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a b s t r a c t 

A recently proposed Lagrangian-Eulerian method for viscoelastic flow simulation is extended to high performance 
calculations on the Graphics Processing Unit (GPU). The two most computationally intensive parts of the algo- 
rithm are implemented for GPU calculation, namely the integration of the viscoelastic constitutive equation at 
the Lagrangian nodes and the interpolation of the resulting stresses to the cell centers of the Eulerian grid. 

In the original CPU method, the constitutive equations are integrated with a second order backward differentiation 
formula, while with the proposed GPU method the implicit Euler method is used. To allow fair comparison, the 
latter is also implemented for the CPU. The methods are validated for two flows, a planar Poiseuille flow of an 
upper-convected Maxwell fluid and flow past a confined cylinder of a four-mode Phan Thien Tanner fluid, with 
identical results. 

The calculation times for the methods are compared for a range of grid resolutions and numbers of CPU threads, 
revealing a significant reduction of the calculation time for the proposed GPU method. As an example, the total 
simulation time is roughly halved compared to the original CPU method. The integration of the constitutive 
equation itself is reduced by a factor 50 to 250 and the unstructured stress interpolation by a factor 15 to 60, 
depending on the number of CPU threads used. 
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. Introduction 

Viscoelastic flows are present in various industrial processes, such
s polymer processing, adhesive extrusion and 3D-printing. Hence, the
bility to predict such applications with numerical simulation tools is
esired. From an industrial point of view, the computational efficiency
s particularly important for the simulations to be useful in practice. 

Viscoelastic flows are however challenging to model numerically and
imulations can be computationally expensive. Viscoelastic fluids may
lso require models with multiple relaxation modes to predict flows with
ufficient accuracy. An increasing number of modes rapidly increases the
umber of equations to solve and thus also the computational cost. 

Various constitutive models can be found in the literature, suitable
or different types of viscoelastic fluids. Such models range from the
impler Upper-Convected Maxwell (UCM) and Oldroyd-B models [1] to
onlinear models as the Phan Thien Tanner (PTT) model [2] . Other ex-
mples of nonlinear models are the Finitely Extensible Nonlinear Elastic-
ty (FENE) models, such as FENE-P and FENE-CR [3] , and the Giesekus
odel [1] . 
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Common approaches to simulate viscoelastic fluid flow include dis-
retizing the flow equations in the Eulerian frame of reference using
ither finite volumes [4–6] or finite elements [7,8] . Due to numeri-
al instabilities often arising on moderate to high Weissenberg num-
ers, commonly referred to as the High Weissenberg Number Problem
HWNP) [9] , it is also common to use stabilization methods in the nu-
erical model. Some approaches enhance the ellipticity of the mathe-
atical problem through the diffusive terms in the transport equations.
his can be done e.g. with Elastic-Viscous Stress Splitting (EVSS) [10] or
oth-sides diffusion, for example as proposed by Fernandes et al. [11] .
ore advanced approaches reduce the stiffness of the constitutive equa-

ion through reformulation. Examples are the Positive Definiteness Pre-
erving Scheme (PDPS) by Stewart et al. [12] , the Square Root Con-
ormation Representation (SRCR) by Balci et al. [13] , and the Log-
onformation Representation (LCR) proposed by Fattal and Kupfer-
an [14,15] . The latter has grown particularly popular. A detailed com-
arison of the performance for the different approaches can be found in
hen et al. [16] . 

Another approach is to solve some or all of the equations in the La-
rangian frame of reference. Rasmussen and Hassager developed a La-
lmers Research Centre for Industrial Mathematics, Gothenburg, Sweden. 
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Fig. 1. Typical proportions of the stress calculation for the main components 
of the solution algorithm, computed for the confined cylinder flow described in 
detailed in Section 5 using 4 processor threads. 
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c  
rangian method where all equations were solved using finite elements
n a deforming mesh [17] . Harlen et al. [18] proposed a Lagrangian-
ulerian method where the constitutive equation was solved in the
odes of a co-deforming mesh and coupled to a Eulerian finite volume
olver for momentum and continuity. Halin et al. [19] presented the
agrangian Particle Method (LPM), which was further refined to the
daptive Lagrangian Particle Method (ALPM) [20] and the Backwards-

racking Lagrangian Particle Method (BLPM) [21] . 
In recent years, the overall interest has steadily increased for using

raphics Processing Units (GPU) for numerical simulations. The main
eason is the possibility to distribute the calculation over thousands of
arallel threads, offering great reduction in computation time. Conse-
uently, various software libraries support different types of numeri-
al computation on the GPU, e.g. cuBLAS [22] for basic linear algebra
outines, cuSparse [23] for sparse matrix operations and the AmgX li-
rary [24] for solving linear systems of equations. 

GPU:s are designed to execute a large amount of identical operations
n parallel, and the performance is sensitive to memory usage and allo-
ation. Memory bandwidth is particularly limited. The available mem-
ry on a single GPU can also be considerably lower than the typical
orkstation computer, and memory transfer between the GPU and the

omputer’s RAM memory is a potential bottleneck. Furthermore, the
rchitecture of a GPU constrains the way that algorithms can be con-
tructed for optimal performance, to a higher extent compared to CPU
ode. One related example is the concept of divergence. All threads in
 warp (typically 32), i.e. the smallest group of threads, are required
o execute the same machine instruction. Such architectural limitations
an clearly cause sub-optimal performance and should be avoided wher-
ver possible. For the stated reasons, the applicability and the possible
erformance improvements therefore highly depend on the algorithm
nd the extent to which the calculations can be parallelized. 

The implementation of GPU-acceleration for viscoelastic flow simu-
ations has gained limited attention. Bergamasco et al. [25] presented
 micro-macro method where a GPU-based Lattice-Boltzmann method
or the configuration part of the Fokker-Planck equation on the micro-
cale was coupled to a CPU-based finite volume method for the flow
n the continuum scale. Feng et al. [26] developed a Smooth Particle
ydrodynamics (SPH) method for viscoelastic flow running on the GPU.

In a previous article, we presented a Lagrangian-Eulerian method
or viscoelastic flow simulation [27] . The constitutive equations were
olved in Lagrangian fluid elements convected by the flow and the
tresses were interpolated to the cell centers of the Eulerian fluid grid us-
ng radial basis functions (RBF). Both the calculation of the stresses and
he interpolation are naturally parallel operations and should thus be
rime candidates for GPU-acceleration. The aim of the current work is
herefore to investigate and demonstrate the effects of GPU acceleration
n the computational performance, as well as to assess the suitability of
ur previously proposed method for the same. 

In Fig. 1 an example is shown of the fractions of the computational
ost for calculating the viscoelastic stresses accounted for by the three
ost demanding parts of the algorithm. This particular example is for
ow of a four-mode PTT fluid past a symmetrically confined cylinder,
hich is discussed in more detail in the results section. The simula-

ion is performed using four CPU threads with the Lagrangian-Eulerian
ethod. Solving the ODE systems, i.e. the constitutive equation, ac-

ounts for roughly 50% of the computational time, followed by 30% for
he stress interpolation. As a remark, the stress calculation accounted
or 63 percent of the total computational time for this case, where the
otal time includes solving the momentum and continuity equations.
learly, decreasing the time-consumption for these operations would
ignificantly improve the performance of the whole simulation algo-
ithm. 

The paper is structured as follows. First the governing equations and
he numerical method are presented, followed by an overview of the im-
lementations used. It is then validated that the methods produce equiv-
lent results. This is followed by an analysis of the computational per-
ormance and improvement. Finally, some conclusions are drawn and
uture work is discussed. 

. Governing equations 

The viscoelastic flow is described by the incompressible momentum
nd continuity equations (
𝜕𝐮 
𝜕𝑡 

+ 𝐮 ⋅ ∇ 𝐮 
)
= −∇ 𝑝 + ∇ ⋅ (2 𝜇𝐒 + 𝝉) + 𝐟 , (1) 

 ⋅ 𝐮 = 0 , (2) 

here 𝜌 is density, u velocity, p pressure, 𝜇 the Newtonian viscosity
ontribution, 𝐒 = 

1 
2 

(
∇ 𝐮 + ∇ 𝐮 𝑇 

)
the strain rate, 𝝉 the viscoelastic stress

nd f a body force. The viscoelastic stress is described by a constitutive
quation on the form 

▽
𝝉 + 𝐹 ( 𝝉) 𝝉 = 2 𝜂𝐒 , (3)

here 𝜆 is the relaxation time, 𝜂 the polymeric viscosity and F ( 𝝉) de-

ends on the constitutive model. Here 
▽
𝝉 is the upper-convected deriva-

ive of 𝝉, 

𝝉 = 

𝐷 𝝉

𝐷𝑡 
− ∇ 𝐮 𝑇 ⋅ 𝝉 − 𝝉 ⋅ ∇ 𝐮 . (4)

he first term on the right-hand side is the material time derivative 

𝐷 𝝉

𝐷𝑡 
= 

𝜕 𝝉

𝜕𝑡 
+ 𝐮 ⋅ ∇ 𝝉 . (5)

he constitutive models used in the current work are the UCM model,
.e. F ≡ 1, and the linear form of the PTT model, 

 ( 𝝉) = 1 + 

𝜀𝜆

𝜂
Tr ( 𝝉) , (6)

here 𝜀 is a dimensionless parameter and Tr( 𝝉) is the trace of 𝝉. 
For a multimode viscoelastic model, 𝝉 is the sum of the modal

tresses 
{
𝝉𝑘 

}𝑁 

𝑘 =1 , i.e. 

= 

𝑁 ∑
𝑘 =1 

𝝉𝑘 , (7)

here each stress mode 𝝉k is described by an equation on the form of
3) . 

. Numerical method 

The momentum and continuity equations are discretized with the
nite volume method on a Cartesian octree grid. The pressure-velocity
oupling is solved using the SIMPLEC algorithm. Interior boundaries are
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odeled by the mirroring immersed boundary method [28,29] , in which
he velocity field is implicitly mirrored across the boundary surface such
hat the no-slip condition is satisfied for the converged solution. 

The framework is implemented in IPS IBOFlow 

R ○ [30] , which has
een employed for simulation of e.g. conjugated heat transfer [31] ,
uid-structure interaction [32] and two-phase flows of shear thinning
uids, including seam sealing [33,34] , adhesive extrusion [35] and 3D-
ioprinting [36] . 

.1. Lagrangian-Eulerian stress calculation 

Viscoelastic stresses are calculated using a Lagrangian-Eulerian
ethod. In this section a presentation of the method is given in a con-
ensed form. A more detailed description can be found in [27] . 

The constitutive equation is described in the Lagrangian frame of
eference, represented by discrete nodes, or fluid elements, convected
y the flow. The nodal position and stress are then described by the
rdinary differential equation (ODE) system 

 

 

 

 

 

 

 

𝐱̇ = 𝐮 
𝝉̇1 = 𝐺 1 ( 𝝉1 , ∇ 𝐮 ) 

⋮ 
𝝉̇𝑁 

= 𝐺 𝑁 

( 𝝉𝑁 

, ∇ 𝐮 ) 

, (8) 

here x is the node position, ̇(∙) denotes time derivative and the func-
ions { 𝐺 𝑖 } 𝑁 

𝑖 =1 follow from (3) . The local properties required at the node
ositions are obtained by trilinear interpolation from the Eulerian fluid
rid. 

After calculating the stresses at each node, they are interpolated to
he cell centers of the Eulerian grid using radial basis functions (RBF).

hen interpolating the stress to an arbitrary location x , the nodes within
 given distance R s are identified. The interpolated stress components
̂𝑖𝑗 are then calculated as 

̂𝑖𝑗 ( 𝐱) = 

𝑁 𝑐 ∑
𝑘 =1 

𝑤 

( 𝑘 ) 
𝑖𝑗 
𝜙( 𝜉|𝐱 − 𝐱 ( 𝑘 ) |) + 𝑃 𝑖𝑗 ( 𝐱) , (9)

here 𝑤 

( 𝑘 ) 
𝑖𝑗 
, 𝑘 = 1 , … , 𝑁 𝑐 , are the weights corresponding to the N c neigh-

oring nodes, x ( k ) their positions, 𝜙 a radial basis function and 𝜉 a scaling
arameter. The last term is the polynomial 

 𝑖𝑗 ( 𝐱) = 𝑣 
(0) 
𝑖𝑗 

+ 

𝑑 ∑
𝑘 =1 

𝑣 
( 𝑘 ) 
𝑖𝑗 
𝑥 𝑘 (10)

here d is the spatial dimension. The coefficients { 𝑤 

( 𝑘 ) 
𝑖𝑗 
} 𝑁 𝑐 

𝑘 =1 and { 𝑣 ( 𝑘 ) 
𝑖𝑗 
} 𝑑 
𝑘 =0 

re obtained from the system 

 

𝐴 𝐵 

𝐵 

𝑇 𝟎 

] [ 
𝐰 

𝐯 

] 
= 

[ 
𝐠 
𝟎 

] 
(11) 

 𝑘𝑙 = 𝜙( 𝜉|𝐱 ( 𝑘 ) − 𝐱 ( 𝑙) |) , (12)

 = 

[ 
1 ⋯ 1 
𝐱 (1) ⋯ 𝐱 ( 𝑁 𝑐 ) 

] 𝑇 
(13)

 = [ 𝝉 𝑖𝑗 |𝐱 ( 𝑘 ) ⋯ 𝝉 𝑖𝑗 |𝐱 ( 𝑁 𝑐 ) ] 𝑇 . (14)

he vector g is unique for each stress component, while the matrices
 and B depend only on the node positions 𝐱 (1) , … , 𝐱 ( 𝑁 𝑐 ) and therefore
nly needs to be calculated once per interpolation. 

.2. ODE solution 

Due to the different inherent properties of CPU:s and GPU:s, different
lgorithms are suitable for each respective architecture. Classical CPU
omputations are not necessarily suitable for direct translation into GPU
ode. Two different algorithms for solving the ODE system (8) are there-
ore considered. 

A global time step Δt refers to a full simulation step, i.e. the step
ength used for solving the momentum and continuity equations. In the
DE solver, the systems are solved from global time t to 𝑡 + Δ𝑡 with N loc 

ocal steps of length Δt n , with 𝑛 = 1 , … , 𝑁 loc and Δ𝑡 = Δ𝑡 1 + ⋯ + Δ𝑡 𝑁 loc 
.

The first method considered is the second order backward differenti-
tion formula (BDF), which was used in the original Lagrangian-Eulerian
ethod in [27] . An approximate solution y n at time t n is then calculated

y solving the discretized equation 

𝑛 Δ𝑡 𝑛 ̇𝐲 𝑛 − 𝐲 𝑛 + 𝛼1 𝐲 𝑛 −1 − 𝛼2 𝐲 𝑛 −2 = 𝟎 , (15)

here subscript n denotes a property at time t n and Δ𝑡 𝑛 = 𝑡 𝑛 − 𝑡 𝑛 −1 . The
oefficients 𝛽n , 𝛼1 and 𝛼2 are uniquely determined given the recent his-
ory of the step size [37] . The system (15) is solved using functional
terations. The solution is considered converged when the relative and
bsolute weighted differences between consecutive solver iterations are
elow a given tolerance. The number of local time steps is estimated us-
ng local error estimation in the solver. The algorithm is executed on the
PU and is implemented in the Sundials CVode package [38] . Details on
he solution algorithm can be found in [37] . 

The second algorithm considered is the implicit Euler method, iden-
ified to be more favorable for GPU computation in terms of memory size
nd bandwidth usage. An approximate solution y n is calculated from 

 𝑛 = 𝐲 𝑛 −1 + Δ𝑡 𝑛 ̇𝐲 𝑛 . (16)

The local step length is determined as Δ𝑡 𝑛 = Δ𝑡 ∕ 𝑁 loc . The system
16) is solved using functional iterations and is considered converged
hen satisfying 

 

( 𝑘 ) 
rel 

< 𝜀 rel , (17) 

 

( 𝑘 ) 
abs 

< 𝜀 abs (18) 

here 𝑅 

( 𝑘 ) 
rel 

and 𝑅 

( 𝑘 ) 
abs 

are the relative and absolute differences, respec-
ively, of the solution vector between the k th and the ( 𝑘 − 1) th iteration,
nd 𝜀 rel and 𝜀 abs are the corresponding tolerances. The differences be-
ween iterations are defined as 

 

( 𝑘 ) 
abs 

= 

‖‖‖𝐲 ( 𝑘 ) 𝑛 
− 𝐲 ( 𝑘 −1) 

𝑛 

‖‖‖, (19) 

 

( 𝑘 ) 
rel 

= 

𝑅 

( 𝑘 ) 
abs 

Δ𝑡 𝑛 ‖𝐲̇ ( 𝑘 ) 𝑛 ‖ + 𝜀 abs 

, (20) 

here ‖•‖ denotes the L 2 -norm 

𝐫‖ = 

√ √ √ √ 

𝑁 ∑
𝑖 =1 

𝑟 2 
𝑖 
, 𝐫 ∈ ℝ 

𝑁 . (21)

n (20) 𝜀 abs is added in the denominator to avoid issues of dividing by
ero. 

With the implicit Euler method, only the current and the last time
tep need to be stored simultaneously during the solution step. The mem-
ry usage is thus kept to a minimum, as well as the required bandwidth.
he implicit Euler method is implemented both for the CPU and the
PU. 

.3. Node distribution 

The resolution of the Lagrangian node set is defined relative to that of
he Eulerian grid. Let the integer 𝑛 split ≥ 1 be the number of subdivisions
f a Cartesian cell in each direction. Upon initialization, each Eulerian
ell is divided into 𝑛 split smaller segments in each coordinate direction
uch that 𝑛 𝑑 

split 
sub-volumes are created, where d is the spatial dimension.

 node is then created at the center of each sub-volume. 
Furthermore, nodes are added and deleted to maintain the quality

f the distribution. Let n max be the maximum allowed number of La-
rangian nodes in a sub-volume. In each global simulation step, nodes
re added if a sub-volume is empty or deleted if the number of nodes in
 sub-volume exceeds n max . 
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Table 1 

Parameter sets simulated for the planar Poiseuille flow. 

Wi 𝜆 (s) Δt / 𝜆 𝜇a (Pas) 

0.1 0.01 10 −2 10 3 

1 0.1 10 −3 10 4 
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. Implementation 

The essential components of the implementation of the viscoelastic
tress calculation in the numerical code are described in this section. All
PU code is implemented in C++ and the GPU-related code is imple-
ented in CUDA/C++ using the Thrust library [39] . All calculations

n both the CPU and the GPU are performed with double precision. 
As previously mentioned, the BDF formula to solve the ODE systems

s implemented for calculation on the CPU using the Sundials CVode
++ library. The implicit Euler method introduced in the current work

s implemented both for calculation on the CPU and the GPU. The nu-
erical integration tolerances are set to 10 −6 for all methods. 

The solution of the ODE systems on the GPU can be summarized as
ollows: 

1. Copy updated position and stresses at Lagrangian nodes to GPU
memory. 

2. Copy velocities and velocity gradients in the Eulerian grid to GPU
memory. 

3. Solve ODE systems with the implicit Euler method on the GPU. 
4. Copy position and stresses from GPU memory to CPU memory. 

The time for copying data between the CPU and the GPU is mini-
ized as the data only needs to be copied to and from the GPU once
er global time step. Furthermore, the same data structures are used
o store node position and stresses on both units. Hence, a straight-
orward memory copy can be performed. Unnecessary re-allocation of
emory on the GPU is avoided by keeping the state of the Lagrangian
odes in GPU memory between global time steps. Consequently, only
odes that have been modified due to addition or deletion are copied
rom the CPU to the GPU. Re-allocation of GPU memory therefore only
ccurs if the stress and position arrays grow larger than the allocated
emory. 

The unstructured interpolation performed on the CPU is executed
s follows. When the stress 𝝉 is required at a cell center, all Lagrangian

odes within a distance 𝑅 𝑠 = 

√
𝑑 Δ𝑥 are found using an R-tree data struc-

ure. Here d is the spatial dimension and Δx the local cell size. The choice
f R s implies that all Lagrangian nodes within the cell are included. The
ystem (11) is then solved for each stress component and the interpo-
ated stress 𝝉̂ is obtained. The execution on the GPU is similar. How-
ver, the R-tree is replaced by a Cartesian grid structure in which the
agrangian nodes are sorted by which cell they reside in. The Cartesian
rid allows for implementation with very low divergence between the
PU threads, as previously discussed. When the stress is required at a
ell center, all nodes residing in the cell are found and used in the inter-
olation. The system (11) is then solved to obtain the interpolated stress
̂ . 

. Results 

The expected accuracy and convergence rate of the Lagrangian-
ulerian method has been assessed for pressure-driven channel flow and
he flow around a confined cylinder in [27] . Therefore, it is first shown
hat the newly proposed implementation produces the same results for
hese flows. The computational performance is then evaluated for the
ifferent methods. For the implicit Euler methods 𝑁 loc = 1 is used if
othing else is explicitly stated. 

.1. Planar poiseuille flow 

A single-mode UCM fluid, i.e 𝐹 ( 𝝉) = 1 and 𝜇 = 0 , flowing in a pla-
ar channel with height 2 H is simulated to validate the different meth-
ds. A constant pressure drop Δp is imposed through Dirichlet pressure
onditions at the inlet and the outlet. Periodic boundaries are used for
elocity and viscoelastic stress. Lagrangian nodes exiting through a pe-
iodic boundary is thus re-entering to the opposite side. The bound-
ry conditions represent a channel of infinite length. No-slip is im-
osed at the channel walls. The length of the computational domain
n the flow direction is H . The analytic solution for the steady flow
eads [40] 

 ( 𝑦 ) = 

3 𝑦𝑈 

2 𝐻 

(
2 − 

𝑦 

𝐻 

)
, (22) 

𝑥𝑥 ( 𝑦 ) = 

18 𝜆𝜂𝑈 

2 

𝐻 

2 

(
1 − 

𝑦 

𝐻 

)2 
, (23) 

𝑥𝑦 ( 𝑦 ) = 

3 𝜂𝑈 

𝐻 

(
1 − 

𝑦 

𝐻 

)
, (24) 

here y denotes the cross-channel direction and U is the mean velocity.
he corresponding pressure gradient reads 

𝜕𝑝 

𝜕𝑥 
= 

3 𝜂𝑈 

𝐻 

2 . (25)

The flow is characterized by the Weissenberg number Wi = 𝜆𝑈∕ 𝐻
nd the Reynolds number Re = 𝜌𝑈𝐻∕ 𝜂. For all simulations 𝑈 = 0 . 1 𝑚 ∕ 𝑠
nd Re = 0 . 001 . The pressure drop Δp is calculated from (25) . 

The polymeric viscosity 𝜂 = [1] Pas is constant and the Weissenberg
umber is varied through 𝜆. Both sides diffusion (BSD) with viscosity 𝜇a 

s used, which is applicable since the steady flow solution is of interest.
he flow and material parameters used, respectively, are summarized

n Table 1 . 
The simulations are validated by comparing the normal stress, shear

tress and velocity across the channel with the analytic solution at steady
ow conditions. Since the numerical method is transient by construc-
ion, the flow is initiated from rest and simulate until a steady flow is
btained, defined with respect to the condition 

||𝜙𝑛 − 𝜙𝑛 −1 ||||𝜙𝑛 || < 𝜀 tol , (26)

here 𝜙n is velocity or stress at global time step n and 𝜀 tol is a tolerance.
n the calculations performed, values below 10 −10 were obtained for all
uantities. 

A series of spatial resolutions is used to validate grid convergence.
n all cases 𝑛 split = 2 is used. Further, due to the regularity of the flow
odes are neither added nor deleted. Consequently, all values n max > 0
ere found to give exactly the same node sets. 

In Fig. 2 the velocity, normal stress and shear stress are shown across
he channel for the three methods, obtained for Wi = 1 with the highest
patial resolution 𝐻∕Δ𝑥 = 80 . The velocity is normalized by U and the
tress with the corresponding analytic wall stresses 𝜏xx, w and 𝜏xy, w , re-
pectively. The simulated profiles overlap the analytic solution on the
cale of comparison. 

A detailed comparison with the analytic solution is performed by
alculating the errors 

 𝜙 = 

||𝜙𝑠 − 𝜙a ||||𝜙a || , (27)

here 𝜙s and 𝜙a denote the simulated and analytic velocity or stress.
n Fig. 3 the computed errors with respect to the analytic solution are
hown for Wi = 1 . The results for Wi = 0 . 1 are identical and have been
mitted, along with the errors for the linear shear stress profile which
re below 10 −9 for all cases. Second order convergence for the veloc-
ty and normal stress is found for all cases, which is coherent with the
esults in previous work [27] . Moreover, the results obtained with the
ifferent methods are identical. For this flow it is thus concluded that
he implicit Euler method on both the GPU and the CPU along with the
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Fig. 2. Simulated fully developed velocity (top), normal stress (middle) and 
shear stress (bottom) calculated with the UCM model for Wi = 1. 
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Fig. 3. Computed errors of velocity (top) and normal stress (bottom) with re- 
spect to analytical solution for Wi = 1 , simulated using GPU ( ∘), CPU-BDF ( ⋄, ) 
and CPU-Euler ( □). 

Fig. 4. Symmetrically confined cylinder channel geometry. 
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BF interpolation on the GPU gives the same results as the previously
alidated method. 

.2. Confined cylinder flow 

The second case is the flow of a four-mode PTT fluid over a cylin-
er in a two-dimensional channel. The flow geometry and the model
arameters are the same as used by Baaijens et al. [7] , which were used
o validate the Lagrangian-Eulerian method in previous work [27] . 

A sketch of the flow geometry is shown in Fig. 4 . The cylinder has
adius R and is positioned at the channel centerline, at ( 𝑥, 𝑦 ) = (0 , 0) . The
eight of the channel is 4 R . 

The flow is characterized by the Deborah number De = 𝜆̄𝑈∕ 𝑅 and
y Re = 𝜌𝑈𝑅 ∕ 𝜂0 . The solvent viscosity is 𝜇 = 0 for the considered fluid,
nd the total viscosity 𝜂0 and average relaxation time 𝜆̄ are respectively
alculated from the individual modes as 

0 = 

𝑁 ∑
𝑘 =1 

𝜂𝑘 , (28) 

̄ = 

1 
𝜂0 

𝑁 ∑
𝑘 =1 

𝜂𝑘 𝜆𝑘 . (29) 

Fully developed profiles for stress and velocity are imposed at the in-
et, calculated from the semi-analytic solution by Cruz and Pinho [41] .
t the channel walls the no-slip condition is used and at the outlet ambi-
nt pressure is set and velocities are extrapolated in the flow direction. 

A uniform grid with cell size Δ𝑥 = 𝑅 ∕40 is used, which was the reso-
ution used in the previous work. For the node set 𝑛 split = 2 and 𝑛 max = 5
re used. Also following the previous work, a small amount of BSD with

𝑎 = 𝜂0 is used. 
The flow is simulated with mean inlet velocity 𝑈 = 0 . 1074 𝑚 ∕ 𝑠 fol-

owing Baaijens et al. [7] , corresponding to De = 2 . 32 and Re = 0 . 174 .
he PTT model parameters used are summarized in Table 2 . 

Starting from rest, the flow is advanced in time until a steady flow
s obtained. The procedure is repeated for the three methods described
n Section 3.2 . In Figs. 5 , and–7 the velocity, the first normal stress dif-
erence 𝑁 1 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦 and the shear stress, respectively, computed with
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Table 2 

Parameters for the PTT model used in the confined cylinder channel flows. 

Mode 𝜂(Pas) 𝜆 (s) 𝜀 

1 0.443 0.00430 0.39 

2 0.440 0.0370 0.39 

3 0.0929 0.203 0.39 

4 0.00170 3.00 0.39 

Fig. 5. Computed profiles of velocity across the confined cylinder channel at 
𝑥 ∕ 𝑅 = 1 . 5 . 

Fig. 6. Computed profiles of the first normal stress difference across the con- 
fined cylinder channel at 𝑥 ∕ 𝑅 = 1 . 5 . 
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Fig. 7. Computed profiles of shear stress across the confined cylinder channel 
at 𝑥 ∕ 𝑅 = 1 . 5 . 

Fig. 8. Computed normal stress difference along the confined cylinder channel 
centerline. 

Fig. 9. Average time for solving the ODE systems for the four-mode PTT fluid 
in the confined cylinder channel for GPU ( ∘), CPU-BDF ( ⋄, ) and CPU-Euler ( □), 
with 4 CPU threads. 
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he different methods are shown across the cylinder channel at 𝑥 = 1 . 5 .
his location downstream of the cylinder is significant for the flow and
hould reveal possible discrepancies between the different methods. the
elocity is normalized by U and the stresses with 𝜏0 = 3 𝜂0 𝑈∕ 𝑅, following
revious work. 

In Fig. 8 the normal stress is shown along the channel centerline
ownstream of the cylinder. The profiles overlap and it is thus evident
hat the results obtained with the methods introduced in this work are
quivalent to those obtained with the previously validated CPU-BDF
ethod. 

.3. Simulation time 

The cylinder channel flow is further used to compare calculation
imes for the different methods. The flow is simulated for 100 time steps
nd the average elapsed time is measured for the different components
f the algorithm. All simulations are performed with an Intel(R) Xeon(R)
old 6134 CPU with 8 3.20 GHz cores and with a Tesla V100 GPU with
2 Gb memory. The calculations are repeated for different grid resolu-
ions and different numbers of CPU threads. At the highest resolution,
∕Δ𝑥 = 80 , the Eulerian grid has 512 000 cells and the Lagrangian node
et consists of approximately two million nodes. The memory usage on
he GPU for this case is around 400 Mb. 

The calculation times for ODE solution and the unstructured stress in-
erpolation are compared. In Fig. 9 the average times for solving the ODE
ystems (8) are shown for the different methods for varying grid reso-
ution. The simulations were performed using four CPU threads. Com-
ared to the CPU-BDF method there is a clear improvement in using the
mplicit Euler method for this flow, both on the CPU and the GPU. The
omputation times for the GPU computations are however much smaller
han the times for both CPU methods. 
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Fig. 10. Average time for interpolating viscoelastic stresses to fluid cell centers 
for the four-mode PTT fluid in the confined cylinder channel for GPU ( ∘), CPU- 
BDF ( ⋄, ) and CPU-Euler ( □), with 4 CPU threads. 

Fig. 11. Average time for solving the ODE systems for the four-mode PTT fluid 
in the confined cylinder channel for GPU ( ∘), CPU-BDF ( ⋄, ) and CPU-Euler ( □), 
at the highest grid resolution. 

Fig. 12. Average time for interpolating viscoelastic stresses to fluid cell centers 
for the four-mode PTT fluid in the confined cylinder channel for GPU ( ∘), CPU- 
BDF ( ⋄, ) and CPU-Euler ( □), at the highest grid resolution. 
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Fig. 13. Average time for calculating viscoelastic stresses for the four-mode PTT 
fluid in the confined cylinder channel for GPU ( ∘), CPU-BDF ( ⋄, ) and CPU-Euler 
( □), at the highest grid resolution. 

Fig. 14. Average time for a full time step for the four-mode PTT fluid in the 
confined cylinder channel for GPU ( ∘), CPU-BDF ( ⋄, ) and CPU-Euler ( □), at the 
highest grid resolution. 
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In Fig. 10 the times for interpolating the viscoelastic stresses to the
ulerian cell centers are shown. The CPU methods are equally fast since
hey share the same implementation. For the GPU method the times are
ore than one order of magnitude smaller for the larger node sets. 

The influence of the number of CPU threads is assessed. In Figs. 11
nd 12 the times for the ODE solution and the interpolation are shown
or different numbers of processor threads, obtained with the highest
rid resolution. An improvement with the number of threads is observed
or the CPU-based methods. The computational time for the GPU method
s not improved by increasing the number of CPU threads, since the GPU
arallelization is independent of the number of the processor threads.
he computational times for the GPU method are however significantly

ower compared to the CPU methods over the range compared. 
In Fig. 13 the times for the full viscoelastic stress calculation are

hown for the largest node set, including the ODE solution, the unstruc-
ured interpolation and the distribution of the nodes. The two CPU meth-
ds scale with the number of threads over the studied range. For the GPU
ethod the observed decrease is smaller, since the main part of the algo-

ithm is executed on the GPU and is thus independent on the number of
PU threads. Furthermore, the total computation times are compared.

n Fig. 14 the times for a full simulation step, including solving the mo-
entum and continuity equations, are shown for varying numbers of
PU threads. There is a clearly observable difference between the times
btained for the different methods. Particularly, the GPU method is al-
ays faster than the CPU methods. 

To summarize, the improvements relative to the CPU-BDF method
re presented for the largest Lagrangian node set for the CPU-Euler
ethod in Table 3 and for the GPU method in Table 4 . As previously
iscussed, the calculations perform the fastest with the GPU method for
ll cases. For a full simulation step the consumed time is roughly halved
ith the GPU method as compared to the original CPU-BDF method.
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Table 3 

Reduction of computational time relative to the CPU-BDF method for the largest 
Lagrangian node set in the cylinder flow for the CPU-Euler method. 

CPU th. 1 2 4 8 

Ode sol. 76.0% 77.2% 81.6% 79.4% 

Stress sol. 40.1% 37.8% 41.1% 32.7% 

Full step 29.9% 28.1% 30.3% 21.3% 

Table 4 

Reduction of computational time relative to the CPU-BDF method for the largest 
Lagrangian node set in the cylinder flow for the GPU method. 

CPU th. 1 2 4 8 

Ode sol. 99.6% 99.2% 98.7% 97.9% 

Interp. 98.4% 97.4% 95.8% 93.4% 

Stress sol. 87.1% 83.2% 78.6% 71.1% 

Full step 62.2% 58.8% 54.6% 43.5% 

Fig. 15. Time per step with different number of Lagrangian nodes for arranging 
u and ∇ u on the CPU ( ∗ ) and copy it to the GPU ( ⋄, ), copy updated part of 
solution to GPU ( □), solve ODE systems on GPU ( ∘) and copy solution to CPU 

( × ). Simulated with 4 CPU threads. 
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Fig. 16. Average time for solving the ODE systems with 10 substeps for the 
four-mode PTT fluid in the confined cylinder channel for GPU ( ∘), CPU-BDF ( ⋄, ) 
and CPU-Euler ( □), with 4 CPU threads. 

Fig. 17. Average time for solving the ODE systems with 100 substeps for the 
four-mode PTT fluid in the confined cylinder channel for GPU ( ∘), CPU-BDF ( ⋄, ) 
and CPU-Euler ( □), with 4 CPU threads. 
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or the CPU-Euler method the corresponding time is reduced by around
0%. 

The transfer of data between the CPU and the GPU memory may
e a bottleneck for GPU algorithms. This is particularly true when the
lgorithm requires calculation on both units. This is true for the GPU
ethod in the current work. The components of the GPU method are

herefore studied in detail. In Fig. 15 the average times for the operations
nvolved in the solution of the ODE systems are shown. Interestingly, the
ominating component is not the solution of the ODE systems itself, but
ather arranging and copying data between the GPU memory and the
PU memory. The total ODE solution time for the GPU method therefore
cales with the number of nodes, since the copy operations do. 

Since the BDF formula has higher order of accuracy than the im-
licit Euler method, it may in some cases be feasible to increase the
umber of local steps N loc in the implicit Euler method to improve the
ccuracy. The impact on the computational time is therefore studied. In
igs. 16 and 17 the computational times for the ODE system solution
sing 𝑁 loc = 10 and 𝑁 loc = 100 , respectively, are shown for the implicit
uler methods. The times for the BDF formula are the same as in the
revious figures and are included as reference. For the implicit CPU-
uler method the time is proportional to the number of steps, showing
 large increase when increasing this number. For the GPU method, the
ncrease is less significant and the consumed time is significantly smaller
han for both CPU methods. This is reasonable since the computational
ime for the GPU method is dominated by memory transfer to and from
he GPU. The transfer time is equally large regardless the number of
teps performed by the ODE solver, since the data is only transferred to
he GPU prior to the first local step and back to the CPU after the last
tep. 

. Conclusion 

A previously proposed Lagrangian-Eulerian method for simulating
iscoelastic flow has been extended for parallel computation on the
PU. Two parts of the algorithm have been implemented for execution
n the GPU, namely the integration of the constitutive equation at the
agrangian nodes and the unstructured interpolation of the viscoelastic
tress tensor from the nodes to the Eulerian fluid grid. 

The original method integrates the constitutive equations using a sec-
nd order backwards differentiation formula, while the GPU-algorithm
ses the implicit Euler method. An equivalent implicit Euler method
as therefore been implemented for the CPU to allow fair comparison
f computation times. The introduced methods were compared to the
riginal method for two flows, a planar Poiseuille flow and a flow past
 confined cylinder. The results obtained with the three methods over-
apped. 

The computational times for the ODE solution and the stress inter-
olation were compared for the three methods, for different grid reso-
utions and numbers of CPU threads. The implicit Euler method proved
o be faster than the BDF method both when executed on the CPU and
he GPU. The GPU calculations were however significantly faster. The
ame is true for the unstructured interpolation. As a result, the simu-
ation times were significantly lower for the GPU method for all cases
tudied. This includes the case of performing 10 or 100 local ODE steps
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er global fluid time step, for which the computation times for the CPU-
uler increased proportionally. 

While the current GPU method is evidently faster than the corre-
ponding CPU method, adaptions that could potentially further extend
he performance are conceivable. Memory transfer could be optimized
y splitting into smaller parts. The computations for a small set of La-
rangian nodes could then be initialized without requiring the data
ransfer for all nodes to be completed. A clear improvement could be
btained from moving more components of the Lagrangian algorithm
o the GPU, such as for example the redistribution of the Lagrangian
odes. Further, with the main part of the algorithm executing on the
PU, further optimization of the required memory transfer between the
PU and the GPU is possible. Another reasonable extension is to use
n R-tree for the unstructured interpolation on the GPU, as this would
mprove the performance when used in combination with refined and
daptive Eulerian grids. 

The results demonstrate the possibility to improve the performance
f the simulation method through the use of GPU acceleration. They
re also a promising contribution towards the goal of developing tools
or viscoelastic flow simulation that are sufficiently efficient to simulate
omplex, real-life industrial applications. 
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