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a  b  s  t  r  a  c  t

Evaporators are integral parts of many separation processes across production industries,

and they need to be well understood in order to be operated well, thereby enabling high

resource-efficiency and productivity. In a previous investigation, the effects of disturbing

oscillations in a two-stage evaporator system were quantified. In the current study, these

oscillations were reduced through trajectory optimization using steam consumption as a

temporally discretized decision variable, taking advantage of a dynamic process flowsheet

model in Aspen Plus Dynamics (APD) employed as if it were a black-box model. The opti-

mization was performed utilizing a Python-APD toolchain with the SciPy implementation of

COBYLA. The optimal trajectory was able to successfully reduce the objective function value

(including the product stream mass flow variance and a bang-bang penalty on the trajectory

itself) to slightly less than 0.3 % of that of the nominal case, in which a time-invariant steam

consumption was employed. This in turn grants opportunities to increase throughput of the

process, leading to significant financial gains.
Oscillations © 2019 The Author(s). Published by Elsevier B.V. on behalf of Institution of Chemical

Engineers. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

ing the usefulness of non-linear programming (NLP) (Biegler,
1.  Introduction

Evaporator systems are key components of production pro-
cesses across many  different industries and disturbances
(such as unexpected feed concentration perturbations) can
become a real issue for process engineers. Considering con-
current demands on companies to increase productivity
and resource-efficiency, and that evaporators are inherently
energy intense, proper control and disturbance management
is essential. In order to manage these demands better, model-
based studies lend themselves as viable options.

Whilst there is plenty of published research on evapora-

tor systems utilizing steady-state models, far fewer studies
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have been published involving dynamic simulation and con-
trol (Luyben, 2018); in addition to those listed by Luyben
(2018), there are a few other studies of particular relevance
to the current work, especially with regards to managing
disturbances. For instance, Kumar et al. (2013) created a gen-
eralizable dynamic model that they used to gain insights into
the behavior of a multi-effect evaporator system subjected to
disturbances, whilst Adams et al. (2008) designed a control
architecture to deal with oscillatory disturbances. Pitarch et al.
(2017) implemented a real-time optimization strategy to boost
the resource-efficiency of an evaporator system, showcas-
e-Nolin).

2010). Moreover, disturbances of an oscillating nature can
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ecome especially problematic when they propagate through
nd decrease performance of an entire process (Yuan and Qin,
012). This in turn prompted a previous in-silico investigation
f an industrial evaporator system (Nolin et al., 2018), in which
isturbing oscillations of the industrial system were analyzed
nd quantified for the first time. The oscillations were further
ound to be present throughout the whole system, effectively
ncreasing steam consumption by 1 % and reducing produc-
ivity by 2 %, which is of economic concern due to the scales
f the processing industries. Furthermore, since the evapora-
or system was bottlenecking the entire process, eliminating
he oscillations at a low cost would translate into financial
ains.

Considering the problem accounted for above, the aim of
he current study was to eliminate the oscillations in the
vaporator system reported by Nolin et al. (2018) through
odel-based dynamic NLP, taking advantage of the existing
spen Plus Dynamics model used in that study. This optimiza-

ion based solution would serve as an alternative to expensive
etrofits or reconstruction. However, the built-in tools of
he AspenTech software lack the necessary capabilities for
dvanced, model-based optimization studies. For instance,
spen Plus does not include algorithms for multiobjective
ptimization, which severely limits the options for investi-
ating a process (Muñoz López et al., 2018). Furthermore, it
s unclear how to deal with dynamic optimization problems
uch as grade transitions in Aspen Plus Dynamics, which
otivates the use of an external optimization architecture

n conjunction with a dynamic flowsheet model (Negrellos-
rtiz et al., 2018). This way, it is possible to take advantage
f the component and unit-operation libraries available in
ommercial flowsheeting software in combination with gener-
lizable optimization tools. Therefore, the pre-existing Aspen
lus Dynamics model was employed as if it were a black box
ype of model in the sense that the input and output data of the

odel are the main concerns (in a similar fashion as Negrellos-
rtiz et al. (2018)). To perform the optimization, the model
as coupled to a modified version of the COM-based Python
odule Coupler (PyMoC) cosimulation tool, which was first

resented in a cosimulation-based optimization study that
ncluded a version of the current evaporator system model
Yamanee-Nolin et al., 2019). In order to easily implement
eneral inequality constraint equations as well as decision
ariable boundaries specifically, the SciPy implementation of
he COBYLA algorithm (Powell, 1994) was used to perform the
ptimization.

The results show that it is possible to minimize the oscilla-
ions through trajectory optimization, leading to an increase
n throughput, a reduction in steam consumption, while prod-
ct purity was kept at a satisfying level. In addition to the
erformance improvements in the evaporator system, the
inimization of the oscillations further means that through-

ut can be increased even further, and the downstream
ropagation of the oscillations will pose less of a problem,
otentially leading to positive effects in the subsequent sub-
ystems as well.

The remainder of this paper is structured as follows: sec-
ion 2 introduces the process and the model that is used for the
urrent study. This is followed by the presentation of the math-
matical problem formulation along with a brief description
f the modified PyMoC architecture with which the optimiza-
ion problem is solved. Results are provided and discussed in

ection 3, with a summary of the major conclusions presented
n the final section.
2.  Materials  and  Methods

This section begins with a description of the investigated pro-
cess along with the Aspen Plus Dynamics model used for the
study. The formulation of the trajectory optimization problem
then follows, along with a description of how it was solved by
using the PyMoC tool to transfer data between the optimizer
and the model.

2.1.  Process  and  model

The studied evaporator system is the first stage of a series of
separation processes for purifying a polyalcohol component
at Perstorp AB and it is presented schematically in Fig. 1. The
system starts with a balance tank working as a buffer vessel
between the upstream batch-based system and the evaporator
system; the upstream system intermittently feeds the balance
tank with a solution that is highly concentrated with respect to
the desired product (The ‘Feed’ stream in Fig. 1). The balance
tank is also fed by a dilute recycling stream from a part of
the downstream processing. The balance tank mixture feeds
a stripping column, the purpose of which is to remove water.
The bottom stream of the stripping column is then heated by  a
stream from a mechanical vapor recompression (MVR) circuit,
which also contains some added steam and water (the latter
for direct intercooling purposes), before it is fed to the first
evaporator stage. The top stream of the first evaporator stage
drives the stripping column, whereas the bottom is fed to the
second stage. The bottom of the second stage is the product
stream, named ‘Prod’ in Fig. 1, which is sent downstream for
further purification.

The process was subject to oscillatory disturbances, which
have been analyzed and quantified in-silico previously (Nolin
et al., 2018). These disturbances are generated by a combi-
nation of how the process was originally constructed, then
retrofitted and currently operated. The main cause is the fact
that the concentrated feed stream is intermittent, whilst the
diluted recycling stream and stripping column feed stream
are both continuous. This will affect the liquid level in the
tank, as well as how the concentration changes over time.
Essentially, the feed from the batch system will make the con-
centration of product in the balance tank increase rapidly, and
the material in the balance tank will subsequently be diluted
by the recycling stream. As the stripping column feed stream
is continuous, this diluting effect propagates into the whole
system as the stripping column feed is successively diluted
over the course of a cycle. This cycle restarts the next time
the feed sequence is activated, which leads to the concentra-
tion increasing again, giving rise to performance-worsening
oscillations that can propagate, leading to unnecessarily high
steam consumption as well as production rate margin.

To study these dynamic disturbances, a dynamic model of
the process was needed. Aspen Plus, along with its dynamic
counterpart Aspen Plus Dynamics, were used as modeling and
simulation tools for this purpose. This is a combination which
has been used as an efficient computer-aided process engi-
neering tool kit for many  different studies concerned with
the dynamics of vapor-liquid systems, with two good exam-
ples being the studies presented by Bildea and Kiss (2011)
and Zhang et al. (2018). The current model was based on the
one presented by Nolin et al. (2018), albeit run at a different

nominal case setting. The model was constructed using the
standard blocks available in Aspen Plus; HeatX and Flash2 were
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Fig. 1 – The modeled process.
used to model the evaporator stages, and a RadFrac column
was used for the stripper. The MVR  circuit was modeled using a
combination of compressors, and mixers for adding water and
steam. The steady state model built in Aspen Plus was then
converted as a flow-driven simulation to Aspen Plus Dynam-
ics using the built-in tool for that purpose. During conversion,
controllers were automatically added and were decided to be
kept and used at their default settings, as their positions for
the most part reflected the real plant. The controllers that did
not reflect real controller positions are marked by asterisk
in Fig. 1; these are used in the model to mimic  pressure-
driven flow related phenomena, which otherwise would risk
unrealistic behavior in terms of mass flow rates and pres-
sure changes in the simulation. Furthermore, there was no
boiling-point elevation control in place in the current model
(as opposed to the previous study (Nolin et al., 2018)), as the
use of steam consumption as the decision variable was desir-
able. Finally, the intermittent stream feeding the balance tank
was modeled using a ‘Task’ in Aspen Plus Dynamics, which
was programmed to mirror the real-life behavior where the
balance tank is nearly filled at a specific low liquid level con-
dition.

2.2.  Trajectory  optimization  using  PyMoC

The goal of the study was to minimize the product stream
mass flow oscillations over eight hours by utilizing the steam
consumption as a decision variable discretized in time. This
was chosen as a decision variable due to expectations (based
on a development of the conclusions in a previous study
(Yamanee-Nolin et al., 2019)) that a form of counter-phase
on the steam consumption could be found that would min-
imize the oscillations. The variance (�2) of the product stream
mass flow was used as a measure of the oscillations for the
objective function. Furthermore, a bang-bang trajectory (e.g. a
trajectory consistently alternating between and only between
its lower and upper bounds (Lang and Biegler, 2007)) could
lead to long-term premature equipment fatigue from regu-
lar and significant changes in temperatures and/or pressures
in the system. Therefore, an additive penalty term was intro-
duced in the objective in order to make the resulting trajectory
smoother. The term penalizes the square of the signal dif-
ference of two neighboring horizons. Finally, the sum of the

variance and the penalty is normalized with respect to the
nominal objective value, �nom = �2(wPROD(t, unom)).
To account for process requirements in place, inequality
constraints were formulated for the averages of the mass flow
and purity of the product stream. In order to give the opti-
mizer some leniency whilst maintaining process demands,
these averages were required to be greater or equal to 99.8 % of
the average of the nominal run, giving  ̌ = 0.998. Furthermore,
bounds were set on each of the discretized decision variables
so that the steam consumption would be kept between half
and twice the average steam consumption of the nominal case
at all times.

The problem was solved utilizing a single-shooting
approach and was mathematically formulated as follows:

minimize
u

�(u) = �2(wPROD(t, u)) + �(u)
�nom

s.t. Flowsheet model

w̄PROD −  ̌ · w̄PROD, nom ≥ 0

P̄PROD −  ̌ · P̄PROD, nom ≥ 0

0.5 · unom ≤ u ≤ 2 · unom, u = [u1, ..., uNu ]

where � is the objective function and u the (discretized) deci-
sion variables; �(u) = �Nu−1

k=1 �u2
k

is the bang-bang penalty and
Ru is a case-specific weight to scale it; w is mass flow rate; P
is purity; w̄ and P̄ denote the average of those variables over
the simulated time period; subscript PROD refers to the stream
thus named in Fig. 1; and subscript nom refers to the nominal
case.

To solve the problem, derivative-free optimization (DFO)
was considered. DFO algorithms can be classified as stochastic
or deterministic algorithms, depending on whether or not an
algorithm takes random steps in its minimization procedure
(Rios and Sahinidis, 2013). An example of deterministic DFO
algorithms is the Nelder-Mead simplex algorithm, whereas
stochastic examples include simulated annealing and parti-
cle swarm algorithms (Rios and Sahinidis, 2013). As presented
by Negrellos-Ortiz et al. (2016), DFO has previously been sug-
gested to serve as an effective alternative in solving dynamic
optimization problems at the engineering-level (as defined by
Biegler (2010)), where gradient information may be unavailable
or unreliable in practice. Negrellos-Ortiz et al. furthermore
showed the effectiveness of deterministic DFO techniques,
as they utilized Powell’s BOBYQA algorithm (Powell, 2009) to
perform dynamic product transitions for a set of different

reactors (Negrellos-Ortiz et al., 2016) as well as for an air
separation unit (Negrellos-Ortiz et al., 2018). In both these
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Plate 1 – An example of how to establish the COM based
connection between Python and Aspen Plus Dynamics, as
well as for reading and writing data. This can be extended
into a non-linear program by calling an available
optimization algorithm and supplying a custom-made
objective function to it.

Fig. 2 – A schematic of the optimization process: COBYLA
evaluates the objective function, which in turn makes use
of PyMoC. PyMoC accepts the decision variable vector as a
whole as input, and uses a zero-order hold strategy to
implement the discretized decision variable at the correct
synchronization points of the simulation, essentially
tudies, they utilized Aspen Plus Dynamics models as a type
f black-box model, only concerned with inputs and out-
uts. Another successful use of DFO algorithms for trajectory
ptimization has been presented by Mohd Fuad et al. (2012),
ho  employed Powell’s COBYLA algorithm (Powell, 1994) to
nd the optimal trajectory for long-term catalyst deactivation.
he deterministic DFO approach was thus chosen to solve

he current optimization problem and stochastic approaches
ere left for future studies. Whilst both BOBYQA and COBYLA
ere considered as potential algorithms, COBYLA was even-

ually chosen in order to easily implement the constraints
nd bounds of the problem. The SciPy implementation of
OBYLA was successfully used to solve the problem with

he final accuracy tolerance left at the default value of
0−6, the absolute constraint violation tolerance set to zero,
nd the nominal trajectory (i.e. flat) used as an initial
rajectory.

In the current work, the PyMoC algorithm first presented in
Yamanee-Nolin et al., 2019) was modified in order to employ a
irect, sequential approach to trajectory optimization (Biegler,
010). In this approach, the originally infinite-dimensional
roblem is recast as a finite-dimensional problem through dis-
retization of the decision variable along the temporal axis. For
osimulation purposes, PyMoC utilizes a zero-order hold anal-
gy for data transfer during cosimulation. This data transfer
trategy makes use of synchronization points (SPs) at which
imulation is paused for data transfer; values in different mod-
les are updated and then held constant for a horizon (�).
or trajectory optimization purposes, PyMoC and the direct,
equential approach were as such found to work nearly seam-
essly together, as the SPs in PyMoC were possible to use
or updating the decision variable signal for the next hori-
on instead of transferring data between modules. Due to
his good fit between PyMoC and the chosen optimization
pproach, it was sufficient to add a trajectory optimization
rapper to PyMoC that accepts the decision variable vector

rom the optimizer and injects the relevant information at the
orrect SPs. Furthermore, the dynamic optimization problem
n the current work was solved in an open-loop fashion sim-
lar to Sellberg et al. (2018), for eight simulation hours with
en decision horizons per simulation hour giving Nu = 80 and

 = 0.1 h.
In order to provide better insight into how a user can

stablish the COM based link between Python and Aspen Plus
ynamics, a basic example is provided in Plate 1. This example

ncludes how to set up such a connection (given some model),
s well as reading data from and writing data to generically
amed parts (blocks/streams) of the model. These function-
lities are essential and can be further built upon in order to
arry out a customized optimization study, where an objec-
ive function can be composed and supplied to any of the
lgorithms that are freely available to all Python users. As for
he current study, a schematic overview of the optimization
rocess, starting at the optimizer call, is presented in Fig. 2.
OBYLA is used for evaluating the objective function, which

n turn utilizes PyMoC for transferring data between the opti-
izer and the model during trajectory optimization. PyMoC
ill take the full decision variable vector as an input, and it
ill then loop through the vector and advance the simulation
ne synchronization point and horizon at a time, until the set
nal time of eight hours is reached. The simulation output will
hen be sent back to the objective function for evaluation and

pdating of the decision variable vector until convergence is
chieved.
through looping of the vector.

3.  Results  and  discussion

In Fig. 3, the results from the nominal and the optimized runs
are presented, normalized with respect to the mean value of
the nominal run. The oscillations of the nominal operating
conditions using a constant steam consumption are shown
in Fig. 3a. For the current nominal operating point, the oscil-
lations were quantified to be at around ±1%,  thus having a
negative effect on the production rate due to capacity con-
straints and safety margins of the process. However, as seen
in Fig. 3b, the optimal trajectory is able to increase the aver-
age production rate slightly; it also brings the oscillations to a
much lower level whilst lowering the average steam consump-
tion to 69 % of the nominal operating point, which in part is
made possible given that the average purity was allowed to

decrease. That a reduction of the steam consumption is pos-
sible further indicates that the method for dealing with the
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Fig. 3 – The stream results from the nominal and optimal runs. The black line is the product stream, and the gray line is the
steam consumption (i.e. the discretized decision variable). With an optimized steam trajectory, the product mass flow

Fig. 4 – The product purity from the nominal and optimal
oscillations have been dramatically reduced.

oscillations in the plant thus far has been to use an excessive
amount of steam. This means that by using an optimal tra-
jectory on the steam consumption in order to minimize the
oscillations, the process can be improved in terms of both pro-
duction rate as well as resource-efficiency whilst the product
purity constraint is in place and satisfied. This in turn trans-
lates to significant financial and environmental gains.

However, even though the objective was formulated to min-
imize the occurrence of bang-bang optimization, we still see
this at times, especially towards the end of the optimal trajec-
tory. This is most probably due to the fact that the effect of the
decision variables does not have time to propagate through
the system before the final time of the whole optimization
horizon, promoting relatively extreme behavior. The behavior
where the signal approaches a constant value and at the end of
the whole horizon makes short and sudden moves away from
that value is called the turnpike effect, according to Faulwasser
et al. (2017). Rawlings and Amrit (2009) also describe and pro-
vide an example of the turnpike effect. There have been many
studies regarding how to avoid or remedy stability issues of the
turnpike effect. Methods that have been suggested include,
for instance, employing an infinite-horizon approach (Würth
et al., 2009) or by formulating terminal conditions, e.g. equal-
ity constraints ensuring closed-loop stability, as reviewed by
Mayne et al. (2000). Whilst it is an interesting issue, imple-
menting the aforementioned methods for counteracting the
turnpike effect was not performed in the current study.

Another interesting detail in the results is the amplitude
reduction between the two major peaks in the optimal steam
trajectory. The reduction indicates that at the start of the
simulation, the process carries a lot of momentum that is
counteracted by the first peak, which in turn reduces the work-
load required of the second peak. This difference in workload
is due to an integrating effect of the product dilution happen-
ing as a result of a reduced steam consumption. There is thus
potential for lowering the average steam consumption even
more over time, which has to be studied further. However, it is
important to note that this would still be subject to the product
purity constraint.

The purity results are presented in Fig. 4, again normal-
ized with respect to the mean value of the nominal run. The
purity constraint based on downstream requirements is sat-
isfied in the optimized scenario, with an average of 99.8 %
of the nominal average. The purity decrease in the optimal
case is to be expected as a result from reducing the average

steam consumption, since using less steam will evaporate less
water in the system. This decreasing trend is not expected
runs.

to constitute a major issue, since the previously performed
sensitivity analysis (Nolin et al., 2018) showed that the purity
only changes very little with the different perturbation cases.
However, since the results of the sensitivity analysis were
assumed to depend to a certain extent on the tight boiling-
point elevation control, which is overridden in the model of
the current study, the trend should be further investigated in
order to ensure the purity is kept at a required level. The down-
stream effect of the purity oscillations, which are present in
the nominal case as well as in the optimal case, should also
be investigated in order to ascertain to what extent the oscil-
lations influence the rest of the purification process and to
determine how to minimize any potential negative impact.

The nominal cases of the previous cosimulation-based
study (Yamanee-Nolin et al., 2019) and the current work
are not the same, but it is still both possible and interest-
ing to compare the results between the current trajectory
(time-variant) optimization and the previous time-invariant
optimization. In the cosimulation study (Yamanee-Nolin et al.,
2019), the max-min difference of the oscillations were reduced
by a substantial 27 % simply by setting the steam consumption
at a specific (and time-invariant) level, leading to possibilities
for increasing production rate whilst satisfying all purity and
production rate constraints. In the current work, the oscilla-
tions have been reduced even further by utilizing a trajectory,
with the max-min difference having been reduced by 85 %.
This reduction is actually in one sense slightly conservatively
stated since the maximum value appears only once in the
optimized case of the current work (at the start); this is in con-
trast to the nominal case of the current work, as well as the
optimal case in the cosimulation study (Yamanee-Nolin et al.,
2019), in both of which it appears in each oscillatory cycle.
Furthermore, the objective function, i.e. the sum of the vari-
ance and the additive bang-bang penalties, was in the current
work decreased by 99.7 % in the optimal case compared to the

nominal case. It should here be duly noted that the nominal
case essentially does not include the bang-bang penalty as it
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Engineering Research and Design 132, 616–626,
http://dx.doi.org/10.1016/j.cherd.2018.02.009.
mploys a time-invariant value on the steam consumption,
hilst the optimal case actually does include the penalty.

.  Conclusions

he optimal trajectory is able to minimize the oscillations,
educing them by 99.7 % compared to the nominal case,
hilst satisfying constraints. By using a steam trajectory, it is

urthermore possible to reduce the average steam consump-
ion by 31 % over the simulated period. This reduction is
onnected to less evaporated water in the system, but with
atisfied constraints on both productivity and purity, the prod-
ct requirements are met  at this stage. As an alternative to
econstructing the evaporator system, implementing steam
rajectories should therefore be regarded an idea to consider.
uture studies should focus on implementation of the trajec-
ories on a practical level, since the open-loop method applied
n this contribution is not practically feasible for real-time
peration. Finally, the results from this study show that PyMoC
ith a wrapper can be successfully used for trajectory opti-
ization of an Aspen Plus Dynamic model employed as if it
ere a black box.
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