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ABSTRACT
ABINIT is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It imple-
ments density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and
Bethe–Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the “temperature-
dependent effective potential” approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and
other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic
materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief descrip-
tion of the project, a summary of the theories upon which ABINIT relies, and a list of the associated capabilities. It then focuses on selected
capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment
of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts,
and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain per-
turbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap,
and spin-magnetic-field perturbation. The ABINIT DFPT implementation is very general, including systems with van der Waals interaction or
with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput
calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library LIBPAW.
ABINIT has strong links with many other software projects that are briefly mentioned.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144261., s

I. INTRODUCTION

Since the introduction of density functional theory (DFT) in
1964,1 the field of electronic structure calculations has changed pro-
foundly. This theory became the most popular electronic structure
method used to characterize materials at the atomic scale and has
given rise to different research efforts that have been pushed fur-
ther by the use and applications of DFT. One of the reasons why
this theory has become the workhorse of material characterization
is the wide distribution of computational packages, where solutions
of the Kohn–Sham equations are implemented. Every package has a
different scheme and philosophy, but all of them have in common
the generation of a software that is user-friendly and solves the DFT
equations. In this respect, ABINIT

2–5 was one of the first free licensed
solid-state electronic structure packages on the market.

In this paper, we give first a global overview of ABINIT at the level
of its history, community, and impact, as well as its main capabilities.
Then, we focus on selected capabilities that are perceived as rather
specific among the set of available first-principles packages.

After describing the historical development of the project and
its impact (Sec. II), we present an overview of ABINIT capabilities
through a collection of keywords and concepts, with entry points
in the documentation (Sec. III). This should allow users to know
whether ABINIT is capable of delivering some specific property of
materials.

Sections IV and V single out some specifics of ABINIT. Section IV
focuses on ground-state and electronic properties: correlated
materials [Dynamical Mean-Field Theory (DMFT)], Sec. IV A;
treatment of finite electric field, Sec. IV B; properties at the atomic
nuclei, Sec. IV C; and positron annihilation, Sec. IV D. Sec-
tion V focuses on response properties: Raman intensities, Sec. V A;
responses to strain, Sec. V B; responses including van der Waals
interactions, Sec. V C; spatial dispersion (flexoelectricity and
dynamical quadrupoles), Sec. V D; electron–phonon coupling,
Sec. V E; temperature-dependent properties of materials in the

anharmonic regime, Sec. V F; responses of solids presenting non-
collinear magnetism (NCM), Sec. V G; response to spin-magnetic
perturbation, Sec. V H; and temperature-dependent optical spec-
tra, Sec. VI. Finally, we spend a few words on our recent com-
munity efforts related to accurate and efficient Norm-Conserving
Pseudopotential (NCPSP) as well as Projector-Augmented Wave
(PAW) atomic data (Sec. VI A), to high-throughput calculations
(phonon band structure, second-harmonic generation, and accu-
rate GW bandgap calculations; Sec. VI B), and to the LIBPAW library
(Sec. VI C).

II. THE PROJECT: HISTORY, COMMUNITY,
AND IMPACT

The ABINIT project can be traced back to an initial effort in
the late 1980s by Allan, supervised by Michael P. Teter, at Corn-
ing Incorporated and Cornell University. The code used norm-
conserving pseudopotentials and a planewave representation of the
Kohn–Sham orbitals, with the local-density approximation (LDA)
as the only exchange–correlation functional available, and was writ-
ten in FORTRAN 77. In 1990, Gonze joined at Cornell, and they
implemented density functional perturbation theory (DFPT) on top
of what was then dubbed the CORNING code in a separate application,
named RESPFN (Corning Incorporated is a large American company
focused on glass and materials applications). After a few years in the
hands of Biosym, Inc., where the name was changed to PLANE_WAVE

and the code was sold commercially, the development of CORNING

was stopped in 1996. At that point, Gonze and Allan decided to cre-
ate a free license code that should be available to the community
with the critical recognition that worldwide collaboration was neces-
sary to develop the code. The previous codes (PLANE_WAVE, RESPFN, and
CORNING) became the pillars of this new implementation. Corning
Incorporated agreed to release the source of PLANE_WAVE to support
this effort and agreed not to enforce a patent they held on the pre-
conditioned conjugate gradient algorithm.6 The code was rewritten
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in Fortran 90 with parallel features, originally named DFT2000 but soon
changed to ABINIT (September 1998).

The first version of ABINIT was made public in March 1999, pri-
marily to beta testers. Initially, ABINIT was only capable of finding the
total energy, the electronic charge density, and the electronic struc-
tures of periodic systems using pseudopotentials and a planewave
basis. In July 1999, the full response function capability was also
available. This implementation was a significant step, as it was one
of the only codes that allow users to calculate phonons, dielectric
constants, Born effective charges, etc. The first publicly available
release of ABINIT was made in December 1999 under the GNU Gen-
eral Public License. In June 2000, an international advisory com-
mittee was selected to help with the strategy, support, and manage-
ment of the code. The first ABINIT developer workshop took place in
Louvain-la-Neuve in 2002. Since then, the developer ABINIT meeting
takes place every two years. The 9th developer workshop took place
in Louvain-la-Neuve in 2019, with the participation of around 60
speakers.

The ABINIT spirit is not only to offer the community a free license
code but also to encourage users and developers to reuse parts of
the computational package. The source code is always available, and
if a user is interested in introducing specific implementations into
the package, an account on GitHub suffices such that changes can
be merged and tested in the official version. The ABINIT community
has created a series of methods and tests to guarantee the stability of
the code, precisely to avoid the introduction of errors by new imple-
mentations. ABINIT is a very well documented code with an extensive
description of installation, details of the input variables and their dif-
ferent dependencies, a very established tutorial with specific applica-
tions and a full set of examples (more than 800). To support general
users, ABINIT has created a forum, which is linked to the ABINIT website,
and allows users to ask questions related to theory, implementations,
or use of ABINIT. The forum is a primary resource for users, and both
developers and users answer questions and offer advice.

To spread the use of ABINIT and to train young scientists in the
field of electronic structure, the ABINIT developers have been sup-
porting schools around the world. While the first ABINIT workshop
was in 2002, there are usually between 2 and 3 schools and work-
shops per year in many different places. There is a regular presence
at the March Meeting of the American Physical Society, where half

day tutorials are organized by the ABINIT community, and at CECAM.
Some of the CECAM events are theory oriented workshops, with dis-
cussions of the formalism and algorithms behind ABINIT, and exam-
ples of calculations are discussed. On the other hand, there are also
regular CECAM hands-on schools, which allow users to gain expe-
rience in the use of ABINIT and also learn the theoretical background.
These schools are very well attended but depend on specific loca-
tions with sufficient access to computational facilities. In all cases,
the presentations of the ABINIT developer workshops, schools, and
conferences are stored in the ABINIT web page and are accessible glob-
ally. These presentations offer the users details of the code but are
also an archive of the different implementations and how they have
been tested and used.

The ABINIT community champions free software development
but also wants to keep the integrity and modularity of the com-
putational package. All new developments need to be approved by
the community, to ensure to keep track of the different efforts, and
to conduct a minimal screening on the dependability and ethical
behavior of people involved in the code development. The driv-
ing idea is to preserve a constructive and supporting environment
for all scientists willing to collaborate. All major implementation
efforts in ABINIT are connected to individual publications, but they are
also introduced through specific publications about every three–five
years, where the most recent research efforts are described. With this
method, ABINIT tries to acknowledge the developers’ achievements
and use these publications to describe how the new implementations
are part of the broader package. The ABINIT attitude toward publi-
cations is based on research independence, but also collaborative
efforts that continue to grow the computational package.

The research interest of the developers group (around 50 peo-
ple at the time of writing) are respected by the ABINIT community
and overseen by an international advisory committee. This com-
mittee consists of around ten senior scientists, which have been
involved in the development of ABINIT and have been supportive of
the philosophy and efforts of the community.

A metric of ABINIT’s impact can be obtained by using biblio-
metric analysis accessed from the Web of Science (data taken on
December 26th, 2019). This can be assessed by adding all citations
of all the main papers reporting ABINIT developments, i.e., Refs. 2–5.
We found a total of 5125 citations since 2002 of which 3995 are

FIG. 1. ABINIT citation count by adding Refs. 2–5 and
deleting all record repetitions (see details in the text).
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TABLE I. Overview of ABINIT capabilities (first part, A–G). For each keyword, ordered alphabetically, one or several links are provided. Each highlighted (bold) keyword
emphasizes a capability of ABINIT that is not present in many first-principles packages or that is particularly strong (e.g., high-throughput calculations have been performed).
A specific section is dedicated to such keywords in the present paper. In addition, other links to documentation are pointed out. “topic:<name-of-topic>” refers to the
ABINIT topic online documentation, available at https://docs.abinit.org/topics/<name-of-topic>. “plot_<name-of-plot>” refers to the ABIPY gallery of plotting scripts, available at
http://abinit.github.io/abipy/gallery/plot_<name-of-plot>.

Keyword/concept Documentation

Atomic mean square displacement (phonons) topic:Temperature, plot_phonons_msqd.html
Bader atomic charges topic:Bader
Born effective charges Section VI B, topic:DFPT
Born effective charges, non-collinear magnetism case Section V G
Correlated electronic state (dynamic—DMFT and static—DFT+U) Section IV A, topic:DMFT
Conductivity, electrical (electron–phonon coupling) topic:ElPhonTransport
Conductivity, thermal (electron–phonon coupling) topic:ElPhonTransport
Debye–Waller temperature factors (phonons) topic:Temperature, plot_phonons_msqd.html
Dielectric permittivity Section VI B, topic:DFPT, topic:Phonons
Dielectric permittivity, non-collinear magnetism case Section V G
Dielectric function (optical-frequency dependent) topic:Susceptibility, plot_mdf.html, plot_scr.html,

plot_multiple_mdf.html, plot_optic.html
Dielectric function (infrared-frequency dependent) topic:Phonons, plot_phonons_infrared.html
Dynamical matrices topic:Phonons
Dynamical quadrupoles Section V D
Effective mass topic:EffectiveMass
Elastic tensor Sections V B and V C, topic:DFPT, topic:Elastic
Elastic tensor, temperature-dependent Section V F
Electric field (finite, using Berry phase) Section IV B, topic:Berry
Electric field gradient (at nuclei) Section IV C, topic:EFG
Electro-optic effect Section V A, topic:nonlinear
Electric polarization (Berry phase) Section IV B, topic:Berry
Electron self-energy (GW) topic:SelfEnergy
Electron spectral function (GW) topic:GW, plot_gw_spectral_functions.html
Electron spectral function (DMFT) Section IV A, topic:DMFT
Electron–phonon coupling strength topic:ElPhonInt, plot_a2f.html
Electronic bandgap (GW) topic:GW, plot_qps.html
Electronic bandgap, temperature-dependent Section V E, topic:TDepES
Electronic band structure Section VI B, topic:ElecBandStructure, topic:GW,

topic:ldaminushalf, plot_ebands_edos.html,
plot_ebands.html, plot_kpath_from_ibz.html,
plot_ejdos.html, plot_qpbands_with_scissors.html

Electronic band structure (spin-polarized) topic:ElecBandStructure, plot_ebands_spin.html
Electronic density of states (DOS) topic:ElecDOS, plot_edos.html, plot_ebands_edos.html
Electronic fat band structure topic:ElecDOS, plot_efatbands.html,

plot_efatbands_spin.html
(With angular momentum weights) plot_ejdos.html
Electronic quasiparticles (SCGW) topic:GW, plot_scqpgw.html
Eliashberg function (electron–phonon) topic:ElPhonInt, plot_a2f.html
Entropy (phonons) topice:Temperature, plot_phthermo.html
Excited states (charged excitations) topic:GW, topic:Coulomb
Excited states (neutral excitations) topic:DeltaSCF, topic:BSE, topic:TDDFT
Fermi surface topic:ElecBandStructure, plot_fermisurface.html
Flexoelectricity Section V D
Free energy (phonons) Section VI B, topic:Temperature, plot_phthermo.html
Geometry optimization topic:GeoOpt, topic:ForcesStresses, plot_hist.html
Grüneisen parameters topic:Temperature, plot_gruneisen.html
GW corrections topic:GW, plot_qpbands_with_interpolation.html

unique, with an average number above 250 total citations per year
since 2011 (see Fig. 1). Using this database of unique entries, we
can address the impact of ABINIT on different fields of science by
counting some of the papers reported in high impact journals. For
example, there are 160 papers from Physical Review Letters, 109 from

Journal of Chemical Physics, 108 from Computational Materials Sci-
ence, 32 from Nano Letters, 33 from Scientific Reports, 18 from
Nature Communications, 8 from Nature Materials, and 7 from
Nature. As is clear from this analysis, ABINIT is a healthy package
that impacts several scientific fields and supports the work of many
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TABLE II. Overview of ABINIT capabilities (second part, I–Z). For each keyword, ordered alphabetically, one or several links are provided. Each highlighted (bold) keyword
emphasizes a capability of ABINIT that is not present in many first-principles packages or that is particularly strong (e.g., high-throughput calculations have been performed).
A specific section is dedicated to such keywords in the present paper. In addition, other links to documentation are pointed out. “topic:<name-of-topic>” refers to the
ABINIT topic online documentation, available at https://docs.abinit.org/topics/<name-of-topic>. “plot_<name-of-plot>” refers to the ABIPY gallery of plotting scripts, available at
http://abinit.github.io/abipy/gallery/plot_<name-of-plot>.

Keyword/concept Documentation

Infrared reflectivity topic:Phonons
Interatomic force constants topic:Phonons
Internal energy (phonons) Section VI B, topic:Temperature, plot_phthermo.html
Inverse dielectric function (optical-frequency dependent) topic:Susceptibility, plot_scr_matrix.html
Joint density of states (electronic) topic:ElecBandStructure, plot_ejdos.html
Macroscopic average topic:MacroAve
Magnetic field (finite) topic:MagField
Magnetic moments topic:MagMom
Magnetic susceptibility Section V H
Molecular dynamics topic:MolecularDynamics, topic:DynamicsMultibinit, topic:PIMD
Mössbauer isomer shift Section IV C, topic:EFG
Optical absorption Section VI, topic:BSE, topic:Optic
Optical response, temperature-dependent Section VI, topic:BSE, topic:Optic
Phonon bands Sections V C and VI B, topic:Phonons, topic:DFPT,

plot_phonons_lo_to.html, plot_phonons.html,
plot_ddb_asr.html, topic:Band2eps

Phonon bands, temperature-dependent Section V F, topic:Tdep
Phonon bands, non-collinear magnetic case Section V G, topic:Phonons, topic:DFPT
Phonon fat bands topic:Phonons, plot_phonon_fatbands.html, plot_phbands_and_dos.html
Phonon density of states topic:Phonons, plot_phonon_pjdos.html, plot_phbands_and_dos.html
Phonon density of states, temperature-dependent Section V F, topic:Tdep
Phonon linewidth (electron–phonon coupling) topic:PhononWidth
Piezoelectric tensor Sections V B and V C, topic:DFPT, topic:Elastic
Positron annihilation Section IV D, topic:positron
Projected phonon density of states topic:Phonons, plot_phonon_pjdos.html, plot_phonons_msqd.html
Quasiparticle energies (GW) topics:GW, plot_qps.html
Raman cross section/intensities Section V A, topic:nonlinear, topic:Phonons
Refraction index Section VI, topics:DFPT, topics:Optic, topic:BSE
Resistivity (electron–phonon coupling) Section V E, topic:ElPhonTransport
Scanning tunneling microscopy map topic:STM
Stopping power of charged particles topic:RandStopPow
Second harmonic generation Section VI B, topic:nonlinear, topic:Optic, plot_optic.html
Sound velocity Section VI B, topic:PhononBands, plot_speed_of_sound.html
Specific heat (phonons) Section VI B, topic:Temperature, plot_phthermo.html
Structural relaxation topic:GeoOpt, topic:ForcesStresses, plot_hist.html
Superconducting transition temperature Section V E, topic:ElPhonTransport
Thermal expansion topic:Temperature
Thermodynamic properties Section VI B, topic:Temperature
Thermodynamic properties including anharmonicities Section V F, topic:Tdep
Transition states, transition paths topic:CrossingBarriers, topic:TransPath
Two-phonon DOS, sum and difference spectra topic:PhononBands
Unfolding supercell band structure topic:Unfolding, plot_fold2bloch.html
Wannier interpolation topic:ElecBandStructure, topic:Wannier, plot_wannier90_abiwan.html
Zero-point renormalization of bandgap Section V E, topic:TDepES

agencies and institutions, with authors of 84 different countries and
from more than 2000 different institutions.

III. OVERVIEW OF FORMALISMS AND PROPERTIES
An overview of the capabilities of a large scientific code can

be structured in different ways. The present work targets users
who simply wish to know whether ABINIT is capable of computing a

particular property of a material or nanosystem and possibly repre-
senting it graphically. In this respect, Tables I and II give an alpha-
betic list of keywords (or concepts) that best represent a capability
of ABINIT, with related documentation: possibly some section of the
present paper and/or reference to some “topics” of the on-line ABINIT

Web documentation https://docs.abinit.org/topics/features and/or
reference to some scripts and illustrations in the ABIPY gallery
http://abinit.github.io/abipy/gallery/index.html. Highlighted (bold)
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TABLE III. Summary of commonly used variables and their meanings found within
the text. Tensor and vector quantities are shown in bold.

Variable Description

B Magnetic field
c Speed of light
C0 Clamped-ion elastic tensor
C6,IJ Dispersion coefficient
D/bfq Dynamic matrix
e Electronic charge
e0 Clamped-ion piezoelectric tensor
E Total energy
E Electric field
ε∞ Optical dielectric tensor
Eγ Energy of a nuclear transition
Ee−p

c Electron–positron correlation functional
f Band occupancy
f mk+q Fermi–Dirac occupation factor
|i⟩ Polarization vector along direction i
i, j Reduced coordinates
n(ω), nqν Bose occupation factor
nα Refractive index along α
P Polarization
re Classic electron radius
r Linear electro-optic tensor
U Onsite Coulomb interaction energy
|unk⟩ Bloch wavefunction
um Eigen-displacement vector
U0 Ground-state energy
⟨v2⟩ Mean square velocity of the nucleus
vext External potential
vnk Particle velocity
Z Atomic number
Z∗ Born effective charge tensor
α, β Cartesian coordinates
αm Mode dependent Raman tensor
Γ Mode independent line-width
γ Lattice-strain coupling tensor
δ Mössbauer isomer shift
Δ⟨r2⟩ Change in size of the nucleus
ηαβ Strain component
μ̄II Frozen ion flexelectricity
τ Positron lifetime
χ(1) First order electric susceptibility
χ(2) Second order susceptibility
(p)
Φ Interatomic force constants
|Ψ⟩ Planewave basis functions
|Φ⟩ All electron wavefunctions
∣Φ̃⟩ Pseudized atomic wavefunctions
ωl Laser light frequency
Ω0 Unit cell volume

keywords refer to specific sections of the present paper. The empha-
sis on these keywords stems from the belief that such character-
istics/capabilities of ABINIT are not commonly found among first-
principles codes and can be put forward as examples of what makes
ABINIT unique.

In the “topics” tags of the online ABINIT Web documentation,
we try to address the generic challenge of software documentation
by providing for each topic a hub to the underlying theory (includ-
ing bibliographical references), to the related ABINIT input variables,
to the example ABINIT input files, and to the ABINIT tutorials, also men-
tioning possible restrictions in the implementation or different levels
of accuracy of the implementation.

ABINIT implements different first-principles formalisms, i.e.,
DFT,7 DFPT,3,8–10 time-dependent density functional theory
(TD-DFT),11 many-body perturbation theory (MBPT),12 and
DMFT.13,14 Each of these formalisms allows one to address different
properties at different levels of accuracy. As an example, the elec-
tronic bandgap can be computed from DFT, but the predicted value
is notoriously inaccurate. Instead, the bandgap is better computed
using the GW approximation within MBPT, also implemented in
ABINIT. Moreover, even within MBPT-GW, different levels of accu-
racy are available: the simple one-shot G0W0 approach with different
plasmon pole models or more sophisticated self-consistent flavors of
GW (SCGW). Similarly, different families of exchange–correlations
functionals can be used in DFT: LDA, generalized-gradient approx-
imation (GGA), meta-GGA, hybrid functionals, and van der Waals
(vdW) corrected functionals. It will not be the purpose of this section
to specify for each property the different levels of accuracy. By con-
trast, such information might be found, thanks to the on-line ABINIT

topics.
Similarly, within some formalism, the ABINIT implementation

might not be compatible with both the norm-conserving pseudopo-
tential (NCPSP) approach and the PAW approach. In addition, the
treatment of non-spin-polarized systems, collinear magnetic sys-
tems, collinear antiferromagnetic systems, and non-collinear mag-
netic systems might not all be available.

In Ref. 4, we provided such a more detailed description of the
formalism+implementation level for many of the ABINIT capabilities
(see Tables 1–4 of Ref. 4). ABINIT has evolved since then, and the best
available source of information is now the on-line topics.

ABINIT also has several graphical post-processors, including ABIPY

and AGATE. A gallery of ABIPY examples (with associated Jupyter note-
books) is available at http://abinit.github.io/abipy/gallery/index.html.
The links to these examples are also mentioned in Tables I and II.

Finally, note that some of the capabilities of ABINIT are presently
not yet available/documented in the latest public release of ABINIT

(v8) (in particular those in Sec. IV D, part of IV E and part of VI B)
but will be so in the forthcoming one (v9). Some of these are men-
tioned in a section of the present paper, but there is no associated
topic or ABIPY example. Some of the common variables used within
this text are found in Table III.

IV. GROUND STATE AND ELECTRONIC PROPERTIES
A. Correlated materials: Dynamical-mean field theory

Systems with localized orbitals, such as transition metals: lan-
thanides or actinides, exhibit strong correlation effects and are
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FIG. 2. The DFT+DMFT scheme as implemented in ABINIT combines the
DMFT self-consistent loop, which computes the local self-energy, and a DFT
self-consistent loop, which uses the DMFT Green’s function to compute the
DFT+DMFT electronic density. KS stands for “Kohn–Sham” (see also Refs. 19
and 20).

difficult to describe using DFT with currently available function-
als.14 One way to improve their description is to explicitly include
the onsite Coulomb interaction U between the electrons in the
correlated orbitals of the system (e.g., the d or f shells).

The DFT+U method, available in ABINIT,15–17 treats this interac-
tion statically and is most efficient on magnetic Mott insulators. To
describe in a more coherent way, systems with various interaction
strengths, the method of choice is DMFT.13 This method solves the
local many-body problem for a given correlated atom in the effective
field created by the other atoms. This field is self-consistently related
to the solution of the atomic impurity problem. The combination
of DFT and DMFT14,18 enables the description of realistic systems
with both correlated and non-correlated electrons. The DFT+DMFT
method has been helpful to improve, in particular, spectral func-
tions (describing both Hubbard bands and quasiparticle peaks in
the spectral function), total energy (for iron systems, actinides, or
lanthanides), and magnetic properties (see e.g., Ref. 14).

The method has been implemented in ABINIT
5,19,21 and is pre-

sented in a tutorial. The key points of the available DFT+DMFT
implementation are the following:

● Correlated orbitals are defined as projected local orbitals
Wannier functions,21 and their localization can easily be
changed by modifying the associated energy windows.

● The method is fully self-consistent with respect to the elec-
tronic density (see Fig. 2).19

● Impurity solvers directly available in ABINIT are the Hubbard
I method and the continuous time quantum Monte Carlo22

(using either a diagonal or a general hybridization function)
in the simplified but efficient density–density approxima-
tion.19,23 Spin–orbit coupling calculations are possible using
a real valued imaginary time hybridization function.

● Internal energy and electronic entropy can be computed.19,23

● Impurity and k-resolved spectral functions can be computed
using analytical continuation of the Green’s function or the
self-energy with an external code (e.g., OmegaMaxent24).
Figure 3 shows the LDA+DMFT spectral function of α-
cerium, as computed in ABINIT.

● Several parallelization schemes can be used,17 allowing
application of the method to large systems.

● ABINIT is coupled to the CTHYB impurity solver of the TRIQS
library25,26 through a C++ interface. This allows one to
solve the impurity problem in the fully rotationally invariant
formulation of the interacting Hamiltonian.

● ABINIT is built with a python invocation scheme that allows
any personalized python script to solve the impurity prob-
lem. Thus, an experienced user can invoke their favorite
solver within a DFT+DMFT calculation from ABINIT.

DFT+DMFT uses effective interactions parameters U and J as
an input. They can be computed in ABINIT

27 on the same correlated
Wannier orbitals using the constrained Random Phase Approxi-
mation (cRPA) method.28,29 In cRPA,29 as the screening arising
from electronic transitions among the correlated shell is a correla-
tion effect already described in the CTQMC solution of the impu-
rity problem, only other electronic transitions are used to compute
the screening.29 The cRPA method in ABINIT is documented by a
tutorial.

These schemes were recently used in f electron systems to com-
pute the f effective interactions parameters,20,27,30 to improve the
description of their spectral or structural properties,16,20,23,31 and to
improve our understanding of the superconducting symmetries in
Sr2RuO4.32

FIG. 3. Spectral function of α-cerium computed in
LDA+DMFT along symmetry lines of the Brillouin zone (with
U = 6 eV and J = 0.7 eV). Two visible effects brought by
LDA+DMFT are the upper Hubbard band at 4 eV and the
renormalization of the LDA band structures near the Fermi
level.
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B. Finite electric fields
ABINIT can be used to compute the response to electric fields in

several ways. From DFPT, the susceptibility can be calculated33,34

as the second-order derivative of the total energy at zero field
∂2E/∂Ei∂EJ . Alternatively, the first order derivative is the electri-
cal polarization P, which may be non-zero even in the absence
of external fields, e.g., in ferroelectric materials. Computing this
term appears formally equivalent to computing ∫dr rn(r), that is,
the dipole moment density, but this expression is ill-defined in an
extended system. This problem is solved by the modern theory of
polarization35 in which the key insight is the recognition that while
the polarization is not well-defined, its derivative with respect to a
change in the system is, and so the polarization may be computed
(up to a constant) through integration. The key formula is

P = fe
(2π)3 ∑

n
∫ dk⟨unk∣i∇k∣unk⟩. (1)

Equation (1) is implemented in ABINIT using both NCPSP and
the PAW formalism. In both cases, the wavefunction derivatives
are computed using a finite-difference scheme so that a coherent
phase relationship between the k-points may be ensured. From this
approach, the polarization may be computed.

With a scheme in place to compute the polarization, the
response to a finite electric field may be computed by adding a
term −P ⋅ E to the total energy.36 Then, its effect is included in
the self-consistent energy minimization cycle through the gradient
δ(−P ⋅ E)/δ ⟨unk∣.37,38 In this way, Kohn–Sham states that minimize
the total energy including the electric field is found [the polarization
from Eq. (1) is updated at each step as the Kohn–Sham states evolve],
provided that the field is not so strong that the insulating gap breaks
down.

Using this approach, we have computed a number of responses,
including linear terms that permit validation against DFPT, and
nonlinear responses that are only available using finite field calcu-
lations.38

C. Properties at the atomic nuclei
ABINIT provides several features for computing properties that

arise from the electronic structure very near the atomic nuclei. These
features are of use for computing and interpreting a variety of exper-
imental probes, in particular Mössbauer spectroscopy,39 and nuclear
magnetic and nuclear quadrupole resonance spectroscopy.40,41

Such observables involve the overlap of the electronic wave-
functions with the nucleus, in the case of the Mössbauer isomer shift,
and the gradient of the electric field at the nucleus, observed in both
Mössbauer spectra and magnetic resonance experiments. As both
observables depend sensitively on details of the electronic structure
very close to the nuclear position, these are cases where a planewave-
only treatment with NCPSP is quite inaccurate and it is necessary to
use the PAW formalism.

The Mössbauer isomer shift δ, in velocity units, is determined
by the overlap of the electronic density with a nucleus undergoing a
nuclear state transition and is given by

δ = c
Eγ

2πZe2

3
[ρA(0) − ρS(0)]Δ⟨r2⟩ (2)

for the electron density of the absorber (A) and source (S) at the
nucleus (here located at 0). In this formula, Eγ, the energy of a
nuclear transition, and Δ⟨r2⟩, the change in size of the nucleus, are
nuclear properties that must be supplied by the user, while ABINIT

can determine the electronic contributions ρA and ρS. To do this,
the PAW formalism is used in which an observable ⟨A⟩ is computed
as42–44

⟨A⟩ = ⟨Ψ∣A∣Ψ⟩ +∑
ij
⟨Ψ̃∣p̃i⟩⟨p̃j∣Ψ̃⟩(⟨Φi∣A∣Φj⟩ − ⟨Φ̃i∣A∣Φ̃j⟩). (3)

For properly constructed PAW data, all-electron accuracy may be
recovered in this formalism. For computation of ρ(0) appearing in
Eq. (2), we use as the observable the 3-D delta-function δ(0).39

Using Eq. (3), isomer shifts may also be computed, given avail-
able data for Eγ and Δ⟨r2⟩ for the transition in question. To vali-
date the method, a range of shifts were computed and then Δ⟨r2⟩
extracted by comparison to known shifts; we found excellent agree-
ment for a variety of nuclei, including tin, germanium, and zinc.39

The zinc case is a very stringent test because the isomer shift range
is so small and the transition so sharp; accurate modeling requires
inclusion of the secondary Doppler shift, which we computed by
first principles from the phonon dispersion relations. The secondary
Doppler shift takes the form SD =−⟨v2⟩/2c and is obtainable once the
full phonon dispersion curves are computed. We found that even in
this case, the PAW-derived Δ⟨r2⟩ was in excellent agreement with
experimental values.39

The electric field gradient calculation proceeds along similar
lines, except the observable of interest is now the second derivative
of the potential n(r)/|r − r′| for density n(r). The implementation in
ABINIT

40 is similar to that in other codes, such as QUANTUM ESPRESSO.45

As usual in PAW, the density is decomposed into a planewave-based
part and PAW-sphere corrections. In addition, there is a charge den-
sity due to the ions. The planewave-based field gradient is computed
in reciprocal space and then evaluated at the nuclear site of interest
by Fourier-transformation; the PAW-sphere corrections are com-
puted in real space, noting that the use of the PAW compensation
charge ensures that no inter-sphere contributions need be consid-
ered; and the gradient due to the fixed ions is computed using an
Ewald-summation method.46 As an example of the application of
this feature, we showed41 the sensitivity of the electric field gradient
response to strong correlation effects in LaTiO3 by combining the
field gradient calculation with the DFT+U method, also available in
ABINIT (see Sec. IV A).

D. Positron annihilation
One of the unique features of ABINIT is the fully self-

consistent implementation of two-component density functional
theory (TCDFT)47,48 within the PAW formalism.44 This technique
allows one to accurately compute various properties of annihilat-
ing electron–positron pairs, which, in turn, can be used to interpret
positron annihilation spectroscopy (PAS) measurements.49

Within TCDFT, the total energy of interacting positrons and
electrons is written as

E[n+, n−] = E[n+] + E[n−] + ∫ dr vext(r)[n−(r) − n+(r)]

− ∫ dr ∫ dr′
n−(r)n+(r)
∣r − r′∣ + Ee−p

c [n+, n−], (4)
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where n+ and n− are positron and electron densities, E[n+] and
E[n−] are one-component functionals for positron and electrons,
and ∫dr ∫dr′ n−(r)n+

(r)
∣r−r′ ∣ corresponds to the Hartree interaction. Var-

ious approximations can be used to calculate the Ee−p
c term, both

within LDA48,50 and GGA.51,52

The TCDFT implementation in ABINIT is based on a unified
formalism in which both electron and positron wavefunctions are
expressed using the same mixed PAW basis (planewaves and atomic
orbitals).53 This means that the electronic and positronic energies
and forces can be calculated self-consistently. For example, it allows
for full geometry optimization of systems containing positrons, an
effect that has been shown to be critical in determining reliable anni-
hilation features.54 However, it is worth noting that the positron cal-
culations within the PAW method are sensitive to the completeness
of the PAW dataset. To achieve an accurate description of positron
densities and wavefunctions, it is often necessary to include semicore
electrons in the PAW dataset.53

Various properties of annihilating electron–positron pairs can
be calculated within ABINIT. First, positronic wavefunctions and den-
sities in the direct space can be accessed and visualized to inspect
the localization of the particle in a given system. An example is
given in Fig. 4, where the isodensity of a positron localized in a sil-
icon vacancy in SiC is shown. Second, the total energies of a system
containing a positron can be used to calculate binding energies or
affinities. Third, based on the electron and positron densities, the
positron lifetime τ can be calculated as the inverse of the annihilation
rate λ,

λ = 1
τ
= πr2

e c∫ dr n−(r)n+(r)g(n−, n+), (5)

where g(n−, n+) is an enhancement factor, corresponding to the
increase in annihilation due to the screening of the positron by
the electrons. Several parameterizations for g(n−, n+) can be used
in ABINIT. Finally, the electron and positron wavefunctions can be
used to calculate momentum distributions ρ(p) of annihilating pairs,
following47

ρ(p) = πr2
e c∑

i
∣∫ dr e−ip⋅rΨe-p

i (r)∣
2
, (6)

where Ψe-p
i is the two-particle wavefunction in the state i and p is the

given momentum.

FIG. 4. Isodensity of a positron localized inside a silicon vacancy in silicon carbide.
This figure was generated using VMD.62

The TCDFT implementation in ABINIT has already been applied
to various systems. It has been used to calculate the annihilation
properties of bulk metals and semiconductors.53 Calculations for
vacancy-type defects in systems, such as SiC,54–56 UO2,57,58 GaN,59

and yttria-stabilized zirconia,60 have been performed and used to
analyze experimental data. Positron lifetimes and binding energies
have also been investigated on Fe(001) surfaces with and without
adatoms.61

V. RESPONSE PROPERTIES: SPECTROSCOPY,
VIBRATIONS, DIELECTRIC RESPONSE, TEMPERATURE
DEPENDENCE, AND SPIN-MAGNETIC FIELD
COUPLING

Many physical properties of materials can be formulated as
derivatives of the energy. Although such derivatives might be com-
puted from finite differences techniques, they can also be conve-
niently determined from perturbation theory. ABINIT does not only
compute many energy derivatives from DFPT but also gives readily
access to various related physical quantities in Cartesian coordinates
and conventional units.

As a basic feature, ABINIT routinely determines standard sec-
ond energy derivatives with respect to atomic displacement (τq),
homogeneous static electric field (E ), and homogeneous strain (η)
perturbations,33,34,63 which are related to dynamical matrices at any
q-vector (Dq), optical dielectric tensor (ε∞), Born effective charge
tensors (Z∗), clamped-ion elastic tensors (C0), clamped-ion piezo-
electric tensors (e0), and lattice-strain coupling tensor (γ), as sum-
marized in Table IV. Relying on these bare quantities, ABINIT also
provides access to additional properties such as the full phonon
dispersion curves (interpolated by separating short-range and long-
range dipolar interactions), interatomic force constants in real space
(short-range and dipolar contributions), infrared intensities, static
and infrared dielectric constants, and relaxed ion elastic and piezo-
electric tensors. All of these are accessible both with NCPSP and in
PAW, using LDA or GGA functionals. The specific case of the strain
perturbation63 that is a unique feature of ABINIT is further discussed
in Sec. V B.

Going further, ABINIT also implements some third-order energy
derivatives and responses to additional perturbations, providing
access to an even much broader set of properties, as discussed
below.

A. Raman spectroscopy and the electro-optic effect
Beyond the development of DFPT up to second-order,34 non-

linear properties can be accessed using third-order DFPT. Thanks

TABLE IV. Array of second derivatives of the appropriate energy functional with
respect to atomic displacement (τ), electric field (E ), and strain (η) perturbations.
In addition to these three types of perturbations, the magnetic field perturbation is
also implemented, with corresponding cross derivatives (see Sec. V H).

∂
∂τ

∂
∂E

∂
∂η

∂
∂τ Dq Z∗ γ
∂
∂E Z∗ ε∞ e0

∂
∂η γ e0 C0
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to the 2n + 1 theorem,9,64,65 third-order energy derivatives can
be obtained from wavefunction derivatives up to first order, as
already done in second-order response calculations. Therefore, the
additional computational cost to access such third energy deriva-
tives is typically negligible compared to that needed for second-
order energy derivatives. There are, however, some linear and non-
linear properties in which an analytic treatment of the electric field
perturbation requires supplementary wavefunction derivatives.33

In ABINIT, the accessible non-linear properties are (i) the second-
order optical susceptibilities (χ(2)), (ii) the Raman tensors (αm), and
(iii) the electro-optic tensor (r).

The second-order nonlinear optical susceptibility is a third-
rank tensor related to the response of the electrons of the system
to optical electric fields, which are a priori frequency dependent.
In the present ABINIT context of the 2n + 1 theorem applied to
(static) DFT, we neglect the dispersion of χ(2) and compute it as the
purely electronic response of the system at zero frequency. Within
these conditions, χ(2) is formulated as a third-order derivative of a
field-dependent energy functional,

χ(2)ijk = −
1

2Ω0

∂3E
∂Ei∂Ej∂Ek

. (7)

The χ(2) tensor delivered by ABINIT is related to the non-linear
optic “d-tensor” as dijk = (1/2)χ(2)ijk and can be calculated with
an additional scissor correction on the electron band energies.
Such a second-order optical susceptibility has been recently used
for high-throughput second-harmonic generation calculations (see
Sec. VI B 2).

The Raman tensor describes the change in linear optical sus-
ceptibility, χij, produced by an atomic displacement τκβ of atom κ
in direction β. It is, therefore, related to the following third energy
derivative:66

∂χ(1)ij

∂τκβ
= − 1

Ω0

∂3E
∂τκβ∂Ei∂Ej

. (8)

Using Placzek’s approximation,67 the Raman intensity αm
ij of a Stokes

process associated with a phonon mode m depends on the Raman
tensors as66,68,69

αm
ij =∑

κ,β

∂χ(1)ij

∂τκβ
um(κβ). (9)

Depending on the type of phonon mode, i.e., transverse optic (TO)
or longitudinal optic (LO), the derivative of the electric susceptibility
with respect to an atomic displacement must be written as66,70

⎛
⎜
⎝

∂χ(1)ij

∂τκβ

⎞
⎟
⎠

TO

=
∂χ(1)ij

∂τκβ
∣
E=0

, (10)

⎛
⎜
⎝

∂χ(1)ij

∂τκβ

⎞
⎟
⎠

LO

=
∂χ(1)ij

∂τκβ
∣
E=0
− 8π

Ω0

∑
l

Z∗κβ,lql

∑
l,l′

qlε∞ll′ q′l
∑

l
χ(2)ijl ql, (11)

where q is the direction along which the Brillouin zone center is
approached. Both quantities are provided by ABINIT.

The electro-optic tensor is related to the change in linear optical
susceptibility produced by a static field. As such, it combines a priori
electronic, lattice, and strain contributions. The so-called clamped
(fixed strain) electro-optic tensor combining electronic and lattice
contributions is directly provided by ABINIT from the knowledge of
previously discussed quantities,66

rijγ =
−4π
n2

i n2
j

⎡⎢⎢⎢⎢⎣
2χ(2)ijγ +

1√
Ω0
∑
m

αm
ij

ω2
m
∑
κ,β

Z∗κβ,γum(κβ)
⎤⎥⎥⎥⎥⎦

. (12)

The unclamped electro-optic tensor includes an additional piezo-
electric contribution (strain response) that can be computed but
requires an independent calculation of the elasto-optic coefficients
by finite differences.71

The computation of the third-order energy derivatives in Eqs. 7
and 8 (providing access to the different tensors discussed above) was
first implemented in ABINIT relying on the “Berry phase” formalism;66

this implementation is available using a NCPSP approach within the
LDA and for unpolarized systems. Following the scheme of Gonze,33

Miwa72 used an alternative approach, where the electric field pertur-
bation is treated analytically, leading to a derivative operator with
respect to k vectors (∂/∂kα ). At the non-linear level, this derivative
operator is applied to first-order derivatives of wavefunctions, lead-
ing to second-order wavefunction derivatives. This way, even in the
context of the 2n + 1 theorem, a (non-self-consistent) second-order
Sternheimer equation has to be solved. Our second implementa-
tion follows that the scheme is valid for both NCPSP and PAW
approaches. It is available with LDA functionals and is valid for
unpolarized or collinear spin-polarized systems. This second imple-
mentation also converges faster than the original one in terms of the
k-point sampling. The extension to the PAW+U formalism is under
development.

ABINIT delivers all the tensors given above in Cartesian coordi-
nates and with clear units (SI or conventional literature choices).
These quantities can then be combined to compute the polarization
dependent Raman spectra of single crystals or even the Raman spec-
tra of powders. In either case, the Raman intensities can be obtained
as74

Im
ij (ω) = Cm(ω)∣⟨i∣αm∣ j⟩∣2,

Im(ω) = 2πCm(ω)((10Gm
0 + 4Gm

2 ) + (5Gm
1 + 3Gm

2 )), (13)

where G0, G1, and G2 are functions of the components of Eq. (9) 75

and a Lorentzian function is used for the broadening,

Cm(ω) = (ωm − ωl)4

2ωmc4 [n(ωm) + 1] Γ
(ω − ωm)2 + Γ2 . (14)

Post-processing scripts are provided with ABINIT to extract the Raman
tensor and print the powder-average and polarization dependent
Raman intensity to a file. An example of powder-averaged Raman
spectra for polycrystalline quartz is shown in Fig. 5.

Using the non-linear tensors computed by ABINIT, the the-
oretical Raman spectra have been successfully compared with
the experiment for many materials, including oxides,76–78 organic
compounds,79 and transition metal dichalcogenides80,81 (see also
the WURM database of Raman spectra82). Electro-optic tensors
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FIG. 5. Raman spectra of polycrystalline quartz, α-SiO2. The green line is obtained
from DFPT and PAW pseudopotentials, where the peak width is arbitrarily set to
3 cm−1. The black dotted line shows the experimental data from Ref. 73.

have also been computed for various compounds, including fer-
roelectric oxides,71,78 multiferroics,83 and monolayer transition
metal dichalcogenides.81 Going further, relying on these quantities
obtained in DFT at zero Kelvin, non-linear optical properties at
finite temperature were also successfully computed, making use of
a first-principles based effective Hamiltonian approach.84

B. The strain perturbation in density-functional
perturbation theory

One of the unique capabilities of ABINIT is the direct calculation
of the elastic and piezoelectric properties of materials by DFPT. This
involves calculating the responses to three types of perturbations:
atomic displacements, electric fields, and strains and appropriately
combining the results.85 The general structure of DFPT is based on
the systematic expansion of the variational expression for the DFT
total energy in powers of a parameter λ characterizing some depen-
dence of the energy functional. Such parameters as internal atomic
coordinates and the macroscopic electric field could be handled in
this framework in a conceptually straightforward manner. Treat-
ing macroscopic strain as a parameter within this formalism, how-
ever, is less straightforward. The approach developed for ABINIT was
based on its existing overall formulation of the DFT energy expres-
sion in reduced coordinates. This introduces real- and reciprocal-
space metric tensors into every expression. The underlying reduced-
coordinate lattice structure is invariant—all unit cells are unit cubes.
Strain affects only the metric tensors, and the λ derivatives of every
term in the Hamiltonian can be developed from derivatives of these
tensors.63

The second derivatives of the energy with respect to a pair
of perturbations are evaluated using the so-called non-stationary
expressions,

Eλ1λ2
el =

occ

∑
α
⟨ψ(λ2)

α ∣(T(λ1) + V(λ1)
ext + H(λ1)

Hxc0)∣ψ
(0)
α ⟩

+
occ

∑
α
⟨ψ(0)α ∣(T(λ1λ2) + V(λ1λ2)

ext )∣ψ(0)α ⟩ +
1
2
∂2EHxc

∂λ1∂λ2
∣
n(0)

, (15)

where ψ(λ2)
α is first-order wavefunction obtained from the self-

consistent Sternheimer equation for perturbation λ2, the parenthe-
sized superscripts denote partial derivatives, and the notation for the

various energy terms and the ground-state wavefunctions should be
self-explanatory.33 The derivative with respect to strain and the elec-
tric field, necessary for the piezoelectric tensor, has the alternative
form

∂2Eel

∂Ẽj∂ηαβ
= 2

Ω
(2π)3 ∫

BZ

occ

∑
m
⟨iψ(k̃j)

km ∣ψ
(ηαβ)
km ⟩dk, (16)

where ψkm
(k̃j) is the first-order wavefunction for the ∂/∂k pertur-

bation.86 The metric tensors involved in this context are simple and
constant throughout space. They are expressed in terms of the real-
and reciprocal-space primitive lattice vectors as

Ξij =∑
α

RP
αiR

P
αj , Υij =∑

α
GP
αiG

P
αj. (17)

Dot products of real- and reciprocal-space vectors can be expressed
in terms of their strain-invariant reduced-space counterparts using
these tensors. For example, reciprocal-space vectors K = k + G
represented by their reduced counterpart K̃ have dot products,

K′ ⋅K =∑
ij

K̃′i ΥijK̃j. (18)

First and second strain derivatives of the metric tensors follow from
the derivatives of real and reciprocal space vectors with respect to
strains,

∂Xγ

∂ηαβ
= δαγXβ ,

∂Kγ

∂ηαβ
= −δαγKβ. (19)

The only simplifying aspect of all this is that the dot product of a real
and a reciprocal lattice vector, typically appearing in phase factors,
is merely 2π times its reduced counterparts, and therefore strain-
independent.63

All the terms in the total energy expression in reduced coor-
dinates can be expressed in terms of dot products. Therefore, the
evaluation of Eq. (15) is, in principle, straightforward, while in prac-
tice exceedingly tedious. This formalism was initially developed for
multi-projector NCPSP and LDA exchange–correlation function-
als. There are special considerations for GGA functionals that were
added.87 Extension to PAW potentials within LDA was recently
added.88

The terms described so far, derivatives with respect to two
strain components (the elastic tensor), one strain component and a
uniform electric field (the piezoelectric tensor) and one strain com-
ponent and one atomic displacement (the so-called internal strain)
are all based on strain-independent atomic positions in reduced
coordinates. In fact, infinitesimal strains do produce infinitesimal
reduced-coordinate changes in atomic positions. Taking this into
account modifies the clamped-atom elastic and piezoelectric tensors
calculated so far.

Combining the clamped-ion derivatives with the atomic posi-
tion contributions is reminiscent of the chain rule for derivatives.85

The necessary intermediate derivatives (interatomic force constants
and Born effective charges) were already available in ABINIT. The
DFPT calculations of the clamped-ion tensors and these additional
derivatives are performed separately in ABINIT, and the stored results
are combined in the auxiliary program ANADDB to produce the
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final, physical relaxed-atom quantities. Both the NCPSP and PAW
formalism and codes have been verified to a high degree of accuracy,
by comparison with finite-difference calculations.

C. Density-functional perturbation theory including
van der Waals interaction: Phonons and strain
perturbation

Most DFT functionals lack a proper treatment of the long-range
e−–e− correlation. This term is crucial to properly describe the struc-
ture of weakly bound compounds and, consequently, their under-
lying properties (phonons, elastic constants, etc.). Several methods
have been developed in the past in order to include some long-
range e−–e− correlation in DFT computations. Notably, one could
mention Grimme’s DFT-D methods,89,90 the vdW-DF function-
als,91,92 as well as the TS-vdW and MBD methods.93,94 All of these
approaches add new contributions to the energy and its derivatives
that have to be properly taken into account in DFPT computations
for self-consistency.

ABINIT allows one to carry out such computations for Grimme’s
DFT-D2, -D3 and -D3(BJ) methods.95,96 These methods add to
the DFT energy a contribution that depends only on the atomic
positions,

Edisp =∑
I,J

C6,IJ({R})f (RIJ), (20)

where I and J are atomic indices, C6,IJ is the dispersion coefficient
that depends on the whole set of atomic positions R, and f (RIJ) is
a function that depends on the chosen Grimme flavor (∼ R−6

IJ at
long range) and on RIJ , the difference in atomic position between
the I and J atoms. This dispersion contribution is not compatible
with all ad hoc exchange–correlation functionals (see Refs. 89 and 90
for the current list of compatible functionals). The common GGA-
based functionals, such as GGA-PBE (Perdew-Burke-Ernzerhof)208

or revPBE,209 are nonetheless available. Due to the way these DFT-D
methods were constructed, they may not be the most suited to deal
with metals.

Nearly, all response functions available in ABINIT can be com-
puted in DFPT with the inclusion of DFT-D dispersion corrections,
with the only exception of flexoelectricity. Note that since these cor-
rections do not rely on the knowledge of the electronic density,
the (total) energy derivatives with respect to electric fields remain
untouched by the dispersion scheme. This is both an advantage
and a drawback of the DFT-D method, since it eases considerably
its implementation for response functions, but it prevents at the
same time the method to capture any direct electronic contribu-
tion (dielectric constants, Raman susceptibility, etc.). The lack of
literature on this topic does not allow us to rule on the impor-
tance of dispersion contributions in the proper description of these
properties. The reason why the DFT-D dispersion corrections are
not available for flexoelectricity comes from the indirect depen-
dence of this property on the spatial derivative of the dynamical
matrix, as mentioned in Sec. V D. Such spatial derivative is not yet
implemented.

All response functions related to the energy derivatives with
respect to atomic displacements or to strains are directly affected
by the dispersion corrections. Thanks to their pair-wise form, the
DFT-D strain-related quantities can be related to derivatives with
respect to atomic positions,

∂

∂ηαβ
=∑

κ
Rκβ

∂

∂Rκβ
, (21)

where κ is an atomic index.
The investigation of several weakly bound systems (benzene,

MoS2, etc.) using DFT-D methods has already highlighted the
importance of the dispersion contributions to interatomic force con-
stants and to phonons.80,95 Such methods generally lead to a better
agreement with the experiments than ordinary GGA-PBE. Simi-
larly to the general DFPT implementation, not only the zone-center
phonons but also those associated with an arbitrary wavevector are
accessible, allowing the computations of phonon band structures
in a fully-consistent manner. In addition, the present implemen-
tation can also be straightforwardly used to study thermal expan-
sion within the quasi-harmonic approximation (see Ref. 97 for an
example application) or electron–phonon coupling.

D. Spatial dispersion: Flexoelectricity and dynamical
quadrupoles

The flexoelectric (FxE) effect, where a strain gradient defor-
mation results in a macroscopic polarization, is a challenging
electromechanical coupling to simulate computationally. The main
reason is the a priori incompatibility of a spatially varying strain per-
turbation with periodic boundary conditions. A recent set of devel-
opments in ABINIT has overcome this difficulty by adapting the long-
wave method introduced by Born and Huang98 in the early days of
quantum mechanics to the modern tools of the DFPT. ABINIT now
has the unique capability to calculate the bulk FxE tensor for any
insulating material.

Achieving this result has taken nearly a decade of continuing
efforts, in order to settle the remarkable number of formal subtleties.
Based on the seminal work of Resta,99 early attempts100,101 made
use of supercell geometries to calculate the relevant ingredients dis-
cussed below. Later, a long-wave framework in a reciprocal space102

was established, together with a curvilinear-coordinates formula-
tion,103 which led to the calculation of the full flexoelectric response
of SrTiO3 slabs104 (see Ref. 105 for a summary of the pre-2015 devel-
opments). En route toward a practical implementation, additional
technical and formal issues were addressed, regarding the general-
ization of the uniform strain response to a “metric-wave” perturba-
tion106,107 and the proper definition of the current-density operator
in the presence of nonlocal pseudopotentials.108 These efforts cul-
minated with the present long-wave method,109 which paves the
way toward the computation of many spatial dispersion properties
with a computational burden that is comparable to conventional
linear-response calculations.

An ab initio calculation of the FxE tensor (μ) requires the
sum of an electronic (clamped-ion), a lattice-mediated, and a mixed
contribution. This intricate structure can be formulated as102,105

μII
αλ,βγ = μ̄II

αλ,βγ
²

elec.

−P(1,λ)
α,κρ Γκρβγ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mix.

+
1

Ω0
Z∗κ,αρL

κ
ρλ,βγ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
latt.

, (22)

where κ labels the atomic sublattice and the II superscript indi-
cates that the strain gradient tensor is defined as the gradient of
the symmetric strain, i.e., the so-called type-II definition is assumed.
The quantities on the right-hand side are the following: μ̄II

αλ,βγ, the
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clamped-ion FxE tensor; P(1,λ)
α,κρ , the first spatial moment of the polar-

ization field induced by an atomic displacement (also known as P(1)

tensor); Γκρβγ, the piezoelectric internal strain tensor; and Lκρλ,βγ, the
flexoelectric internal strain tensor.

However, Z∗ and Γ are well-known quantities, which can
be obtained by means of the linear response DFPT with
standard perturbations such as atomic displacements, electric field
and strain;33,34,63 Eq. (22) demands the calculation of up to four
new tensor quantities. These include the μ̄II

αλ,βγ and P(1,λ)
α,κρ tensors

introduced above, but also the first spatial moments of the dynam-
ical matrix (Φ(1,λ)

κα,κ′ρ) and of the piezoelectric force-response tensor
(C̄κ

αλ,βγ), both required to build Lκρλ,βγ following the prescriptions in
Ref. 102. These new tensors represent four spatial dispersion prop-
erties, i.e., they are only sensitive to a perturbation gradient, not to a
uniform perturbation. In principle, however, it is possible to obtain
them as momentum derivatives of counterpart tensors from uniform
perturbations, when the corresponding DFPT second order ener-
gies are generalized to finite momentum q. Thus, for example, the
clamped-ion FxE tensor is the spatial dispersion counterpart of the
clamped-ion piezoelectric tensor (ēα ,βγ)63 and could be calculated as
the momentum derivative of a finite-q version of ēα ,βγ.

This is precisely the procedure adopted in the long-wave DFPT
of Ref. 109 that has been implemented in ABINIT. In order to obtain
the finite-q generalization of the second order energies, the approach
reformulates the electric-field and the strain perturbation problems
as the time derivative of a vector potential and as the gradient of a
metric wave,107 respectively. In this way, both perturbations are gen-
eralized to finite q, as is already the case for atomic displacements.
This enables us to carry out an analytical third order derivative of the
energy with respect to two of the standard perturbations and to the
momentum q, which directly provides the sought-after spatial dis-
persion tensors. Remarkably, by virtue of the 2n + 1 theorem,9 the
third-order energies are computed in one shot using precalculated
first-order response functions to the standard perturbations, without
the necessity of self-consistently computing any response function
to a perturbation gradient. After execution, the long-wave DFPT
routines generate a derivative database that is subsequently used by
post-processing tools implemented in ANADDB to compute and
print the different contributions to the FxE tensor.

The implementation also provides access to another spatial dis-
persion property, the dynamical quadrupoles, which can be obtained
as the symmetrized sum of the P(1) tensor,109

Q(2,γδ)
κβ = Ω0(P(1,γ)

δ,κβ + P(1,δ)
γ,κβ ). (23)

The dynamical quadrupoles are the spatial dispersion counterparts
of Z∗ and can be used in lattice dynamics calculations to improve
the prevalent dipole–dipole treatment of the long-range interactions.
The ANADDB routines that carry out the process of interpolating the
dynamical matrix following Ref. 34 have been adapted to incor-
porate the dipole–quadrupole and quadrupole–quadrupole electro-
static interactions derived in Ref. 102. This new functionality results
in a faster convergence of the phonon band calculation with respect
to the density of q points and, in some materials, represents the only
route to obtain the correct sound velocities.

The ABINIT implementation of the long-wave DFPT has been
used to compute the clamped-ion FxE tensor of Si and SrTiO3,
obtaining an excellent agreement with the existing results in the lit-
erature.109 The computed spatial dispersion properties accurately
reproduce the sum rules predicted in Refs. 110 and 102 that
relate them with specific quantities from uniform perturbation
theories.

Currently, the implementation is restricted to the use of NCPSP
without non-linear core corrections and the LDA functional.

E. Electron–phonon interaction
With ABINIT, it is possible to compute many physical properties

related to electron–phonon (e–ph) interaction. In metallic systems,
for instance, one can study conventional superconducting properties
within the isotropic Migdal–Eliashberg formalism111 and compute
transport properties in the normal state by solving the linearized
Boltzmann equation within the LOVA approach.112–114 However, in
this section, we focus on temperature-dependent band structures
and the zero-point renormalization of the bandgap in semicon-
ductors,115,116 a subject that in recent years has received increased
attention within the electronic structure community.117–120 As dis-
cussed in the review paper by Giustino,111 the renormalization of
the electron state due to the e–ph interaction is described by the self-
energy Σe-ph(ω) = ΣFM(ω) + ΣDW. The diagonal matrix elements of
the Fan–Migdal self-energy in the KS basis set are defined by

ΣFM
nk (ω) =∑

m,ν
∫

BZ

dq
ΩBZ
∣gmnν(k, q)∣2

× [ nqν + fmk+q

ω − εmk+q + ωqν + iη
+

nqν + 1 − fmk+q

ω − εmk+q − ωqν + iη
], (24)

where η is a positive real infinitesimal. The e–ph matrix elements
gmnν(k, q) are given by

gmnν(k, q) = ⟨ψmk+q∣ΔqνVKS∣ψnk⟩, (25)

with ΔqνVKS the first-order variation of the self-consistent KS poten-
tial that can be computed with DFPT.33,121 The static Debye–Waller
(DW) term involves the second order derivative of the KS potential
with respect to the nuclear displacements. State-of-the-art imple-
mentations approximate the DW contribution with

ΣDW
nk =∑

qνm
(2nqν + 1) g2,DW

mnν (k, q)
εnk − εmk

, (26)

where g2,DW
mnν (k, q) is an effective matrix element that, within the

rigid-ion approximation, can be expressed in terms of the gmnν(k, q)
matrix elements.111 In principle, the quasi-particle (QP) excitations
are defined by the solution(s) in the complex plane of the follow-
ing equation: z = εnk + Σe-ph

nk (z). In practice, the problem is usually
simplified by seeking approximated solutions along the real axis fol-
lowing two different approaches. In the on-the-mass-shell approx-
imation, the QP energy is given by the real part of the self-energy
evaluated at the bare KS eigenvalue,

εQP
nk = εnk + RΣe-ph

nk (εnk). (27)
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The second approach linearizes the self-energy near the KS eigen-
value and evaluates the QP correction using

εQP
nk = εnk + Znk RΣe-ph

nk (εnk), (28)

with the renormalization factor Z given by

Znk =
⎛
⎜
⎝

1 −R
⎡⎢⎢⎢⎢⎣

∂Σe-ph
nk
∂ε

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRε=εnk

⎞
⎟
⎠

−1

. (29)

Both approaches are implemented in ABINIT although it should
be noted that, according to recent works, the on-the-mass-shell
approach provides results that are closer to those obtained with
more advanced techniques based on the cumulant expansion122

or self-energy calculations employing an eigenvalue–self-consistent
cycle.123

Accurate calculations of e–ph renormalization are still chal-
lenging even by present standards because the e–ph self-energy is
quite sensitive to the q-point sampling. Moreover, a large number of
empty states m are usually required to converge the real part of the
self-energy. In order to avoid the explicit computation of the DFPT
scattering potentials on dense q-grids, ABINIT generalizes the Fourier-
based interpolation scheme proposed by Eiguren et al.124 to account
for the non-analytical behavior associated with the long-range inter-
actions present in semiconductors.125 The dipolar potentials gener-
ated by the Born effective charges in polar materials are treated using
a generalized Fröhlich model.126,127 Furthermore, details concern-
ing the implementation are given in Ref. 17. In order to accelerate
the convergence with the number of empty states, ABINIT replaces
the contributions given by the high-energy states above a certain
band index M with the solution of a non-self-consistent Sternheimer
equation in which only the first M states are required. The method-
ology, proposed in Ref. 128, is based on a quasi-static approximation
in which the phonon frequencies in the denominator of Eq. (24) are
neglected, and the frequency dependence of Σ is approximated with
the value computed at ω = εnk. This approximation is justified when
the bands above M are sufficiently high in energy with respect to the
nk states that must be corrected. Furthermore, this upper-band con-
tribution to Σ converges quickly with respect to q-point sampling,
and it can be safely computed on a coarse q-grid.123,129

The code can compute QP corrections and lifetimes due to
e–ph scattering as well as spectral functions. The lifetimes obtained
from the imaginary part of Eq. (24) can be used to compute car-
rier mobilities within the self-energy relaxation time approxima-
tion,111,130,131

μe,αβ =
−1

Ω0ne
∑

n
∫

dk
ΩBZ

vnk,αvnk,βτnk
∂f
∂ε
∣
εnk

. (30)

For the computation of electron lifetimes, ABINIT implements
advanced integration techniques that take the advantage of the lin-
ear tetrahedron method44 and double-grid techniques for the q-
space integration. Last but not least, ABINIT provides a specialized
driver to interpolate the DFPT scattering potentials, compute e–ph
matrix elements on arbitrarily dense k-meshes, and save the results
to NETCDF files. This driver can be used by external codes such as
BERKELEYGW

132 to treat e–ph interactions at the GW level, as discussed
in Ref. 133.

F. A-TDEP: Temperature dependent thermodynamic
properties using the TDEP approach

The features and the temperature dependence of the phonon
spectrum determine a large number of thermodynamic properties
of crystals, such as dynamic and thermodynamic stability, elastic
properties, and heat transport within the material. The theory of lat-
tice dynamics at finite temperature has long been a central field of
research in condensed matter, and its applications are numerous in
geophysics, material science, astrophysics, etc.

The calculation of the phonon spectrum is available in ABINIT

since the 1990s and is based on DFPT. In this framework, the ground
state undergoes a small perturbation around its 0 K equilibrium
positions in order to describe the shape of the potential energy
surface (PES) very near the minimum. Thereafter, in order to cap-
ture the temperature effects, the harmonic approximation (HA) or
quasi-harmonic approximation (QHA) can be applied. The latter
approximation is handled by assuming that the temperature depen-
dency of the phonon frequencies can be taken into account implicitly
through a variation of the volume. This treatment generally gives
excellent agreement with experimental measurements of the thermal
expansion and the elastic constants.134

However, the QHA fails or cannot be applied in various par-
ticular cases. For example, when the system is close to a phase tran-
sition, when the phase of interest is not stable at 0 K, or when one
wants properties at high temperature. In these situations, an implicit
treatment of the temperature through a volume variation is no
longer sufficient and a dedicated calculation, taking into account the
temperature explicitly, is needed. One can formalize and synthesize
this statement as follows:

(∂ω
∂T
)

p
= (∂ω

∂T
)

V
+ ( ∂ω

∂V
)

T
(∂V
∂T
)

p
. (31)

The second term of the right-hand side of Eq. (31) is included
in the QHA. However, the first term on the right-hand side of
Eq. (31) is only included when the temperature dependence is
explicit.

Since the beginning of the 1960s, a large number of theoreti-
cal studies have been carried out in order to go beyond the simple
harmonic crystal and to deal with anharmonic effects.135–141 More
recently, there has been a revival of such developments. During the
last decade, several groups proposed that theoretical frameworks
coupled to computational methods are capable of capturing anhar-
monic effects in crystals.142–148 One way, chosen and implemented
in ABINIT, has been proposed by Esfarjani and Stokes149 and then
developed by Hellman et al.150–152 In the framework of temperature-
dependent effective potential (TDEP), the anharmonic terms are
treated in an effective manner.

Let us define a 3-dimensional crystal and consider that a ground
state energy U0 is obtained when the atoms are in their equilibrium
positions. The potential energy of this system can be rewritten using
a Taylor expansion around equilibrium positions as

U = U0 +∑
p≥1

1
p ! ∑α1...αp

i1...ip

(p)
Φ α1...αp

i1...ip

p

∏
k=1

uαk
ik

, (32)
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with
(p)
Φ α1...αp

i1...ip
being the interatomic force constants (IFC) at the

pth order and uαi being the displacement of atom i along Cartesian
direction α.

By performing ab initio molecular dynamics (MD) simulations,
the forces Fαi,MD(t) and atomic displacements uαi,MD(t) are acquired
at each time step t. If we differentiate Eq. (32) with respect to atomic
displacements and insert the MD quantities, we obtain the following
system of equations:

Fα1
MD,i1
(t) = −

P

∑
p≥2

1
(p − 1) ! ∑α2...αp

i2...ip

(p)
Θ α1α2...αp

i1i2...ip

p

∏
k=2

uαk
MD,ik
(t), (33)

with
(p)
Θ αβ...δ

ij...l being the effective IFC at the pth order and P being the
maximum order of the expansion. Equation (33) is non-linear with
respect to the atomic displacements and can be rewritten as

Fαi,MD(t) =∑
pλ

f αi,pλ(uMD(t))θpλ, (34)

where θpλ being the λth are now the effective IFC at the pth order
and f αi,pλ(uMD(t)) is a function gathering all the contributions com-
ing from the atomic displacements. This system of equations is now
linear as a function of θpλ (the unknown variables of the system) and
can be solved using a least-squares method. The solution is given
by Θ = f†⋅FMD, with FMD ≡ Fαi,MD(t), Θ ≡ θpλ, and f† being the
pseudoinverse of f ≡ f αi,pλ(uMD(t)).

Note the difference between the true
(p)
Φ and effective

(p)
Θ IFC.

The latter includes the effects of all the IFC not taken into account in
the expansion (i.e., beyond the Pth order). For instance, if P = 2,
the 2nd order effective IFC incorporates all higher anharmonic
terms in an effective way. Consequently, the effective IFC acquire
a dependency on the temperature at odds with the true IFC.

The number of time steps needed to solve Eq. (34) has to be
large with respect to the number of unknown variables θpλ. By taking
into account the properties of the system (translation and rotation
invariances, crystal symmetries, etc.) the number of independent
and non-zero IFC coefficients of a cubic system with one hundred
atoms in the supercell can be reduced to around ten at the second
order, tens at the third order, and around a hundred at the fourth
order.

Once the IFC coefficients are obtained, many dynamic, elastic,
and thermodynamic properties can be evaluated:

● As usual, the phonon spectrum is obtained after the diago-
nalization of the dynamical matrix.

● Then, the phonon density of states is built and used to com-
pute various thermodynamic properties:153 the free energy,
the specific heat, the entropy, etc.

● By computing the elastic constants using the second-order
effective IFC,135,141 it is possible to obtain the bulk and shear
moduli.

● The Grüneisen parameter is obtained using the third order
effective IFC,154,155 which leads to other important quanti-
ties: the thermal expansion, the isentropic compressibility,
the constant pressure specific heat, sound velocities, etc.

Since the effective IFC include an explicit temperature dependency,
all the quantities listed above do as well.

The ABINIT implementation of the TDEP algorithm, referred to
as A-TDEP, has produced a number of applications in the last five
years.156–160 We recommend the user to read the A-TDEP documen-
tation distributed in the ABINIT package before any calculations and
also to read the article dedicated to this implementation.161

G. Density functional perturbation theory within
non-collinear magnetism

The necessity to treat non-collinear magnetism (NCM) in DFT
codes is more and more important for spintronic applications stud-
ies. NCM can arise naturally, from geometrical frustration of anti-
ferromagnetic interactions, e.g., in triangular lattices, by the mag-
netic anisotropy generated in the presence of a preferred direction
of magnetization or by the competition between exchange inter-
actions. However, the generalization of DFPT for non-collinear
magnetic simulations has only recently been attempted. Within
the non-collinear DFT scheme, the density is described by a four-
component matrix instead of two (in collinear magnetism), which
is required to account for the spin–orbit coupling (SOC), except
when time-reversal symmetry induces vanishing of the magneti-
zation everywhere.162 This last term, in current DFT code imple-
mentations, implies a partial loss of symmetry,163–165 which worsens
the calculation time and explains the scarcity of such calculations.
Additionally, the treatment of the electronic exchange–correlation
(XC) term is more complicated, since the functionals are usually
built in a collinear framework. We have proposed166 three dif-
ferent approaches to perform the energy derivatives in the non-
collinear regime treating opportunely the XC term and have imple-
mented these for the atomic displacement (phonons) and electric
field perturbations.

The first method exploits the local transformation from non-
collinear to collinear magnetization: at each point of space, we
align the local system of reference to the local quantization axis of
the magnetization, then we perform the derivatives in this locally
collinear framework, and finally we return to the lab frame of ref-
erence. The unitary transformation diagonalizing the 2 × 2 density
matrix ρ̂(0), and its derivative ρ̂(1), has to be determined at the zeroth
(U(0)) and first order (U(1)) of perturbation to fully characterize the
problem (see Ref. 166).

The second method consists in writing the U(0) and U(1) ana-
lytically in terms of the Pauli matrices σαβ, i.e., the generators of the
Lie group SU(2).

The third method evaluates explicitly the expression of the first
order XC potential, specifically for the LSDA expression of the XC
energy, which is easy to derive.

The three methods have been tested on two particular systems
Cr2O3 and RuCl3.166 Cr2O3 has been used to test the implementa-
tions because it is one of the simplest and best known collinear anti-
ferromagnetic and magneto-electric systems. Thanks to these tests,
we have demonstrated that the two first methods are closely equiva-
lent in terms of second derivatives: quality and timing performance
(calculations of phonons, electronic dielectric constant, and Born
effective charges). However, the third one requires twice as many
self-consistent iterations to give the same quantities. On RuCl3, we
have applied our methods to predict the change in phonon fre-
quencies induced by the non-collinearity of the magnetic moments.
Comparing the frequencies estimated in collinear and non-collinear
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frameworks, we have shown the signature of non-negligible NCM:
certain phonon modes of specific irreducible representations have
their frequency modified by up to 10 cm−1 depending on the chosen
direction (see Ref. 166 for more details).

The different methods of magnetization rotation can be set
through the ixcrot ABINIT input flag. The default value is method
1 (ixcrot = 1). Methods 2 or 3 can be used by setting ixcrot to 2
or 3.167 Although in the corresponding ABINIT version of Ref. 166,
we implemented the NCM DFPT formalism at the Γ point only,
further developments have been completed in order to account for
the full q dependence in the phonon spectra (available in the next
production version, only with ixcrot = 3). The implementation is
valid for NCPSP only, but work is ongoing to extend it to the PAW
formalism.

H. Spin-magnetic-field perturbation
The linear response of the magnetization to static and dynami-

cal magnetic fields (spin magnetic susceptibility χm) is one of the key
characteristics of magnetic materials. This quantity is intrinsically
linked to the spin fluctuation spectrum and hence not only allows
one to identify and characterize the relevant magnetic excitations
but also to understand their character and estimate the strength of
spin interactions. The latter case appears to be particularly impor-
tant in the view of the ever-growing need for accurate lattice spin
models to predict the finite-temperature properties of spin systems
and understand the physics of magnetic and topological materi-
als. While the theoretical framework for linear spin response cal-
culations within the DFPT formalism has been established several
decades ago,168 practical implementations of this method are still
rare in DFT codes.169

We have implemented and tested the variational DFPT method
for computing the linear spin response to a small, q-dependent, mag-
netic field of the form B = beiq ⋅r + b∗e−iq ⋅r. The first derivatives of
the density and magnetization are obtained by considering the first
order external potential v(1)ext = 1

2σα, where the Cartesian component
α of the Pauli matrix corresponds to the direction of the external
field. The periodic part of the first order (spin) magnetization is rep-
resented as m(1)q = ∑nk u†

nkσu(1)nk+q + u† (1)
nk-q σunk, with the sum running

over the occupied Kohn–Sham orbitals n. For an arbitrary wavevec-
tor q ≠ 0, it is, thus, necessary to find the Bloch-periodic parts of the
first-order wavefunctions u(1)nk-q and u(1)nk+q at both k + q and k − q
points. This is done by performing two state-by-state minimizations
of the second order energy functional at each spectral correction fac-
tor iteration, using the Self-Consistent Field (SCF) potential v(1)scf,q

and its Hermitian conjugate v(1)scf,-q, respectively.
The implementation of the algorithm has been tested by com-

paring the spin susceptibility obtained from DFPT calculations with
the finite-difference derivatives estimated from ground state DFT
calculations with a finite magnetic field. Specifically, for q = 0,
we have performed calculations of the longitudinal magnetization
response of ferromagnetic bcc Fe as well as longitudinal and trans-
verse spin susceptibilities of antiferromagnetic Cr2O3. These two
examples were chosen to test both metallic and insulating occu-
pations. To verify the validity of q ≠ 0 implementation, we have
further performed ground-state DFT calculations with harmonically

varying Zeeman field B = b cos(qr) with q = (1/2, 0, 0) and
q = (1/4, 0, 0) for bcc Fe in the corresponding supercells. The peri-
odic parts of the first order density and magnetization obtained
using the first-order finite-difference scheme were then com-
pared to the corresponding results obtained from a single unit
cell DFPT run. All considered test cases for q = 0 and q ≠ 0
showed good agreement between DFPT and finite field results,
even in the case of coarse Brillouin zone sampling, e.g., 2 × 2 × 2
and 4 × 4 × 4 k-point grids. Furthermore, to verify the accu-
racy of the approach, we have performed the calculation of
the Heisenberg exchange parameters J for bcc Fe. These are
derived from the transverse spin susceptibility χ�(q) and the cor-
responding Fourier components of the super-exchange parameters
J(q) = χ(q)(−1), yielding couplings of 18.9 meV (9.8 meV) for the first
(second) shell of nearest neighbors, in good agreement with previous
literature.170

All the test simulations described above were performed within
the LSDA approximation, which is currently the only exchange–
correlation functional implemented for linear spin response calcu-
lations in ABINIT. Furthermore, for the q ≠ 0, case, it is impera-
tive to use the explicit evaluation of the first-order XC functional
(ixcrot = 3 ABINIT input flag). Furthermore, at present and simi-
larly to atomic displacement perturbations with non-collinear mag-
netism, the implementation of Zeeman magnetic field perturbation
is limited to NCPSP formalism.

I. Optical response with the Bethe–Salpeter equation,
including temperature dependence

Within MBPT, one can address the computation of the ener-
gies and related characteristics of charged excitations as well as
those of neutral excitations.11 For the former, the GW approxi-
mation is the state-of-the-art, while for the latter, one relies on
the Bethe–Salpeter equation (BSE), which includes excitonic effects.
Such approaches produce optical absorption spectra that are much
more accurate than independent-particle approaches, such as the
simple sum-over-states.

The implementation of the BSE in ABINIT has been previously
described in Refs. 5 and 171. An efficient interpolation allows one
to cut down significantly the Central Processing Unit (CPU) time
needed to obtain optical spectra converged with respect to the
Brillouin zone sampling.

As a salient example, the ABINIT implementation has been used
to obtain frequency-dependent Raman intensities,172–174 by finite
difference of optical spectra, even for the second-order Raman
spectrum.

The MBPT calculations can be combined with the temper-
ature dependent electronic structure presented above, Sec. V E,
to compute temperature-dependent optical spectra. The effect of
the electron–phonon interaction is included in the diagonal part
of the BSE Hamiltonian according to Hvck,v′c′k′(T) = HFA

vck,v′c′k′

+ [Δεck(T) − Δεvk(T)]δvv′δcc′δkk′ , where HFA is the “frozen-atom”
expression for the BSE Hamiltonian introduced in Ref. 5. Fig-
ure 6 illustrates the agreement observed for silicon, when compared
with experimental data, as well as with Ref. 175. Note that the
Bethe–Salpeter Hamiltonian is not Hermitian but can be tackled by
an iterative bi-Lanczos algorithm.5,174
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FIG. 6. Comparison of the imaginary
part of the dielectric function of silicon,
directly related to the optical absorp-
tion, obtained in the present work (red
and cyan curves) with Ref. 175 (“Marini,”
blue curves), and experimental measure-
ments (“Expt.,” green curves)176 for dif-
ferent temperatures.

VI. COMMUNITY PROJECTS: PSEUDOPOTENTIALS,
HIGH-THROUGHPUT, AND THE LIBPAW LIBRARY
A. Pseudopotentials and PAW datasets

Planewave calculations are almost invariably performed in con-
junction with some sort of pseudization scheme that freezes the
inner core electrons and replaces their sharply varying wavefunc-
tions in the region around the nucleus with smoother orbitals, which
are easier to describe in Fourier space with a finite basis set.7 On
the one hand, this approach allows one to reduce significantly the
computational cost and enjoy the advantages of the planewave basis
set: orthogonality, systematic convergence, ease of implementation,
and efficient fast-Fourier-transforms. On the other hand, as these
pseudopotential operators are supposed to mimic the KS potential
felt by the valence electrons in an all-electron DFT calculation, they
imply a trade-off between accuracy and computational efficiency.
Generating reliable and accurate tables of pseudopotentials there-
fore represents a highly nontrivial task, especially for end-users who
are not familiar with the pseudopotential formalism and all its intri-
cacies. For this reason, in the last few years, a significant effort has
been made by the ABINIT community in order to provide users with a
recommended set of pseudopotential tables that have been carefully
crafted and validated against ground-state reference results obtained
with all-electron codes.177,178 In what follows, we briefly describe
the main features of the two official PAW and norm-conserving
(NC) tables provided by the ABINIT group, and their design
principles.

1. JTH table
To perform calculations in the frame of the PAW44 method-

ology, atomic data are needed, which correspond to the pseudopo-
tentials in the norm-conserving approach. We deliver a Mendeleev

table of PAW data—the JTH table179—on the ABINIT website. This table
has been generated thanks to the atomic code ATOMPAW

180 for 86
elements from H to Rn. It is available within the scalar relativis-
tic approximation both for LDA and PBE XC functionals. The files
are provided in a standard XML format for use in any PAW elec-
tronic structure code, following the specifications given in Ref. 181.
The XML format allows one to introduce new tags for special devel-
opments: for instance, pre-calculated atomic matrix elements are
given, to be used for calculations with hybrid functionals. In the
v2.0 version of the JTH table, data enabling calculations within the
LDA-1/2182 approximation are provided for some elements. Each file
contains the suggested planewave cutoffs, according to a requested
accuracy. The input file of the ATOMPAW code is also provided for
each element to allow the user to modify the parameters used for the
generation of the data, if needed.

2. PseudoDojo
The PSEUDODOJO project183 provides two predefined sets of

NC pseudopotentials: standard and stringent. The standard set is
designed for conventional DFT and DFPT applications, while the
stringent version contains pseudopotentials with more electrons in
valence, smaller pseudization radii, and improved scattering proper-
ties at high energies. The stringent set is recommended for perform-
ing DFT/DFPT calculations in which high precision is needed or for
many-body applications such as GW that are quite sensitive to the
inclusion of semi-core states and to the quality of the logarithmic
derivative in the empty region. The majority of the pseudopoten-
tials include non-linear core corrections184 with model core charges
generated following Teter’s approach,185 which produces smooth
core charges in real space with reasonably fast decay in reciprocal
space. The inclusion of the non-linear core correction improves the
transferability of the pseudopotential and turned out to be crucial
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to avoid unphysical oscillations in the local part of the potential
in the region around the atom. These oscillations worsen the con-
vergence rate, as well as the fulfillment of the acoustic sum rule
in phonon calculations, in particular when GGA functionals are
employed.183

At present, the PSEUDODOJO provides NC tables generated with
three different XC functionals: LDA, PBE, and PBE-sol. For each
XC flavor, one can opt for the scalar-relativistic or for the fully rela-
tivistic version, which includes the additional projectors required to
treat spin–orbit coupling.186 Finally, a specialized set of pseudopo-
tentials for the lanthanides is also available, with f -electrons frozen
in the core. These pseudopotentials are supposed to be used for cal-
culations in which the lanthanide is in the 3+ oxidation state. For
each pseudopotential, three different hints (low, normal, and high)
for the planewave cutoff energy are suggested on the basis of the
convergence studies performed during the validation tests.183 These
cutoff hints are employed in high-throughput studies, to implement
machine-friendly workflows, but can also be used as a starting point
in more conventional convergence studies. The pseudopotentials
can be downloaded from the official website or alternatively from a
GitHub repository. The data are available in three different formats:
the original psp8 file format implemented by Hamann, the UPF for-
mat, and the psml format.187 The graphical interface of the official
website allows users to select an element of the periodic table, the XC
functional as well as the accuracy level, and the relativistic version.
Jupyter notebooks with pre-generated figures showing the conver-
gence of physical properties as a function of the cutoff energy and
the results produced by the ONCVPSP pseudopotential generator
are also provided. The same interface can be used to download the
PAW atomic data of the JTH table.

B. High-throughput: Phonons, second-harmonic
generation, and GW

Using a first-principles package for high-throughput applica-
tions places more stringent demands on the implementation details
than the traditional approach based on single-step operations.
ABINIT implements two important features to accommodate these
needs: portable machine-readable output files in the binary NETCDF

format188,189 to communicate results to external software, as well
as automatic algorithms to select optimal parallelization settings
at runtime. Besides these features directly implemented in the
code itself, efficient high-throughput calculations require a high-
level library to programmatically interact with the Fortran code;
the ABINIT group provides this framework in the ABIPY project.190

These features have enabled the development of the following high-
throughput projects.

1. DFPT phonons
The vibrational properties of a material represent a funda-

mental ingredient for understanding a variety of physical phenom-
ena, and ABINIT provides accurate and efficient algorithms based on
the DFPT formalism (Sec. V). In order to fully exploit the fea-
tures of the code and handle a large number of calculations, a new
python project has been developed, ABIFLOWS. The package contains
all the functionalities required to execute high-throughput work-
flows with the FIREWORKS framework191 and to store the results in
a MongoDB database in a standardized format for later queries

and analysis. ABIFLOWS heavily relies on the API implemented in
ABIPY not only for the aforementioned properties but also for the
automatic generation of ABINIT inputs for different kinds of cal-
culations and the post-processing of results. In order to provide
sensible input configurations for phonon calculations and avoid
expensive convergence studies for each material, a global study
has been performed and a set of heuristic optimal parameters has
been determined.192 These parameters have been used to com-
pute in an automated way the dynamical matrix, the phonon
dispersion and the density of states for more than 2000 materi-
als.193 Taking advantage of the post-processing tools implemented
in ANADDB, a set of derived quantities has been obtained for these
materials. These include the dielectric permittivity tensors, Born
effective charges, temperature dependent thermodynamic proper-
ties (entropy, heat capacity, Helmholtz free energy, and vibrational
internal energy), frequency-dependent dielectric tensor, speed of
sound along high symmetry directions, and the Debye–Waller ten-
sor.153 All these quantities are freely available on the MATERIALS PROJECT

website.194

2. DFPT SHG
The workflow for the calculation of vibrational properties dis-

cussed in the previous paragraph has been extended to compute the
optical dielectric tensor ε∞ and the second-order susceptibility χ(2)

(see Sec. V). This gives access to optical properties beyond the linear
regime with minimum effort. For instance, the second-order suscep-
tibility leads to the nonlinear Second Harmonic Generation (SHG)
coefficient deff.195 SHG processes play an important role in mod-
ern optics, especially in laser-related science and technology.196 Only
non-centrosymmetric materials are SHG-active, and the calculation
of the deff is possible in ABINIT through the 2n + 1 theorem.9,66

By selecting the non-centrosymmetric materials from
databases197,198 in which the optical dielectric tensors were already
available, we built up a new set of candidates including more than
800 compounds aiming at calculating their second-order suscepti-
bility. At this stage, we have computed the nonlinear properties for
more than 400 materials employing the above-mentioned ABIFLOWS

workflow. The results of this study will be presented in more detail
in a future paper, and many more materials are being added to the
list.

3. GW
Computing the excited-state properties of materials (such as

bandgaps) implies going beyond standard DFT and its fundamental
shortcomings. MBPT provides a rigorous and well-established for-
malism for accurate band-structure calculations.11 The main ingre-
dients of MBPT are the Green’s function G, the screened Coulomb
interaction W, and the electronic self-energy Σ that is usually
approximated with the GW method.199 Automating GW calcula-
tions at the high-throughput level represents, however, a signifi-
cant challenge. Compared to the DFT electron density in which
only occupied states are needed, the Green’s function requires the
knowledge of all unoccupied states of the systems. In practical imple-
mentations, the sum over an infinite number of bands is avoided
by introducing a cutoff (nband) beyond which the contribution
of the high-energy states is considered negligible and the Fourier
expansion of the two-point function W is restricted to G-vectors
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lying inside a sphere of kinetic energy ecuteps. The required com-
putational resources increase steeply when these two cutoffs are
increased. An additional problem is that these two convergence
parameters are linked, i.e., the convergence with respect to one cutoff
is determined by the value of the other parameter with a rate that is
system-dependent. The level of coupling, moreover, varies strongly
from one material to another. Determining reliable input parame-
ters is, hence, of crucial importance to achieve precise and efficient
MBPT calculations.

To enable high-throughput GW calculations, an automated
convergence framework has been developed using the ABIPY pack-
age.200,201 A typical workflow is illustrated in Fig. 7. At a low density
k-grid, the two interdependent cutoffs are treated in the same loop
ensuring convergence of both. The convergence in k-space is treated
separately since it was found to be unconnected. In the last step,
the convergence rates of the screening cutoff and the unoccupied
states cutoff at high k-space sampling are compared to those at low
sampling density to finally ensure converged results. This method
was used to compute the GW correction for about 90 crystalline
compounds.200

C. The LIBPAW library
The ABINIT implementation of PAW44—although not the

only one—is one of the most complete ones present in DFT
codes. Ground-state properties (DFT), excited states (MBPT), and
response functions (DFPT) can be computed within PAW. How-
ever, the PAW method should theoretically be implemented in the

FIG. 7. Schematic representation of a typical GW workflow. First (w0), the SCF
density is calculated (DEN) followed by a non-SCF calculation of a large num-
ber of unoccupied states (WFK). Then (w1), the latter are used to determine the
screening (SCR). Finally (w2), the GW corrections are computed for different k-
points. In the graph, two screening calculations are represented corresponding to
different sets of values for the two cutoff parameters. Each of them is followed by
three GW calculations corresponding to different k-points.

same way in all DFT codes, regardless of the basis used to represent
the electronic wavefunctions.

From our original PAW implementation,42 we have developed
a portable PAW library called LIBPAW

202 in order to facilitate the
porting of PAW in other codes. This library provides a formalism
for computational physics—the pseudopotential/PAW approach—
at a relatively high implementation level (not only low-level meth-
ods, such as I/O, error-handling, or system resolution). It is pack-
aged in such a way that it gives access to implementations of core
PAW procedures with basis-independent data interfaces and thus
can potentially be combined with any other basis used in different
programs.

At present, the LIBPAW library—initially used in ABINIT—has been
integrated in at least two other codes: the wavelet-based BIGDFT
software202,203 as well as a recently developed Gaussian-type atomic
orbital based DFT code.204 The use of LIBPAW in three codes, using
three different types of basis functions (planewaves, wavelets, and
Gaussians) highlights its portability. Other projects based on the
LIBPAW are in progress.

The library is currently built “on the fly” from ABINIT source files.
A standalone and ABINIT independent package is generated and can
be directly inserted in a “host” code. At present, this is the only way
to get the LIBPAW library; in the near future, the LIBPAW package will be
directly downloadable as a separate package.

As soon as a host code uses the LIBPAW library, it can access at
low cost a full PAW implementation and take the advantage of reg-
ular library updates, new features, and debugging. Some features are
automatically available because they are only implemented in “on-
site” PAW contributions such as, for example, Hubbard Hamilto-
nian calculations (DFT+U). The library provides a module to access
PAW atomic datasets in the XML format and in the ABINIT propri-
etary format (legacy). The XML format181 then gives access to several
PAW atomic dataset tables: JTH,179

GBRV,177
ATOMPAW,205 and GPAW.206

The library fits very easily into the host code. A simple libpaw.h
header file has to be adapted to integrate the LIBPAW. In the lib-
paw.h file, one has to specify which routines are used for the I/O and
the error handling, as well as the dependencies shared with the LIB-
PAW (e.g., the LIBXC electronic exchange and correlation library207 or
NETCDF interfaces). Most of the low-level dependencies can be shared
with the host code. The library is made of a complete collection of
Fortran 2003 modules. Therefore, it can most easily be incorpo-
rated in codes written in Fortran. Each Fortran module is related
to a specific “object” of the PAW formalism and contains associated
methods.

Among the provided objects, the following are worth mention-
ing (a more complete description is available in Ref. 202):

● m_pawrad: contains all functions related to the PAW radial
meshes and associated derivation/integration routines for
different kinds of meshes (linear or logarithmic).

● m_pawpsp: used to read PAW atomic datasets (XML or
ABINIT legacy formats),

● m_pawtab: used to define non-self-consistent tabulated
PAW data either read from the atomic dataset or directly
deduced from it,

● m_pawxc: computes the exchange and correlation poten-
tial/energy in the PAW augmentation regions using devel-
opments over spherical harmonics,
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● m_pawcprj: calculates, stores, and manipulates projections
of pseudo-wavefunctions Ψ̃nk on PAW non-local projectors
p̃i: ci

nk = ⟨p̃i∣Ψ̃nk⟩. Note that the routine dedicated to the
computation of these projections has to be provided by the
host code,

● m_pawrhoij: computes and manipulates the PAW occu-
pancy matrix ρij = ∑nk ci∗

nkc j
nk, especially ensuring the use of

symmetries, and
● m_pawdij: computes and manipulates the PAW non-

local potential intensities Dij (see Ref. 42 for a complete
expression). In this routine, all the physical ingredients
are included (e.g., electronic correlations, spin–orbit, and
hybrid functionals).

All available methods are fully compatible with the Message
Passing Interface (MPI) distributed parallelism, including paral-
lelization over atomic sites, as well as over the real space grid sam-
pling the augmentation regions. A MPI communicator has to be
provided.

The LIBPAW library is a perfect example of “code sharing” in
the perspective of outsourcing and sharing components common to
DFT pseudopotential-based codes. The advantages of code sharing
are numerous:

● It enforces clean and structured object-oriented program-
ming (not obvious in the case of Fortran). Strong links to
a specific code must be removed, and strong optimization
can be implemented once and used widely.

● It allows one to implement a cross-validation process, thanks
to the use of the code in different contexts (here, different
electronic wavefunction bases).

● It allows one to substantially expand the user base and thus
to reinforce user feedback.

● It avoids developers re-coding what already exists and con-
centrates human work in implementations of novel physical
quantities.

In the case of ABINIT, this code sharing effort is only in its
early stages; other features could be easily packaged and shared:
the handling of crystal symmetries, sampling of the Brillouin zone,
self-consistent cycle preconditioning/mixing algorithms, etc.

VII. CONCLUSION
With the increasing use of DFT for materials science appli-

cations, the need to have user-friendly packages that calculate and
predict structural, electronic, vibrational, and elastic properties is
essential. In this paper, we have presented the case of ABINIT, an
electronic structure package for materials and nanosystem simu-
lations. Although ABINIT originally focused on the “simple” solu-
tion of the ground state Kohn–Sham equations of DFT, it has
broadened to include many different theories with far reaching
applications, including DFT, DFPT, TD-DFT, MBPT, and DMFT.
Similarly, two different treatments of core electrons are pro-
vided: norm-conserving pseudopotentials and projector-augmented
waves. Each of these methodologies implements a different set of
properties, which are summarized in Secs. II–VI. A list of the capa-
bilities offered by ABINIT has been presented, with particular atten-
tion given to the graphical interfaces created by the ABIPY workflow
manager and the post-processing tool AGATE.

In this paper, we have also concentrated on the properties that
make ABINIT rather unique. We started with DMFT, the application
of finite electric fields, probes of nuclei properties (such as the Möss-
bauer and nuclear spectroscopy), and positron annihilation. We
then moved to response functions that are the most developed fea-
tures of ABINIT: sections on Raman spectroscopy, electro-optic effects
and strain perturbation, van der Waals interactions, flexoelectric-
ity, the electron–phonon interaction, anharmonic interatomic force
constants, non-collinear magnetism, spin magnetic field, and tem-
perature dependence of the optical response with the Bethe–Salpeter
equation.

After examining individual properties, we presented some of
our efforts in community projects and library generation, which
can be used by ABINIT and many other electronic structure codes.
For example, we mention the distribution of reliable and well tested
PAW datasets, LIBPAW, the PSEUDODOJO project, and high-throughput
developments to calculate advanced properties in the MBPT and
DFPT formalisms.

In conclusion, we have presented here the evolution of ABINIT

from its history to the most recent developments. We have also
included links to the code documentation and tutorials. The basic
theory and frameworks were discussed, which allow users to cal-
culate a broad set of properties. Beyond the features with unique
implementations in ABINIT, we encourage interested users to visit
the ABINIT web page for more general documentation, tutorials, and
information.
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