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A B S T R A C T

The technological barriers to automated driving systems (ADS) are being quickly overcome to
deploy on–road vehicles that do not require a human driver on–board. ADS have opened up
possibilities to improve mobility, productivity, logistics planning, and energy consumption.
However, further enhancements in productivity and energy consumption are required to reach
CO2–reduction goals, owing to increased demands on transportation. In particular, in the freight
sector, incorporation of automation with electrification can meet necessities of sustainable
transport. However, the profitability of battery electric heavy vehicles (BEHVs) remains a con-
cern. This study found that ADS led to profitability of BEHVs, which remained profitable for
increased travel ranges by a factor of four compared to that of BEHVs driven by humans. Up to
20% reduction in the total cost of ownership of BEHVs equipped with ADS could be achieved by
optimizing the electric propulsion system along with the infrastructure for a given transportation
task. In that case, the optimized propulsion system might not be similar to that of a BEHV with a
human driver. To obtain the results, the total cost of ownership was minimized numerically for
3072 different transportation scenarios that showed the effects of travel distance, road hilliness,
average reference speed, and vehicle size on the incorporated electrification and automation, and
compared to that of conventional combustion–powered heavy vehicles.

1. Introduction

In the near future, transportation will experience substantial development in the domain of automated driving systems (ADS),
which will revolutionize the way people and freight move on-road, as reported by Wadud et al. (2016) and Flämig (2016). Re-
markable advantages in terms of user experience, efficiency, safety, mobility, productivity, energy, environment, and economy have
been reported with ADS by Alessandrini et al. (2015), Anderson et al. (2014), Brown et al. (2014), Chan (2017), Harper et al. (2016),
Levin and Boyles (2015), Maurer et al. (2016), Wadud (2017), Wadud et al. (2016), Taiebat et al. (2018) and Khan et al. (2019),
though significant increases in traffic safety due to highly or fully automated vehicles are not certain as revealed by Kalra and
Paddock (2016). However, user objectives and motivations differ for passenger cars and freight transport, as reported by Wadud
(2017) and Nowakowski et al. (2015). For passenger cars, the major motivations are user experience and environment, whereas in
freight transport, as a subject of this study, the most important driving forces are productivity and profitability. For example, increase
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in the cost of a vehicle related to automation hardware is less important in freight transport, owing to the lower proportion of the
automation hardware cost with respect to the total purchase cost, compared to that of passenger cars. Furthermore, ADS permit
increased profitability in freight transport, mainly due to a reduction in labor cost as well as due to facilitated logistics and increased
utilization and efficiency, as reported by Wadud et al. (2016). Moreover, driver cost reduces significantly in high or full driving
automation, resulting in an early adoption of ADS in freight sector.

The reduction in fuel consumption achieved with ADS owing to enhanced vehicle usage and controlled energy management is
reported to be only up to 10% in passenger cars, depending on the traffic scenario, compared to that when a human driver is involved,
according to Mersky and Samaras (2016). The reduction in fuel consumption achieved with ADS is expected to be higher in freight
transport, considering that heavy vehicles can form platoons, which reduce the energy intensity of the following vehicle by up to 25%
in theory, according to Wadud et al. (2016), if the gap between vehicles reaches zero; while, measurements showed the average fuel
saving of 8% and 15% for 10 m and 4 m gap, respectively, according to Tsugawa et al. (2016). However, as revealed by the European
Commission (2016), heavy-duty vehicles contribute to about 25% of the CO2 emissions from road transport in Europe, which is
increasing owing to increasing road freight traffic, despite enhanced fuel consumption efficiency. These figures point to that, despite
being a profitable business, the increased efficiency offered by ADS may not result in a reduction in CO2 emissions in the long term;
thus, a further decrease in emissions is required in the transportation sector motivating the development of more environmental-
friendly solutions.

In addition to ADS, emerging technologies such as battery electric vehicles can be part of the solution, provided that the electric
energy comes from renewable sources. However, the profitability of deploying BEHVs remains a concern in road freight transport.
The operating range, payload, weight and volume of goods, charging infrastructure, utilization level, purchase cost, battery life,
energy consumption, average speed, available routes, and logistics are among the factors that affect the profitability of BEHVs,
according to Wu et al. (2015), Taefi et al. (2016b), Davis and Figliozzi (2013), Feng and Figliozzi (2013), Taefi et al. (2017), Lee et al.
(2013), Botsford and Szczepanek (2009), Nesterova et al. (2013), Hovgard et al. (2018), Pelletier et al. (2016), Taefi et al. (2015) and
Taefi et al. (2016a). Considering the impacts of high or full driving automation and the requirement of BEHVs profitability, it can be
concluded that increased utilization level, enhanced mission planning and logistics, improved energy management, and reduced
energy consumption, which can all be achieved with ADS, increase BEHVs profitability and productivity. However, questions remain
as to what extent ADS facilitate BEHVs and what the limitations are for different transportation scenarios.

This study, by implementing mathematical optimization and models of vehicle dynamics, showed that the combination of ADS
with electrification led to profitability of BEHVs for a wider range of transportation tasks, compared to the case of BEHVs with human
drivers. Profitability was determined by evaluating the total cost of ownership (TCO) of BEHVs and compared with that of con-
ventional combustion-powered heavy vehicles (CHVs). To our knowledge, such an incorporation of ADS and freight vehicle elec-
trification was not studied before at the level of details considered in this study that involved the use of a model of vehicle dynamics
for different transportation scenarios.

In this study, TCO was considered as an objective function to optimize the vehicle–infrastructure components for different values
of vehicle size, distance between charging stations and loading/unloading (LU) points, average speed, and road hilliness that con-
stituted 3072 scenarios. The vehicle–infrastructure components included charging power, LU scheme, the type and size of batteries,
the type and number of electric motors, and the size of ICE. Further, analyzing the optimization results based on minimization of the
TCO helped to understand the effects of ADS on the optimum propulsion system in both BEHVs and CHVs and showed that the
optimum propulsion system might be different for the BEHVs with human drivers and the BEHVs equipped with ADS. Moreover, the
transportation tasks where BEHVs become competitive to CHVs with or without ADS were revealed, and it was shown that ADS
increase the profitability of BEHVs. It was observed that, in addition to infrastructure, driving cycle and propulsion system, the size of
the vehicle exhibited a significant influence on the profitability of BEHVs, therefore, the influence of the size of the vehicle on the
profitability was studied in both the cases (vehicles equipped with ADS and those driven by humans). Finally, this research revealed
the maximum profit obtained by employing ADS and its dependence on the different transportation tasks and types of vehicles. This
study was based on assumptions of the vehicle parameters as well as the components and energy prices, and sensitivity analyses in
this regard were carried out, and the results have been reported herein.

In addition, the supplementary material of this paper by Ghandriz et al. (2020) includes the optimization results for all 3072
transportation scenarios, together with the related figures, which allow practitioners to draw their own conclusions on a specific
scenario.

This paper is organized as follows. Section 2 provides a short background and literature review. Section 3 describes the method
and defines the different transportation scenarios and driving cycles. In Section 4, the results of the simulations and optimizations are
presented. Section 5 provides a detailed interpretation of the results, their sensitivity to some of the input parameters, and presents a
related discussion. Finally, in Section 6, the conclusions of the study are presented. Furthermore, this section is followed by ap-
pendices, where the optimization problems are defined and the related data included.

2. Background

According to SAE standard (2016) J3016, a “driving automation system” (DAS) refers to any system or feature that performs the
entire or part of a dynamic driving task. According to this standard, DAS is categorized into five levels. As part of a dynamic driving
task, a level–1 DAS (i.e., driver assistance) controls either the lateral or longitudinal motion, and a level–2 DAS (i.e., partial driving
automation) controls both lateral and longitudinal motions. For example, emergency braking involves level–1 DAS, whereas op-
erational functions such as longitudinal vehicle motion control through acceleration and deceleration for following a reference speed
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and changing lanes belong to level–2. A level–3 DAS (i.e., conditional driving automation) is capable of performing the entire
dynamic driving task, but the driver should be ready to intervene upon system request. In levels 1–3 of a DAS, the presence of a
human driver is essential in the cabin. In level–4 (i.e., high driving automation) or 5 (i.e., full driving automation), a DAS is capable of
performing the entire dynamic driving task, including bringing the vehicle to a minimal risk condition in case of a failure. According
to SAE standard (2016) J3016, ADS refer to levels 3–5, where the DAS can perform the entire driving, and a vehicle equipped with
level–4 or level–5 DAS is referred to as an ADS–dedicated vehicle (ADS–DV). In levels 4 and 5, the presence of a human driver is not
needed in the vehicle; instead, a remote dispatcher verifies the operational readiness of the vehicle and performs the dynamic driving
task remotely, whenever necessary. High DAS and full DAS differ in their operational design domains. Operational design domain
refers to the conditions under which a given DAS is designed to operate. A high DAS is limited to a specific operational design
domain, whereas a full DAS is designed to function on all roads and conditions that are navigable by a human driver. The subject of
this study was ADS–DVs, i.e., levels 4 and 5 of DAS.

TCO is usually used for comparative analysis of the competitive technologies, e.g., vehicles with different powertrains, and
provides a good means of estimating profitability, according to, e.g., Davis and Figliozzi (2013), Feng and Figliozzi (2013), Lee et al.
(2013), Taefi et al. (2015), Wu et al. (2015), Lebeau et al. (2015), Hagman et al. (2016), Taefi et al. (2016a), Taefi et al. (2017),
Pelletier et al. (2016), Wadud (2017), Palmer et al. (2018), and Lebeau et al. (2019). TCO measures the life cycle cost, including the
operational costs and the depreciation of the purchase price. Operational costs usually include the costs of fuel, maintenance, tax,
insurance, and electric energy in the case of battery electric vehicles. In addition, in the case of commercial ADS–DVs, the operational
costs associated to remote dispatchers are also included. Purchase price comprises vehicle hardware costs and, in the case of
ADS–DVs, the cost of additional sensors and investment on remote dispatchers as well.

Wadud (2017) investigated the potential adoption of ADS–DVs on public roads by performing TCO analysis of private and
commercial vehicles. The commercial vehicles included taxis and conventional trucks with gross mass of 7.5, 18 and 38 ton. They
concluded that the commercial vehicles benefit more from automation, specially small trucks and taxis, because a large share of TCO
belongs to the driver cost in small commercial vehicles. They, however, did not discuss electric vehicles.

The literature about TCO of road vehicle competitive powertrain technologies all involve human drivers. As such, Wu et al.
(2015), Hagman et al. (2016) and Palmer et al. (2018) are concerned with passenger cars. Vehicle types, operations and purchase
decisions are, however, different in road freight transport.

In road freight transport sector, Davis and Figliozzi (2013), used a cost function similar to TCO together with powertrain and
logistics constraints. They compared the cost of two different battery electric and one conventional trucks on 243 transportation and
driving scenarios with different costumer demands and operating speeds. The battery electric trucks had about 7.5 ton gross mass and
161 km driving range. The authors concluded that high utilization, low speed, frequent stops, tax incentives, and planning time
horizon, i.e. vehicle life time, beyond 10 years can help the competitiveness of the electric trucks against conventional counterparts.

Feng and Figliozzi (2013) implemented a fleet replacement optimization framework that allowed replacing the conventional
trucks with the battery electric trucks. They compared a small electric truck with a conventional truck of the same size on six different
scenarios. The driving range of the electric truck was 161 km. They concluded that the electric truck can be cost effective if the annual
utilization level is high.

Lee et al. (2013) compared TCO of a battery electric and a conventional truck with maximum gross mass of 7.49 ton on two
driving cycles. The driving range of the electric truck was 161 km. They concluded that the relative benefits of electric trucks depend
on vehicle efficiency associated with the driving cycle, diesel fuel price, battery price and replacement, charging infrastructure, and
purchase price. They showed that the electric truck had lower TCO compared to the conventional one, without including subsidies,
for a driving cycle with frequent stops and a low average speed.

Taefi et al. (2015) analyzed profitability concept of existing urban freight battery electric vehicles by interviewing companies to
examine whether and how they operate profitably. Also, they performed a statistical analysis in Europe north sea region to capture
the trends of the existing electric urban freight transport. The study identified two current trends of deploying electric vehicles in
urban freight transport in north Europe: 1) slow and light electric vehicles, 2) medium heavy electric trucks in last mile logistics. In
one of the cases, a concept truck of 12 ton gross mass was profitable that was achieved by considering measures in reduction of
purchase and operational costs, and by increasing vehicle utilization. These measures included vehicle customization, subsidies and
exemption from city toll, intermediate and quick charging, multi-shift operations, improvement of routing and scheduling, and etc.

Taefi et al. (2017) evaluated TCO considering battery health and replacement as a function of mileage at a given average energy
consumption and warranted maximum mileage or maximum number of battery charge–recharge cycles. They calculated the cost-
optimal mileage for three different electric trucks of about 12, 7.5 and 5 ton gross mass and ranges of 200, 160 and 120 km,
respectively, and compared their TCO with the conventional counterparts. The authors used a fixed battery resale, i.e. rest, value
regardless of the battery state of health as in the other literature. In their case, the electric trucks could not compete with conven-
tional counterparts. They suggested that, in order to reduce TCO of each electric vehicle, the best cost-effective mileage should be
calculated and planned, rather than selling the vehicle at a time when the battery end of life is reached.

Lebeau et al. (2015) and Lebeau et al. (2019) also evaluated TCO for several different light commercial vehicles. They concluded
that these vehicles could compete with conventional counterparts if the vehicle utilization is high, and with the help of governmental
subsidies. In addition, they showed that the period of ownership, the residual value and second life of the battery effect TCO of
electric light commercial vehicles.

Reviewing the current available literature, the following gaps can be identified.

– TCO analysis of the battery electric ADS–DVs, e.g. ADS–DV BEHVs, is not conducted in the literature, and hence, no comparison is
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made against the BEHVs with human drivers.
– Even though the literature suggests that vehicle customization based on the use case helps cost effectiveness of the battery electric
trucks, the implications of such a customization on TCO is not studied in the literature. Consequently, there is no TCO mini-
mization for varying vehicle parameters, e.g. battery size.

– The literature neglects energy consumption evaluation based on longitudinal vehicle dynamics on roads of different topographies
and speeds. Thus, the cost–effectiveness of BEHVs is not investigated for different road hillinesses.

– TCO calculation of the electric vehicles in the literature does not include the driver cost, and thus neglects additional driver cost as
a result of waiting time for charging during operation of the electric vehicles, compared to the conventional vehicles. Similarly,
the trade-offs between the driver cost and charging time, battery degradation, charging power and cost, LU time and cost, and
slow driving are neglected in TCO calculations.

– TCO analysis of battery electric trucks does not include trucks weighting more than 12 ton, and thus, possible transportation
scenarios where BEHVs could be competitive to their conventional counterparts (with or without human drivers) are not iden-
tified.

This study tried to fill the above gapes and supports all the previous reports on the factors reducing TCO of the electric vehicles; in
addition, we emphasized on the importance of the vehicle–infrastructure simultaneous optimization for a given transportation
scenario. Optimizing vehicle–infrastructure is useful for the reason that TCO comparison of different BEHVs by itself does not reflect
the profitability, owing to the performance constraint imposed by the range and power of batteries. Nevertheless, this problem can be
overcome by sizing the batteries for a given transportation scenario. Moreover, the properties of a driving cycle such as road to-
pography (i.e., hilliness), speed, and distance traveled influence vehicle performance, especially that of BEHVs. Thus, in this study,
the performance and TCO of the optimum vehicle propulsion system were evaluated and compared for transportation tasks of
different characteristics.

Furthermore, full automation of freight transport involves automation of LU to replace the role of the driver that performs part of
this task. Automated guided vehicle systems (AGVS), developed with the purpose of optimizing material flow and reducing personnel,
as reported by Flämig (2016), can be used for automated LU. AGVS facilitate 24/7 operation of vehicles, because they navigate
automatically by themselves and perform well, owing to the repetitive nature of the operations. AGVS have been widely deployed in
the industry and warehouses to reduce the TCO, especially in multishift operations, as reported by Ullrich (2015) and Liu et al.
(2004). However, there exists no standard yet for automated truck loading and unloading. Furthermore, the utilization of charging
stations at the LU point or consumer locations is motivated by the fact that it saves cost and time compared to the use of publicly
scarce charging stations, according to Kopfer and Vornhusen (2017), and that virtually no high–power charging stations are available
yet for BEHVs. Moreover, it will be more feasible if charging can be accomplished during the same time as performing LU, as reported
by Taefi et al. (2016a) among measures of supporting freight electric vehicles. Thus, this study included the cost of infrastructure in
the calculation of the TCO which comprises the cost of LU and charging stations.

3. Methodology

The influence of different aspects that are related to the transportation task and vehicle propulsion system was studied for ADS
and vehicle electrification. More specifically, these aspects included the following.

• Transportation task
– Vehicle size
– Driving cycle, i.e., the distance between charging stations and LU points, average reference speed, and road hilliness
– Infrastructure, i.e., charging power and LU scheme

• Vehicle propulsion system
– Type of battery
– Size of battery
– Type of electric motors
– Number of electric motors
– Size of internal combustion engine (ICE)

The different aspects of the transportation task and vehicle propulsion system explained above were examined on four different
plans. The plans concern different DAS levels and vehicle sources of power, shown in Table 1.

In this study, the operational design domain of the DAS comprised all defined transportation tasks, including all the trips, roads,

Table 1
Plans concerning the DAS levels and vehicle power source.

CHV BEHV

With driver (level–2 or level–3) Plan–1 Plan–2
Without driver (level–4 or level–5) Plan–3 Plan–4
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and dynamic driving tasks within them. Furthermore, vehicles were designed to operate exclusively on their assigned transportation
tasks during their entire service life. Moreover, the ability of vehicles to operate outside the assigned transportation task might be
constrained mainly by the propulsion system, and not by the DAS. Hence, in this study, the ability of vehicles to operate outside the
operational design domain as governed by DAS was not emphasized, thereby including both levels 4 and 5 in a single plan.

In addition, it should be noted that, in all the plans, vehicles were equipped with a DAS higher than level–1, which meant that
they all benefited equally from the eco–driving and fuel/energy efficiency offered by the DAS, as reported by Mersky and Samaras
(2016) and Brown et al. (2014).

After the exclusion of the driver on–board in ADS–DVs, they can be considered to be without driver interfaces, such as steering,
braking, and acceleration input devices. Moreover, given the purpose of exclusive freight transport, all seats and the cabin can be
removed. Fig. 1 depicts the freight heavy ADS–DV combinations of different sizes, as well as the heavy vehicle combinations with
human drivers, that were considered in this study. These vehicles are called “rigid truck,” “tractor and semitrailer,” “Nordic com-
bination,” and “A-double” from the smallest to the largest, in that order.

3.1. Transportation task

A transportation task is defined by a distribution network comprising nodes, the routes between them, and pick-up/delivery
demands. In this study, a distribution network included only two nodes. A vehicle was completely loaded/unloaded at each node
while charging (in the case of BEHVs). Different transportation tasks were considered with driving cycles, i.e., different distances
between nodes, road hillinesses, and average reference speeds, in order to investigate their influences on the incorporation of ADS
and electrification. Average reference speed refers to the speed that a vehicle tries to maintain during the entire trip. Moreover, it was
assumed that there always existed goods that needed to be transported within the network, therefore, both ADS–DVs and vehicles
with human drivers operated 24 h every day (24/7) on a repetitive basis. The sensitivity of the results to lower utilization levels was
also revealed.

3.1.1. Road hilliness
To investigate the influence of road hilliness on vehicle performance and propulsion system, roads with different hillinesses were

considered in this study. According to the definition of global transport application (GTA) reported in the papers by Edlund and Fryk
(2004) and Pettersson et al. (2018), road hilliness was categorized into four levels: flat, predominantly flat, hilly, and very hilly. In
order to not be restricted to a specific geographical area, the roads in the different categories were modeled mathematically in this
study, according to the works of Johannesson et al. (2016) and Pettersson et al. (2016).

Let =L 1000H m be the selected hill length, =L 50s m sample road distance, y variance in road slope, yk slope of the road in
percentage, and k road grid index. Then, the road topographic profile can be generated using an auto-regressive model:

= +y a y ek k k1 (1)

where,

N= = =e a a L
L

0, , (1 ) , sin 0.5 2k e e y
s

H

2 2 2

(2)

where,N denotes a normal distribution with standard deviation e. Finally, elevation zk is given by

= +z z L
y

100k k s
k

1 (3)

Parameter y determines the level of hilliness according to GTA. y values in the ranges (0,1.3], (1.3,2.3], (2.3,3.2], and larger
than 3.2 correspond to flat, predominantly flat, hilly, and very hilly roads, respectively. Roads of different lengths and hillinesses
were generated using the model mentioned above by choosing y as 0.5, 1.5, 2.5, and 3.5 for the different levels of hillinesses. As an

Fig. 1. Different sizes of freight heavy ADS–DV combinations (right) and heavy vehicle combinations with human drivers (left). Vehicles, from the
smallest to the largest, are respectively called “rigid truck,” “tractor–semitrailer,” “Nordic combination,” and “A-double.”.
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example, the different road elevations have been depicted in Fig. 2 for a road of length 10 km for travel back and forth between the
two ends.

3.1.2. LU schemes
There is a trade–off between LU duration and TCO, because LU duration influences the temporal utilization level of a vehicle (i.e.,

vehicle-time on-road). Moreover, charging was considered to take place at the same time as LU occurred, thereby influencing the
charging power required for providing sufficient energy to reach the next charging station. This study considered four LU schemes
that were all executed automatically, mostly with the aid of AGVS, and are as follow.

– on–board waiting; in this case, vehicles wait until LU is performed by automated guided vehicles such as an automated lift-truck,
which positions pallets of goods inside the containers using prescribed coordinates (Ullrich (2015)).

– straddle carrier (SC); in this case, containers can be lifted and carried by an automated straddle to assigned positions.
– additional semitrailer (AST); in this case, a semitrailer can be connected/disconnected to/from a tractor or dolly by an automated
docking/undocking mechanism, while the vehicle is parked in a prescribed position.

– on–board lift; in this case, an on-board lift installed on the tractor and/or semitrailer is carried by the vehicle and automatically
performs vehicle LU upon reaching the prescribed position.

The investment and operational cost of the LU schemes described above as well as their durations were considered in the eva-
luation of the TCO, and are provided in Appendix. It should be noted that the cost of emptying or filling an unloaded container was
not considered, because it was not part of the transportation task and was constant in all the transportation scenarios.

3.2. Vehicle propulsion system

The most significant components of the propulsion system considered in this study include battery type and size, as well as electric
motor type and number, in BEHVs; and the size of the ICE in CHVs. Given a source of power (i.e., battery or ICE), the role of human
driver and ADS, vehicle size, and driving cycle, an optimum propulsion system was determined by minimizing the annual TCO per
unit freight transported. The components of the propulsion system (i.e., the design variables) were selected from given discrete sets.
The LU scheme and charging power at each node may also be considered as the design variables of the optimization problem. The
optimization problems and constraints have been defined in Appendix.

3.3. Transportation mission management system (TMMS)

In real world, a driver may perform tasks other than dynamic driving; for example, assisting in LU or strategic functions such as
trip scheduling and routing. These kinds of tasks are not performed by ADS. They are executed either automatically by AGVS or by a
personnel/dispatcher as part of a TMMS. Dispatchers are responsible for monitoring the operational readiness of vehicles, as well as
performing dynamic driving tasks remotely whenever necessary; for example, returning a vehicle to the depot in case of dynamic
driving task performance–relevant system failure. A dispatcher may also perform strategic functions or monitor the functionality of
AGVS for LU.

The costs pertaining to a TMMS include the operational costs such as the salary of the dispatcher and the equipment maintenance
and investment cost related to, for example, a control tower. This study considered the following equivalent TMMS costs that resulted
in the same annual cost.

Fig. 2. Roads of length 10 km with different hillinesses. Elevation has been shown for back and forth travel between the two ends of the roads.
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– two personnel/dispatchers per fleet vehicle, each working 40 h per week with the same salary as that of a driver on a per hour
basis;

– one personnel/dispatcher per fleet vehicle who works 40 h per week with the same salary as that of a driver on a per hour basis,
and 350000 € on investment;

– one personnel/dispatcher for five fleet vehicles who works 40 h per week with the same salary as that of a driver on a per hour
basis, and 620000 € on investment.

3.4. Cost function

The annual TCO per unit freight transported between two nodes Ct was considered as a measure of vehicle performance. The cost
function includes the operational costs and the depreciation of the purchase price, and is defined as follows.

=
+ + + + + + +

C
N c c c c c c c c

f
( )

t
v elec fuel driver maint tax insu tmms dep

tr (4)

where Nv denotes the number of fleet vehicles; ftr denotes the annual number of freight units transported in a round–trip between two
nodes; c c c c c c, , , , ,elec fuel driver maint tax insu, and ctmms indicate the annual costs of electricity, diesel fuel, driver labor, vehicle maintenance,
which includes tires, taxes, insurance, and TMMS, respectively; cdep denotes the depreciation or yearly cost of investment and is
defined as follows.

=
+

+
+ +

c p R
r

p R
r

r
r(1 ) (1 ) 1 (1 )dep

v
n batt tot

b
n n,y y y (5)

where r n R R p, , , ,y v b , and pbatt tot, denote the interest or discount rate, the economic life span in years, the vehicle–infrastructure
resale value, the batteries resale value, and the purchase price of the vehicle–infrastructure excluding the batteries, and the purchase
price of the all batteries including the replaced ones, respectively. The purchase price was calculated using the following equation and
included the price of the vehicle chassis pchass, cabin price, including driver interfaces pcab, electric motors pem, transmission systems
ptrans, ICE pice, ADS pads, LU components plu, recharging infrastructure prech, and investment cost related to the TMMS such as that for a
control tower.

= + + + + + + + +p N p p p p p p p p p( )v chass cab em trans ice ads lu rech tmms (6)

Vehicle and battery-degradation models were implemented for calculating the operational and purchase costs in accordance with
the works of Ghandriz et al. (2016) and Ghandriz et al. (2017). The maintenance cost of BEHVs was considered as 50% of that of
CHVs, as suggested by Feng and Figliozzi (2013) and Lee et al. (2013). The ADS price pads includes the price of all the sensors and
computers needed for object and event detection and response. Moreover, in BEHVs, the resale value of the vehicle–infrastructure
might be different from that of last replaced battery depending on battery state of health. In this study, the batteries were replaced if
the battery capacity reached 80% of the initial capacity, and their resale value was set to zero. A possible second life application, as
reported by Lebeau et al. (2015), was neglected. In addition, for calculation of pbatt tot, , an yearly decrease in battery price, due to
battery technology development, were considered. Furthermore, additional payload was allowed for BEHVs according to EU directive
2015/719, without considering any direct fiscal incentives. Please refer to Appendix A for further details.

By using such a cost function, optimization problems were defined to find an optimum vehicle–infrastructure design for a given
scenario. A detailed definition of the optimization problems has been provided in Appendix A.

4. Results1

A scenario comprises a given road with its hilliness and distance between LU nodes or charging stations, and set average speed,
vehicle size, powertrain type (i.e. battery electric or combustion–powered), and role of driver (i.e., ADS–DV or human driven).
Combining all these parameters yields 3072 different transportation scenarios. For each of the scenarios and for a single vehicle in the
fleet with 100% utilization, the vehicle–infrastructure optimization problem was solved and the results analyzed.

Fig. 3 reveals the annual TCO per unit freight as a function of the average reference speed of optimum tractor–semitrailers on a
flat road with different lengths, as well as for different powertrains and roles of driver, when there is a single vehicle in the fleet and
100% utilization. Ghandriz et al. (2020) have provided the data and results for other vehicle sizes and road hillinesses. In the figure,
each dot corresponds to an optimum vehicle–infrastructure and represents a solution of the optimization problem defined in Ap-
pendix A. It can be seen as to how the competitiveness of BEHVs against CHVs is affected by the distance between LU/charging nodes;
moreover, reductions in TCO can be realized by using ADS in both BEHVs and CHVs. The following conclusions were drawn from
Fig. 3.

– An optimized battery electric tractor–semitrailer with an optimized infrastructure can be more profitable than an optimized
conventional combustion-powered tractor–semitrailer, if driving distances remain less than about 40 km for a vehicle with a

1 A representative set of results has been provided in this paper. The complete set can be found in the paper by Ghandriz et al. (2020).
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human driver that is fully loaded on a flat road and with 100% utilization.
– The range of driving a profitable battery electric ADS-dedicated tractor–semitrailer increases to about 80 km, which is twice that
of a vehicle with a human driver.

– The reduction in TCO achieved by electrification is higher in ADS–DV than in the vehicle with a human driver; likewise, the
reduction in TCO achieved with ADS is higher in BEHVs than in CHVs.

– The optimum average driving speed is different for different powertrains and roles of driver. The optimum average reference
speed is between 60 and 80 km/h for a battery electric ADS–DV, whereas it is between 70 and 90 km/h for a BEHV with a human
driver. A higher optimum average reference speed is observed for CHVs.

– The TCO changes slightly within the range of average reference speeds between 50 and 90 km/h, in BEHVs, whereas the change in
the TCO with speed is steep in CHVs, being up to 90 km/h.

It was also observed that the optimum vehicle–infrastructure (i.e., the type and number of electric motors, type and number of
battery packs, LU schemes, and recharging power (Pch)) might be different in a battery electric ADS–DV and a battery electric vehicle
with a human driver for driving at an optimum average reference speed on the same road. An example has been provided in Table 2.
It must be noted that the optimum average reference speed might also be different in the two cases.

Furthermore, the effect of electrification and automation on different vehicle sizes was studied. The results for a scenario with a

Table 2
Optimum vehicle–infrastructure of ADS–DV tractor–semitrailer and the one with human driver on a flat road of length 10 km.

Reference speed EM type num. EM BP type num. BP LU1
† LU2 Pch,1

† (kW) Pch,2 (kW)

ADS–DV 70 km/h EM2
∗ 4 BP2 6 AST AST 30 60

Human–driven vehicle 80 km/h EM2 4 BP2 7 AST AST 130 10

∗ Specifications of the electric motors (EMs) and battery packs (BPs), e.g., EM2 and BP2 are given in Appendix.
† LUi: LU scheme at ith node; Pch i, : recharging power at ith node.

Fig. 3. Annual TCO per unit freight (ton) of optimum tractor–semitrailers for different plans. Each dot in the plots corresponds to an optimized
vehicle–infrastructure on a flat road, when there is a single vehicle in the fleet. The reduction in cost achieved by driving automation is shown as
percentages for BEHVs and CHVs. Vehicle utilization, i.e. vehicle time in operation, is 100% for all cases.
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flat road of length 160 km are presented in Fig. 4. Please refer to the paper by Ghandriz et al. (2020) for the results for other roads. It
can be seen that battery electric Nordic combination and A-double equipped with ADS display lower TCOs than those vehicles with
human drivers up to the travel range of 160 km.

The hilliness of a road was also observed to affect the competitiveness of BEHVs. Fig. 5 reveals the annual TCO per unit freight for
a tractor–semitrailer on a 160 km road with different hillinesses. The results for other vehicle sizes and road lengths are provided in
the report by Ghandriz et al. (2020). It can be seen that the distance between the cost curves of a vehicle with a human driver
increases with an increase in hilliness. Moreover, a battery electric ADS–DV almost affords a lower cost than a CHV on a 160 km flat
road, whereas such a vehicle completely loses its competitiveness on a very hilly road of the same length. The reason is that hilly
roads require large batteries. As an example, the optimum vehicle–infrastructures of tractor–semitrailers equipped with ADS have
been shown in Table 3 for roads of length 160 km with different hillinesses.

The reduction in cost achieved with ADS–DV ranges between 27% and 46% for BEHVs and between 11% and 41% for CHVs for the
different scenarios. Fig. 6 illustrates the cost components of vehicles with different sizes for different roles of driver (i.e., ADS–DV and a

Fig. 4. Annual TCOs per unit freight (ton) of optimum vehicles with different sizes on a flat road of length 160 km. Each dot in the plots corresponds
to an optimized vehicle–infrastructure. Vehicle utilization, i.e. vehicle time in operation, is 100% for all cases.

Fig. 5. Annual TCO per unit freight (ton) of an optimum tractor-semitrailer on a 160 km road with different hillinesses. Each dot in the plots
corresponds to an optimized vehicle–infrastructure. Vehicle utilization, i.e. vehicle time in operation, is 100% for all cases.
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human-driven vehicle) and types of propulsion systems (i.e., battery electric and combustion–powered) on a flat road of length 160 km. It can
be seen that the cost reduction achieved with ADS–DV is larger for BEHVs than CHVs in all the cases. Moreover, the cost reduction is lower for
larger vehicles. The optimum vehicle–infrastructure designs corresponding to the scenarios shown in Fig. 6 can be found in Table 4.

5. Discussion

It has been demonstrated that the employment of ADS renders BEHVs competitive with CHVs over longer travel ranges compared
to that of BEHVs with human drivers. Moreover, the optimum propulsion system setup and infrastructure of an ADS–dedicated BEHV
was observed to be different from that of a BEHV with a human driver, in addition to differences in the vehicle hardware such as
cabin, driver interfaces, sensors, computers, and actuators. ADS result in BEHVs with lower TCOs, mainly owing to there being no
need to heat the cabin in ADS–DVs, as is the case when a human driver is involved, as well as the reduced optimum speed in
ADS–DVs, which makes it possible to use smaller batteries. For a given transportation scenario, if a similar propulsion hardware as in
a BEHV with a human driver is used in an ADS–dedicated BEHV, then the TCO might increase between 0% and 25%, compared with
that of a ADS–dedicated BEHV with a uniquely designed propulsion system, depending on the vehicle size and transportation sce-
nario. However, no change in the optimum propulsion hardware (i.e., the ICE) was observed in CHVs when replacing the human
driver by ADS. Moreover, it was revealed that the TCO might increase by up to 35% if a BEHV designed to operate in a travel range of
80 km was instead used in transportation tasks where the travel ranges are only 10 km, regardless of whether it was a ADS–DV or not.
It can be concluded that, in order to ensure competitiveness across different scenarios, the propulsion hardware should be adapted to
the use case of BEHVs, irrespective of whether a human driver is involved. Such an adaptation, performed by vehicle–infrastructure
optimization, explains why BEHVs with human drivers showed lower TCO than CHVs with human drivers, in many transportation
scenarios of short road lengths, which was not observed in the literature before.

ADS reduce the TCO of BEHVs in all scenarios, but do not decrease it sufficiently to make them competitive with ADS–dedicated

Table 3
Optimum vehicle–infrastructure of ADS–dedicated tractor–semitrailer on a flat road of length 160 km.

Hilliness Reference speed EM type num. EM BP type num. BP LU1
† LU2 Pch,1

† (kW) Pch,2 (kW)

Flat 70 km/h EM1
∗ 4 BP2

∗ 9 AST AST 240 180
Predominantly flat 70 km/h EM1 4 BP2 11 SC SC 270 200
Hilly 70 km/h EM1 4 BP2 13 SC SC 300 250
Very hilly 70 km/h EM1 8 BP2 15 SC SC 300 270

∗ Specifications of EM and BP types are given in Appendix.
† LUi: loading/unloading scheme at ith node; Pch i, : recharging power at ith node.

Table 4
Optimum vehicle–infrastructures of different vehicles and plans on a flat road of length 160 km.

Powertrain, Driver role Optimum reference speed ICE∗ (lit) EM type num. EM BP type num. BP LU1
† LU2 Pch,1

† (kW) Pch,2 (kW)

Rigid truck
BEHV, HD 80 km/h – EM2 2 BP2 8 SC SC 190 190
BEHV, ADS–DV 70 km/h – EM2 2 BP2 7 SC SC 140 130
CHV, HD 90 km/h 6 – – – – SC SC – –
CHV, ADS–DV 90 km/h 6 – – – – SC SC – –

Tractor-semitrailer
BEHV, HD 80 km/h – EM1 4 BP2 11 SC SC 300 300
BEHV, ADS–DV 70 km/h – EM1 4 BP2 9 AST AST 240 180
CHV, HD 90 km/h 8 – – – – AST AST – –
CHV, ADS–DV 90 km/h 8 – – – – AST AST – –

Nordic combination
BEHV, HD 90 km/h – EM1 6 BP2 16 SC, SC SC, SC 300 210
BEHV, ADS–DV 80 km/h – EM3 4 BP2 15 SC, SC SC, SC 230 200
CHV, HD 90 km/h 11 – – – – SC, SC SC, SC – –
CHV, ADS–DV 90 km/h 11 – – – – SC, SC SC, SC – –

A-double
BEHV, HD 90 km/h – EM2 6 BP2 21 SC, SC SC, SC 30 30
BEHV, ADS–DV 90 km/h – EM2 6 BP2 19 SC, SC SC, SC 300 300
CHV, HD 90 km/h 13 – – – – SC, SC SC, SC – –
CHV, ADS–DV 90 km/h 13 – – – – SC, SC SC, SC – –

† LUi: LU scheme at ith node for the first unit/semitrailer and second semitrailer (if any); Pch i, : recharging power at ith node.
∗ Specifications of ICE, EM and BP types are given in Appendix.
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CHVs on long and hilly roads. It has already been reported by Davis and Figliozzi (2013) that having many starts and stops in the
driving cycle helps improve the competitiveness of BEHVs, owing to the possibility of energy recuperation. With this reasoning, it can
be concluded that the hilliness of a road can exhibit a positive effect on the competitiveness of BEHVs owing to the recuperation of
energy downhill. However, this reasoning is not entirely correct for BEHVs. In this study, it was observed that the hilliness of a road
displays a negative effect on the competitiveness of BEHVs. On a hilly road with a grade of 11.5%, negotiation of the grade at the
speed of 10 km/h requires approximately 2100% more power than what is needed for moving the vehicle on a flat road. Therefore, on
hilly roads, the battery size is constrained by the power, and not by the energy needed for completing the trip, consequently, a larger
battery is required. Moreover, frequent charging–discharging of batteries increases their degradation and shortens their service life.
Consequently, the gain in cost due to energy recuperation is not comparable to the cost of the large battery, which renders BEHVs less
competitive than CHVs on hilly roads. Contrary to this observation is the case when a power–optimized battery is used on short roads,
or a vehicle is equipped with both power–optimized and energy–optimized batteries.

The optimum reference speed was observed to be lower in BEHVs than in CHVs, which is in accordance with the results reported

Fig. 6. Contributions of the different cost components to the annual TCO per unit freight (ton) of optimum vehicles with different sizes on a 160 km
flat road. The cost structure has been shown for different optimum propulsion systems (BEHV and CHV) and infrastructure (LU and charging power),
and for different roles of driver (i.e., ADS–DV and human–driven (HD)). The cost of ADS specific hardware is included in the chassis price.
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by Taefi et al. (2016b), Lee et al. (2013). Likewise, ADS–dedicated BEHVs reveal lower optimum reference speeds than BEHVs with
human drivers. The reason for this is difference in the energy consumption model and trade–offs between the power and battery size
required in BEHVs and the absence of driver cost in ADS–DVs. However, the optimum reference speed seemed to converge to a high
value (90 km/h) in large vehicles for all the scenarios as the depreciation cost increased; please refer to Table 4. Slow driving can be
important for employing ADS–DVs on–road, because there are high safety requirements that need to be met along with technological
limits on object and event detection and response. Thus, slow driving in ADS–dedicated BEHVs, with the corresponding optimum
propulsion system setup, can yield the dual benefits of increased safety and reduced TCO, as in some transportation scenarios where
the optimum speed of BEHVs is about 60 km/h. Moreover, the plots of annual TCO versus optimum reference speed reveal a mild
slope for the TCO curve at a reference speed higher than 50 km/h in ADS–dedicated BEHVs. Therefore, if slow driving at 50 km/h is
required, the resulting additional expense will be up to 10% of the TCO in BEHVs, whereas it can be up to 23% in CHVs.

It can be seen in Fig. 6 that the cost reduction achieved with ADS is lower for larger vehicles. The reason is that the contribution of
driver cost to the annual TCO is lower for larger vehicles, whereas the costs of TMMS and ADS remain almost constant for all vehicle
sizes. This observation is in accordance with the results of Wadud (2017).

The reduction in cost achieved with ADS is highly dependent on TMMS costs. TMMS cost comprises operational and investment
costs. Operational cost refers to the expenditure associated with maintaining the ADS–related equipment and the salaries of dis-
patchers. Investment cost is related to equipment that include “control tower,” etc. The cost reduction achieved by employing
ADS–DVs was observed to be between 27% and 46% for BEHVs and between 11% and 41% for CHVs for different scenarios, in the
case of the assumptions regarding TMMS costs described in Section 3.3. Instead of analyzing the results for variations in the TMMS
costs, the maximum achievable reduction in the TCO has been displayed in Fig. 7 for different scenarios, whereas both the opera-
tional and investment costs related to TMMS are considered to be very low owing to the inherent uncertainties in them. The results
shown in Fig. 7 can be interpreted as the investment profit margin that is the maximum fraction of the cost of a vehicle with a human
driver that can be invested/paid on a TMMS such that ADS–DV remains profitable compared to a vehicle with a human driver. The
profit margin arises from the elimination of driver salary (35%–55%), an increased vehicle–time on–road owing to the fact that no

Fig. 7. Profit margin (PM) or the maximum reduced TCO achievable by employing ADS–DV, compared to a vehicle with a human driver, after
considering a very low TMMS cost. The plots relate to different scenarios, and vehicle sizes: rigid truck (RT), tractor–semitrailer (TS), Nordic
combination (NC), and A–double (AD).
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resting time is needed (0%–15%), an increased payload due to removal of the cabin (1.2%–5%), as well as from the optimized
propulsion system (0%–20%), provided that both the vehicles are driven at a rate close to the optimum utilization rate as much as
possible. It can be seen that the profit margin of ADS–dedicated BEHVs is larger than that of ADS–dedicated CHVs. Furthermore,
larger vehicles reveal lower profit margins when employing ADS.

It must be noted that the results obtained may change if a different parametrization is used. The competitiveness of BEHVs is
sensitive to the vehicle utilization level, fuel or ICE efficiency, life time, discount rate, and prices of diesel fuel, electric energy,
battery, and ADS–specific hardware, i.e., on–board equipment for object and event detection and response. The nominal cost of
equipment has been provided in Appendix, whereas the sensitivity of the TCO to these parameters, with lower and upper bounds of
45%, is given in Fig. 8 for a tractor–semitrailer on a 160 km flat road. For the same vehicle size and road, the components of the TCO
for different vehicle utilization can be seen in Fig. 9. In these figures, vehicle utilization refers to the maximum fraction of the yearly
time when the vehicle is in operation, i.e., when the vehicle is on–road or performs LU or charging; it includes the minimum rest time
of the driver, as set by European Commission regulation 561/2006. It can be observed that for 30% utilization ADS–DVs are more
expensive than vehicles with human drivers, mostly owing to high TMMS costs. It can also be seen that the price of ADS–specific
hardware exhibits a minimal effect on the TCO, because it constitutes only a small fraction of the purchase and operational costs.

Fig. 8. Sensitivity of TCO to different parameters, namely, vehicle utilization level, fuel or ICE efficiency, life time, discount rate, and prices of diesel
fuel, electric energy, battery, and ADS specific hardware, for a battery electric tractor–semitrailer on a 160 km flat road. Please refer to Appendix B
for the. nominal values.
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Moreover, it should be noted that TCO of a BEHV also depends on the fuel consumption of a CHV, which operates in a same
transportation task as the BEHV, as seen in the upper left plot in Fig. 8. The reason is that, based on the assumptions of this study, the
maintenance cost of BEHVs is proportional to that of CHVs which is proportional to their fuel consumption. Please refer to the paper
by Ghandriz et al. (2020) for the sensitivity results for other vehicles and roads, together with the changes in the cost components.

BEHVs can display a lower TCO if many vehicles can be employed in a fleet, whereby the cost per vehicle can be reduced by
sharing the recharging station and LU infrastructure. In the case of employing 10 vehicles in a fleet, the ADS–dedicated battery
electric tractor–semitrailer and the vehicle with a human driver can be competitive with their combustion–powered counterparts up
to 320 and 160 km travel ranges, respectively, in case of 100% vehicle utilization, in contrast to a fleet comprising a single vehicle
(shown in Fig. 3). Another scenario can involve excluding the cost of the charging infrastructure from the TCO, which will lead to
more profitable BEHVs, as observed in Figs. 6 and 9, assuming that the size of the battery is not affected by the cost of the charging
infrastructure. However, such a scenario cannot be considered to be realistic if no high–power charging stations are publicly
available.

In the literature, e.g. Davis and Figliozzi (2013), Lee et al. (2013), Lebeau et al. (2015), Taefi et al. (2017), and Lebeau et al.
(2019), usually, the large BEHVs with human drivers are not competitive to CHVs with human drivers. The main reasons are the high
purchase cost of BEHVs, and that the driving range of the vehicles, studied in the literature, is usually about 160 km with 40%–60%
vehicle utilization. The result presented in this study is in accordance with the literature. In this study, none of the BEHVs with human
drivers, operating in a similar travel ranges and utilization as of the vehicles studied in the literature, are competitive to CHVs
operating in the same conditions. However, in this study, BEHVs became competitive to CHVs in shorter travel ranges due to
performing vehicle–infrastructure optimization, despite considering the cost of the charging infrastructure in TCO of BEHVs.
Moreover, as larger the vehicle, the lesser is the difference between the annual TCO per unit freight transported of BEHVs and that of
CHVs with human drivers, as can be seen in Figs. 4 and 6. The main reason is that charging infrastructure depreciation cost per unit
freight transported reduces considerably in the case of a large BEHV, similar to the case when several small BEHVs are used in a fleet.

Finally, the performance of BEHVs can be further improved by considering additional incentives or the higher taxes imposed on
CHVs through regulations. Furthermore, electric road systems and dynamic charging, whereby charging is possible on–road while
driving, entirely facilitate the competitiveness of BEHVs, as reported by Alaküla and Márquez-Fernández (2017) and Fyhr et al.
(2017). Moreover, further reductions in fuel and energy consumption can be achieved by implementing speed profile optimization
on–road considering the topography, and within the maximum and minimum speed limits around the reference speed according to,
for example, the works of Johannesson et al. (2015), Hovgard et al. (2018), and Torabi and Wahde (2018). A requirement for
maintaining the set optimal speed is that the motion of the vehicle is not abstracted much by the surrounding traffic, such as driving
in a dedicated lane, or by an “intelligent traffic management system” that controls the entire traffic, as reported by Milanes et al.
(2012).

6. Conclusion

By implementing mathematical models together with optimum choices of vehicle–infrastructure through TCO minimization, this
study identified those transportation scenarios, with or without human drivers, where utilizing BEHVs is more competitive compared
to CHVs. Moreover, the study showed that ADS affect other vehicular systems, in particular, the optimum setup of the propulsion
system of BEHVs. ADS lead to decreased TCO of between 27% and 46% for BEHVs and between 11% and 41% for CHVs, which render
BEHVs profitable over longer travel ranges by a factor of four, compared to that of BEHVs with human drivers. Furthermore, the
profitability of ADS–DVs as well as the competitiveness of BEHVs against CHVs has been demonstrated for different transportation
scenarios. It was observed that ADS–dedicated BEHVs tend to exhibit lower optimal speeds than vehicles with human drivers.
Moreover, the reduction in speed for safety reasons was shown to be less expensive to realize in ADS–dedicated BEHVs than in

Fig. 9. Components of the TCO for different values of vehicle utilization for a battery electric tractor–semitrailer on a 160 km flat road. The cost of
ADS–specific hardware is a part of chassis cost. In each group of four bars, similar to Fig. 6, from left to right, the bars represent BEHV HD, BEHV
ADS–DV, CHV HD, and CHV ADS–DV.
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ADS–dedicated CHVs; in many scenarios, low speeds down to 60 km/h actually reduced the TCO.
Furthermore, owing to the uncertainty in the parametrization, sensitivity tests were carried out. Moreover, the maximum re-

duction in the TCO that can be achieved by adopting ADS at a very low cost of TMMS was presented for different vehicles and roads.
The reduction in the TCO in ADS–DVs was mainly achieved by removing the driver salary (35%–55%), increasing the vehicle–time
on–road (0%–15%), increasing the payload by removing the cabin (1.2%–5%), as well as by optimizing the propulsion system
(0%–20%).

Consideration of many transportation scenarios with different road types and vehicle sizes resulted in the production of a large
volume of data. The data revealed that in order to achieve profitable operation with zero emission, the propulsion hardware should
be adapted to the use case of BEHVs, irrespective of whether a human driver is involved. All the produced data and figures have been
provided in Ghandriz et al. (2020) giving practitioners valuable information on the feasibility and profitability of an intended freight
transport operation involving automation and electrification for a given use case.

However, the results of this study are limited to the repetitiveness of transport operations on known roads. Even though sensitivity
analysis of the vehicle utilization can provide a rough estimate of the TCO for non–repetitive assignments, the optimum propulsion
hardware cannot be reused, unless it is designed for the worst–case scenario where the vehicle is intended to operate, which requires
more study. Furthermore, this study simplified a transportation scenario to include only one vehicle type and two pickup and delivery
nodes. Future studies shall involve hardware–infrastructure optimization of a fleet of vehicles of different types that are operating in a
transportation network comprising more number of nodes, where the optimum propulsion hardware for each vehicle and optimum
location of charging stations will be determined based on minimization of the TCO.
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Appendix A. Optimization problems

The optimum vehicle–infrastructure can be found by minimizing the annual TCO per unit freight transported ct for a road with
given length and hilliness, average vehicle reference speed, vehicle size, and plan that defines the driver role. Variable names with
( ~) on the top denote functions of other variables and input parameters, whereas all other variables denote either the given tra-
jectories or input parameters that depend only on the design variables. The input parameters can be found in Tables
B.6,B.7,B.8,B.9,B.10,B.11,B.12. The argument x, representing vehicle position along the road, together with other function arguments
have been omitted from the equations for clarity of notations.

A.1. Conventional combustion–powered vehicles

The optimization problem was defined as follows for a CHV.
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where, = …a k n, 1k sc denote the design variables of nsc dimensional space SCV , in which the range of kth dimension is specified by set
SCV k, containing discrete choices of the design variable ak. The design variables of a CHV include the type of ICE, LU of the first unit/
semitrailer at the first node of the transportation task, LU of the second semitrailer (if any) at the first node of the transportation task,
LU of the first unit/semitrailer at the second node, LU of the second semitrailer (if any) at the second node, the ranges of which are
denoted by type LU LU LU, , ,ice stTr ndTr stTr1 ,1 2 ,2 1 ,1, and LU ndTr2 ,2, respectively, as presented in Table B.5. Different types of ICE are de-
scribed in Table B.8 and different LU schemes are explained in Section 3.1.2. In the cost function (A.1), Nv denotes the number of
vehicles, ftr denotes the transported freight per year (described by Eq. (A.5)), and c c c, ,fuel driver maint cv, , and cdep denote the annual diesel
cost, driver salary, cost of maintenance, and hardware depreciation, respectively, and are given by Eqs. (A.2), (A.3), (A.4) and (A.6),
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respectively; c c,tax insu, and ctmms denote the annual cost of taxes, insurance and TMMS, respectively. In Eq. (A.2), p F,f c and Nt denote
the prices of diesel fuel, and the fuel consumed during a round–trip (described by Eq. (A.10)), and the number of trips a vehicle
performs per year, respectively. In Eq. (A.3), pd and ttr denote driver salary and round–trip time, which are described by Eq. (A.12).
Eq. (A.4) describes the maintenance cost proportional to the fuel cost that is quantified by a proportionality factor cm. In Eq. (A.5),
m m m m, , ,gcm chass cab ice, and mobl represent the masses of a fully loaded vehicle (i.e., gross combination mass), vehicle chassis, cabin,
ICE, and on–board lift, respectively. Eq. (A.6) gives the depreciation cost of hardware based on interest rate r, service life span ny,
vehicle–infrastructure resale value Rv (described by Eq. (A.8)), and price of the vehicle–infrastructure p , described by Eq.
(A.7),including the chassis price pchass, price of cabin along with driver interfaces pcab, transmission price ptrans, ICE price pice, price of
all the vehicle hardware required for ADS pads, investment cost of LU plu, and investment cost related to TMMS ptmms. Eq. (A.9) gives
the number of trips per year, where Tyear stands for a time span of one year in the same unit as ttr , and < <u0 1 represents vehicle
utilization. It should be noted that the performance of a vehicle was simulated for an entire year.

The fuel consumed during a round–trip can be calculating using Eq. (A.10), where E D t, , ,ice pgf f tor and Pice denote the maximum
efficiency of ICE, energy per gram of diesel fuel, fuel density, travel time on road (described by Eq. (A.11)), and ICE power (described
by Eq. (A.14)), respectively. In Eq. (A.11), xf denotes the overall distance covered in the round–trip and v is the vehicle speed at the
distance x on road, described by differential Eq. (A.19), where ( ) denotes time derivative. In Eq. (A.12), tlu i, denotes the LU time and
tres i, represents driver resting time. A driver must rest 45 min after every four hours of driving, according to European Commission
Regulation 561/2006 (Eq. (A.13)), when considering a transportation task involving two nodes. It must be noted that a driver can rest
during LU process. In Eq. (A.14), ctr denotes transmission efficiency and Fprop denotes the total propulsion force on the vehicle tires,
as described by Eq. (A.16). The ICE power is constrained between the minimum and maximum values, PICE min, and PICE max, , according
to constraint (A.15). Eq. (A.16) yields the propulsion force originating from the ICE, where Ffri denotes the friction brake force and
Flong denotes the total longitudinal force, including the propulsion and friction brake. Eq. (A.17) describes Newtonian law of motion,
wherein Fr is the resistance force described by Eq. (A.18). The resistance force (A.18) includes the rolling resistance of tiers, air
resistance, and resistance force caused by gravity, wherein, g f A, , , ,r a f , and cd represent the gravitational constant, rolling re-
sistance coefficient, grade of the road at distance x, air density, front area of the vehicle, and aerodynamic drag coefficient, re-
spectively. In Eq. (A.19), v F,ref long min, , and Flong max, denote the reference speed along the road, minimum available longitudinal force
(described by Eq. (A.21)), and maximum available longitudinal force (described by Eq. (A.20)), respectively. In these equations,
Ratio R P P T, , , ,max max min max, and Tmin denote the maximum transmission gear ratio, radius of the wheels, maximum and minimum
powers acting on the wheels (described by Eqs. (A.22) and (A.23)), and maximum and minimum torques acting on the wheels
(described by Eqs. (A.24)), respectively. Furthermore, in Eqs. (A.22)–(A.25), P P T, , ,ctr ICE max ICE min ICE max, , , , and TICE min, stand for the
transmission efficiency and the maximum and minimum ICE output powers and torques. Eq. (A.26) gives the friction brake force
required to reach the reference speed during negative acceleration. It should be noted that, in these equations, the grip limit between
the road and the contact patch of the wheel is not considered.

Finally, the constraints (A.27)–(A.29) ensure proper vehicle performance on–road. Constraint (A.27) requires a gradeability
higher than a set value. Gradeability is the maximum grade on which a vehicle is capable of maintaining a set forward speed (e.g.,
80 km/h). Constraint (A.28) ensures that a vehicle is capable of starting the forward motion on a given grade, which is referred to as
startability. Constraint (A.29) guarantees that the acceleration capability of a vehicle is higher than a minimum set value. These
constraints were evaluated by programming based on their definitions. Edgar et al. (2002), Sadeghi Kati (2013), Sadeghi Kati et al.
(2014), Kharrazi et al. (2015)) provide further descriptions of the performance–based characteristics of heavy vehicles.

A.2. Battery electric vehicles

Similar to the case of a CHV, the optimization problem for a BEHV was defined as follows.

= …
= … =

= + + + + + +

S S
S S S type N type N LU LU
LU LU P P

a k n

C

find , 1, ,
{ , , } { , , , , , ,

, , , }

to minimize

k EV k EV se

EV EV EV n em em pack pack stTr ndTr

stTr ndTr ch ch

t
N c c c c c c c

f

,

,1 , 1 ,1 2 ,1

1 ,2 2 ,2 ,1 ,2
( )

se

v elec driver maint ev tax insu tmms dep

tr

,

(A.30)

=c p E Nsubject to elec el el t (A.31)

=c p t Ndriver d tr t (A.32)

=c c0.5maint ev maint cv, , (A.33)

= + + + + +f N N m m m m N m N m m( ( ))tr t v gcm add chass cab em ElDrive pack pack obl (A.34)

=
+

+
+ +

c p R
r

p R
r

r
r(1 ) (1 ) 1 (1 )dep

v
n batt tot

b
n n,y y y (A.35)

= + + + + + + +p N p p p p p p p p( )v chass cab em trans ads lu rech tmms (A.36)
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=P P P P P1 max ,min
tr

batt min em loss batt loss em min, , , ,
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= + <F m v F F F F,
0, otherwise
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= + >P c P P P( ), 0cabHeat heat em em loss em, (A.58)

=P k2em loss,
2 (A.59)
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=n s n( )rep h y (A.70)

= +R N p s n s n d( ( ) ( )) (1 )b v batt h y h y bp
ny (A.71)

G GEV min (A.72)

S SEV min (A.73)

A AEV max (A.74)

where = …a k n, 1k se denote the design variables of nse dimensional space SEV , in which the range of kth dimension is specified by set
SEV k, containing discrete choices of the design variable ak. The design variables of a battery electric vehicle include the type of electric
motor, number of electric motors, type of battery pack, number of battery packs, LU of the first unit/semitrailer at the first node of the
transportation task, LU of the second trailer/semitrailer (if any) at the first node of the transportation task, LU of the first unit/
semitrailer at the second node, LU of the second trailer/semitrailer (if any) at the second node, and recharging power at the first and
second nodes, and the ranges of these are denoted by type N type N LU LU LU LU P, , , , , , , ,em em pack pack stTr ndTr stTr ndTr ch1 ,1 2 ,2 1 ,1 2 ,2 ,1, and Pch,2,
respectively. Several battery packs connected in series form the vehicle battery. The elements of the vehicle–related design sets are
described in Table B.5. In the cost function (A.30), Nv denotes the number of vehicles, ftr denotes the transported freight per year
(described by Eq. (A.34)), and celec and cmaint ev, denote the annual electric energy cost and the cost of maintenance (described by Eqs.
(A.31)), respectively. In Eq. (A.31), pel and Eel denote the price of electric energy and the electric energy consumed during a
round–trip (described by Eq. (A.40)). Eq. (A.32) is similar to Eq. (A.3). Eq. (A.33) describes the maintenance cost of a BEHV pro-
portional to the maintenance cost of a CHV of the same size that operates in the same scenario with a proportionality factor of 50%,
according to Davis and Figliozzi (2013). In Eq. (A.34), N m N, ,em ElDrive packand mpack represent the number of electric motors of the
vehicle, mass of a single electric motor and its driveline, number of battery packs installed in the vehicle, and mass of a single battery
pack, respectively; madd denotes the additional bonus mass allowed according to EU directive 2015/719 to encourage electrified
propulsion in heavy vehicles. Eq. (A.35) yields the depreciation cost of the hardware, where pbatt tot, denotes total price of initial and
replaced battery packs (described by Eq. (A.38)), and vehicle–infrastructure resale value Rv (described by Eq. (A.37)) is different from
that of the last–replaced battery Rb depending on its state of health. The old replaced batteries have zero resale value. The price of the
vehicle–infrastructure p is described by Eq. (A.36), which includes the chassis price pchass, price of electric motors pem, transmission
price ptrans, price of all the vehicle hardware required for ADS pads, investment cost of LU plu, investment cost of charging stations prech,
and investment cost related to TMMS ptmms. In Eq. (A.38), nrep denotes the number of battery replacements during service life, pbatt
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denotes price of the first battery at the beginning of the service life, dbp represents a factor defining yearly decrease in battery price
due to battery technology development and that all the batteries were bought at the beginning of the service life, and nyrep denotes
battery replacement time in years which can be calculated by solving Eq. (A.69) such that =s n( ) 0h yrep . Eq. (A.39) reveals the number
of trips a vehicle performs per year.

The electric energy consumed during a round–trip can be calculated using Eq. (A.40), where ttor and Pbatt denote the travel time on
road (described by Eq. (A.41)) and the power of battery packs (described by Eq. (A.42)), respectively. In Eq. (A.41), xf denotes the
overall distance covered during the round–trip and v is the vehicle speed at the distance x on road (described by differential Eq.
(A.48)), where ( ) denotes time derivative. In Eq. (A.42), Pem denotes the useful power of electric motors (described by Eq. (A.44)),
Pem loss, denotes the energy loss of the electric motors (described by Eq. (A.59)), and Pbatt loss, represents the energy loss of the battery
packs (described by Eq. (A.56)). The power of the battery packs is constrained between the minimum and maximum values, Pbatt min,
and Pbatt max, , according to the constraint Eq. (A.43). In Eq. (A.44), P,tr em max, , and Pem min, denote the transmission efficiency and the
maximum and minimum powers of electric motors, respectively. Eqs. (A.45)–(A.50) are similar to those of CHV, i.e., Eqs.
(A.16)–(A.21). The maximum and minimum powers and torque on wheels, as well as the friction force, are described using Eqs.
(A.51)–(A.55). In Eq. (A.56), Ibatt represents the electric current in battery packs (described by Eq. (A.57)) when the battery nominal
voltageVbatt is known, Rbatt denotes the resistance of the battery packs and PcabHeat the average power used in heating the driver cabin
(if any) described by equation ((A.58)). The average heating power was assumed to be proportional to the consumed power by a
proportionality factor cheat . Eqs. (A.59) and (A.60) describe the power loss in electric motors, where k denotes a constant related to
electric motor specifications and is the rotational speed of the electric motor. This model of energy loss corresponds to electric
motor operation at the highest efficiency, wherein the gearbox is capable of selecting any gear ratio that is very close to the optimum
value. Such a type of transmission can be referred to as continuous variable transmission.

The state of charge (SOC) of the batteries SoC x( ) must always be within the limits SoCmin and SoCmax , as specified by constraint Eq.
(A.61). The SOC can be calculated using Eq. (A.62), wherein SoC x( )i denotes the SOC at the exit of node i x, denotes the distance
traveled, and Cbatt denotes the total capacity of battery packs. The SOC at the exit of node i is given by Eq. (A.63), wherein SoC x( )i
denotes the SOC at the entrance of node i t, ch i, is the charging time at node i, and Pch i, denotes the charging power at the same node.
The SOC +SoC x( )i 1 required to reach the next charging station is given by Eq. (A.64). The charging time was defined based on

+SoC x( )i 1 in accordance with Eq. (A.65) satisfying constraint (A.66).
The round–trip time ttr can be calculated using Eq. (A.67). The resting time is given by Eq. (A.68), which is similar to the case of

CHV, with the difference being that resting is possible during charging and LU. Moreover, LU takes place at the same time as
charging. Eq. (A.69) describes the state of health of the battery, in accordance with the works of Wang et al. (2011), Hu et al. (2015),
and Ghandriz et al. (2017), where, Ncycle represents the number of charge–discharge cycles before the end–of–life of the batteries. The
number of battery replacements during the service life of a vehicle can be calculated using Eq. (A.70), wherein operator x denotes
the integer closest to x that is equal to or lower than x. Eq. (A.71) yields the resale value of the last–replaced battery. The resale value
is zero if the state of health of the last replaced battery is zero, i.e., it reached 80% of the initial capacity. Finally, constraints
(A.72)–(A.74) are similar to those of a CHV (i.e., Eqs. (A.27)–(A.29).

Owing to non–convexity and non–smoothness of the constraints, these optimization problems were solved using stochastic op-
timization methods, in particular particle swarm optimization, as described by Wahde (2008).

Appendix B. Parameters2

See Tables B.5–B.12.

Table B.5
Range of the design variables and their specification.

Design variable Range

typeice ICE ICE ICE ICE ICE ICE, , , , ,lit lit lit lit lit lit4 6 8 11 13 16
typeem EM EM EM, ,1 2 3
Nem 1, 2, …, N2 axles
typepack BP BP,1 2

Npack 1, 2, …, 60
LUjthTr i, OBW∗, SC, AST, OBL∗

Pch i, 10 kW, 20 kW, …, 300 kW

∗ Naxles: number of axles, OBW: on–board waiting, OBL: on–board lift.

2 Data were acquired from Volvo Group Truck Technology.
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Table B.6
Internal combustion engines.

Name ICE lit4 ICE lit6 ICE lit8 ICE lit11 ICE lit13 ICE lit16

PICE max, (kW) 149 234 298 410 485 550
TICE max, (Nm) 900 1400 1900 2300 2600 2800
mice (kg) 400 450 500 550 600 650

+p pice trans (€) 11250 15000 18750 22500 26250 30000

Table B.7
ICE efficiency.

Normalized power, Pice
Pice max,

0.2209 0.2989 0.3768 0.4547 0.5326 0.6105 0.6884 0.7663 0.8442 0.9221 1.0000

ice 0.1995 0.3438 0.3740 0.3989 0.4101 0.4245 0.4284 0.4284 0.4318 0.4247 0.4156

Table B.8
Electric motors.

EM1 EM2 EM3

cem (€) 5000 5500 8000
Tem max, (N m. ) 221 266 400
Pem max, (kW) 107 104 70

max , (rad s/ ) 1110 1047 366
mElDrive (kg) 152 165 235
k 0.0078 0.0100 0.0431
b 0.2975 0.3804 1.6362

Table B.9
Battery packs.

pack1
⊕ pack2

†

ppack (€) 14500 10470

Ppack min, (kW) −150 −50

Ppack max, (kW) 150 50

Cpack (kWh) 9.24 24.65

mpack (kg) 200 200

Vpack (V) 600 600
Rpack (Ohm) 0.6 0.72

Ncycle 4700 2400
SoCmax 0.85 0.85
SoCmin 0.15 0.15

∗In order to get the battery parameter, this value must be multiplied by Npack .
⊕ Power-optimized.
† Energy-optimized.

Table B.10
Loading–unloading schemes.

OBL* SC AST OBW∗

tlu ( ftmin/20 ) 20 25 15 44
plu (k€) 150 40 31 0
Additional price, container 20ft, (k€) 6 6 6 0
Additional price, container 40ft, (k€) 10 10 10 0
Additional price, ADS related sensors (k€) 0 0 10 0

∗ OBW: on–board waiting, OBL: on–board lift.
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