariant brackets, one can also check explicitly that ® respects the Serre
relations in ;. _1 R(—(2A — ;)) in [E]ﬁ\/[, E?V] The condition becomes

Loy M =0, (5.21)

where { NP} denotes projection on P,y _; R(&(2A — ;)). This is automatically satisfied,
since the highest modules in ® and L are R(\ + 7p) and R(\ — (32), where g is a highest
root at level 0. The tensor product can not contain R(2\ — «;), where (A, a;) = 1, since
2\ — ;- 2)\4-’}/0 —52.

5.3 A remarkable identity

Consider the Jacobi identity between T 3, Ej and HN. This turns out to be the only
non-trivial Jacobi identity within the local superalgebra at p = —1,0, 1, in the sense that
all others can be obtained from it by raising and lowering operations. A short calculation
leads to the necessary and sufficient condition for this Jacobi identity to be fulfilled:

1
SOBM,CVN - fonBN = 6g51\N4 - fozﬁlytfyMN - m(tﬁta)MN = QaMﬁN ) (522)

ie.,

Po— 07 =088 — £, — Pty = Q.". (5.23)

(A, A)

If we now make use of the algebraic condition (5.17) on ¢, the part of this relation only
involving ¢ becomes

g,BMa<Pt’BNQ> — fa,g,ytﬁMUDtvNQ) + taM<P5%> _ 5]<‘5taNQ>
= ('’ @t +1* @1 - 1@ t*) NV (5.24)
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The right hand side is recognised as the “S tensor” of ref. [10]. (There, a non-vanishing
S tensor was shown to be equivalent to the presence of ancillary transformations in the
commutator of two generalised diffeomorphisms. Here, it is related to the existence of a
module R;. See also ref. [1].) We thus have

(05" @ ) NP9 = Sy N9 (5.25)

The tensor S is antisymmetric in its lower indices. In addition, it satisfies S, N}P Q =y,
thanks to the identity

1—
Syt = ( vy ®ta)) (rPQ) | (5.26)
2 MN
where o is the permutation operator and Y is the tensor that appears in the expression for
generalised diffeomorphisms in extended geometry,

oY = Pt @t + (MN) —1+0. (5.27)

The existence of the THA shows that there is always a solution to eq. (5.23). The
difficulty with directly analysing this equation lies in the translation between the projections
on irreducible modules in adj® R(\) of the types Pny?Y and P8 M., used to characterise
£ and ¢, respectively. We are not aware of any explicit translation table in the general case,
although an analysis of the eigenvalues in eq. (4.12) and the corresponding ones for p = 1
may provide an answer.

Let us do a counting, which shows that the matrix Q must be degenerate. Assume that
A is a fundamental weight (the statements may hold in a wider setting). All irreducible
modules in adj ® R(\) appear with multiplicity 1. There is a single module at each level
—(A\,0) < ¢ < (A 0) in the grading with respect to A, except at £ = —1 where there are
none, and at level 0, where there is R(\) and in addition a number of modules R(A + o).
The number of highest roots at level 0 equals the number of disjoint components of the
Dynkin diagram of g when the root dual to A is deleted. The modules not in ® are R(\)
and R(A+ ) for £ > 1. Their total number is (A, ) + 1. The irreducible modules in ¢ are
R(A + ) for £ < —2, giving a total number (A, 6) — 1. An equation like (5.23) would, for
a generic (Q, be over-determined by 2 equations. In order for a solution to exist, () must
show some degeneracy, which in general will involve projections of the two types. Namely,
a linear combination of PR(’\J“W)Q PN for £ < —2 must have a decomposition in terms of
PRO+Y)B Mo, where the coefficients for the terms with 4/ = 0 and ¢ < 1 agree with
those of Q.

The existence of the tensor hierarchy algebra thus relies on, and implies, a quite non-
trivial algebraic identity involving representation matrices for arbitrary highest weight
representations of finite-dimensional simply laced Lie algebras, which we have not been
able to prove in an alternative way. In section 7, this identity is verified for a number of
examples, and classes of examples. To this end, we need the eigenvalues of () when it acts
on irreducible modules in the tensor product adj ® R(A). They can be calculated in either
picture. We choose the ¢ picture (simply because ® contains a larger number of irreducible
modules than L).
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The first term, 5@5]\1\}, has eigenvalue 1 on all modules. The second term in @,
— (}"Of”t,y N, has eigenvalues that can be calculated using the quadratic Casimir opera-
tor. We have, for any representation R(A) 3 v, the eigenvalue

1 1
Cao(A)v = §TO‘ Ty v = Q(A’ A+ 20)v. (5.28)
For v%ys in R(\ + ), this gives the eigenvalue of the second term as

—CoA+7)+Co(N) +g" =—A+0,7)+9" +1+d,0. (5.29)

The last term, —ﬁ(tﬁta) ™Y, has eigenvalue —2(0)\25\’)\) on the R(A) which is not in ® and
0 on the rest (including other R(\)’s, if A is not a multiple of a fundamental weight). The

total eigenvalue of ) on the module R(A + ) becomes

205(N)
)

Qlroviy) =97 — A+ 0,7) + 670 — (5.30)

where € = 1 on the R(A) not in ® and 0 otherwise.

5.4 Comparison between %, W and S at positive levels

Consider the level decompositions of Z, W and S in the Z-grading where the levels n = p—q
form g*-modules (the red lines in table 1). The modification, described in section 3.1,
taking us from % to W, only involves the addition of the odd generators fp; at level —1.
The generator at eg at level 1, remains. The generator fyg in W is identified with fy in %
and S is obtained from W by removing the generator fyo.

Since the modification only involves generators at level —1, it would seem that the
subalgebras containing the positive levels, which we denote Z., W, and S, are unaffected,
and all isomorphic. There are however two subtleties.

First, a priori, there might be elements in W or S formed as multibrackets with M
generators eg and N generators fo, for M > N where it is not possible to cancel the N
generators fy, against N of the generators ey. A posteriori, this turns out to not happen
in the present case, where g is finite-dimensional. It follows that £, ~ W,.

Second, the removal of fyg in the construction of S may lead to the appearance of
new ideals at positive levels. Suppose there is a gT-module y C W at some definite
positive level n which does not vanish using only [eg, eg] = 0, and which furthermore obeys
[foi, ] = 0 but [foo, 1] # 0. Then pu, seen as a subspace of S, will generate an ideal, that
according to our definitions has to be factored out to obtain the (simple) superalgebra S.
The positive subalgebras are isomorphic, S+ ~ %, only if there is no such ideal, and in
general S; = B, /K, where K is the maximal ideal of this kind.

We have no general recipe for determining whether or not the ideal K of S (g") is non-
trivial, but it is straightforward to find examples where this is the case. Take for example
g" = Eg, and the fermionic node attached to the fundamental (adjoint) node. The level
expansion of B (Eg) (see refs. [16-18]) is

B (Eg) = 248, @ (1 & 3875)y @ (248 @ 3875 @ 147250)3 D - - - (5.31)
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where the subscripts denote the level n. The elements at level —1 in A(Eg) consist of the
module 248, while W (Eg) contains 248 @ 3875 and S(Es) only 3875 at level —1. It is
then obvious, just by considering tensor products of Eg representations, that the singlet
1, € A(Es) generates an ideal in S(Eg), to be factored out. A similar example occurs for
S(Eg). There [16-18],

%+(E6) =271 ﬁz D 783 @ 3514 P (ﬁ b 1728)5
) (1 @ 78 B 650 D 2430 D 5824)6 D--- (532)

At level —1, S(Eg) contains 351, but not the 27 present in Z(Es) and W (FEg). The singlet
at level 6 generates an ideal.

6 The embeddings W (g) C S(g+) C W(g+)

Suppose that A is a fundamental weight, which we take to be Ag for simplicity. Thus node
1 is connected to node 2 with a single line but disconnected from nodes 3,4,...,7r+ 1. We
will here show that in this case S(g) and W(g) can be embedded in S(g") as subalgebras
at height ¢ = 0 with node 2 in S(gt) as “node 1” in S(g) and W (g). First we set

eo’ = [eo, e1], foi' = =[fois f1], ej =ej, fi'=f; (6.1)

for i =3,....,r+1for j = 2,3,...,r + 1. This already gives an embedding of S(g) in
S(g™). In order to extend it S(g) to W(g), we have to find elements foo' and hy’ in S(g*).
They will have the form foo' = foo and ho’ = hy, for some «, u € b*, where p must satisfy

(1, a0+ 1) =0, (1, ag) = —1, (Hya3) =+ = (1, r41) = 0. (6.2)
From the relation [eq’, foo'] = ho’ we then get
a—(a,ar)ar =p. (6.3)
If we now set (recall that we assume (A, \) # 1)

. )\ + ()\, )\)Ckl )\

A —1 7 Ton-1 (64)

then it is easy to show that these element satisfy the conditions (6.2) and (6.3), and then
the defining relations for W (g) follow. Thus W (g) C S(g*). Since clearly also S(g) C W(g)
and S(g*) € W(g") we have a chain of embeddings

W(g") > S(g*) > W(g) > S(a) (6.5)

that can be continued to lower rank at least as long as the grey node is connected to only
one white node, so that chain of embedding corresponds to a chain of white nodes, but
presumably our definition of the tensor hierarchy algebras can be generalised in order to
allow for more than one “node 1”7 so that the chain could be continued in general (and of
course also to higher rank with the definitions that we have already). The procedure is
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similar to the one giving rise to a chain of embeddings for the corresponding Borcherds
superalgebras, described in ref. [19].

To what extent do the embeddings (6.5) hold if we “remove the tildes”, i.e., if we
factor out the maximal ideal intersecting the subalgebra at p = 0 trivially? Ideals at
negative levels will not affect the subalgebra embeddings, since level 1 is identical in S
and W. We need to investigate what happens when there is ideal K C S (see section 5.4)
at positive levels which is not an ideal in W. Then there is not a subalgebra embedding
S(gt) C W(g"). If the ideal K is non-trivial, one instead has

SeH)yx K cW(g"). (6.6)

We already know that W, (g) ~ %+ (g) (see section 5.4). The only ideal factored out at
positive levels to arrive at the simple superalgebra Z(g) is the one generated by [eg, eo] [17].
This implies that Wy (g) = W, (g), so the ideal K in S(g") intersects W(g) trivially. We
thus have a subalgebra embedding

W(g) c S(g") (6.7)

This can be observed in the examples of section 5.4. In both examples, the singlet gener-
ating the ideal appears at ¢ = 2, and the ideal does not intersect ¢ = 0 (the locus of the
W (g) subalgebra).

7 Examples

In this section, we give a number of examples of tensor hierarchy algebras. Focus is put
on the identity (5.22), which is the crucial test for the existence of the algebras. Even if
it follows from the construction that the Jacobi identities are satisfied, the proof is quite
implicit. Therefore, we want to verify it explicitly in some concrete cases. We give them by
increasing value of (), §) (and subsequently, increasing degree of complication), from 1 to 3.

7.1 (A0) =1

Consider the situation when (A, ) = 1, i.e., when Ry = {0}. Then, £y =0 and p = Q.
The invariant tensor ¢ will have vanishing projections on R(A+6) and R()X). We calculate
the eigenvalues on these modules using eq. (5.30), and get

90|R()\+6’) = g\/ —1-(0,0)=0,

2C5(N)
elry =9 +1— o) (7.1)

The vanishing of the latter expression can be shown as follows. The condition (A, 0) =1
means that A\ must be a fundamental weight A; corresponding to a simple root «; (and
furthermore that the associated Coxeter label is 1). Let g~ be the simple subalgebra of g
with Dynkin diagram obtained by removing node ¢ from the diagram of g. The grading of
g with respect to A is a 3-grading;:

0=01 D00 Do1) =8-S (8- ER) @ g, (7.2)
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where g(;) is a module for a g~ representation R(—v) = R(7) with e; as a lowest weight
state and eg as a highest weight state. Thus § —«; = 7 — (—v). However, § and « are roots
of g, whereas 7 and v are weights of g~ and thus linear combinations of only the simple
roots o such that j # i. For v we can determine this linear combination by the conditions
(v, A) = 0, which means that v has zero coefficient for «; in the basis of simple roots, and

(v,0) = —(u, o) if @ # j. We then get

A
v= oo Q; (7.3)
which gives
() = (5 1. (4

Now 7 is the image of v under an isometry of the weight lattice that permutes the simple
roots of g~ (which is just the identity map, 7 = v, unless the symmetry group of the
Dynkin diagram of g~ is Z3), and since the Weyl vector g of g has the property (o, ;) =1
for all simple roots a; of g (in particular those of g~), we have (p,7) = (o, v). Taking the
inner product of ¢ with 8 = «; + v + 7 we then get

(0,7
(AN

Using the expression for the second Casimir of a representation R(A) with highest weight

A, C2(A) = L(A, A+ 2p), this relation may be expressed as

2C5(N)
(A )

=g’ +1, (7.6)

or equivalently, using the Freudenthal-de Vries “strange formula”,

6(\A) (0, 0)
(A 0)

7.2 (A,0) = 2: the THA over an affine algebra

= dimg. (7.7)

We consider the case when R()) is the adjoint of g so that g™ is the affine extension of g
(for example g = Eg and g+ = Fy). We thus take A = 6, i.e., (), 0) = 2.

The representations in adj ® adj which are not in ® are R(20), &, R(20 — «;) and
R(6), at levels 2, 1 and 0 respectively, where {;} is the set of simple roots with (0, a;) = 1.
The eigenvalues of @ on these representations are —1, 1 and 1, respectively.

The modules in ® are a number of R(6 + ), where 7y are the highest roots at level
0, and R(0) = 1. Each vy defines a subalgebra g.,, the Dynkin diagram of which is a
component of the Dynkin diagram of g with the node(s) corresponding to 6 removed, and
A+ 7o is the highest root of g.,.

For the example g = Eg, g™ = Ey, we have adj = 248. There is a single root 7, and
248 ® 248 = 27000 ®© 3875 © 1 ¢ 30380 P 248. Of these, 3875 @ 1 are contained in .
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p=-—1 p=0 p=1
q=2 Lt
g=1 o (I)i[ﬁ G4, foo T4 EL L
¢g=0| F, ¢ @ Gol kE k T, E,
q=-—1 Fobé €0

Table 5. Basis elements of W when g* is the affine extension of g.

p=-—1 p=20 p=1
q=2 Lt
¢=1 o By T} EL L
q=0 | Ho ¢ ®us| k T, E,
q=—1 chv €o

Table 6. Basis elements of S when g* is the affine extension of g.

Tables 5 and 6 show the local (p = —1,0, 1) parts of W(g") and S(g"). Tables 7 and 8
give the corresponding decompositions of W (Eg) and S(Ey) into Eg modules.

The eigenvalue of @ on R(6 +0) is g — gy, + 1. The eigenvalue on 1 is 29" 4- 1. The
projector on 1 in the ¢ picture is di%ndh PN, and its eigenvalues on the modules in the
(o picture are :l:di%ng,
of the tensor product. We saw that @) has eigenvalue —1 on the symmetric module not in

depending on whether it is in the symmetric or antisymmetric part

®, and 1 on the antisymmetric ones.
Equation (5.23) is solved with

o= (9" = g% +2)Pro) + 29" + 1) P,
YoE€Ho

¢=dimg Py, (7.8)

where the projectors in ¢ and ¢ are expressed in their respective bases. In the example
with S(FEy), g = 30 and g,, = E7 with gy = 18, and we get ¢ = 14P3g75 +62P1, i.c. (sce
eq. (7.10)),

Pag™ = 200,05 = fiaI)"e- (7.9)
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p=-—1 p=0 p=1 p=2
q=2 1 248
qg=1 13 3875 @ 248 1® 248 24801 16 3875 @ 248
qg=20 248 1 ¢ 3875 ¢ 248 192481 248 16 3875
qg=-1 248 1

Table 7. Basis elements of W(Eg). The modules not present in %(Eg) are marked blue. Note the
presence of Ry = 1.

p=—1 p=20 p=1 p=2
q=2 1 248
qg=1 1® 3875 248 2481 10 3875c 248
g=20 24830143875 16248 248 13 3875
q=-—1 248 1

Table 8. Basis elements of S(FEg). Note the symmetry under (p, ¢) <> (1 —p, 1 —q) associated with
existence of a bilinear form.

This latter expression is generic in the present class of examples. This can be shown
by inserting this expression for ¢, together with Za[ﬂ‘s = naignw, into eq. (5.22) with
(ta)s” = —fap” and using the Jacobi identity.

In this series of examples, g* is the (untwisted) affine algebra over g. At level 1, there
is an anti-fundamental module, whose lowest weight state is eg. At level 0, there is, in
addition to the adjoint, a single generator L, which can be identified with the Virasoro
generator Ly. At level —1, we find a shifted fundamental module, with highest weight
state LA,

As can be seen in table 7, there is a symmetry in the representation content of S(Ey)
under (p,q) +» (1 —p, 1 — q), associated with the existence of an invariant non-degenerate
bilinear form [4, 6]. This symmetry occurs for S(g*) whenever g is an affine algebra.
In general, if there is an affine Kac-Moody algebra g(¥) obtained by adding a chain of k
white nodes to the Dynkin diagram of g (for example if g = Eg_), then there is such a
symmetry under (p,q) <> (k—p,1—q) in S(g) [4], and this seems to hold even for negative
k (if “adding a chain of k white nodes” is interpreted as “removing a chain of —k white
nodes”) [6].
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7.3 (A,0) = 2: another series

Another series of examples, also with (A, 6) = 2, is D, with R(\) a 3-form, (0010...0).
Then, A+6 = (0110...0), A+~1 = (10010...0) and A — 2 = (10...0). The modules that
are not part of ® are R(A + 6), R(A + 1) and R(\). The eigenvalues of () on them are

6st,[uv5w}
mn,[pg Ul
Letting this tensor act on states v Stpq’” in the three modules that do not appear in ®, one
finds the eigenvalues %, —g and —%, which with a factor 3 cancels the contribution from

@, and eq. (5.23) holds. The extended algebra g™ is hyperbolic for r < 9.

—1, 2 and 2, respectively. The projector on R(A — f2) is proportional to §

7.4 An example with (\,0) = 3

Finally, we would like to give an example where (), 6) = 3. With g = Eg and adj = 248 =

(1000300)7 we take A = (0100800)7 R()\) = 30380.

The construction makes use of the projections on the irreducible representations in
adj ® adj, which are

6 1 3
27000 6 _ 5V §O - Ye 0 'yé
P af’ = 75(045[3) + 14f(a fﬁ) € 21777aﬁ77
1
P30380a v 5’}’5 + 7fo¢5€f’y§e
. 1
P38750z6V ?52 55 f(a’Y fﬂ 7704577
P248a675 = _7fa66f7667
1
Pl g7 = 1

The only identity, not following from the Jacobi identities, that is needed for verification
of the projector properties is

Gas™ @) = 240],63) — 10ap"" + 120a5n"° , (7.11)

5
where qaﬂ“f‘; = f(oﬂﬁfﬁ)‘;e. Define *PRQ575 = naenVWPngﬁé. Then, xPF = Y MijPRJ',

=1
where {R;,i =1,...,5} are the representations in the order listed above, and

23 90 27 225 3375

62 217 31 62 31

A S A 7

7 % 103 25 12%

3 0 —5 3 1

1 1 1 1 1

248 T 248 248 T 248 248

This translation matrix is used in some of the following calculations.



The representations in adj ® R()\) obtained from the roots in eq. (4.7) are:

=73 = [2345242] A3 = (1100800) R(\ +73) = 4096 000
= [1245242] Aty = (0010800) R(A + ~v2) = 2450240
= [1123132) A+ = (1000001) R(A+ 1) = 779247
70 = [0012321] At = (0000(1]00) R(\ +70) = 147250
Y = [1000800] A+ 70 (2000800) R(X+ () = 27000
= (0100800) R(A\) = 30380
B2 = [1229210) = (0000001) R(A — B2) = 3875
Bs = [1345042) = (1000000) R(\ — f3) = 248
(we use the notation [h izimﬁi ieh] for coefficients in root basis and ( J1jads j4;:§ s j7) in weight

basis).
To distinguish the projectors from the ones for adj ® adj, we denote them IPRa’BW‘S’ES".
P248575)\ [PRa

They satisfy 2% = 0, which can be implemented by letting

R Sep _ 30380  kATTR 5, 30380
Pa,py " = P00 5, R o\ 7 PREE0 00 (7.13)

The IT’s are equivalent modulo combinations of an antisymmetric pair into 248, which we
will treat as equality. The relevant product and trace on the II’s are

(H o H/)a,/j =TI o5 K /\uP30 380 paH/ e po d,ep ,
tr IT = I1,, g, *<¢ P30 3806¢57 : (7.14)

The explicit forms of the II’s are

14
4096 000 d,ep 779247 147 250 ~ 1727000
I o %%M (H +11 + 1
n 11130 380 lH?’ 875 | 1248 Seq
3 15 a,By )
H2045240 d,ep 5(5590 . 31[[27000 + 2[[30380 + 8 H3875 d,ep
By T Cay T\ g5 3 15 by
49
77 7 [ 4.
7T 502 = e (U +2V)a "7
1
H147250a”6’y5,6<p — é(U _ 14V)a7ﬂ767699 ,
27000 d, _ § 27000
II a,py 590__@](‘& f ¢ Vi 'chpa’
H30 38006’575,54,0 - _ faﬁpf6€o' %%77
3875 e __ de 3875 o
II o, By v _@faﬁpf ’YPLP )
2
H248a7575’6¢ _ G 77a577 5 (715)
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where

1 7 1
d, _ p3875 & 30380 3875 248 4,
Ua,p,"% = P38 5767 — (28H T )a’ﬁ’* o
Voz,ﬁ’y&ego — P3 875(16pr3 87571055
11 7 3
_ (2230380 _ 3875 | 0 yy248 Sep 716
<392 40 T 128 By (7.16)

It is relatively straightforward to show that U o U = %(U — V). The remaining identity
needed is UoV = —==(U —40V), from which it then follows that VoV = 2= (10U —127V).
We have not checked it explicitly, but it is needed for the projection operators to work and
to give the correct dimensions of the representations.

We now want to translate between the two “pictures”, i.e., express *[PRaﬁf’“" =
Nap’® PF o 5,7 in terms of the P#’s. This needs to be done for R(A — fB3) = 248 and
R(\ — 32) = 3875. A lengthy calculation yields

LP248 _ 2%5 <|P4096 000 _ 9p2450240 | p779247 | pl47250
_ E[szoo _ p30380 _ §[P3875 n |]>248>
15 5) ’
LP3875 _ % ([P4096000 4 QP2450240 _ §P779247 | 15p147250
I %[szoo _ 730380 _ @uﬁ 875 6|P248> (7.17)
) ) ’ )

A good check on the result is that the dimensions add up correctly.

In order for eq. (5.22) to have a solution, i.e., for the tensor hierarchy algebra to exist,
it must be possible to cancel the contribution from (@ to the representations 4 096 000,
2045 240, 779 247 and 30 380 by a linear combination of the right hand sides of eq. (7.17).
The decomposition of @ is given by eq. (5.30), and we have

Q — 72[}34096000 + |]32045 240 + 11”3779247 + 19[Pl47250

+ 2927000 4 11p30380 | 43p38T5 4 61p248 (7.18)
The coefficients of the projectors on the representation not present in ¢ cancel by adding

(= g*uﬁ" 875 2;1—5*IP248 (7.19)

as (—2,1,11,11) + (3,0, -2}, —21) + (3, -1, 3, —3) = 0. The remainder is

868 105
0= Q + (= 42P147250 | 1—5[P27000 + 98P3875 4 7[Pz48_ (7.20)

The extended algebra gt in this example is the hyperbolic Lie algebra D; *. In the
tensor hierarchy algebra S, level 1 contains R(—A), where A = (1800800). At level 0, there
is of course the adjoint, but also (at least) two lowest weight representations R(—u), R(—v),

. 1 0 0 0 . . . .
with p = (0000000), v = (0000001), whose lowest representations in a grading with respect

to the extending node are the 248 and 3875 in L.
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8 Conclusions

We have given definitions of the tensor hierarchy algebras W(g™) and S(g*) in terms
of generators and relations, when g* is a Lie algebra obtained by extending the finite-
dimensional (simply laced) Lie algebra g by a single node. A number of examples are
given, of which some are relevant to physical applications.

One main difficulty with deriving the content of the superalgebras is associated with
the appearance of “mixed” elements; the root space contains roots where the coefficients
for the simple roots are not all positive or all negative. This phenomenon is also associated
with the appearance of “extra” elements together with g™ @ R at level n = 0 (beginning
with the generators L,ps). This is seen e.g. in tables 3 and 4. Such elements are significant
in the application to extended geometry, as explained in ref. [1].

The definition should be good also for infinite-dimensional g. The derivations in the
present paper will then not be valid. For example, there will typically also appear some
clements in Ry, i.e., a pair of isomorphic modules at (p,q) = (0,1) and (0,2) in the double
grading. We have verified this for affine g, where Ry is a singlet, and R, = {0}, p < 0. For
“more infinite-dimensional” algebras, e.g. hyperbolic g, also fi_l etc. can appear. Even if
the definitions remain formally identical, the implications seem to differ drastically, also in
the local subalgebra. It would be desirable to design a method that determines the “extra”
elements in a more direct way. For infinite-dimensional g, there may also be “extra”
elements at positive levels n, so that it would no longer be true that W, ~ %, . as stated
for finite-dimensional g in section 5.4.

A topic we have not touched is representation theory for THA’s. In particular, the
construction of non-trivial representations would be a more efficient and general method to
prove that the tensor hierarchy algebra is non-trivial. A denominator formula for positive
levels for W (g") coincides with the one for Borcherds superalgebras [17]; we do not yet
have such a formula for S(g*) in situations where the ideal K is non-trivial. Neither do
we have a denominator formula for negative levels. In situations described in the end of
section 7.2, where an invariant bilinear form exists, the negative level generators can be
deduced from the positive ones. This invariant bilinear form is interesting for many other
reasons too, and needs to be better understood.
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