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Abstract—In this paper, we consider the design of spiral
constellations for channels affected by phase noise. The strength
of the proposed constellations resides both on the performance
and on the extreme simplicity of the design. The symbols
can in fact be expressed in analytical form, and are uniquely
defined through a single parameter that accounts for the phase
and thermal noise variances. The performance of the proposed
constellations are assessed in terms of information rate and
error rate. Despite their simplicity, the new spiral constellations
have excellent performance, especially when the constellation size
grows large.

I. INTRODUCTION

A possible answer to the increasing demand for high data-
rate transmission over band-limited channels is the use of
high order constellations, whose sensitivity to channel imper-
fections is very critical. High order modulation schemes are
susceptible to phase noise (PN) that arises from local oscillator
instabilities. To improve the performance, a properly designed
constellation can be employed.

The problem was addressed for example by Foschini et al.
in [1] already in the early 70s. In this work, an approximate
maximum likelihood detector was derived for a memoryless
PN channel, and constellations that optimize its symbol error
probability were obtained. More recently, in [2], constellation
points are optimized by maximizing the approximate mutual
information using a simulated annealing algorithm. In [3], the
problem of finding the optimal constellation for PN channels
is investigated by considering optimization formulations based
on error rate and mutual information. In [4], the performance
of high order amplitude-phase shift keying (APSK) constel-
lations in PN channels are compared to the conventional
phase shift keying (PSK) and quadrature amplitude modula-
tion (QAM) constellations. Spiral constellations, called spiral
QAM, have been considered for PN channels in [5].

Although it has been well investigated in the past, the
problem of finding a good constellation robust to PN is
far from being solved. The main drawback of the design
approaches in the literature is the complexity, since they
require the optimization of several parameters and some of
them produce unstructured constellations that lack flexibility.

In this paper, we propose new spiral constellations for
PN channels, whose points are properly located along an
Archimedean spiral. The choice of this particular spiral is
motivated by its property of constant radial distance between

spiral laps. The proposed constellations have excellent per-
formance and are very simple to design. The constellation
symbols can in fact be expressed in analytical form, and are
uniquely defined through a single parameter, therefore they
are very versatile. We show that the new spiral constellations
allow to achieve very high information rate (IR), and they are
suitable for application in practical coded systems adopting
state-of-the-art channel codes.

The paper is organized as follows. Section II describes
the adopted system model. Section III presents the proposed
constellation design. Section IV details the considered perfor-
mance metrics. Section V presents several numerical results
and comparisons. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Let us consider the following model for the received sample,

yk = xke
jφk + wk , (1)

where xk is the transmitted symbol, φk is a PN sample,
assumed to have a zero-mean Gaussian distribution with
variance σ2

φ, and wk is a complex additive white Gaussian
noise (AWGN) term, with variance σ2

w. The symbol xk can
assume any point in the M -point signal constellation {cm,m ∈
{1, . . . ,M}}. The PN in (1) represents the residual phase error
that results from tracking and compensating the phase of the
received signal using an estimator. In general, the PN samples
may be correlated, however, in order to simplify the analysis,
we assume that an ideal estimator is used that removes any
correlation [3]. This is a reasonable assumption when PN has
been tracked by resorting, for example, to pilot symbols.

III. SPIRAL CONSTELLATIONS DESIGN

In this section, we describe the proposed spiral constel-
lations. An Archimedean spiral is defined by the following
equation

s(t) = tejt . (2)

We propose to place the constellation points along the spiral,
according to the following rule,

cm = tme
jtm m = 1, . . . ,M , (3)

where M is the cardinality of the desired constellation. In
the following, we describe how to choose the parameters
tm. We first consider the AWGN case, then we describe the
construction in the case of PN.



A. Spiral Constellations for the AWGN Channel

The way to place constellation points on a spiral when the
only impairment is the AWGN is to choose the points regularly
along the spiral, so that the distance between consecutive
symbols is the same. With this aim, we formulate the equation
for the constellation points as explained by the following
theorem, proved in Appendix A.

Theorem 1. If we place constellation points on the spiral
according to the equation tm =

√
2Dm, we will get a distance

between consecutive points that is approximately equal to D,
for all points. If we set D = 2π, the consecutive laps of the
spiral are at the same distance D as the points along the
spiral.

The final expression for placing the points is then tm =√
4πm. This definition approximately leads to constant dis-

tances 2π between consecutive points along the spiral and
between consecutive laps of the spiral. The constellation points
are then normalized such that the resulting constellation has
unitary energy.

B. Spiral Constellations in Phase Noise

We extend the construction of a spiral constellation to take
into account the presence of PN. The proposed construction is
based on the observation that the PN affects more severely
symbols with higher magnitude. To see this, let us start
from (1). For small φk, we can rewrite the observable yk as

yk ' xk + jφkxk + wk = xk + (jφk|xk|+ w′k) e
j∠xk (4)

= xk +R{w′k}ej∠xk︸ ︷︷ ︸
radial noise

+(φk|xk|+ I{w′k}) ej(∠xk+
π
2 )︸ ︷︷ ︸

angular noise

, (5)

where in (4) we have exploited the first order Taylor expansion
ejφk ' 1 + jφk, which is good if φk is small, and w′k is
statistically equivalent to wk. We can distinguish two different
noise components, a radial noise term, with variance σ2

w/2,
and an angular noise term, with variance

E
[
(φk|xk|+ I{w′k})

2
]
=
σ2
w

2
+ σ2

φ|xk|2

=
σ2
w

2

(
1 + |xk|2

2σ2
φ

σ2
w

)
=
σ2
w

2

(
1 + f |xk|2

)
,

where we have defined f as the ratio between the PN variance
and the single-component AWGN variance. As we can see, the
angular noise variance increases with the magnitude of the
current symbol xk. For this reason, a good constellation for a
PN environment should increase the angular distance between
points for increasing magnitude. We propose to increase the
distance according to the standard deviation of the angular
noise as

Dm ' D
√
1 + fs|cm|2 , (6)

where the parameter fs can be chosen according to the channel
conditions. One possible choice is to set fs = f . On the other
hand, we have observed that better results can be achieved by
a further tuning of this parameter by considering a proper

performance metric, as we will discuss in details in the
following sections. We define the parameters tm as

tm =

√
4πm

√
1 + fst2m , (7)

which, solving for t2m, becomes

t2m =
(4πm)2fs

2
+

√
(4πm)4f2s

4
+ (4πm)2 .

Finally, by replacing the expressions for tm in (3), we ob-
tain the final expression for the constellation points. Notice
that when fs = 0 the expressions for the points reduce to
those we obtained in Section III-A. The important aspect to
underline here is that the proposed constellations ensure a
very simple design, being dependent on a single parameter,
as opposed to other multilevel constellations usually adopted
in communication systems, such as APSKs, whose design
requires the optimization of multiple parameters, namely the
number of rings, the number of constellation points per ring,
the amplitude and phase rotation of each ring.

IV. PERFORMANCE METRICS

In this section, we describe the figures of merit that we
will employ to evaluate the performance of the proposed
constellations, with the aim of finding both theoretical and
more practical results. Regarding the detection approach, we
consider the detector suitable for a PN scenario described
in [3], based on an approximation of the received signal. As
a benchmark to compare this detection scheme, we will use
a detector that is designed for the AWGN channel, and hence
does not take into account the presence of PN. Both solutions
are based on the principle of mismatched detection [6], which
assumes the use of a properly selected auxiliary channel
to approximate the real channel under consideration. If an
optimal detector is available for the auxiliary channel, the
obtained results represent a lower bound on the performance
of the real channel, achievable with the considered detector.

We will use different figures of merit. The first performance
metric is the achievable information rate (IR), computed nu-
merically through the Monte Carlo technique described in [7].
According to mismatched detection, this measure represents a
lower bound to the channel capacity, which is achievable with
joint detection and decoding, by using an optimum code. If we
define by x = {xk}K−1k=0 a sequence of transmitted symbols,
by y = {yk}K−1k=0 the corresponding received samples, and by
p(y|x) the probability density function (PDF) of the selected
auxiliary channel law, the lower bound on the achievable IR
can be computed numerically as

I(x;y) = lim
K→∞

1

K
E

[
log2

p(y|x)∑
x′ p(y|x′)P (x′)

]
, (8)

where the summation at the denominator is performed over the
M symbols of the constellations, and P (x′) is the probability
distribution of the transmitted symbols, in this paper equal
to 1/M because the symbols are equally likely. Moreover,
we will consider the channel to be memoryless, hence (8)
can be simplified by replacing the vector PDF with its scalar
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Figure 1. Spiral constellation with M = 256 points and fs = 0.00413.

version p(yk|xk), which is representative of a symbol-by-
symbol detector. The parameter fs can be chosen as the
one providing the largest IR. This search is carried out by
evaluating (8) for several values of fs of the spiral constellation
(coarse search), followed by interpolation of the obtained
values (fine search).

We will also consider an alternative theoretical measure,
given by the pragmatic IR [8]. This represents an upper bound
to the IR achieved by a practical modulation and coding format
(ModCod) following a pragmatic approach, that is, without
iterations between detector and decoder. The pragmatic IR
depends on the adopted bits to symbols mapping, which
controls how transmitted bits are mapped on the complex
constellation symbols. Therefore, we will use this performance
metric to optimize the parameter fs given a particular bit to
symbol mapping. The usual approach for PSKs and QAMs
is Gray mapping, which ensures that adjacent constellation
points differ by only one bit. APSKs usually adopt a quasi-
Gray mapping, as they do not normally allow a fully Gray
mapping. See for example those proposed in the extensions to
the second generation of the digital video briadcasting (DVB-
S2X) standard [9]. When the constellation is not regular, a
good mapping has to be found through optimization as well,
possibly jointly with the constellation points [10]. In the case
of the spiral constellations proposed in this work, we observed
that points tend to form rays. When the number of rays is√
M , we propose to map the columns of symbols of QAM

modulations to the rays of the spiral. More generally, if the
number of rays is a power of 2, we can easily identify a
transformation of the QAM symbols to map them into the
rays of spiral. In Fig. 1, we show an example of a spiral with
M = 256 points and fs = 0.00413. We can clearly see how
the points are arranged in 8 rays, each composed of 32 points;
in this case, it is easy to adapt two columns of the 256 QAM
mapping to each of the rays, in order to achieve a mapping
that is Gray along each ray and between adjacent rays.

Finally, we will compare these theoretical bounds with a

more practical measure, given by the IR achieved by real coded
schemes. To this purpose, we will evaluate by computer sim-
ulation the packet error rate of coded transmissions based on
one of the low-density parity-check (LDPC) codes defined by
the DVB-S2X standard [9], which have excellent performance
on the AWGN channel. In this case, we use the parameter fs
optimized through the pragmatic IR.

V. NUMERICAL RESULTS

In this section, we present a set of numerical results and
simulations regarding the application of spiral constellations
in the considered PN environment. As a means of comparison,
we consider the most commonly used multilevel modulation
formats, namely QAM and APSK. For APSK, we adopt
the ones proposed by the DVB-S2X standard [9], and the
ones described in [11], which are designed to satisfy a Gray
mapping. Using the same notation as in [11], a (m1,m2) Gray
APSK constellation is composed of 2m2 rings, each containing
2m1 equally spaced points; in this paper, we adopt the options,
among those listed in [11], which ensure the best performance
in presence of PN, namely the (4, 2) 64 Gray APSK and the
(4, 4) 256 Gray APSK. We have also analyzed the spiral QAM
constellations proposed in [5]. We consider, as an application
example, constellations with M = 64 and M = 256 points.
The same kind of analysis can be applied to any constellation
size, and it is particularly interesting for large constellation
sizes. All performance curves in this section are reported as
a function of the signal-to-noise ratio (SNR), defined as the
ratio between the average energy per symbol and the thermal
noise variance, Es/N0. When assessing the achievable IR for
spiral constellations, an optimization is performed to select
the best value of the parameter fs for each Es/N0 value. This
choice is justified by the fact that, in common adaptive coding
and modulation (ACM) schemes, the modulation and coding
formats are changed according to the channel conditions.

First of all, we want to assess the performance of spiral
constellations on the AWGN channel, that is, when the ob-
servable is modeled as in (1), with σ2

φ = 0. Fig. 2 shows
the achievable IR comparison in this case, for M = 64 (a)
and M = 256 (b). We can notice that the spiral designed
with fs = 0 is essentially equivalent to QAM and to spiral
QAM. On the other hand, an optimization of fs can ensure
theoretical gains up to almost 1 dB with respect to QAM
constellations. The DVB-S2X APSKs show performance on
par with the optimized spiral, except for small losses in the
high SNR region, while Gray APSKs exhibit larger losses.
This first analysis tells us that a properly designed spiral can
achieve, on the AWGN channel, a theoretical performance
that is slightly better than that of other commonly adopted
constellations.

We then consider the channel affected by PN. We use
two values of PN variance, one relatively low, σ2

φ = 0.01,
representative of a well tracked PN, and one 10 times higher,
σ2
φ = 0.1, corresponding to a poor tracking performance. The

results, in terms of achievable IR, are reported in Fig. 3.
Let us first consider the σ2

φ = 0.01 case. We first notice
that the detector for AWGN, unsurprisingly, exhibits very
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Figure 2. Achievable IR on the AWGN channel for constellations with 64
and 256 points.

poor performance if associated with QAMs, APSKs, and
spiral QAMs1. Replacing the constellation with a suitable
spiral, without changes at the receiver side, is sufficient to
ensure a maximum achievable IR significantly higher than
that achievable with the other constellations. The reference
detector is clearly outperformed by the use of the alternative
detection scheme, specifically designed for a PN environment.
By comparing the different constellation types, we see that
spirals ensure significant gains over QAMs and spiral QAMs,
and that the gaps increase with the SNR. For example, at 7
bit/ch. use (with M = 256), the gains are in the order of
3 dB. APSKs outperform QAMs in most SNR regions, but are
generally inferior to spirals, with the exception of the 256 Gray
APSK, which is comparable with the spiral almost everywhere.
The curves tend to coincide around 10 dB, but it is worth to
mention that an ACM scheme would probably adopt a lower
constellation size in that SNR range, so the performance of
higher order constellations is less relevant.

If we analyze the σ2
φ = 0.1 case, instead, we see that

1The effect of the curves decreasing with the SNR is due to the adopted
mismatched detection framework. In these SNR regions, PN is the main
impairment, while the detector is designed for a completely different auxiliary
channel, the AWGN channel. Hence, this detector is unable to work properly
for these SNR values.

spirals ensure much larger gains with respect to the other
constellations. In this case, the best alternatives are a 64 spiral
QAM and a 256 Gray APSK, which, however, suffer large
losses at medium-high SNR. In this case we report only the
curves obtained with the PN detector, the AWGN one being
unable to work with this PN value.

Finally, if we compare the results in Fig. 3 with the corre-
sponding curves for the AWGN channel reported in Fig. 2, we
see that the difference is significant, and the gaps increase with
the SNR. This is not surprising as, when the SNR increases,
PN becomes the main impairment of the channel. However,
we can notice that spiral constellations are the solution which
offers the best performance in terms of achievable IR in all
channel conditions. These results show that the spiral QAM
constellations proposed in [5] exhibit significant losses with
respect to our proposed spirals in all PN conditions. Moreover,
their design process does not allow for a simple mathematical
formulation and, instead, relies on a more computationally
intensive procedure. For these reasons, we will not consider
them further.

Fig. 4 reports the pragmatic IR curves for the same cases
as in Fig. 3, adopting only the detector for PN. For σ2

φ =
0.01, we can notice that in the medium-low SNR range Gray
APSKs provide the best performance, outperforming spirals
and QAMs of at most 1 dB for M = 64 and 2 dB for M =
256. Also in this case, spirals outperform all alternatives at
high SNR, for M = 64, and are comparable to the 256 Gray
APSK. The loss of the spiral constellations is probably due to
the suboptimality of the adopted bits to symbols mapping, and
could be recovered with a more complex mapping obtained
through optimization. For σ2

φ = 0.1, spirals show extremely
large gains starting from lower SNR values, so they certainly
represent the desirable solution.

In order to confirm these theoretical results, we have se-
lected one of the LDPC codes from the DVB-S2X standard [9],
with codeword size 64800 bits and rate r = 5/6. The results
are reported in Table I, where the achieved IR (3rd column)
is computed as r log2M , and it represents the number of
bits that can be effectively transferred in a single use of the
channel. The SNR columns of the table contain the values
of Es/N0 needed to achieve a bit error rate (BER) of 10−6.
When this value is ∞, it means that the BER never reaches
sufficiently low values. The table also reports the gaps of each
ModCod from the corresponding achievable and pragmatic IR,
and the peak to average power ratio of each constellation
(PAPR), which is another crucial measurement for wireless
communications, where high power amplifiers are used. The
values of fs for the spiral constellations are those selected by
means of the technique described in Section IV. By analyzing
the table, we see that the results are perfectly in line with
what foreseen by the pragmatic IR. In particular, if we look at
the σ2

φ = 0.01 case, we see that the 64 Gray APSK exhibits
a 0.4 dB gain over the spiral, with a comparable PAPR, and
that both QAM and DVB-S2X APSK have a lower PAPR
and slightly worse performance, comparable to that of the
spiral. For M = 256, instead, the Gray APSK shows a 0.9 dB



3

3.5

4

4.5

5

5.5

6

10 15 20 25 30 35 40

A
ch
ie
va
b
le

IR
[b
it
/
ch
.
u
se
]

Es/N0 [dB]

QAM
DVB-S2X APSK
Gray APSK (4, 2)

Spiral QAM
Spiral

AWGN det.
PN det.

(a) M = 64, σ2
φ = 0.01

3

3.5

4

4.5

5

5.5

6

10 15 20 25 30 35 40

A
ch
ie
va
b
le

IR
[b
it
/
ch
.
u
se
]

Es/N0 [dB]

QAM
DVB-S2X APSK
Gray APSK (4, 2)

Spiral QAM
Spiral

(b) M = 64, σ2
φ = 0.1

3

4

5

6

7

8

10 15 20 25 30 35 40

A
ch
ie
va
b
le

IR
[b
it
/
ch
.
u
se
]

Es/N0 [dB]

QAM
DVB-S2X APSK
Gray APSK (4, 4)

Spiral QAM
Spiral

AWGN det.
PN det.

(c) M = 256, σ2
φ = 0.01
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Figure 3. Achievable IR on the channels affected by PN, for constellations with 64 and 256 points.

performance gain with respect to the spiral, with a 0.65 dB
higher PAPR. Both the QAM and the DVB-S2X APSK show
poor convergence in this case. In the σ2

φ = 0.1 case, on the
other hand, spiral constellations are the only solution which is
able to converge, for both M = 64 and M = 256, and the gaps
from the corresponding pragmatic IR are not excessive, despite
the fact that the adopted code has been specifically optimized
for the AWGN channel. Notice that the constellation reported
in Fig. 1 is used in this case.

VI. CONCLUSIONS

We have proposed new spiral constellations, specifically
designed for phase noise channels. The points of the new
constellations are described by an elegant analytical form, that
allows an extremely simple design. In terms of performance,
they outperform other common constellations for a large range
of SNR, especially in harsh phase noise conditions. Moreover,
we have shown that they allow to achieve high information
rate, close to 8 bits per channel use, and they are suitable for
application in practical coded systems adopting state-of-the-art
channel codes, without the need for a redesign of the code.

APPENDIX A
PROOF OF THEOREM 1

Proof: We approximate the distance between two points
on the spiral by the distance along a circle at the average

radius, which is given by

Dm ' tm(tm+1 − tm) . (9)

If we replace the expression for the constellation points, tm =√
2Dm, in the distance equation (9), we obtain

Dm=
√
2Dm

(√
2Dm+ 2D −

√
2Dm

)
=2Dm

(√
1 +

1

m
−1

)

'2Dm
(
1 +

1

2m
− 1

8m2
− 1

)
= D

(
1− 1

4m

)
' D .

The approximation is good for large values of m. Now, we
also want the laps of the spiral (perpendicular to the spiral) to
be at the same distance D as the distances along the spiral.
So, if we move a full lap, the magnitude should be increased
by D, according to the following equation,∣∣∣(t+ 2π)ej(t+2π)

∣∣∣ = ∣∣tejt∣∣+D ,

from which D = 2π follows. For small values of m, the
distances between points deviate slightly from the desired
constant 2π.
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memory,” IEEE Trans. Inform. Theory, vol. 52, pp. 3498–3508, Aug.
2006.

[8] J. B. Soriaga, H. Pfister, and P. Siegel, “Determining and approaching
achievable rates of binary intersymbol interference channels using mul-
tistage decoding,” IEEE Trans. Inform. Theory, vol. 53, pp. 1416–1429,
Apr. 2007.

[9] ETSI EN 302 307-2 Digital Video Broadcasting (DVB), Second gen-
eration framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband
satellite applications, Part II: S2-Extensions (DVB-S2X). Available on
ETSI web site (http://www.etsi.org).

[10] F. Kayhan and G. Montorsi, “Joint signal-labeling optimization under
peak power constraint,” Intern. J. of Satellite Communications and
Networking, vol. 30, pp. 251–263, Nov./Dec. 2012.

[11] Z. Liu, Q. Xie, K. Peng, and Z. Yang, “APSK constellation with Gray
mapping,” IEEE Commun. Letters, vol. 15, pp. 1271–1273, Dec. 2011.


