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ABSTRACT   

Lipids are essential for all living organisms on Earth. The most important function of lipids is 

that they act as the building blocks of cellular membranes. Lipids consist of polar head groups and 

non-polar tail groups and assemble into bilayer structures to create cell and organelle membranes. 

The plasma membrane of a cell provides a barrier which segregates cellular internal constituents 

from the external environment. In addition to acting as a barrier, membrane lipids are involved in 

many cellular processes including membrane trafficking, signal transduction, fission and fusion. 

Therefore, various conditions in the central nervous system involving lipid deficiencies can lead to 

function deficit. There are several drugs that induce the dysregulation of lipid metabolism linked to 

the impairment or enhancement of cognitive function. Hence, I have studied the lipid alterations in 

brain induced by drugs with regards to their effects on cognitive processes: cognitive impairing 

drugs (cocaine and zinc deficiency) and cognitive enhancing drugs (methylphenidate and fatty 

acids). Much work has been done to investigate the link between lipid metabolisms and these drugs. 

A powerful technique for lipid analysis is mass spectrometry imaging (MSI). MSI is a surface 

sensitive method which enables label-free detection of molecules in complex biological systems. In 

addition, MSI provides the relative composition as well as allows imaging of intact species with 

high spatial resolution in single experiments. One of the most common MSI techniques is time-of-

flight secondary ion mass spectrometry (ToF-SIMS), which achieves high spatial resolution using 

a focused ion beam to eject and ionize molecules in the sample surface. Recently, gas cluster ion 

beams have been introduced to reduce the chemical damage during sampling of surfaces and to 

achieve enhancement of lipid signals. In our studies, ToF-SIMS has been applied to lipids in the 

membranes of cells and Drosophila melanogaster brain to get a better understanding about the 

effect of drugs in lipid mechanisms related to neuronal signal transmission.  

The papers included in this thesis describe the application of ToF-SIMS in biological samples to 

reveal the alterations of lipids after drug treatments. In paper I, the alterations in lipid distribution 

and composition induced by cocaine and methylphenidate, which cause the impairment and 

enhancement in cognitive performance respectively, were investigated. ToF-SIMS data were used 

to show that cocaine and methylphenidate have opposite effects on the relative levels of lipids in 

the central fly brain. To enhance our understanding about the lipid mechanisms, in paper II, I used 

stable deuterium-labeled omega-3 and -6 fatty acids as lipid precursors to analyze the synthesis and 

transportation of lipids into the plasma membrane of PC12 cells. The use of isotope-labeled fatty 

acids provided a tool to track the lipid turn-over as well as to measure their relative amounts. Paper 

III continued the work done in paper I, where experiments were performed to investigate the 

recovery of lipids after cocaine removal. In addition, the cognitive-enhancing drug, 

methylphenidate, was used to treat cocaine removal from flies to investigate the reversal of lipid 

changes in the brain caused by repeated-cocaine exposure. Zinc deficiency in the diet, which causes 

a decrease in cognitive function, was also studied in fly brain. ToF-SIMS data obtained reveal that 

the lipid types that change are similar to those when treated with cocaine as seen in paper IV. 

ToF-SIMS opens a new approach to visualize and relatively quantify phospholipids in biological 

tissues and cells. In the biological model systems studied here, cognition-affecting drugs show that 

alterations in the distribution and composition of specific lipids is altered differently based on 

whether the drug enhances versus diminishes cognition. These results provide new possible targets 

for lipid-modifying therapies to improve the cognitive decline in drug abuse and diseases. 

Keywords: Mass spectrometry imaging, ToF-SIMS, lipid change, cognition, cocaine, 

methylphenidate, omega-3 and 6- fatty acids, zinc deficiency, Drosophila melanogaster, PC12 cell. 
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Chapter 1 

Cellular communication  
 

Cells do not behave as isolated entities but tend to form complex networks that 

require cell-to-cell communication. Cell-to-cell communication is an essential 

process which helps cells to respond and adapt with environmental modifications, 

such as nutrients, and variation in temperature or light levels. Malfunction in 

cellular communication promotes development of various pathologies including 

cancer and degenerative diseases. Therefore, understanding of molecular basic 

for cell-to-cell communication provides new opportunities to develop new 

therapies to treat diseases resulting from improper signaling. This chapter 

introduces how signals can pass from one cell to another. Additionally, the effects 

of psychostimulants on signal transduction are also described together with 

neuroscientific approaches to the study of these effects.  

 

1.1 The nerve cell is a core component in the 

activity of the nervous system  
The human brain is made up of the nervous system, which is a complex 

network of millions nerve cells known as neurons. Although neurons have 

different morphologies and functions, they all contain four regions: the cell body, 

dendrites, axon and axon terminals (Figure 1.1). Each region has a specific 

function in communicating with other neurons. 



1. Cellular communication 
 

 
2 

Figure 1.1. The structure of a typical neuron including cell body, dendrites, axon, and axon 

terminal. The synapse is a specific site where neurons communicate with each other. The 

space between an axon terminal and a dendrite of a receiving neuron is known as the 

synaptic cleft. This image is modified from Fischbach et al.1 

 

In order to form a network, neurons connect with other neurons via special 

parts called dendrites. Dendrites are branched extensions from the cell body and 

are responsible for receiving signals from neighboring neurons. Neurons store 

their genetic information in the nucleus located in the cell body, also known as 

the soma. In addition to the nucleus, the soma contains major cytoplasmic 

organelles, such as mitochondria, Golgi apparatus, and endoplasmic reticulum 

(ER). The soma is mainly responsible for the synthesis of all proteins, which are 

then transported to their appropriate areas within neurons via axonal 

microtubules. Leading out of the cell body is a long and thin fiber called an axon 

that carries nerve impulses, or action potentials, away from the soma to other 

neurons. Myelin sheaths are wrapped around the nerve axon to speed up the 

propagation of action potentials along the axon. The end of the axon separates 

into several terminals which serve to pass the action potentials to adjacent 

neurons. The nerve terminal contacts with the neighboring cells or dendrites of 
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other neurons via a small gap called the synaptic cleft with a separation distance 

that varies from 20 to 40 nm.2 

Neuronal communication often occurs at specified sites called synapses and 

this is thus called synaptic transmission. There are two types of synaptic 

transmission: chemical and electrical. Chemical synaptic transmission is the main 

process of cellular signaling. Normally, an electric impulse starts in the cell body, 

travels down the axon and invades the axon terminal. At the chemical synapse, 

the arrival of the electric impulse induces the release of chemical transmitters 

which then diffuse across the synaptic cleft and bind to specific receptors on the 

plasma membrane of the receiving neurons. Once they bind to the receptors, these 

chemical signals are converted into electrical impulses that are transmitted toward 

the soma of the receiving neuron. This process can go on along a network 

containing many neurons. In addition to transmitters being released in the 

synapse, the release of transmitters has been shown to take place at extrasynaptic 

sites including the cell soma and the dendrites.3 A second type of synaptic 

transmission, called electrical transmission, is also found in the central nervous 

system. In this form of communication, the membranes of two neurons are really 

close together (about 4 nm) and physically linked by intercellular channels to 

form gap junctions. Unlike chemical synaptic transmission using chemical 

transmitters for signal transduction, electrical synaptic transmission utilizes ion 

currents that flow directly across the gap junction pores from one neuron to 

another. Thus, signaling in electrical synapses is instantaneous and less likely to 

be blocked. The main role of electrical synapse is to synchronize the electrical 

activity of a number of neurons.  

 

1.2 Signal transmission within nerve cells 
Signal transmission occurring along a nerve cell depends on differences in the 

membrane potential between inside and outside of the cell. A variety of ions, such 

as Na⁺, K⁺, Cl¯, and Ca2+, are distributed unevenly across the membrane and this 

generates a Nernstian or membrane potential. All these ions can cross the cellular 

membrane via ion channels with varying permeability, and Na⁺, K⁺ are actively 

pumped across via the Na/K pump. At the resting state when no signal is 

transmitted, the membrane potential measured inside to outside is approximately 

in the range of -80 to -40 mV. When an action potential arrives at an axon 

terminal, it causes the depolarization of the membrane which opens voltage-

sensitive Ca2⁺ channels in the nerve terminal. The influx of Ca2⁺ ions triggers the 

SNARE complex (this is a group of proteins) to initiate the vesicle fusion at the 
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plasma membrane. As a result, chemical transmitters are released through fusion 

pores formed between the vesicle and the cell membrane. These than travel across 

the synaptic cleft to bind to receptors embedded in the plasma membrane of 

nearby neurons. The binding of the transmitters induces a change in permeability 

for ions across the membrane, which, if excitatory, produces an action potential 

in the receiving cell. For cellular signaling to function properly, the extracellular 

transmitter levels need to be brought back to normal. After binding, the released 

transmitters are inactivated by reuptake or breakdown which is performed by 

transporters and enzymes on the membrane.   

Synaptic transmission can be fast, taking place within several milliseconds, 

whereas slow synaptic transmission occurs in seconds or minutes. These 

transmissions depend on the type of the receptors activated by the released 

transmitters. These receptors are classified as ligand-gated ion channels or G-

protein coupled receptors. Ligand-gated ion channels are responsible for fast 

synaptic transmission.4 When a transmitter activates a ligand-gated ion channel, 

this receptor undergoes a conformational change leading to the opening of the 

gate and causing the diffusion of ions across the membrane. Slow synaptic 

signaling occurs as G-protein coupled receptors are activated. In response to the 

binding of transmitters, associated G proteins are stimulated resulting in the 

generation of second messenger molecules that directly modulate ion channels.5 

 

 

Figure 1.2. Exocytotic process takes place at the synapse of a neuron. Transmitters are 

loaded into synaptic vesicles. In preparation for exocytosis, vesicles are transported into the 

plasma membrane for docking and priming. Exocytosis is then triggered by the increase of 
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cytosolic Ca2⁺ and transmitters are released into the synaptic cleft. After release, vesicles 

are recycled via different pathways. 

Most cell-to-cell signaling depends on the process termed exocytosis that 

regulates the release of chemical transmitters. Figure 1.2 illustrates many steps 

involved in exocytosis cycle including docking, priming, and fusion. Numerous 

transmitters are synthesized at the axon terminal and packed in synaptic vesicles. 

In preparation for synaptic exocytosis, these vesicles are transported to the site of 

release and then docked at the plasma membrane of the active zone. Since 

docking always takes place at the active zone, it has been suggested that there is 

a recognition reaction between the synaptic vesicle and the protein at the active 

zone. After docking, the vesicles are primed by an ATP-dependent process.6 Once 

the plasma membrane is depolarized, an increase in intracellular Ca2⁺  leads to 

the fusion reaction. This occurs as something called the SNARE complex 

undergoes a conformational change induced by interacting with Ca2+ ions. These 

proteins create a linkage between the vesicle and the cell membrane bringing 

them close enough to fuse.7 The secretion of vesicle contents can occur through 

different modes of exocytosis. Until the last decades, the full fusion process has 

been believed to be the only exocytosis mode. In this mode, the vesicle membrane 

collapses after fusion and combines completely with the plasma membrane of the 

cell, thus all of vesicle contents are released.8 Electrochemical techniques have 

been used to demonstrated other modes of exocytosis, one of which is called kiss-

and-run. Here, a small amount of transmitter is secreted through a narrow fusion 

pore. Recently, numerous studies using amperometry techniques have strongly 

suggested that most “full” exocytosis occurs through a partial release mode.9-11 

During the kiss-and-run and partial release processes, the fusion pore is closed 

after the releasing phase, thus the vesicular matrix remains inside. In contrast, 

after the full fusion exocytosis, the vesicle is totally merged with the plasma 

membrane and later recycled via the endocytosis process. 

 

1.3 Impact of psychostimulants on 

neurotransmission 

Psychostimulants, such as cocaine, methylphenidate, amphetamine, and 

methamphetamine, are sympathomimetic drugs, which produce euphoria and 

increase motor activity. Although psychostimulants have been used for various 

medical purposes, they have a high abuse potential leading to addiction. The 

precise mechanisms of psychostimulant action on the brain are not yet fully 
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understood. Current hypotheses suggest that psychostimulants produce their 

effects by promoting the neurotransmission in the brain, especially in the limbic 

regions.12  Psychostimulants interact with several monoamine transporters 

including dopamine, norepinephrine, epinephrine, and serotonin transporters. 

The dopamine transporters, however, are primary targets for multiple 

psychostimulants that influence synaptic dopamine and many other biological 

processes. Cocaine and methylphenidate competitively bind to dopamine 

transporters and thus block dopamine reuptake (Figure 1.3). As a result, the 

dopamine molecules build up in the synaptic cleft and over-activate the receiving 

cells. Although the actions of amphetamine and methamphetamine are different 

compared to cocaine, they also require the interaction with dopamine transporters 

for their actions. Amphetamine and methamphetamine behave as competitive 

substrates for dopamine transporters and inhibit dopamine reuptake. They also 

penetrate into storage vesicles and act as weak bases to interrupt the pH gradient, 

which results in the release of dopamine from vesicle to cytoplasm.13 The 

accumulated dopamine in the cytosol activates the dopamine transporter-

mediated reverse transport of dopamine, thereby causing the release of dopamine 

into the extracellular space. 

 

 
Figure 1.3. Cocaine induces the elevation of extracellular dopamine levels by blocking 

dopamine reuptake. 

 

The use of psychostimulants is thought to induce the disruption or modification 

of normal neurotransmission by significant dysregulation of the dopamine 

system. Chronic cocaine and methamphetamine lead to the persistent depletion 

of dopamine levels in the brain.14 This dopamine deficiency is thought to be 
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related to drug-seeking behaviors and a risk factor for common brain disorders, 

such as Alzheimer’s disease and Parkinson disease.15, 16 Psychostimulants, such 

as methylphenidate and modafinil, are prescribed at low doses to improve focus 

and cognition for treatment of attention deficit hyperactivity disorder, as well as 

to treat excessive sleepiness caused by narcolepsy. A growing body of literature, 

nevertheless, has demonstrated their abilities of psychostimulants, such as 

cocaine and amphetamine, to cause addiction and cognitive impairments 

including the disruption of learning/memory and attention, as well as poor 

decision making.17 It is necessary to study the effects of drugs of abuse on cellular 

communication to get a better understanding of how these drugs induce changes 

in cognitive processes. Specially, the alterations in lipid metabolisms induced by 

psychostimulants has been suggested as a key factor associated with cognitive 

deficit and will be discussed further in the next chapter. Targeting on cognitive 

enhancement, thus, may open new possible therapies to improve treatment 

outcomes for addiction.  

 

1.4  Classical neuroscience approaches to measure 

the impact of drugs on synaptic transmission 

Synaptic transmission is a key player in normal functioning of the brain that 

ranges from regulation of movement and mood to cognition, learning and 

memory, as well as decision making. In recent decades, new approaches have 

been developed to elucidate how synapses work molecularly. One of the classical 

electrophysiological techniques used is called patch clamp. This measures the 

alterations in membrane capacitance after vesicle fusion.18, 19 In this method, a 

glass pipette is placed onto a small area of membrane surface to make a tight 

contact with the membrane. Several modes of patch clamp have been invented 

and its discovery was awarded the 1991 Nobel Prize. In the cell-attached patch 

mode, gentle suction is applied to draw a part of the membrane into the tip, which 

creates a resistive seal. In the whole cell patch clamp mode, a strong pulse of 

suction is used to break through the membrane completely. As a result, the 

cytoplasm of the cell is continuous with the solution in the pipette. This set-up 

can be used to measure the potential, current, or capacitance from the entire cell. 

Another technique, called amperometry, using a small carbon fiber electrode to 

study cellular exocytosis in a single cell was originally developed by Wightman 

and colleagues.20, 21 Here, the electrode is placed on the surface of a single cell 
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during stimulation of transmitter release. Each release of transmitters from a 

single vesicle is recorded as a current trace known as a spike. The shape of the 

spike provides information about vesicle fusion including fusion pore formation, 

expansion of the pore, the release of transmitters into the extracellular space, and 

finally the pore closure. In addition, the amount of transmitters released can be 

quantified by the area of the spike. Amperometry is the only method to date that 

can be used to count the number of molecules released during exocytosis. This 

approach has been improved and applied for various cell types. In the last few 

decades, Lindau and colleagues developed another new technique which 

combined patch-clamp electrophysiology and amperometry.22 Here, the carbon 

fiber electrode is placed inside a patch pipette to obtain the size of a single vesicle 

as well as the amount and kinetics of transmitter released from the same vesicle 

and this is called patch amperometry.  

While electrophysiological and electrochemical techniques provide the 

quantification of transmitters release, their spatial resolution is still limited. 

Imaging techniques, involving fluorescent staining of vesicles, have been 

introduced to visualize and measure the exocytotic process in real time.23 The use 

of several fluorescent probes to label vesicle membranes and vesicle content has 

been developed. One of the styryl dyes, FM1-43, is widely used to label inside 

vesicle membranes during cell stimulation to undergo exocytosis. The uptake of 

FM1-43 into recycle vesicles makes it possible to study vesicle exocytosis and 

recycling.24 For instance, Stevens et al. identified the special state of exocytosis 

with “kiss-and-run” at hippocampus synapses.25 Recently, new optical probes, 

FFN511 and the pH sensitive analog Mini202, have been synthesized to image 

the dynamics of release during exocytosis.26, 27 Briefly, these molecules are false 

transmitters and can be loaded into vesicles to monitor release. In one example of 

stimulation of PC12 cells loaded with FFN, these vesicles were triggered to 

release their contents including the dyes and thereby the depletion of fluorescence 

obtained.28 The work provides a new opportunity to image and quantitatively 

measure the kinetics of the released transmitters during exocytosis. 



Chapter 2  

  Membrane lipids and 

important roles of lipids in 

cellular processes 

 
The general term “lipid” is used to refer to a group of organic molecules which 

poorly dissolve in water, but readily dissolve in non-polar solvents. Various 

studies of lipids have recognized the important roles of lipid molecules in a 

variety of biochemical functions, such as acting as key components of the cellular 

membrane, involvement in energy storage and in signal transduction. Due to their 

importance, disturbances of lipid structures, composition, or metabolism are 

associated with impairment in brain function as well as a number of diseases, for 

example neurodegenerative diseases, cancers, obesity, as well as diabetes.29-32 

There are several reasons that changes in lipid composition and metabolism might 

be changed in the body, and these include disease, diet, and drugs. In this chapter, 

I will introduce knowledge and key roles of lipid functions as well as discuss how 

drugs affect the pathways of lipid metabolism. 

 

2.1  Diversity in lipid structures 
Lipids have a great diversity in their structures with approximate 2000 species. 

Therefore, it is essential to develop the comprehensive classification system for 

lipids. In general, lipids are usually subdivided into simple and complex lipids 

which is convenient for analytical purposes. Simple lipids, such as fatty acids, 

acylglycerols, and sterols, refer to neutral lipids which yield at most two products 

upon hydrolysis. In contrast, complex lipids or polar lipids, i.e. 

glycerophospholipids and sphingolipids, yield three or more products on 

hydrolysis per mole. However, the terms neutral and polar lipids are not precise 

and may cause confusion in the determination of their groups. Recently, the 

LIPID MAPS Lipid Classification System has provided more accurate definitions 

to classify lipid molecules based on their structural and biosynthetic perspectives. 

This system is comprised of 8 primary classes: fatty acids, glycerolipids, 

glycerophospholipids, sphingolipids, saccharolipids, polyketides, sterol lipids, 
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and prenol lipids.33 In the next sections, structures and synthesis of the most 

common lipid categories found in biological system are discussed. 

 

2.1.1 Fatty acids 

Fatty acids (FAs) have diverse functions in cells that range from building 

blocks of complex lipids to acting as energy storage sources and signaling 

molecules. The FAs are usually characterized by hydrocarbon chains linked to a 

terminal carboxylic acid (-COOH) (Figure 2.1). The main FAs in plants and 

animals consist of even numbers of carbon atoms in straight chains classified as 

either saturated or unsaturated. The saturated FAs contain a carbon chain 

saturated with hydrogen atoms. Saturated FAs, that have a straight-chain from 14 

to 22 carbon atoms in the chain length, represent the most abundant subclass of 

FAs in animal and plant tissues. Variants of this subclass are the branched-chain 

FAs bearing one or more methyl substituents along the chain length. The 

branched chain FAs are more complex molecules and are rarely found in natural 

biological systems. Additionally, FAs can contain one or multiple double bonds 

in the cis configuration and are then called monounsaturated FAs (MUFAs) or 

polyunsaturated FAs (PUFAs), respectively. One of the most abundant MUFAs 

is oleic acid with short nomenclature as FA (18:1) where “18” is the number of 

carbon atoms in the chain and “1” is the total number of double bonds. Likewise, 

linoleic acid, FA (18:2), and linolenic acid, FA (18:3), are commonly found in 

the PUFA subclass. Linoleic acid (omega-6) and linolenic acid (omega-3) are 

essential in development and metabolism, the immune response, and to provide 

anti-oxidative properties. However, they cannot be synthesized in the human 

body and are obtained via the diet. Except these two PUFAs, our body can 

synthesize most of FAs by sequences of reactions catalyzed by different 

enzymes.34 FA synthesis starts from the formation of malonyl Coenzyme A 

(CoA) by carboxylation of acetyl CoA. Malonyl CoA and acetyl CoA are attached 

to different protein carriers to create malonyl ACP and acetyl ACP. The newly 

formed malonyl ACP and acetyl ACP are then combined to generate the 4-carbon 

molecule acetoacetyl-ACP and CO2. The CO group in acetoacetyl-ACP is 

converted into a hydrocarbon group leading to the generation of hydrocarbon FA 

linked to ACP. This process is repeated many times and thus generates FA at the 

end of the chain of reactions. The double bonds can be introduced into specific 

positions of the long-chain FAs by a desaturation process. There are different 

desaturase enzymes which decide the positions and numbers of double bonds 

added to the carbon chains. The most common desaturase enzymes present in 
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humans are the Δ9, Δ5, and Δ6 desaturases.35 Δ9 desaturase is required for 

synthesis of MUFAs, whereas Δ5, and Δ6 desaturase are used to synthesize 

PUFAs.  

 

Figure 2.1. General structure of saturated and unsaturated FAs. 

 

2.1.2 Glycerolipids 

The basic structure of glycerolipids is a glycerol backbone, which forms a link 

to FA chains by an ester or ether bond. Glycerolipids consist of mono-, di-, and 

tri-substituted glycerol (Figure 2.2).  

 

 
Figure 2.2. Structure of glycerolipids includes mono-, di-, and tri-substituted glycerol. R is 

the hydrocarbon chain of FA. 

 

Triacylglycerols 

Triacylglycerol (TAG) is the best known glycerolipid and consists of three FAs 

esterified to glycerol. The TAG molecule mainly serves as storage source 

providing precursors (FAs and diacylglycerols) for membrane lipid synthesis. 

The synthesis of TAG is carried out primarily in the adipose tissue and liver via 

the glycerol-3-phosphate or the monoacylglycerol pathway, and takes place in 

both the endoplasmic reticulum (ER) and the mitochondria. After synthesis, 

TAGs are packed in the core of cytoplasmic lipid droplets which are wrapped in 

a monolayer of glycerophospholipids in the adipose tissue.36 These lipid droplets 

regulate the hydrolysis process of TAG degradation, also known as lipolysis, to 
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balance the energy storage and utilization. During lipolysis, TAG is converted 

into diacylglycerol and FA. Diacylglycerol is then further broken down to 

monoacylglycerol. 

 

Diacylglycerol  

Diacylglycerols (DAGs), which contain two FAs, are only found in small 

amounts in animal tissues. DAGs serve as components of cellular membranes as 

well as being involved in several metabolic pathways. DAGs accumulate 

transiently in the membrane via strong hydrophobic interactions with proteins and 

then modify the physical properties of the cell membrane. When DAGs 

concentrate in small areas of membrane, they induce unstable negative curvature 

because they lack charge and have a smaller head group compared to carbon chain 

size. This negative curvature is essential for membrane fusion and fission 

processes. Another role of DAGs is that they act as a lipid second messengers to 

activate protein kinase C.37 DAGs are generated by two main pathways in yeast 

and mammals with two different precursors: glycerol-3-phosphate and 

dihydroxyacetone-3-phosphate. In addition to main pathways, there are three 

alternative pathways that produce DAGs via many reactions catalyzed by 

sphingomyelin synthase, phospholipase C, and phospholipase D.38  

 

Monoacylglycerol 

Monoacylglycerols (MAGs) contain a FA attached in a glycerol backbone via 

an ester linkage in the form of 1-monoacylglycerol or isomeric 2-

monoacylglycerol. They are found naturally at low levels in plants and animals. 

As mentioned above, MAGs are generated by hydrolysis of DAGs by DAG 

lipase.  

 

2.1.3 Glycerophospholipids 

Glycerophospholipids, also known as phospholipids, are the major components 

in eukaryotic membranes. They are composed of two non-polar FA tails, a 

glycerol backbone, and a phosphate group with a head group substituent (Table 

2.1). The glycerophospholipids can be categorized into several subclasses based 

on their structures of head group at the sn-3 position of the glycerol backbone, 

with choline, ethanolamine, serine, inositol, as well as other less frequent groups. 

In addition, the length and saturation of hydrophobic FA chains determine the 

different physical properties and functions of glycerophospholipids. Synthesis of 
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glycerophospholipids mainly occurs in the ER of the cell and its specific domain, 

mitochondria-associated membrane, using two common precursors: phosphatidic 

acid and DAG (Figure 2.3).39, 40  

 

Table 2.1. General structure of a glycerophospholipid consists of two hydrophobic FA 

chains and a phosphate group with a different head group substituent, х. 
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Figure 2.3. Glycerophospholipids are generated from phosphatidic acid through a variety of 

synthetic pathways.  

 

Phosphatidic acid  

Phosphatidic acid (PA) is the smallest and simplest glycerophospholipid and 

consists of two acyl chains and a hydrogen atom as a head group. Although 

appearing at low levels in total membrane lipids, PA is the original precursor for 

most of membrane glycerophospholipids. PA with small head group contributes 

to membrane curvature even though PA comprises a very small fraction of lipid 

membrane. Beside its role as a precursor for other glycerophospholipids, PA also 

plays various roles in cellular signaling and cellular functions, such as cell 

proliferation, vesicle/membrane trafficking, and cytoskeletal organization.41 PA 

can carry one or two negative charges in the phosphate group, which can attract 

positively charged molecules. For example, Ca2+ bound to membrane PAs creates 

the domain which is sensitive to pH, temperature, and cation concentration.  

In mammals, PA is synthesized via different enzymatic pathways.42 Structural 

PAs are usually synthesized via the glycerol-3-phosphate pathway and 

dihydroxyacetone phosphate. Moreover, PAs are generated by hydrolysis of 

phosphatidylcholine by phospholipase D. Another pathway is the acylation of 

lysoPA.  

 

Phosphatidylcholine  

The head group substituent of phosphatidylcholines (PCs) is choline, which 

contains a positive charge. The positively charged head group together with a 

negatively charged phosphate group make PC a zwitterionic molecule. PC is the 
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most abundant glycerophospholipid in eukaryotic cells, comprising about 40-

50% of total glycerophospholipids. It is found to be abundant in the outer leaflet 

of the membranes. PC is not only a major component of the cellular membrane, 

but also a major source of many signaling molecules such as DAG, PA, choline, 

lysoPA, and lysoPC. PC molecules are synthesized primarily through the 

CDP/Kennedy pathway.43 First, choline is rapidly phosphorylated and then 

coupled to cytidine diphosphocholine (CDP) to generate CDP-choline. An 

enzyme, choline phosphotransferase transfers CDP-choline to DAG and 

consequently the production of PC. An alternative pathway for PC synthesis is 

the phosphatidylethanolamine N-methyltransferase pathway where 

phosphatidylethanolamine is converted to PC by sequential methylation 

reactions.44  

 

Phosphatidylethanolamine  

The second most abundant glycerophospholipid in eukaryotic cells is 

phosphatidylethanolamine (PE), which composes 25% of all 

glycerophospholipids. PE is asymmetrically distributed across the bilayer 

membrane, but it is normally enriched on the inner leaflet of membranes. Beyond 

serving as a membrane component, PE is also a key player in a variety of cellular 

functions that range from serving as a precursor for other lipids and promoting 

membrane deformation during fusion and fission events.45 PE is zwitterionic with 

a phosphate group (negative charge) and ethanolamine head group (positive 

charge). The positively charged head group of PE can strongly bind to a 

neighboring glycerophospholipid or membrane proteins. Similar to PC, the 

biosynthesis of PE in mammalian cells takes place mainly in the ER via the 

Kennedy pathway in which the CDP-ethanolamine is attached to DAG by the 

enzyme ethanolamine phosphotransferase.43 The second major pathway for PE 

synthesis is the phosphatidylserine decarboxylation pathway, as originally 

described by Borkenhagen et al. in 1961.46 This reaction takes place in the inner 

membrane of mitochondria where an enzyme decarboxylates phosphatidylserine 

to PE. In addition, small amounts of PE can also be generated in mammalian cells 

from a base-exchange reaction catalyzed by phosphatidylserine synthase-2 in the 

ER.47  

 

Phosphatidylinositol  

Although making up only a small fraction of cellular glycerophospholipids, 

phosphatidylinositol (PI) regulates many key biological processes. PI regulates 
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ion channels, pumps, and transporters, and also controls exocytosis and 

endocytosis. PI biosynthesis in eukaryotic cells occurs in the ER and uses a PI 

synthase enzyme as a catalyst for the reaction of CDP-DAG and myo-inositol to 

generate PI.48 The newly formed PI is then transferred throughout the cell by 

several PI transfer proteins or possibly via vesicular trafficking. The inositol ring 

of the PI head group can be phosphorylated at three different positions 3, 4, 5, 

thus resulting in seven possible forms of phosphoinositides (PIPs). Among these 

PIPs, phosphatidylinositol 4-phosphate PI(4)P and phosphatidylinositol 4,5-

biphosphate (PI(4,5)P2) are the most abundant in the cell membrane. PI 

constitutes about 10-20% of total glycerophospholipids, whereas the abundance 

of PI(4)P and PI(4,5)P2 is about 1%.49 The signaling functions of PIPs, such as 

lipid signaling and intracellular vesicle trafficking, have been desmonstrated.50 

Moreover, the inositol ring in the membrane acts as a binding site for cytosolic 

or membrane proteins which are involved in many cellular processes. For 

instance, PI(4,5)P2-binding to proteins interacts with the SNARE protein complex 

to stimulate the assembly for membrane fusion during vesicle exocytosis.51 

 

Phosphatidylserine  

Phosphatidylserine (PS), which contains serine as a head group substituent, is 

present as a minor constituent of biological membranes, less than 10%. Although 

appearing in small amounts, PS contributes to various physical and biochemical 

properties. PS is a key player in the activation of enzymes, and cell cycle 

signaling, especially apoptosis.52 Similar to other glycerophospholipids, PS is 

distributed unevenly in the plasma membrane of cells. Although PS is found 

preferably in the inner leaflet of the plasma membrane, it can redistribute to the 

outer leaflet during apoptosis or platelet activation. Its relocation is believed to 

serve as signal recognition for phagocytosis of apoptotic cells, or blood 

coagulation. In mammalian tissues, PC and PE are utilized as substrates for PS 

production. PS is synthesized from PC and PE by exchanging the head groups, 

choline or ethanolamine, with serine. This reaction is catalyzed by PS synthase-

1 and PS synthase-2 which are enriched in a mitochondria-associated 

membrane.45  

 

Phosphatidylglycerol  

Phosphatidylglycerol (PG) is a major component in the bacterial membrane, 

while it presents at low amounts (1-2% of total glycerophospholipids) in animal 

tissues. Glycerol serves as the PG head group, which does not compensate for 
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negative charge in phosphate group. As a result, PG provides a negative charge 

to the membrane as well as to lipid-protein interactions. Furthermore, CDP-DAG 

is also used for synthesis of PG in mitochondria. PG phosphate, produced from 

CDP-DAG, is dephosphorylated to form PG.53  

 

Cardiolipin  

Cardiolipin (CL) is an anionic glycerophospholipid which is most abundant in 

the heart and found in most animal tissues. CL is localized exclusively in 

mitochondria with high concentrations in the inner leaflet of the mitochondrial 

membrane. Unlike other membrane lipids that are generated in the ER, the de 

novo biosynthesis of CL occurs in mitochondria by using PG as a precursor. CL 

is generated by the addition of a phosphatidyl group into a PG molecule from a 

CDP-DAG molecule.53 CL has a dimeric structure consisting of two PA 

molecules connected by a glycerol (Figure 2.4). Owing to four FA chains and two 

phosphate groups, CL has hydrophobic and acidic properties providing both 

hydrophobic and electrostatic interactions with membrane proteins in 

mitochondria. The lipid-protein interactions allow CL to participate in many 

mitochondrial processes including electron transport, protein transport, ion 

permeability and energy conversion.54, 55 Interestingly, CL is translocated from 

the inner to outer mitochondrial membrane to serve as a binding site for signaling 

molecules. As CL has important roles in mitochondrial processes, disruption of 

CL metabolism induces serious diseases and many problems in heath. Changes 

in the CL pool lead to mitochondrial failure, which is associated with cardiac 

diseases.56 A deficiency in CL biogenesis is linked to Barth syndrome, which is 

characterized by dilated cardiomyopathy, skeletal myopathy, and growth 

retardation and neutropenia.57  

 

 

Figure 2.4. General structure of cardiolipin includes two PA molecules attached to a 

glycerol.  
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2.1.4 Sphingolipids 

Sphingolipids are a major class of lipids in eukaryotic membranes, especially 

in brain and nerve tissue. Sphingolipids consists of a sphingosine backbone linked 

to FAs via an amide bond (Figure 2.5). The sphingosine backbone usually is a 

long-chain amino alcohol with 14-22 carbon atoms. It is believed that 

sphingolipids perform important functions in signaling processes involved in cell 

growth, differentiation, senescence, and apoptosis.58 

 
Figure 2.5. General structure of sphingolipids with sphingosine backbone, ceramide and 

sphingomyelin. 

 

Ceramide 

The simplest sphingolipid is ceramide, which is characterized by having a 

sphingosine base in an amide linkage with a FA. In mammals, ceramides are the 

building blocks of all sphingolipids as well as being a bioactive molecule that 

participates in regulating signal transduction in differentiation, proliferation, and 

apoptosis.59, 60 The sphingomyelin pathway causes the breakdown of membrane 
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sphingomyelin to ceramide which acts a second messenger for regulating the 

apoptotic process. Ceramide is distributed in the membrane bilayer and has 

effects on the packing/rigidity of membrane glycerophospholipids. Moreover, 

ceramide tends to self-aggregate into membrane microdomains (rafts or caveolae) 

in association with sphingomyelin and cholesterol.61, 62 In addition, there are 

numerous ceramides found in human skin which are essential components of the 

intercellular lipids. Nowadays, ceramide is used in human skin care products 

because it maintains the water permeability barrier function of the skin by linking 

the protein-rich corneocytes into a waterproof barrier.63 The de novo synthesis of 

ceramide occurs in the ER which starts from condensation of serine and palmitol 

CoA followed by several acylation and reduction reactions to form ceramide. 

After formation, ceramide is transferred from the ER to the Golgi apparatus by 

either vesicular trafficking or transfer protein for synthesis of other sphingolipid 

metabolites. An alternative pathway to produce ceramide is through degradation 

of higher-order sphingolipids. Alternations in ceramide metabolism are thought 

to connect to a variety of diseases, for example cancer, cardiovascular, 

autoimmune and neurodegenerative diseases.  

 

Sphingomyelin 

Sphingomyelin (SM) is one of the most abundant sphingolipids in mammalian 

cells, particularly the myelin sheets of neurons. SM together with PC are major 

constituents of cellular membranes. They both have phosphocholine head groups 

in common and are found predominantly in the outer leaflet of the plasma 

membrane. Unlike PC with two FAs, SM has only one FA attached to a 

sphingosine base. In addition to the primary role of SM as a membrane 

component, it is involved in many cellular functions and processes including 

endocytosis, protein regulation, signal transduction.  SM is synthesized primarily 

in the Golgi apparatus from two precursors, ceramide and PC.64 The 

phosphocholine from PC is transferred to the primary hydroxyl of ceramide by 

SM synthase-1, and thus form SM and DAG. Small amounts of SM are also made 

via SM synthase-2 in the plasma membrane.  

 

2.1.5 Sterols 

Sterols are membrane lipids which consist of a four ring rigid sterol with an 

alcohol group and hydrocarbon side chain (Figure 2.6). Sterols have been 

proposed as key molecules to maintain membrane fluidity by regulating 

ordering/disordering of membranes. 
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Figure 2.6. Structure of sterol and cholesterol. 

 

Cholesterol  

Cholesterol is the main sterol in animals, but not in plants, fungi, and bacteria. 

Cholesterol is a amphipathic molecule containing a polar group (hydroxyl group, 

–OH) and hydrophobic group (steroid ring and hydrocarbon) as seen in Figure 

2.6. The hydroxyl group of cholesterol aligns toward the phosphate head groups 

of phospholipids while its hydrophobic region interacts with the FA tails of 

phospholipids. Cholesterol has different effects on membrane fluidity and 

permeability depending on temperature. At low temperature, the hydrogen bond 

between cholesterol and neighboring phospholipids is more stable and, hence, 

maintains membrane fluidity. In contrast, cholesterol has the opposite effect at 

high temperature. Cholesterol reduces the fluidity of membrane by interfering 

with the movement of the FA tails of phospholipids. Therefore, the permeability 

of membranes to small molecules is decreased. Recently, cholesterol has been 

suggested to associate with sphingolipids to form clusters called lipid rafts which 

perform an important role in signaling transduction.65 

 

2.2  Lipid functions in biological system 
2.2.1 Lipids as structural components of cell membranes 

 Lipids are the major structure components of cellular membranes which have 

a variety of key roles in biological functions in cells and tissues, especially the 

central nervous system. The primary function of lipids is to generate the bilayer 

barrier of cells and organelles (Figure 2.7).  

 Lipid molecules, which include a polar head group attached to non-polar FA 

chains, generate lipid bilayers around the cells. The interior of the lipid bilayer is 

filled by the hydrophobic FA chains and therefore the membrane is not permeable 

to water-soluble molecules including ions and biomolecules. Moreover, most of 

natural glycerophospholipids contain unsaturated hydrocarbon chains which 

make them difficult to pack together. Thus, the long hydrocarbon chains of the 
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FA tails can freely move in the interior of membrane and it is this ability that 

induces the flexibility of the membrane. 

  

 

Figure 2.7. Model for structure of a cellular membrane. The model of eukaryotic plasma 

membrane was modified from Encyclopaedia Britanica, Inc. ©2020 

https://www.britannica.com/science/membrane-biology. 

  

Lipid bilayers are elastic, allowing them to resist the bending and stretching as 

well as to generate curvature for chemical trafficking. The geometric shape of 

individual lipids is determined by the space acquired for the area of the polar and 

non-polar groups (Figure 2.8). When the polar and non-polar groups require 

similar spaces, the lipid molecule is said to have a cylindrical shape. As a result, 

lamellar membrane structures are formed from these lipids. The cone shape lipids, 

which have a small head group and larger tails, induce the formation of negative 

curvature of the monolayer side of a bilayer. By contrast, inverted cone shape 

lipids, with large polar heads and small tails, cause positive curvature.  

https://www.britannica.com/science/membrane-biology
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Figure 2.8. Lipids and membrane curvature. PC and PS give rise to a lamellar membrane. 

DAG and PE cause negative curvatures. PI generates a positive curvature. 

 

2.2.2 Lipids acting as secondary messengers  

In living organisms, cells communicate with each other and internally by use 

of chemical messengers. These chemical messengers are either water- or fat-

soluble molecules. Fat-soluble chemical messengers can cross the membrane 

bilayer and cause a response by directly binding to internal receptors. However, 

water-soluble signaling molecules cannot pass through the membrane; therefore, 

their messages must be transduced across the membrane. The plasma membrane 

is not merely a barrier to separate and protect cellular internal organelles from the 

external environment. The membrane and its lipids also serve several key 

functions in signal transduction events. Signaling lipids regulate many important 

cellular processes including cell proliferation, apoptosis, and metabolism.  

 Although PI is a minor membrane component, it is a key element in cell 

signaling. Since the discovery of PI turn-over, PI(4,5)P2, in 1980, the importance 

of this molecule in the signal transduction processes has been shown to be 

increasingly important. PI(4,5)P2 is hydrolyzed by phospholipase C to generate 

second messenger molecules: membrane associated DAG and soluble inositol-

1,4,5-trisphosphate. Inositol-1,4,5-trisphosphate stimulates the release of Ca2+ 

ions from the ER to promote cellular responses including transcription, cell 

growth and the immune response. Conversely, DAG activates protein kinase C, 

which then promotes the activity of a variety of kinases.37 In parallel, PI(4,5)P2 is 

converted to PI(3,4,5)P3, which acts as a signaling lipid for regulation of cell 

growth, proliferation, and motility.66 Interestingly, ceramides and sphingosines 
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also serve as signaling lipids in apoptosis.67 Additionally, the converted product 

of sphingosine, sphingosine-1-phosphate, has a key role in promotion of cell 

growth and proliferation via the activation of different G protein-coupled 

receptors.68  

2.3  Lipids versus proteins in regulation of 

transmission 
The synaptic membrane and its lipids are knowledge to be key elements in 

vesicle release, also known as exocytosis. Exocytosis is an important process in 

the cell and is responsible for the release of signal molecules into the extracellular 

space to communicate with neighboring cells. Exocytosis is considered to be 

predominantly promoted by various proteins. It is also believed that lipids only 

perform a passive role, partially in membrane merging. However, recently an 

increasing number of studies have demonstrated that lipids have significant key 

functions in regulation of whole exocytosis process.69 For instance, PI(4,5)P2 

molecules aggregate at the membrane fusion site and recruit numerous membrane 

proteins to the synaptic membrane.70 These proteins, such as CAPS and Munc, 

bind to PI(4,5)P2 to organize the SNARE proteins during vesicle priming. 

Growing studies support the important roles of phosphatidic acid, 

phosphatidylserine, and cholesterol in exocytosis.71 In addition, lipids change the 

membrane topology for membrane fusion. During vesicle fusion, lipids form 

positive and negative curvatures in the membrane that are required to form a small 

opening pore to initiate release. Lipids with conical shapes including 

phosphatidylethanolamine, cholesterol, phosphatidic acid, or diacylglycerol 

promote the generation of negative curvatures. In contrast, inverted-conical 

lipids, such as phosphatidylserine, gangliosides, or lysophospholipids, form 

positive curvatures.72 

 

2.4 Psychostimulant effects on remodeling of 

brain membrane lipids  
The composition of membrane lipids can be altered associated with various 

conditions and diseases, such as medication, injuries, or neurodegenerative 

diseases.  Among these conditions, psychostimulants have been shown to disturb 

different aspects of lipid metabolism that are accompanied by a variety of brain 

dysfunctions, especially cognitive performance, emotion, and motion. 

Psychostimulants, such as cocaine and methamphetamine, are highly abused 
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drugs that cause a dramatic elevation of extracellular levels of monoamines. 

Chronic administration of cocaine has been demonstrated to change the lipid 

compositions in the brain. Using electrospray ionization-mass spectrometry, 

Cumming et al.  reported that repeated cocaine injections to male rats induced 

locomotor sensitization in parallel with the changes in the PC and PE levels in 

the hippocampus and the ventral striatum as well as the blood.73 Additionally, 

opposite alterations of the distributions and relative abundance of lipids have been 

shown to occur by using mass spectrometry imaging following cocaine versus 

methylphenidate in Drosophila melanogaster brain.74 Specially, methylphenidate 

induced the depletion of PC levels, whereas an elevation of PC concentration was 

observed after exposure to cocaine. Total PEs and PIs decreased with cocaine 

treatment, whereas these levels increased in fly brains treated with 

methylphenidate. This is explored in paper I and the lipid changes following 

cocaine removal in paper III. In addition to changes in phospholipids, cocaine 

causes elevation in gangliosides and neutral sphingolipids in rat offspring.75 

Similar to cocaine, chronic amphetamine induces the upregulation of 

quadrisialoganglioside and downregulation of monoganglioside 2, 

monoganglioside 3 and diganglioside 1 in the rat frontal cortex.76
 By application 

of mass spectrometry imaging, Bodzon-Kulakowska observed the elevation in 

the levels of PS, PG, and sulfatide species followed injection of morphine or 

cocaine in rat brain.77 In contrast, amphetamine induced the depletion of PE and 

PS abundance.  

The abuse of psychostimulants is a severe health problem worldwide. 

However, there is no effective medication for addiction by psychostimulants. The 

understanding of brain lipid metabolism associated with drug abuse provides a 

helpful value to develop the new therapy for drug addiction. Given the changes 

of lipids in the specific brain region, especially hippocampus, it is highly likely 

these lipid alterations are associated with aspects of drug addiction including 

drug-seeking urges and cognitive deficits. Thus, mechanisms to alter brain lipids 

should be a new target for pharmacological therapy in the near future to treat drug 

addiction and cognition impairment. 



Chapter 3  

Mass spectrometry imaging 
 

Mass spectrometry imaging (MSI) has emerged as an important approach for 

simultaneously mapping multiple molecular species in a variety of samples. MSI 

is a label-free technique, which is capable of providing both chemical and spatial 

information for known and unknown molecules. One of the most applied MSI 

techniques is the sensitive surface technique of secondary ion mass spectrometry 

(SIMS). Owing to extensive fragmentation, the application of the SIMS technique 

is quite restricted in biological research. Currently, the development of the cluster 

ion sources opens up the potential of high-resolution imaging SIMS in the field 

of biotechnology. This chapter discusses briefly the history of MSI and the 

background of the SIMS technique. Finally, the application of time-of-flight 

SIMS (ToF-SIMS) in the analysis of biomaterials will be covered.  

 

3.1  Short history of the field 
Mass spectrometry (MS) has grown to be used as a tool in most scientific fields, 

particularly analytical chemistry. To appreciate how the MS field has had a rapid 

expansion till present date, it is necessary to look back at some inventors and the 

great advances in the field. The birth of MS has roots in nuclear physics and 

chemistry studies. At the end of 19th century, J. J. Thomson discovered “charges 

of negative electricity carried by particles of matter”, later named electrons.78 By 

using electric and magnetic fields to deflect cathode rays, also called electron 

beams, he could indirectly measure the mass of the electron. For his discovery of 

the electron, he was awarded the 1906 Nobel Prize in Physics.  

 Recognizing the great value of MS, Thomson’s student, F. Aston, developed 

and built the first mass spectrometer to measure the masses of charged atoms by 

using parallel electric and magnetic fields.79 Later on, Aston and his colleagues 

improved the instrument to separate and demonstrate the existence of elemental 

isotopes which won him the Nobel Prize in Chemistry in 1922.80 

Until the 1940s, the technique of MS was still dominated by physics mainly to 

study the fundamental nature of atoms and particles. Later, A. Nier was successful 

in commercializing the instrument and showed the world the practicality of MS. 

He designed and built new mass analyzers, which were used in a variety of 

applications.81, 82 He then developed a design named the Nier-Johnson mass 
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spectrometer, which was a combination of electrostatic and magnetic analyzers 

in a unique conformation. By the 1940s, MS was a useful technique established 

in several different fields.  

In late 1940s, many new concepts in mass analyzers had evolved, several of 

which used time-varying electric fields to separate species with different masses 

instead of a magnetic field. In 1946, W. E. Stefens proposed the concept for the 

time-of-flight (ToF) mass spectrometer. In the ToF analyzer, ions with the same 

initial energy but different masses were separated when they flew down a long 

tube. Based on this principle, the first ToF mass spectrometer was built in 1948 

by Cameron and Eggers.83 In the early 1950s, W. Paul and H. Steinwedel initiated 

the development of the quadrupole mass analyzer and the quadrupole ion trap for 

mass analysis. In 1974, Fourier transform ion cyclotron resonance mass 

spectrometer was invented by M. B. Comisarow and A. G. Marshall providing 

the highest mass resolving power (m/m ~ 100.000) and mass accuracy (<1 ppm) 

still to date.84  

SIMS was the first MS technique applied for chemical imaging. The novel 

concept of SIMS was published in 1949 by R. Herzog and F. Viehböck, in which 

two separated electric fields were used to accelerate  primary and secondary 

ions.85 The positive secondary ions emitted during the primary ion bombardment 

were accelerated and then analyzed in a Thomson parabola apparatus. SIMS was 

a hard ionization method, which was traditionally applied for elemental analysis. 

The earliest SIMS instrument was introduced in 1960s, which utilized an argon 

(Ar) primary beam with high current density to image elemental ions.86 During 

the early time of SIMS, this technique was used for studying the surface of metals. 

In 1958, a static SIMS approach was proposed by A. Benninghoven producing 

an opportunity for surface analysis of organic molecules. This was obtained by 

using an ion beam with low current density which caused less damage of the 

desorbed molecules.87   

By the 1980s, MS techniques were mainly applied for analysis of small organic 

molecules. Large biomolecules including proteins, peptides and nucleic acids, 

however, were a huge challenge. Almost at the same time, the developments of 

MS techniques including electrospray ionization (ESI) MS and matrix-assisted 

laser desorption/ionization (MALDI) MS were introduced. ESI and MALDI gave 

new possibilities in biology for the analysis of macromolecules. The inventors of 

ESI for MS analysis and for MALDI of proteins shared the 2002 Nobel Prize in 

chemistry for their development of these techniques. To this day, ESI and 

MALDI are still the methods of choice for studying proteins and peptides. 
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In parallel, several developments in primary ion sources of SIMS technique 

have been introduced that make SIMS techniques suitable for analysis of 

biological macromolecules.88 Traditional SIMS instruments were equipped 

beams like Ar+, gold (Au+), cesium (Cs+), oxygen (O¯), gallium (Ga+), bismuth 

(Bi+), and xenon (Xe+) having high dose of an focused monoatomic primary ion 

to erode sample. The bombardment of the primary ion beam induced damage to 

the subsurface regions of the sample and produced small fragment species. This 

method was therefore suitable for elemental analysis. Hence, SIMS was 

frequently used for semi-conductors and metal analysis, but was limited for 

studying organic compounds. During the past decades, the rapid development of 

new cluster primary ion beams, particularly Aun
+,89 Bi n

+,90 sulfurpentafluoride 

(SF5
+),91 and C60

+,92 made the technique of SIMS capable of enhancing the ion 

yields for organic analysis.93 With a primary ion beam comprised from several 

atoms, the subsurface damage is reduced, and the yields of higher mass fragments 

and intact molecules are significantly increased. Intriguingly, the gas cluster ion 

beam (GCIB) containing thousands of particles, like Ar500
+   ̶  Ar4000

+ and 

(CO2)6000
+, minimizes the fragmentation due to low impact energy.94, 95 GCIBs 

bring new chances for imaging intact molecules in complex biological samples 

with the technique of SIMS. 

 

3.2  Mass spectrometry imaging 
MSI is a popular tool in analytical fields which provides a chemical map of the 

sample surface. To generate a chemical image, a focused ion beam or laser is used 

to raster across the sample surface and acquires several spectra from different 

points on the sample surface. During the last decades, MSI has grown 

dramatically due to its broad applications that range from biomarker studies 

(lipids, proteins, peptides) to drug distributions.96-98 Such wide applicability leads 

to the development of different techniques, particularly SIMS and MALDI. Since 

proposed in 1960s, the first imaging mass spectrometry, SIMS, has grown and 

developed quicky.86, 99 During the early period of SIMS, this technique became 

valuable for studying inorganic materials.  

Generally, among MSI approaches, SIMS offers the highest spatial resolution 

that ranges from micrometer to nanometer scale. SIMS is a relatively ‘hard’ 

ionization method compared to MALDI. A primary ion beam with high energy 

density is used to strike the sample material leading to the localized damage of 

sub-layers and breaking of intact molecules. SIMS, however, overcome these 

limitations with the invention of cluster ion beams (C60
+, Arn

+). For instance, C60
+ 
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ion beams typically remove only a few monolayers and preserves the underlying 

layers while still increasing the yields of the intact molecules.27 

The first MALDI imaging of biological tissues was described by Caprioli et al. 

in 1997.100 Since then, MALDI has rapidly grown in its applications for the 

analysis of biological macromolecules. Although lacking in the area of low-mass 

information (≤1000 Da) and spatial resolution limitations, MALDI gives better 

detection of large molecular-weight species. MALDI imaging has been effective 

for characterization of large biomolecules including proteins, peptides, lipids, 

DNA and RNA – an application for which SIMS imaging has been restricted. 

Now, with the trend toward cluster ion sources in SIMS, it has been possible to 

target the mass range of 0 – 1000 Da, which makes it become a great complement 

to MALDI imaging. 

 

3.3  Fundamentals of SIMS  
SIMS has emerged as an important technique in biological research due to its 

high sensitivity, high mass resolution, high spatial resolution, as well as a wide 

range of masses at the low end. In SIMS, the sample surface is sputtered by 

energetic primary ions. The mechanism of this sputtering process can be 

characterized as a collision cascade of the particles.101 As a primary ion carrying 

a few keV strikes the sample surface, its energy is transferred to atoms of the 

surface resulting in the collision cascade between atoms in the sample. Partial 

energy returns to the surface and gives the surface molecules sufficient energy to 

overcome surface binding energies; thus, causing the emission of secondary 

particles (Figure 3.1). Most of these sputtered particles are ejected as neutral 

atoms and molecules. A small fraction (about 1%) of these particles are ionized 

to positively and negatively charged ions called secondary ions. These secondary 

ions are collected and subsequently transferred into a mass analyzer, usually 

magnetic and electrostatic sectors or a ToF analyzer, where they are separated 

and analyzed based on their mass to charge ratios (m/z).  
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Figure 3.1. The schematic of the sputtering process in SIMS, where a focused primary ion 

beam is used to eject secondary particles along with electrons. 

 

The formation of secondary ions, the ionization process, takes place close to 

the emission of sputtered particles and depends on the properties of the materials. 

The secondary ion intensity measured can be described by the SIMS equation, as 

shown below. 

Im = IpYmαθmη    (3.1) 

Here, Im is the secondary ion current of charged species m (counts/s) 

 Ip is the primary ion flux (ions/s) 

 Ym is the sputter yield of species m per primary impact 

 α is the ionization probability of species m in positive or negative ion 

mode  

 θm is the fractional concentration of species m in the surface layer 

 η is the transmission of the analysis system 

 

Based on the SIMS equation, the secondary ion intensity, Im, is proportional to 

the concentration of the species. However, it is difficult to quantify the signal 

because of the matrix dependence of Ym and α. This can be more complicated 

because of the matrix effect and surface charging. The matrix effect induces an 

alteration in the ionization rate of an analyte surrounded by other species. Surface 

analysis of materials with charged species leads to the buildup of 
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positive/negative charges on the surface called surface charging. This charging 

will attract the ions with opposite polarity causing the detected intensity of the 

analyzed ions to be reduced or even completely suppressed. 

 

3.3.1 Sputter yield 

The sputter yield is defined as the number of emitted atoms, including neutrals 

and ions, removed from the sample, per incident primary species. It elevates 

linearly with the primary ion flux. It also varies depending on the mass and energy 

of the primary particles, as well as the angle of incident primary beam, but not 

linearly. Primary particles with heavier mass lead to the energy depositing closer 

the surface and, thus, enhancing the sputter yield. The sputtering threshold energy 

of the primary particle for sputtering is at about 20-40 eV. The sputter yield shows 

a steep decrease at lower energies of the primary particles. This occurs because 

the atoms do not receive enough energy to overcome the surface binding energy. 

The sputter yield tends to reach maximum with the beam energy between 5-50 

keV.102, 103 Too high energy primary ions, over 50 keV, penetrate so deep into the 

sample and no energy returns to the surface. In addition, the sputter yield is also 

affected by the crystallinity and topography of the sample. 

Sputtering is a damage process. The consequence of the sputtering process is 

the removal of elements, fragments, and molecular species from the sample. The 

loss of those species destroys the chemical structures within the sample area 

around the impact sites of the primary ions. This damage is characterized by a 

damage cross-section. With monoatomic primary ion beams, the damage is 

formed deeper into the materials due to the high energy per ion. For cluster ion 

beams, the ion energy is partitioned between all the atoms of the clusters. When 

cluster ions impact at a surface, the cluster breaks apart and each atom carries a 

low amount of energy causing the significant decrease in the penetration depth of 

the ions. This means that the chemical structure in the subsurface region is 

preserved. Atomic and molecular species are ejected much more gently from the 

surface than using the monoatomic ion beams. This phenomenon is defined as a 

non-linear cascade where parallel collisions occur simultaneously. Moreover, the 

cluster ion beams generate more atoms to bombard the sample surface, which 

produce the enhancements of the sputter yield. Cheng et al. demonstrated that the 

yield of several hundred molecules per impact was measured with a C60
+ primary 

ion beam sputtered the trehalose film.104 Along with the C60
+ ion beam, benefits 

of using giant GCIBs (Arn for example) are currently obtained.105 Cluster beams 

give many advantages for SIMS techniques that range from the enhancement of 
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high-mass ion yields to a reduction in charging and damage cross-section, as well 

as an ability to carry out molecular depth profiling.  

 

3.3.2 Ionization probability 

In order to improve the secondary ion yield, most advancements in SIMS have 

concentrated on total sputter yield, and only recently have they explored the 

enhancement of the ionization probability.106-108 Owing to the static limit for 

nondestructive SIMS, much less than 1% of the ejected particles from the 

analyzed region are ionized. As a sputtered particle travels through the near-

surface region, whether it escapes from the surface in an ionized state relies on 

its relative probability of ionization, α. The ionization probability α of a certain 

species can vary depending on the electronic properties and chemical nature of 

the sample. Thus, the secondary ion yield of that species is not directly 

proportional to the concentration of the species. This phenomenon is the so-called 

matrix effect. Hence, ToF-SIMS can be considered a semi-quantitative technique. 

For organic molecules, the secondary ion efficiency is usually low because of the 

poor ionization probability under the bombardment conditions. 

The exact mechanisms of the secondary ion formation during the sputtering 

process in SIMS are still not completely understood. During the past few decades, 

various models for ionization processes have been suggested.109-112 In principle, 

the ionization mechanisms in SIMS can be divided into physical and chemical 

ionization processes. The physical ionization mechanism involves an electron 

transfer processes. In the chemical ionization process, a chemical reaction occurs 

between an ejected neutral species M and some charged radical R+,-. This reaction 

leads to the protonation/deprotonation events causing the formation of 

quasimolecular complexes like [M+H]+, [M+Na] +, [M+Cl]¯,  or [M+OH]¯. For 

organic samples in SIMS, the most common quasimolecular ions are the 

protonated [M+H]+ and deprotonated [M-H]¯ species. Other possible species 

include molecular radical M+,-, loss of functional groups (e.g. [M-CH3]
+), or alkali 

adduct ions (e.g. [M+K]+). 

As mentioned, the detection efficiency of organic molecules is still limited by 

the low level of the ionization probability. Improving α is crucially important to 

expand SIMS applications in the organic analysis. The addition of electronegative 

species, such as cesium or oxygen, leads to an enhancement in secondary-

ionization probabilities. The neutral Cs atoms deposit on the specimen surface 

during the analysis. The presence of Cs enhances the negative secondary ion 

yields due to the electron transfer process. In contrast, oxygen is used to increase 
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the yield of positive secondary ions. The addition of oxygen leads to the oxidation 

of the sputtered atoms, especially metal atoms, around the ion impact region 

resulting in an increase in the ionization probability. Several researchers have 

realized that the presence of water in the frozen samples can increase the 

formation of [M+H]+ ions owing to the formation of H3O
+ in the sputtering 

area.113 Moreover, doping small amounts of a chemically reactive species, such 

as CH4, into the Ar GCIB results in the enhancement of protons in the impact 

zones compared to the bombardment of a pure Ar cluster ion beam.30 Going 

further, the addition of salts or acids (for instance NaCl or HCl) elevates the 

formation of adduct ions [M+X]+ or [M+Y]¯.114, 115 The use of water cluster 

beams provides approximately 10 times higher in ion yields than Ar clusters.116  

 

3.4 Different operation modes of SIMS: static 

versus dynamic SIMS 
SIMS analysis traditionally has two operation modes: static and dynamic. 

Dynamic SIMS provides mainly elemental analysis and is usually preferred to 

determine the in-depth concentration of interested species. Conversely, static 

SIMS is often applied when one needs to identify both elemental and molecular 

information of surface species. 

 The first method is termed dynamic SIMS, which was the main mode of 

operation during the early days of SIMS. In dynamic SIMS, sample materials are 

eroded by the bombardment of a continuous primary ion beam with high energy 

ranging from 0.25 to 50 keV. The distribution of the kinetic energy of the primary 

ion near the surface has potentials to acquire spatial and depth information of 

chemical locations in samples. Although relatively large amounts of materials on 

the sample surface are rejected, the primary ions penetrate deep into the material 

resulting in the disruption of the sub-surface area of the sample. The direct 

impacts of the primary ions to atoms in the sample surface are highly energetic 

causing heavy fragmentation near the collision site. Hence, the atomic particles 

are produced, but molecular information is limited.  

The dynamic SIMS approach usually uses monoatomic primary ion sources. 

The major advantage of these sources is the ability to focus the beam to 

considerably less than 1 µm, which gives great spatial resolution. Hence, dynamic 

SIMS is usually used in geological sciences and in semiconductor analysis. 

During the 1990s, a new ion beam configuration was described and became a 

useful dynamic SIMS performance at high lateral resolution.117 This new 
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configuration was commercialized by CAMECA as the NanoSIMS 50 and 50L 

which combined great spatial resolution (approx. 50 nm), sensitivity (detecting 1 

out of 20 nitrogen atoms and 1 out of 200 carbon atoms), and mass resolution (up 

to 10.000).117, 118 Here, a highly focused primary ion beam was designed to be 

coaxial with the secondary beam extraction (Figure 3.2). The co-axial optics 

allow one shortening the working distance, enhancing the collection efficiency, 

as well as minimizing the shadowing effects. NanoSIMS is a destructive method, 

where the sample surface is continuously sputtered by an energetic primary ion 

beam, either Cs+ or O¯, to produce the secondary ions. In a co-axial optical 

system, the secondary ions are collected back through the same lens assembly of 

the primary beam. The ions are sorted in an electrostatic sector based on their 

energies before entering to a mass analyzer where they are dispersed according 

to their energy. The NanoSIMS 50 and 50L contain 5-7 individual detectors, 

which are capable of imaging 5-7 elements or isotopes simultaneously. 

NanoSIMS imaging is applied mainly for the measurement of isotopic ratios and 

trace elements within geochemistry and material science. Recently, an interest in 

the NanoSIMS approach for the analysis of biomaterials and biological samples 

has grown rapidly. The high spatial resolution together with high mass resolution 

and high sensitivity make this technique capable of imaging stable isotope-

labeled molecules at the single cell level.119-121 For instance, the metabolic activity 

of single cells can be revealed with NanoSIMS by probing isotope distributions 

or elemental compositions. In addition, NanoSIMS imaging has had significant 

impact for tracer studies in single cells, such as cellular uptake and distribution 

of 15N-labeled peptide vectors,122 the transportation of fatty acid across the cell 

membrane,123 and lipid distributions.120, 124 

The formation of a collision cascade causes the destruction of molecules at the 

surface as well as in deeper layers. In order to minimize sample damage and 

promote the desorption of large fragments, a low primary ion dose has to be 

applied to sputter the materials at a few nanometers from the top layer of the 

sample surface. This approach is called static SIMS, described at the end of the 

1960s.103, 125 The use of a low primary ion density results in fewer primary ions 

striking the surface, and thus inducing less damage and less fragmentation. As 

discussed above, recent advances in cluster ion sources, bring opportunities to 

study from a wide range of biological samples. Owing to ‘soft ionization’, 

preservation of chemical bonds and molecular information in the fragments is 

possible. The cluster ion sources bring great promise for sub-micron spatial 

resolution for molecular SIMS imaging. 
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Figure 3.2. The configuration of NanoSIMS features co-axial primary and secondary ion 

beams. This figure was adapted with a permission from Agui-Gonzalez et al.126 

 

The static and dynamic SIMS approaches can be distinguished by the primary 

ion dose. Static SIMS is a surface sensitive technique where the primary ion 

density is maintained below the static limit. Below that limit, the probability of 

two ions hitting the same location is low. Generally in static SIMS, the primary 

ion dose is less than about 1013 ions/cm2, which corresponds to about 1% of the 

first layer surface impacted by the primary ion.127  

 

Primary ion dose = 
𝐈𝐩𝐭

𝐀
   (3.2) 

Where Ip is the primary ion flux (ions/s) 

    t is the analysis time (s) 

   A is the surface area (cm2) 

 

3.5  ToF-SIMS 
Currently, the static SIMS approach has grown dramatically in biology studies, 

particularly for the detection and visualization of biomolecules. There are three 

types of mass analyzers used in static SIMS instruments for the separation: a 

quadrupole, magnetic sector, or ToF spectrometer. Excellent detection limits and 

mass resolution can be achieved with a magnetic sector spectrometer; but the 

mass range is limited, generally less than 300 amu. The quadrupole, on the other 

hand, provides a wide mass range up to 1000 amu, fast scan speed, and ease of 
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use. The limitation of a quadrupole is poor mass resolution making it hard to 

separate several ion species with the same nominal mass. The third one, a ToF 

spectrometer has advantages of high mass resolution (m/m > 10.000), high mass 

range up to several thousand amu, and rapid data acquisition.128 In general, the 

features of a ToF analyzer makes it more ideal for the static SIMS technique. 

 

 
Figure 3.3. Schematic shows the workflow of ToF-SIMS in the imaging mode. A focused 

primary ion beam ejects secondary ions which are then separated and detected based on their 

m/z. The intensity of each ion for each pixel point can be plotted to generate a chemical 

image. 

 

The early development of ToF-SIMS was proposed by A Benninghoven and 

coworkers.129 A schematic of ToF-SIMS imaging is shown in figure 3.3. ToF-

SIMS, however, was not commercialized as an analytical method until the early 

1980s. Later, ToF-SIMS evolved into a standard high-resolution surface analysis 

technique which is useful for elemental and molecular characterization. The 

introduction of liquid metal ion guns (LMIGs) provided improved lateral 

resolution for elemental detection (beyond 100 nm).90, 130 In contrast, the lateral 

resolution achieved for large molecular species can be several microns.105, 131 

Especially, the ToF analyzer allows one to simultaneously detect and image all 



3. Mass spectrometry imaging 

36 
 

secondary ions in a wide mass range. The difficulty in this technique, however, 

is to produce a finely timed short-duration primary ion pulse because, in the ToF 

mass analyzer, a defined start time is required for mass determination based on 

the flight time of ions. The design of most ToF-SIMS instruments utilizes a 

pulsed ion beam operating at a low current; thus, this technique is well-suited for 

analysis of surfaces and soft materials, but not for depth profiling.  

The formation of atomic and molecular secondary ions relies on the type and 

energy of incident primary ions and the nature of the sample. Over the last 

decades, LMIGs, such as Bi, Au, or Ga, have been introduced to become the ion 

guns of choice for many ToF-SIMS imaging applications because this can 

provide submicron-level spot size and can achieve pulses of a few nanoseconds. 

Unfortunately, most ejected particles are atomic species resulting in a loss of 

information about the molecular structure of the surface. Hence, the enhancement 

of the secondary ion yield, particularly of high mass molecules has been a primary 

challenge for the ToF-SIMS technique. Originally, the first LMIG to be used was 

the Ga source and then this was adapted to Au, but now the Bi ion sources are 

preferred due to the improvement of secondary ion yield gained from these 

sources.132 Along with the LMIGs, the large cluster C60
+ ion beams were proposed 

as projectiles which showed potential for characterizing somewhat larger 

molecules.92 The C60
+ cluster ion beam containing multiple atoms each having 

relatively low energy as it impacts the sample surface. The results of these low 

energy impacts are the reduction of the localized sub-surfaced damage and 

preservation of molecular structures. Smiley et al. illustrated the sputtering of a 

C60
+ ion beam on an ice film causing the formation of a much wider crater than 

the Au3
+ ion beam.133 The spatial resolution of cluster beams, however, is not 

good compared to the LMIG sources.134 More recently, gas cluster ion sources 

with a cluster size up to several thousand atoms, often Arn (n = 500 - 4000), has 

been designed. Compared to the C60
+ ion beam, the super large Ar cluster beam 

produces lower impact energy per ion. Importantly, such large cluster ion beams 

with a spot size of several microns have been used to show a dramatic elevation 

of the secondary ion yield in the mass range for biological and organic 

materials.135 Furthermore, the cluster ion guns are be able to provide efficient sub-

micrometer imaging and also 3D molecular depth profiling. 3D imaging in ToF-

SIMS can be formed by stacking 2D images acquired at different sample 

depths.136-138 As the development of the ion sources is better suited to research 

studies, the applications of ToF-SIMS will no doubt continue growing rapidly.  
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3.5.1 ToF mass analyzer 

The ToF mass spectrometer separates multiple ions according to their different 

velocities in a field-free drift path or a flight tube. In Tof-SIMS, a short pulsed 

primary ion beam bombards the sample surface and induces the formation of 

secondary ions. The pulse of primary ion beam is the starting point for the time 

measurement. All secondary ions are then accelerated by an electric field before 

travelling toward the flight tube. As all secondary ions are given the same kinetic 

energy, their velocities and therefore the flight time of the ions depends on their 

masses. When they enter a field-free tube, they are separated according to their 

velocities before arriving at the detector. 

The kinetic energy given to charged particles in an electric field can be 

described by equation 3.3. 

E = qV   (3.3) 

Here, E is the kinetic energy, q is the charge of an ion, and V is the acceleration 

potential.  

When an ion with mass m and charge q is accelerated by a potential V. The 

electric potential energy of an ion is converted to kinetic energy E. 

E = 
𝟏

𝟐
 mv2   (3.4) 

Here m is the mass of the particle and v is the velocity of the particle.  

When an ion travels in a flight tube of known length, L, to the detector, the 

required time t to pass the distance L is given by the rearrangement of equations 

3.3 and 3.4. 

t =  
𝐋

𝐯
 = 

𝐋

√𝟐𝐕
√
𝐦

𝐪
  (3.5) 

Equation 3.5 shows the correlation between the arrival time and the mass of an 

ion. Since the flight time for one ion to reach the detector is proportional to the 

square root of its mass, lighter ions having higher velocities reach the detector 

earlier than heavier ions. 

The main drawback of the first linear ToF mass analyzer was poor mass 

resolution because of the broad energy distribution of secondary ions.139 Indeed, 

the ions with the same mass were emitted with different initial kinetic energies 

causing a broadening of the ion packet as it traveled from the sample surface to 

the detector. The ions with low initial kinetic energy in that case trailed behind 

the ions with high initial kinetic energy. Another factor also influencing the mass 

resolution was that the secondary ions were emitted with an angular distribution 
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from the sample surface. As a result, these ions had a longer flight time. A way 

developed to improve the mass resolution from the early approach is the use of 

an ion reflector also called a reflectron or ion mirror. The reflectron helps to 

correct the initial kinetic energy dispersion of analyzed ions with the same m/z. 

A reflectron, a two-stage ion mirror system, was first invented by Mamyrin and 

coworkers.140 The common reflectron consists of a field free drift region, and an 

ion mirror. As secondary ions enter the mass analyzer, they are accelerated in a 

potential field and travel toward the field-free region of the spectrometer. At the 

end of the flight tube, ions inter the reflectron at a slight angle where they are then 

reflected by the ion mirror, travel back into the field free region at a different 

angle, and hit the detector. The ion mirror consists of a series of evenly spaced 

electrode plates generating a strong homogeneous deceleration field followed by 

a weaker mirror field. As ions with the same m/z pass the first deceleration section 

of the mirror, they slow down, reach to a stop, and then reverse their travel 

directions to exit the mirror. High kinetic energy ions, and thus having more 

velocity, penetrate deeper into the mirror than ions with lower energy. High 

energy ions then catch up to the low energy ions of the same mass until they strike 

the detector at the same time. The mass resolution m/Δm > 10.000 can be 

achieved in SIMS performance with a two-stage ion mirror.128 Most of ion mirrors 

have a linear electric field. Another variation of the ToF reflectron, which 

employs non-linear field distribution within the ion mirror, has been 

introduced.141 This approach is suitable to apply for system where secondary ions 

with very large energy spread have to be compensated. This situation can be 

obtained in the system operating the delayed/pulsed ion extraction or utilizing the 

secondary ion bunch compression (such as in the J105 instrument). The non-

linear field reflectron consists of a large number of equally spaced ring electrodes 

which create a non-linear electric field to reflect ions. Ions with broad kinetic 

energies penetrate the mirror with different depths before reversing their 

directions toward the detector.  

 

3.5.2 ToF-SIMS analysis with the J105 

A principle drawback of ToF-SIMS is the requirement of pulsed primary ion 

beams. The very short pulse of primary ion beams is necessary to maintain good 

mass resolution. High spatial resolution is only achieved when a long pulse of 

primary ion operating at low ion current is used. Additionally, the low duty cycle 

of the pulsed beam consequently leads to long time for analysis. A relatively new 

approach is found in the J105 ToF-SIMS instrument, which was developed by the 
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group at the University of Manchester (UK) collaborating with Ionoptika Ltd. 

(Southampton, UK).142 A schematic of the instrument is shown in the figure 3.4. 

The aim of this development was to decouple the mass resolution with the spatial 

resolution by removing the need to pulse the primary ion beam. The J105 

instrument utilizes a continuous primary ion beam combined with a bunched 

secondary ion stream which enables one to obtain high spatial resolution images 

with high mass resolution spectra.  

 

 
 

Figure 3.4. Schematic of the J105 3D Chemical Imager. Image is reproduced and adapted 

with the permission from Fletcher et al.142 

 

In the J105, a continuous primary ion beam sputters the sample surface which 

produces a continuous stream of secondary ions. The secondary ions are extracted 

into a radio frequency-only quadrupole filled with suitable gas (e.g. N2), where 

they are collisionally cooled. The ions are then energy filtered by an electrostatic 

analyzer, thus providing them with a 1 eV energy spread before entering a linear 

buncher (Figure 3.5). The secondary ions are collected in the buncher and 

subsequently accelerated into the flight tube at the same time; thereby they are 

condensed in toa narrow spot at a time focus at the entrance of the reflectron. The 

buncher consists of several plates applied an acceleration field that varies from 6 
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keV on the plates at the entrance to 0.5 keV on the plates at the exit. With this 

application of the buncher, the ions at the back of the buncher are able to catch 

up with the ions in the front. These ions, however, have a large energy spread 

(about 6 keV) which would be a problem for a conventional ToF analyzer. The 

J105 utilizes a non-linear field ToF reflectron which contains a short field free 

region and is filled with reflectron plates. Thus, ions are separated due to their 

mass to charge ratios, but not their energy. The mass resolution is dependent on 

the buncher performance and decoupled with the secondary ion formation. The 

current J105 set-up can achieve a mass resolution of m/Δm ~ 10.000 and a mass 

accuracy of 5 ppm.  

 

 
 

Figure 3.5. The configuration of the buncher and reflectron on the J105. Image is reproduced 

and adapted with the permission from Fletcher et al.142 

 

The design of the J105 is especially optimal for biological analysis. The J105 

is equipped with large-cluster primary ion beams including C60
+, Arn

+, or (CO2)n
+ 

all giving high yield for intact biomolecules. Furthermore, the J105 can be cooled 

down to about 100 K using liquid nitrogen which allows one to perform analysis 

on frozen hydrated samples. The glove box on the top of the sample insertion can 

be filled with inert gas (e.g. Ar) to prevent the frosting of frozen samples.  

MS/MS can be performed with the J105 instrument. For MS/MS analysis, after 

the buncher, the ions travel to a collision cell filled with a suitable gas (e.g. He, 

N2, or Ar) where the ions are fragmented. Since the collision cell is placed after 

the buncher, the collision energies are in the range of 0.5-6 keV. The collisions 

occur in the short field free region; and hence both parent and daughter ions travel 

further with the same velocity. The ions of interest are selected by a timed ion 

gate before passing to the ToF analyzer.  
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3.5.3 ToF-SIMS improvement for biological analysis    

All biological functions of living organisms depend on properties and 

behaviors of biological machines, which are large molecules including lipids, 

proteins, nucleic acids, carbohydrates, and much more. Several areas of 

biological sciences have been attracted to study the structures, compositions, and 

functions of these biological machines. In recent years, ToF-SIMS has been 

increasingly applied to visualize and characterize the lateral distribution of 

specific species in biological tissues and cells.  The advantages of this technique 

include sub-micrometer resolution, labeling-free approach, and an ability to 

obtain both 2D and 3D images. Until recently, ToF-SIMS imaging had poor 

secondary ion production owing to the traditional Ga+ or In+ LMIGs used. The 

introduction of cluster LMIGs and large cluster ion beams have led to huge 

improvements in secondary ion yields, especially for high-mass ions, making this 

approach more well-suited for studies of biological applications on various 

samples, such as tissues, cells, and bacteria.  

Nowadays, the need to localize and identify biomolecules in single cells has 

become more important in life science for better understanding of biological 

processes.143, 144 The surface sensitivity of ToF-SIMS makes it well-suited for the 

analysis of the cell membranes. One of the first applications of ToF-SIMS in 

single cell molecular imaging was reported by Winograd and Ewing.145 In that 

report, a Ga+ LMIG was used to image molecular species across the surface of 

the single cell organism Paramecium. Later, ToF-SIMS equipped with an In+ 

primary ion beam revealed alterations in lipid composition consistent with high 

and low curvature lipids during Tetrahymena mating.146 These changes occurred 

at the conjugation site where a fusion pore was formed to pass the micronuclei 

between the cells. The fusion site between two cells contained a reduction of low 

curvature lipids PCs (m/z 184) and an elevation of high curvature lipid 2-

aminoethylphosphonolipid (m/z 126). Unfortunately, the use of a monoatomic ion 

beam in single cell imaging allows one to only identify the fragments of lipid 

species. As mentioned, to increase secondary ion yield of high-mass molecules, 

the Ga+ or In+ sources have now been largely replaced with cluster ion beams. 

This is highlighted in the recent work of Kollmer et al. where secondary ion yields 

gained from cluster beams, such as Au3
+, Bi3

+, and C60
+, were shown to be 

significantly increased compared to Ga+.147 The potential benefits of cluster 

beams in applications to biological science are significant and wide-reaching.148-

150  
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Lipidomic analysis has gained the attractions of scientists because of the 

important roles of lipids in many cellular processes. Lipids from brain tissues, 

cell membranes, heart, liver, or muscle have been studied most extensively with 

ToF-SIMS.151-157 In addition, the dysregulation of lipid mechanisms has been 

shown to be involved in many diseases and mental disorders, such as 

cardiovascular disease,157 Alzheimer’s disease,158 and cancer.159, 160 

Understanding of lipid distributions in the brain tissues can give insights into to 

the underlying processes of these diseases. ToF-SIMS imaging using Bi3
+ cluster 

ions has been used to determine the cholesterol distributions in Alzheimer disease 

human brains. The results revealed an elevation of cholesterol levels in the 

cerebral cortex of Alzheimer disease patients.161 In addition, a Bi cluster ion 

source on a ToF-SIMS was applied further to map lipid localizations in 

nonalcoholic fatty liver disease.79 They found the elevation of TAGs, DAGs, 

MAGs, and FAs together with the depletion of vitamin E in the liver tissue 

compared to control. Myocardial infarction, also a term used for a heart attack, 

occurs due to the reduction of blood flow to a part of the heart; after which the 

heart muscle is damaged because of lack of oxygen. The lipid distribution in the 

infarcted region of mouse hearts was probed using Ar4000
+ GCIB ToF-SIMS.157 A 

depletion of PI levels and the increase in DAG signals was observed in the 

infarcted regions of mouse heart tissues compared to normal regions. 

Interestingly, the specific PI species are accumulated in the border of infarcted 

and non-infarcted regions. In addition to lipid changes induced by diseases, 

several medications have been reported to have impacts on lipid levels. A recent 

work from Phan et al. used GCIB ToF-SIMS to investigate the effects of 

methylphenidate on the distribution and composition of lipids in the fly brain.153 

Methylphenidate is a stimulant medication for treatment of attention deficit 

hyperactivity disorder. The significant decrease in the abundance of PC species 

was obtained after methylphenidate administration, whereas methylphenidate 

caused the elevation of PE and PI levels in the fly brain.  Furthermore, stable 

isotopes can be probed within the cells with ToF-SIMS to determine the uptake 

of specific substances or track the chemical transformations through biological 

synthesis. One example is the use of a LMIG and GCIB to track the incorporation 

of deuterated fatty acids and lipid turnover from these fatty acids into the plasma 

membrane of cells (as seen in paper II).  

Current ToF-SIMS methods provide chemical information not only within the 

uppermost layers of the exposed surface but also as a function of depth. As 

mentioned earlier in this chapter, the introduction of the ion cluster beams has 
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brought more chances for new applications of 3D molecular imaging and 

molecular depth profiling for ToF-SIMS analysis.162 The 3D biomolecular ToF-

SIMS imaging of a single cells, Xenopus laevis oocytes, was reported by Fletcher 

et al.136 In this paper, the J105 ToF-SIMS instrument was equipped with a 

continuous C60 primary ion beam to characterize chemical changes in three 

dimensions of a single cell. A wide range of lipid species including cholesterol, 

FAs, DAGs, and PCs were observed through the sample with a predicted erosion 

depth of 175 m. The most recent study from Dimovska Nilsson et al. 

characterized the lipid composition in the envelops of Escherichia coli mutants 

having impaired plasmid transfer ability to share the DNA in antibiotic resistant 

bacteria.163 Differences in the chemical composition, especially FAs, in the 

surface of different bacterial strains were obtained using ToF-SIMS with a 

(CO2)6000
+ GCIB. Interestingly, the GCIB in this study provided significant 

signals from higher mass species up to several thousand m/z, such as intact lipid 

A (m/z 1796) along with other species at m/z 1820 and 2428.  

In general, ToF-SIMS brings several opportunities for biological applications 

to the MSI field. In this thesis, ToF-SIMS imaging has been applied to investigate 

the changes in lipids induced by drugs in both brain tissues and cells samples.  
 



Chapter 4  

  ToF˗SIMS imaging for 

biological applications 
 

Owing to several practical and ethical obstacles, experiments using humans in 

biomedical sciences are severely limited. Thus, there is a need to find simpler 

biological model systems to answer biologically related questions. Animal 

models, such as rat, mice, invertebrates or cells, are commonly used. ToF-SIMS 

analysis of animal model organisms requires simple sample preparation. 

However, further investigations for sample preparation procedures are crucial to 

improve the yields of molecular species. The first part of this chapter discusses 

the model organisms used for biological research. Later, sample preparation for 

ToF-SIMS experiments and data analysis are also described. 

 

4.1  Short survey of the field 
When MALDI imaging was first introduced in 1997, this technique became an 

important breakthrough in the field of MSI.100 MALDI is capable of probing large 

biomolecules with several thousand Da like peptides and proteins. MALDI has 

emerged as a great tool to study single neurons,164 as well as brain sections.165 

Furthermore, there is a rapid growth of the current attention in the MALDI 

technique focusing on several diseases including Alzheimer’s disease,31, 166 

Parkinson’s disease,167 and infectious disease.168  In the MALDI technique, a thin 

layer of an organic matrix is coated onto the surface of the sample to improve the 

ionization efficiency. The requirement of the addition of a chemical matrix 

somewhat limits the spatial resolution and mass range below 500 Da. SIMS 

imaging, on another hand, provides higher spatial resolution over a lower mass 

range, usually below 1000 Da. The surface analysis SIMS technique has been 

particularly attractive for imaging of tissues and single cells, even at submicron 

scale.145, 169 Recently, several new designs of SIMS have improved its application 

in biological science. One design, the J105 instrument from IonOptika, includes 

a novel ToF spectrometer equipped with a continuous huge cluster ion beam 

which increases the ion yields for large biomolecules. Moreover, MS/MS 

imaging is possible with the J105. 
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Another MSI approach, desorption electrospray ionization (DESI), allows the 

surface imaging of biological samples in the ambient environment without any 

chemical treatment.170, 171 In DESI experiments, the wetted sample surface is 

impacted with charged droplets of solvents leading to the desorption of secondary 

droplets.172 Although the sensitivity and spatial resolution for most DESI 

experiments appear to be poorer than what is achieved by MALDI and SIMS, the 

imaging of wet samples is possible in DESI. The capability of DESI-MS to map 

lipidomic profiles in rat brain tissue has been demonstrated with spatial resolution 

of less than 500 µm.171 

FT-ICR MS offers both high mass resolution and mass accuracy for 

biomolecular identification.173 Currently, a new instrument has been developed 

which combines the high spatial resolution ToF-SIMS with the high mass-

resolving power FT-ICR instrument. The ions generated in the ToF-SIMS 

apparatus are transported to the analyzer of an FT-ICR instrument to gain high 

spatial resolution images with high mass resolution spectra. The Heeren group 

reported the first combination of an C60 ion source with an FT-ICR MS to image 

the mouse brain tissue.174 In this work, the authors showed examples of mass 

measurement accuracy below 1 part-per-million, and mass resolving power in 

excess of 100.000, as well as spatial resolution of 40 µm. The practical limitation 

of FT-ICR MS instruments, however, is their slow acquisition rates. Another 

powerful approach called the 3D OrbiSIMS provides high speed imaging while 

maintains the high mass-resolving power and high mass accuracy.175 The 3D 

OrbiSIMS is a hybrid instrument consisting of TOF.SIMS 5 (ION-TOF GmbH, 

Germany) and a Q Exactive HF Orbitrap (Thermo Fisher Scientific, Germany). 

The high-speed imaging can be achieved by ToF spectrometer while the Orbitrap 

MS provides good mass resolving power of 240.000 at m/z 200 and a mass 

accuracy of less than 2 ppm. It is configured with dual ion beams (Arn and Bin) 

and dual analyzers (ToF and orbitrap) which offers surface analysis, depth 

profiling, and 2D and 3D imaging. The 3D OrbiSIMS has been applied in 

biological imaging to probe the distribution of several biomolecules. In addition, 

the visualization of 3D images at subcellular resolution is possible with the 3D 

OrbiSIMS system. An analysis of biological samples at frozen-hydrated state can 

be performed due to a cryogenic sample holder.  

 

 

 



4. ToF-SIMS 

46 
 

4.2  Biological models 

In the early days of molecular biology, the simplest organism like bacteria and 

bacteriophages were chosen to study various different molecular mechanisms 

including the replication, transcription, protein synthesis and gene activity 

control. Later, in order to accumulate more complicated knowledge, biological 

research required more complex systems such as Caenorhabdtis elegans, 

Drosophila melanogaster, zebra fish, and rodents. These models have had a huge 

contribution for fundamental biological and clinical research. Two different 

models, the fruit fly Drosophila melanogaster and pheochromocytoma or PC12 

cells have been used in this thesis to investigate the changes in lipid distribution 

and composition induced by drug treatments. 

 

4.2.1 Drosophila melanogaster 

Use of the model Drosophila melanogaster, the fruit fly, has led to several 

major breakthroughs in genetics. It has become a common choice of model 

organism in biomedical research for over a century. The fruit fly is inexpensive 

and easy to maintain in the lab. Moreover, it has a short life cycle which can 

readily be produced in large numbers for experiments. Normally, 9-10 days on 

average is required for the development process from a fertilized egg to an adult 

at 25oC (Figure 4.1). The fly undergoes four developmental stages: the embryo, 

larva, pupa, and adult. Upon fertilization, the embryo grows in the egg around 

one day at 25oC, followed by three larval stages termed the first, second, and third 

instar. The young small larvae have to shed their entire outer skins to grow to a 

larger size. During this stage, larvae spend their time eating and their growth take 

places in about 4 days. The third instar larvae crawl out of the food medium onto 

a dry place, cease moving, and then pupate. The larvae undergo a 4-day-long 

metamorphosis (at 25oC) in the puparia, after which the adults emerge. The 

duration of the fly life cycle depends greatly on temperature, being more rapid at 

high temperature.   

When the Drosophila genome was fully sequenced in 2000,176 it was found out 

that many basic biological, physiological, and neurological properties between 

Drosophila and mammal are conserved. Reiter and co-workers reported that 

approximately 77% of genes involved in human diseases have matches in the fly 

genome;177 thus offering several advantages for investigation of the molecular 

and cellular mechanisms underlying human diseases with fly models. For 

instance, several fly models have been developed to study the function of specific 
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genes which involve complex diseases such as Parkinson’s, Alzheimer’s, or 

Huntington’s diseases.178-182 In addition, the fruit fly is an excellent model in 

genetic analysis which helps one to understand the development, function, and 

plasticity of neural networks.183 

 

 
Figure 4.1. A schematic of Drosophila life cycle. The fly development includes various 

stages: the embryo, larva, pupa, and adult. The figure is modified from Ong et al. 184 

 

The Drosophila embryo provides a useful system for the study of numerous 

cellular processes including cell-to-cell communication, cell division, gene 

expression, and cell death. Disruption of these processes can lead to severe 

problems of the embryo including deformities, infertility, or death. The mystery 

of brain function, such as cognition and behavior, is the main drive for 

neuroscience research today. Studies with fruit flies have provided insights about 

the development of the nervous system, ion channel function, axon function, 

synaptic transmission, learning and memory, and neural diseases. The nervous 

system of larvae and adult flies contains a relatively small number of neurons, but 

displays the same brain functions as vertebrates at the molecular, cellular, and 

behaviors levels.185 The larval brain comprises about 10 000-15 000 neurons, 

while the nervous system of an adult fly is more complex with 100 000 

neurons.186-188 The larval brain contains various neurotransmitters including 

octopamine, dopamine, serotonin, tyramine, glutamate, and acetylcholine.189-191 

To study the regulation of amine release at an intact neuron, Majdi et al. probed 
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the release of octopamine in the Drosophila larva by amperometry.192 Similar to 

the larval brain, the brain of an adult fly uses neurotransmitters like dopamine, 

GABA, glutamate, acetylcholine, serotonin, histamine, and octopamine to 

communicate between neurons.190, 191, 193 The Ewing group, described real-time 

neurochemical measurements in Drosophila in which the uptake of exogeneous 

applied dopamine was quantified using fast scan cyclic voltametry.194 

Monoamine transporters in the brain are the main targets for psychostimulants 

to regulate the extracellular levels of monoamines, such as dopamine. Several 

studies on the effect of psychostimulant action on the dopamine transporter in the 

fly have been reported. For instance, Berglund et al. studied the effects of 

methylphenidate on dopamine uptake during direct bath application of cocaine 

onto the fly central nervous system.195 They found that the dopamine transporter 

in the fly is inhibited by oral administration of methylphenidate, thus inhibiting 

the action of directly applied cocaine. In addition to neurochemical research, the 

fruit fly provides an ideal model system to study lipid metabolism induced by 

diseases and drugs.196 Compared with mammals, Drosophila shares the basic 

metabolic pathways and signaling pathways involved in lipid metabolism. One 

example is the alteration in lipid distribution and composition in the central fly 

brain obtained after cocaine and methylphenidate administration (paper I and III).  

 

4.2.2 PC12 cells 

The rat pheochromocytoma (PC12) cell line was originally isolated and 

cultured from a tumor in the adrenal medulla of a rat in 1976 in the lab of L. 

Greene.197 An image of a PC12 from transmission electron microscopy (TEM) is 

shown in figure 4.2. Since its initial description, the PC12 cell line has been 

widely used for studies of neuronal development and function.198, 199 PC12 cells 

are capable of differentiation into a neuronal phenotype by responding to nerve 

growth factor.197, 200 PC12 cells have large dense core vesicles containing 

catecholamines, such as dopamine and norepinephrine, as well as smaller 

synaptic vesicle-like microvesicles containing acetylcholine.201, 202 Thus, PC12 

cells offer many advantages for studying exocytosis and related processes.198, 203 

Furthermore, PC12 cells represent an important model for lipidomics studies, 

particularly lipid changes in the cell membrane during several different processes 

or drug treatments. For instance, organic pollutants can induce changes in lipid 

metabolism in PC12 cells.204 Cholesterol has been shown to regulate dopamine 

release during exocytosis in PC12 cells.205 Corsetto et al. showed that apoptosis 

in PC12 cells induced by manganese is associated with the changes in lipid 
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composition.206 In paper II, the synthesis of membrane lipids in PC12 from fatty 

acids was investigated by using ToF-SIMS imaging. The use of isotopic-labelled 

fatty acids as lipid precursors resulted in spatial information of converted fatty 

acids and lipid turnover. Especially, the relative abundance of lipids incorporated 

from isotopic fatty acids was also measured based on the isotope peaks from ToF-

SIMS spectra. 

 

Figure 4.1. TEM micrograph of PC12 cells. 

 

4.3  Sample preparation for ToF-SIMS 
Although there is no requirement of any preliminary treatments of the sample 

(e.g. coated by matrix, salt, or metal) in ToF-SIMS imaging, the preparation of 

biological samples is still important to preserve the morphological structure of 

the sample and the original chemical location of the analyzed species. There are 

three common sample preparation methods for SIMS imaging: freeze-dried, 

frozen hydrated, and chemical fixation methods.  

The simplest method for analysis under vacuum is freeze-drying. Before 

samples are dried, cryofixation is commonly employed to preserve the sample 

integrity. Samples are plunged quickly into a cryogenic liquid, such as liquid 

propane (85 K) or ethane (89 K). The cryogen has a low boiling point and high 

thermal conductivity to cool the sample fast enough to transition water to 

amorphous ice; thereby, the formation of ice crystals causing molecular 

displacement and the damage of sample structure is prevented. After cryofixation, 
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frozen samples are typically embedded with specific materials (e.g. optimum 

temperature cutting, gelatin, or ice) for sectioning into thin slices using a 

cryomicrotome.207 Sample sections are commonly thaw-mounted onto a 

conductive substrate, such as an indium tin oxide coated glass slides or silicon 

wafers. The frozen samples are then freeze-dried under vacuum to remove water 

by sublimation. After drying, the nonvolatile substances like salts are crystalized 

on the sample surface which causes severe problems during ToF-SIMS analysis. 

The accumulation of salts on the sample surface must be prevented or salts 

removed to give better signals of analyzed molecules. Wu and co-workers found 

that the majority of interfering substances like salts and cell culture components 

were washed away by using ammonium acetate (CH3CO2NH4) before 

cryofixation.208 Due to the volatility of ammonium acetate, no residue remains 

after the drying procedure. Similarly, the volatile salt, ammonium formate 

(NH4HCOO), can also be used for the same purpose.169 Another drawback of the 

freeze-dried method is the relocation of species owing to the loss of water during 

the drying process. For instance, changes in distribution of cholesterol have been 

observed in brain tissue samples after freeze drying and the migration of DAG 

species has been reported in the fly brain .209-211 

Chandra et al. described frozen-hydrated sample preparation for cell analysis 

with SIMS to eliminate the rearrangement of molecules and preserve sample 

morphology.212, 213 Instead of freeze-drying, sample sections were kept frozen 

throughout the analysis. Performing the frozen hydrated analysis showed the 

enhancement of the signals for biomolecular species.211, 214 The formation of ice 

condensation on the sample surface, which occurs during sample transfer, was a 

typical problem of this method. Etching techniques, such as freeze etching and 

C60
+ etching, have been utilized to remove the condensation layers.215 Another 

way to avoid the condensation contamination has been via the freeze-fracturing 

technique where cells are sandwiched between two pieces of silicon and then 

frozen.216, 217 The frozen sandwich can then be fractured to expose cells for 

analysis.  

Finally, chemical fixation can also be used. Due to the fact that chemical 

fixatives can react with the molecules or change the molecular structures in the 

sample, chemical fixation should be avoided for sample preparation in ToF-SIMS 

analysis.218 This method, however, is routinely utilized for NanoSIMS analysis, 

for instance glutaraldehyde can be used for protein fixation and osmium tetroxide 

for lipid fixation.219 
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Various methods for ToF-SIMS sample preparation have been developed to 

improve the molecular ion yield during sputtering. Matrix enhanced-SIMS, where 

a thin layer of MALDI matrix is coated onto the sample surface, can be used to 

gain improvement in the ionization efficiency.220 The disadvantage, however, is 

the rearrangement of molecules during the matrix deposition. Moreover, the size 

of the matrix crystal is larger than the beam size leading to the loss in spatial 

resolution. In contrast to matrix enhanced-SIMS which typically uses organic 

matrices, another variant called metal-assisted SIMS utilizes metal deposition.169, 

221 Nonetheless, the enhancement in secondary ion yields is observed only for 

some specific species which form adduct ions with metals. Treatment with 

ammonia induces an increase in signal intensity of sulfatides and ceramides in rat 

brain tissue samples owing to the reduction of the cholesterol precipitation on the 

sample surface. Trifluoroacetic acid treatment is another method that can be used 

to reduce signal intensity of cholesterol, thus increasing the intensity of lipid 

molecules.222, 223 

 

4.4  Principal components analysis (PCA) 
A data set of spectra generated from ToF-SIMS is usually large in size and rich 

in information containing perhaps hundreds to thousands of peaks. When one 

analyzes biological materials, the ion yields for intact biomolecules is lower than 

the signal intensity of fragments. Extracting the relevant biological information 

from a complex spectrum is challenging. A wide variety of multivariate analysis 

(MVA) techniques, including principal components analysis (PCA), maximum 

autocorrelation factor, or partial least squares regression, have been applied to 

ToF-SIMS data to simplify the data analysis.224, 225Among these methods, PCA is 

the most commonly applied MVA technique. PCA is a useful method to simplify 

the data with a minimal loss of information.226 PCA translates a large data set into 

a number of principal components where the first principal component (PC1) 

captures the most variance in the data set. The relationships between the variables 

(m/z value in ToF-SIMS spectra) are displayed in score plots, while 

corresponding loading plots represent which variables (peaks) contribute to the 

separation seen in the score plot.227   

It is crucial to use an appropriate data pretreatment approach prior to PCA to 

get better separation. The main purpose of data pretreatment methods is to convert 

data to a different scale (e.g. logarithmic scale) to focus on the significantly 

relevant information and reduce the artefacts (e.g. measurement noise or 
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differences due to instrumentation/topography). Data preprocessing includes 

peak selection, data normalization, and suitable scaling methods. Peak selection 

is the first step to make the set of peaks to run PCA. It is more common for one 

to select the peaks from the region of interest to remove the interferences from 

noise or background. After peak selection, data binning can be used owing to the 

large number of peaks. The data set is then normalized by dividing the intensity 

of each peak to a scalar value (e.g. normalization to the total intensity of selected 

peaks or the total secondary ion intensity). The goal of normalization is to 

minimize variations caused by sample charging, instrumental conditions, or 

topography. 

Data scaling is a critical step in PCA which influences the separation of the 

valuable information from noise. In the scaling method, each variable (peak) is 

divided by the scaling factor. As an example, autoscaling, also known as unit 

variance scaling, uses the standard deviation as a scaling factor. Unit variance is 

probably the most common scaling method since all variables become equally 

important.  Pareto scaling scales the data by dividing by the square root of the 

standard deviation for the variable. Pareto scaling helps to reduce the relative 

importance of intense peaks and enhance the contribution of the weaker peaks 

that might be biologically relevant.   

The software SIMCA (Umetrix, Sweden) was used in this thesis for PCA on 

ToF-SIMS spectra. This software was used to extract the changes in intact 

biomolecules in fly brains owing to drug exposures (papers I, III, and IV). 

Additionally, image PCA on ToF-SIMS images of fly brain sections was carried 

out on MatLab (The MathWorks Inc.) to identify the alteration of lipid 

distributions shown in paper I. 



Chapter 5  

Summary of papers 
 

The work in this thesis demonstrates the successful applications of ToF-SIMS 

imaging in biological research to directly study lipids in tissues and cells. Owing 

to the use of cluster ion sources and GCIBs, the ion yields were enhanced opening 

new opportunities to expand the application potential of ToF-SIMS. In this work, 

both cells and tissues have been analyzed by using either the ION.TOF 5 with a 

Bi-cluster source or a newer instrument design, the IonOptika J105, equipped 

with a high energy GCIB. The signals of high-mass intact lipids have been 

improved as cluster ion beams, especially GCIB, were employed. 

 

In paper I, ToF-SIMS imaging was applied to study the effects of 

psychostimulants like cocaine and methylphenidate (MPH) on the lipids in the 

brain of the fruit fly Drosophila melanogaster. Cocaine and MPH share some 

similar mechanisms of action in the brain by blocking dopamine transporters 

leading to the elevation of the extracellular dopamine. Although producing 

similar dopamine-elevating effects, they have different impacts on cognitive 

performance. Long-term cocaine use causes a wide range of cognitive deficits, 

particularly in memory, learning, attention, executive functions, and language. 

MPH, on the other hand, appears to enhance the cognition performance. The 

neurochemical actions of cocaine and MPH can lead to the alteration of the 

cellular activities in the brain associated with the disruption in lipid metabolism. 

The application of a high energy gas cluster ion beam (a 40 keV Ar4000
+ GCIB) 

as an ion source in the ToF-SIMS technique provides great advantages to image 

intact lipids and obtain detailed spatial molecular information inside the fly brain 

after exposure to cocaine and MPH. Male flies were fed with yeast paste food 

supplemented with cocaine or MPH for three days. After treatment, fly heads 

were embedded in gelatin and then cryo-sectioned using a microtome. The 

samples were analyzed using the frozen-hydrated sample preparation approach 

with the J105 instrument. Principle component analysis (PCA) was applied to the 

images to elucidate the differences in lipid distribution after cocaine treatment. 

The results show that cocaine treatment induces the distributional changes of 

various different lipid species in fly brain sections. To be more specific, PC 

species are more dominant in the central region of the control fly brain, whereas 
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cocaine causes the spreading of the same species in the entire brain. Alternatively, 

PE and PI species are more concentrated in the central brain after cocaine 

administration. Specific lipid molecules that change significantly in PCA were 

selected and their relative abundances were then calculated. The results reveal 

that cocaine and MPH display opposite effects on the lipid composition in the 

central area of the fly brain. Particularly, repeated cocaine use causes significant 

upregulation of phosphatidylcholine (PCs) levels, whereas a downregulated trend 

for PC levels is observed in the fly brain after MPH administration. The total 

abundance of phosphatidylethanolamine (PE) and phosphatidylinositol (PI) 

species is depleted following cocaine. In contrast, MPH increases the total levels 

of the same species. It is possible that the consequence of the opposite alterations 

in lipid composition in the central fly brain induced by cocaine and MPH is an 

impairment or enhancement in cognitive performance, respectively. 

 

Impairments in cognitive performance, however, are known to still persist 

following cocaine removal. Thus, I hypothesized that the changes in brain lipids 

might be an important factor for the negative impacts of cocaine on cognitive 

function. Therefore, ToF-SIMS imaging was used to test whether the alterations 

in the lipid composition induced by cocaine exposure are reversed after the 

removal of cocaine or cocaine administration followed by MPH treatment. The 

results are presented in paper III. As mentioned in paper I, male flies were fed 

with yeast paste food containing cocaine for three days. The flies were then either 

fed with normal yeast paste food or food supplemented with MPH for another 

three days. The samples were cryo-sectioned and then freeze-dried for ToF-SIMS 

analysis. Experiments were performed using the J105 instrument with a 40 keV 

(CO2)6000
+ GCIB as a primary ion beam. In this work, PCA on ToF-SIMS spectra 

was used to identify the lipid changes after drug treatments compared to control 

flies. Interestingly, cocaine removal and cocaine treatment followed by MPH are 

observed to partially rescue the alteration of lipid composition in the brain 

induced by cocaine. In detail, cocaine administration leads to the elevation of PC 

abundance in the central region of the fly brain. Cocaine removal seems to lead 

to recovery of the effects of cocaine on PC levels, whereas MPH treatment after 

cocaine induces further depletion of PC levels compared to the control brains. 

Both strategies lead to a partial recovery of the alteration of TAG concentration 

caused by cocaine. Alternatively, cocaine causes a significant reduction in total 

PE and PI levels and these changes are not observed to be rescued by cocaine 
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removal and MPH treatment. Although cocaine removal and MPH treatment does 

not completely reverse the effects of cocaine on lipid changes in the fly brain, 

these strategies still have positive impacts on the brain lipid recovery induced by 

cocaine action. All together, I suggest that lipid treatment may open up new 

opportunities to improve the cognitive impairments caused by repeated cocaine 

use. 

 

In paper II, another application of ToF-SIMS for studying of lipid synthesis 

was investigated. In this work, the deuterated substrates of -linolenic acid 

FA(18:3) and linoleic acid FA (18:2) were used to identify the incorporation of 

fatty acids and lipid turnover in the plasma membrane of cells. Both the omega-

3 fatty acid, -linolenic acid, and linoleic acid, an omega-6 fatty acid, are long 

chain polyunsaturated fatty acids (PUFAs) which are not synthesized in human 

body. Both omega-3 and -6 fatty acids have been shown to be useful supplements 

for treatment against neurodegenerative diseases, cardiovascular diseases, as well 

as cognitive impairment. They are precursors in the biosynthesis of longer chain 

PUFAs and lipids. Studying the incorporation of these fatty acids and their lipid 

turnover into the cell membrane might give insights into the relation of lipids and 

their positive benefits. In this work, PC12 cells were incubated with deuterated 

omega-3 and -6 fatty acids for one day. Lipid information was obtained by using 

a Bi-cluster ion beam (TOF.SIMS 5) and a GCIB ion beam (J105). The Bi-cluster 

beam provides good spatial information for isotopic fatty acids in the plasma 

membranes of single cells, whereas the GCIB enhances the signal intensity of 

lipid turnover from these fatty acids. As expected, the results show that 

deuterium-labelled omega-3 and -6 fatty acids are accumulated in the cell 

membrane after incubation. As these are absorbed into the cell, these fatty acids 

are converted into the longer-chain PUFAs with 20 and 22 carbons via the fatty 

acid metabolic pathways. Using ToF-SIMS I was also able to show that these 

fatty acids and their converted products are incorporated into PC, PE, and PI 

species. Omega-3 fatty acids (with 3 double bonds) and their conversion products 

(with 3 or 5 double bonds) are incorporated into lipids with 3, 5, or 6 double 

bonds. Similarly, omega-6 fatty acids (with 2 double bonds) and their conversion 

products (with 2 or 4 double bonds) participate in the lipid synthesis process to 

generate lipid species containing 2 or 4 double bonds. Interestingly, the relative 

quantification of lipid species showed that the accumulation of omega-3 fatty acid 

in the plasma membrane of the cell is higher than omega-6 fatty acid after 
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incubation. The relative amount of lipids incorporated from omega-3 fatty acids 

is also higher than those from omega-3 fatty acids. These findings are important 

to understand lipid metabolism in the cell and cell membrane and suggest that 

specific lipids are involved in protection against brain aging as well as having 

positive impacts on cognitive impairment. 

 

Zinc is an essential trace element which plays an important role in brain 

function and cognition development. Several reports have demonstrated that a 

lack of zinc causes the impairments in cognitive performance, especially learning 

and memory. Therefore, in paper IV, the impact of zinc deficiency on the brain 

lipids in the fly was investigated using the TOF.SIMS 5 instrument (IONTOF 

GmbH) equipped with a Bi-cluster ion beam. In this study, fertilized fly eggs 

were collected and the new-born larvae were fed with standard cornmeal food 

with the removal of zinc. Male adults were selected for further ToF-SIMS 

experiments. Prior to ToF-SIMS analysis, inductively coupled plasma mass 

spectrometry (ICP-MS) was performed to quantify the zinc concentration in 

control and zinc-deficient larvae and adult flies. The results show that the zinc 

level in larvae with dietary zinc deficiency is about 70% lower than that in control 

larvae. The concentration of zinc in fly heads, on the other hand, is not 

significantly different between the control and zinc-deficient groups. The 

application of PCA to the ToF-SIMS spectra in the lipid region (m/z 650-900) 

shows significant differences in lipid species in the central brains of flies treated 

with zinc deficient food compared to controls. The elevation of PC and PI species 

is observed after zinc deficient diet, whereas a lack of zinc causes the depletion 

of PE species. The effects of zinc deficiency on lipid levels in the fly brain are 

similar to what is observed after cocaine administration. Both cocaine and zinc 

deficiency induce an elevation in PC and a reduction of total PE levels. Taken 

together, the observed alterations in levels of lipid species, especially PCs and 

PEs, might be related to the loss in cognitive performance in the brain. 

 



Chapter 6   

Concluding remarks and 

future outlook  

 

ToF-SIMS is a highly sensitive surface technique which is capable of surface 

chemical mapping and identification of molecular information. For many years, 

the application of ToF-SIMS imaging was mainly focused on inorganic materials, 

especially in semiconductor and coatings industries. Recent advancements in 

ToF-SIMS instrumentation including analyzer design as well as the availability 

of cluster ion sources have expanded its new applications in the analysis of 

polymer and biological materials. One major advantage of using the ToF-SIMS 

technique is its ability to probe simultaneously the localization of several hundred 

molecules across a sample surface without chemical labels. The recent advances 

of using the GCIB ion sources make it possible to probe high mass intact lipids 

with less fragmentation. All of these advantages have brought new exciting 

applications for ToF-SIMS use to a wide range of fields, especially biological and 

medical science.  

 

The work done in this thesis demonstrates the application of ToF-SIMS 

imaging for lipidomic investigations in biological model systems treated with 

drugs like cocaine, MPH, and zinc deficient diet. This technique provides insights 

into the chemical actions of the drugs as well as lipid changes at the cellular level. 

One major advantage of using ToF-SIMS for biological science is its ability to 

collect simultaneously chemical and spatial information of several lipid species 

on the sample surface. The information obtained from ToF-SIMS images 

provides a view of the alteration of biomolecules occurring after various drug 

treatments. The ToF-SIMS approach provides a better understanding of the role 

of lipids in cognitive performance. It is clearly possible that the lipid changes 

observed are associated with the cognition deficits caused by some drugs. This 

opens up new opportunities for drug development and therapies for impairment 

of cognitive function.  

 

In addition to the study of lipid changes induced by drugs, ToF-SIMS shows 

promise for the detection and tracking of biomolecules by using stable 
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isotopically labelled compounds. In this work, lipid synthesis was investigated by 

tracking the incorporation of the deuterium isotope labelled omega-3 and -6 fatty 

acids in the plasma membrane of cells. The combination of ToF-SIMS and stable 

isotope labelling has established the opportunity to determine and relatively 

quantify biomolecules at the subcellular level. The identification of possible 

cellular metabolism might again provide a new target for the development of 

drugs.  

 

To summarize, in this thesis, ToF-SIMS imaging has been used to probe 

chemical structure as well as monitor lipid changes in biological materials of both 

fly brains and single neuronal-like cells. ToF-SIMS also offers a complementary 

approach for other analysis methods to answer more complicated scientific 

questions.    
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