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1. Introduction

Let Bn be the open unit ball of Cn and H denote the algebra of holomorphic functions 
on Bn. A function b ∈ H induces an integration operator (or a Volterra type operator) 
Jb given by the formula:

Jbf(z) =
1∫

0

f(tz)Rb(tz)dt
t
, z ∈ Bn, (1.1)

where f ∈ H and Rb is the radial derivative of b:

Rb(z) =
n∑

k=1

zk
∂b

∂zk
(z), z = (z1, z2, . . . , zn) ∈ Bn.

A natural question about the integration operator is how to characterize those symbols b
so that Jb is bounded from one holomorphic space to another. The operator Jb was first 
studied by Pommerenke [32] in the setting of the Hardy spaces of the unit disk and the 
functions of bounded mean oscillation. Some important papers include the pioneering 
works of Aleman, Cima and Siskakis [2–4], where they described the boundedness of 
the operator Jb acting between Hardy spaces or between Bergman spaces in the unit 
disk. After then, a lot of research on the Volterra type operator Jb acting on many 
spaces of holomorphic functions has been done. The higher dimensional variant of Jb
was introduced by Hu [17]. A fundamental property of the operator Jb is the following 
basic identity involving the radial derivative R:

R(Jbf)(z) = f(z)Rb(z), z ∈ Bn.

In the fairly recent paper [26] the second named author completely characterized the 
boundedness of Jb between Hardy spaces Hp and Hq of the unit ball for the full range 
0 < p, q < ∞. An interested reader may consult the paper for more references on the 
topic: this is an active field and there are too many relevant works to be listed here.

Recall that, for 0 < p < ∞, a function f ∈ H belongs the Hardy space Hp, if

‖f‖pHp = sup
0<r<1

∫
Sn

|f(rξ)|pdσ(ξ) < ∞.

Here Sn = ∂Bn denotes the unit sphere, and dσ the surface measure on Sn normalized 
so that σ(Sn) = 1. Given α > −1 and 0 < p < ∞, a function f ∈ H belongs to the 
weighted Bergman space Ap

α, if

‖f‖p
Ap

α
=

∫
|f(z)|pdVα(z) < ∞.
Bn
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Here dV = dV0 is the Lebesgue measure on Bn, normalized so that V (Bn) = 1. The 
measure dVα is given by dVα(z) = c(n, α)(1 − |z|2)αdV (z) with c(n, α) chosen to guar-
antee Vα(Bn) = 1. We also denote by H∞ the space of bounded holomorphic functions, 
equipped with the sup norm. As is well known, all the spaces above are complete, and 
when p = 2 they are Hilbert spaces with the obvious inner product. By now there are 
many excellent references for Hp and Ap

α spaces; we refer the reader to [36–38].

In the present paper, we characterize the boundedness of Jb : Ap
α → Hq on the unit 

ball Bn for all possible ranges 0 < p, q < ∞ and α > −1. For n = 1 this problem was 
studied by Wu [35] who solved the cases 0 < p ≤ q < ∞ and 2 ≤ q < p < ∞, and left 
the case 0 < q < min{2, p} as an open problem. We will fill the gap by solving the open 
case 0 < q < min{2, p} and extend all these results to the setting of higher dimension.

Our main theorem is the following.

Theorem 1. Let α > −1, 0 < p, q < ∞ and b ∈ H. Then the following hold:

(1) If 0 < p ≤ min{2, q} or 2 < p < q < ∞, then Jb : Ap
α → Hq is bounded if and only if

sup
z∈Bn

|Rb(z)|(1 − |z|2)n
q +1−n+1+α

p < ∞.

(2) If 2 < p = q < ∞, then Jb : Ap
α → Hq is bounded if and only if

|Rb(z)|
2p

p−2 (1 − |z|2)
p−2α
p−2 dV (z)

is a Carleson measure.
(3) If p > max{2, q}, then Jb : Ap

α → Hq is bounded if and only if

ξ �→

⎛⎜⎝ ∫
Γ(ξ)

|Rb(z)|
2p

p−2 (1 − |z|2)
2−2α
p−2 +1−ndV (z)

⎞⎟⎠
p−2
2p

belongs to L
pq

p−q (Sn).
(4) If 0 < q < p ≤ 2, then Jb : Ap

α → Hq is bounded if and only if

ξ �→ sup
z∈Γ(ξ)

|Rb(z)|(1 − |z|2)
p−1−α

p

belongs to L
pq

p−q (Sn).

Here Γ(ξ) =
{
z ∈ Bn : |1 − 〈z, ξ〉| < (1 − |z|2)

}
is a Korányi approach region. Prop-

erties of these regions together with the concept of a Carleson measure are discussed in 
Section 2.
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Fig. 1. The main theorem summarized in (p, q) coordinates. The shaded region corresponds to the cases that 
are new even in one dimension.

The reader might find reading the theorem easier after examining Fig. 1. The items 
of Theorem 1 are labeled accordingly. The part of the boundary shared by items (1) and 
(4) belongs to the item (1), and the part of the boundary shared by items (3) and (4) 
belongs to the item (4).

We mention here that the missing case 0 < q < min{2, p} is contained in the items 
(3) and (4). In addition, aside from the cases when Jb acts only on Hardy or Bergman 
spaces, the setting of the present paper is perhaps the most natural one, and the complete 
solution is rather elaborate. All conditions above can be formulated in terms of some 
well-known function spaces, such as various tent spaces and Triebel-Lizorkin spaces. 
However, due to the multitude of the parameters, we believe that the actual conditions 
are easier to read. An exception is the item (1), which is equivalent to b belonging to the 
Bloch type space B n

q +1−n+1+α
p , whose definition is the necessary and sufficient condition 

given in item (1).
A reader who is familiar with the paper [35] might notice that our case 2 < p < q < ∞

seems different from that of the reference. However, these conditions are known to be 
equivalent – it is simply our personal choice to use a Bloch type semi-norm instead of 
s-Carleson measure condition. Our tools include Carleson measures, area techniques, 
Kahane-Khinchine type inequalities, and some factorization tricks for tent spaces of 
sequences.

The paper is organized as follows. The proof of the main theorem is split in two 
sections: Section 4 containing the proof for p ≤ q (that is, cases (1) and (2)) and Section 5
containing the case p > q (that is, the items (3) and (4)). The sections preceding these 
main results contain some background materials and the tools used in the paper, as well 
as some key lemmas that are needed along the way.

We will use notation, which is quite standard. For any two points z = (z1, . . . , zn)
and w = (w1, . . . , wn) in Cn we write 〈z, w〉 = z1w̄1 + · · · + znw̄n, and |z| =

√
〈z, z〉. 

Typically constants are used with no attempt to calculate their exact values. Given two 
non-negative quantities A and B, depending on some parameters, we write A � B to 
imply that there exists some inessential constant C > 0 so that A ≤ CB. The converse 
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relation A � B is defined in an analogous manner, and if A � B and A � B both hold, 
we write A 
 B. For two quasinormed spaces X and Y , the notation X ∼ Y means that 
these spaces are isomorphic. Given p ∈ [1, ∞], we will denote by p′ = p/(p −1) its Hölder 
conjugate. In this context we agree that 1′ = ∞ and ∞′ = 1.

2. Preliminaries

In this section, we collect the necessary preliminaries for the course of the proof of 
our main theorem. The ideas listed in this section are used throughout the paper.

2.1. Carleson measures and embedding theorems

Let us recall the concept of a Carleson measure, which will be important for our 
analysis. For ξ ∈ Sn and δ > 0, consider the non-isotropic metric ball

Bδ(ξ) = {z ∈ Bn : |1 − 〈z, ξ〉| < δ} .

A positive Borel measure μ on Bn is said to be a Carleson measure if

μ(Bδ(ξ)) � δn

for all ξ ∈ Sn and δ > 0. Obviously every Carleson measure is finite. Hörmander [16]
extended to several complex variables the famous Carleson measure embedding theorem 
[8,9] asserting that, for 0 < p < ∞, the embedding Id : Hp → Lp(μ) := Lp(Bn, dμ) is 
bounded if and only if μ is a Carleson measure. More generally, for s > 0, a finite positive 
Borel measure on Bn is called an s-Carleson measure if μ(Bδ(ξ)) � δns for all ξ ∈ Sn

and δ > 0. We set

‖μ‖CMs
:= sup

ξ∈Sn,δ>0
μ(Bδ(ξ))δ−ns.

For simplicity, we write ‖μ‖CM for the ‖μ‖CM1 . It is well known (see [36, Theorem 45]) 
that μ is an s-Carleson measure if and only if for each (some) t > 0,

sup
a∈Bn

∫
Bn

(1 − |a|2)t
|1 − 〈a, z〉|ns+t

dμ(z) < ∞. (2.1)

Moreover, with constants depending on t, the supremum of the above integral is com-
parable to ‖μ‖CMs

. In [14], Duren gave an extension of Carleson’s theorem by showing 
that, for 0 < p ≤ q < ∞, one has that Id : Hp → Lq(μ) is bounded if and only if μ is a 
q/p-Carleson measure. Moreover, one has the estimate

‖Id‖Hp→Lq(μ) 
 ‖μ‖1/q
CM .
q/p
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A simple proof of this result, in the setting of the unit ball, can be found in [26] for 
example.

We will need the following well known embedding theorem for Hardy and Bergman 
spaces. The first part is a consequence of Duren’s theorem, but it can be proven in a 
much more elementary manner (see Theorem 4.48 of [37]). The second part follows by 
writing |f |q = |f |q−p|f |p and using the standard pointwise estimate for the factor |f |q−p:

|f(z)|q−p � (1 − |z|2)−
(n+1+α)(q−p)

p ‖f‖q−p
Ap

α
.

Theorem A. Let α > −1 and 0 < p < q < ∞. Then

Hp ⊂ Aq
n(q/p−1)−1

and

Ap
α ⊂ Aq

β ,

with β = (n + 1 + α)(q/p − 1) + α. Moreover, the inclusion mappings are bounded.

We will also need the following Dirichlet-type embedding theorem, which can be found 
in [6].

Theorem B. Assume that f ∈ H with f(0) = 0. If 0 < q ≤ 2, then

‖f‖Hq � ‖Rf‖Aq
q−1

.

If 0 < p < q < ∞, then

‖f‖Hq � ‖Rf‖Ap
p+np/q−n−1

.

2.2. Area methods and equivalent norms

For γ > 1 and ξ ∈ Sn, define the Korányi (admissible, non-tangential) approach region 
Γγ(ξ) by

Γγ(ξ) =
{
z ∈ Bn : |1 − 〈z, ξ〉| < γ

2 (1 − |z|2)
}
.

In this paper we agree that Γ(ξ) := Γ2(ξ). It is known that for every r > 1 and γ > 1, 
there exists γ′ > 1 so that ⋃

D(z, r) ⊂ Γγ′(ξ), (2.2)

z∈Γγ(ξ)
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where D(z, r) is the Bergman metric ball of radius r centered at z (we refer to Chapter 1 

in [37] for an account on the Bergman metric). We will write Γ̃(ξ) (and sometimes ˜̃Γ(ξ)) 
to indicate this change of aperture.

Given z ∈ Bn, we can define the set I(z) = {ξ ∈ Sn : z ∈ Γ(ξ)} ⊂ Sn. Since 
σ(I(z)) 
 (1 − |z|2)n, an application of Fubini’s theorem yields the following important 
formula:

∫
Bn

ϕ(z)dν(z) 

∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

ϕ(z) dν(z)
(1 − |z|2)n

⎞⎟⎠ dσ(ξ), (2.3)

where ϕ is any non-negative measurable function and ν is a finite positive measure.

Let us now recall the following Hardy-Stein (or Littlewood-Paley) inequalities, which 
will be very important for our arguments. The proof of these variants can be found in 
[37].

Theorem C. Let 0 < p < ∞. If f ∈ H and f(0) = 0, then

‖f‖pHp 

∫
Bn

|f(z)|p−2|Rf(z)|2(1 − |z|2)dV (z).

In particular,

‖f‖2
H2 


∫
Bn

|Rf(z)|2(1 − |z|2)dV (z).

The next estimate is the celebrated Calderón’s area theorem [7], which was proven for 
1 < p < ∞ by Marcinkiewicz and Zygmund [24]. The variant we will use can be found 
in [1] or in [26,29], where it is proven in a more general form.

Theorem D. Let 0 < p < ∞. If f ∈ H and f(0) = 0, then

‖f‖pHp 

∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|Rf(z)|2(1 − |z|2)1−ndV (z)

⎞⎟⎠
p/2

dσ(ξ).

The above result can be formulated in terms of Rkf for any k ∈ N, or even more 
general fractional derivatives. See, for instance [27,31].

Given a positive Borel measure μ on Bn, then for ξ ∈ Sn, we define

μ̃(ξ) =
∫

dμ(z)
(1 − |z|2)n .
Γ(ξ)
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The following result is known as Luecking’s theorem, and is originally from [22]. The 
present variant can be found in [26], for instance.

Theorem E. Let 0 < s < p < ∞ and let μ be a positive Borel measure on Bn. Then 
the identity Id : Hp → Ls(μ) is bounded, if and only if, the function μ̃ belongs to 
Lp/(p−s)(Sn). Moreover, ‖Id‖Hp→Ls(μ) 
 ‖μ̃‖1/s

Lp/(p−s)(Sn).

2.3. Poisson transform and maximal functions

Let us recall the invariant Poisson transform (see Chapter 4.1 of [37]):

P [f ](z) =
∫
Sn

(1 − |z|2)n
|1 − 〈z, ξ〉|2n f(ξ)dσ(ξ),

which is defined for f ∈ L1(Sn).
Given δ > 0 and ξ ∈ Sn, we define

I(ξ, δ) = {z ∈ Sn : |1 − 〈z, ξ〉| < δ2},

and for f ∈ L1(Sn) let M [f ] denote the Hardy-Littlewood type maximal function defined 
as

M [f ](ξ) = sup
δ>0

1
σ(I(ξ, δ))

∫
I(ξ,δ)

|f(ζ)|dσ(ζ).

The classical Hardy-Littlewood theorem (see Theorem 4.9 of [37] for this version) 
states that

‖M [f ]‖Lp(Sn) � ‖f‖Lp(Sn), p ∈ (1,∞). (2.4)

We will need another kind of maximal function. For a continuous f : Bn → C, we 
define the admissible (non-tangential) maximal function N [f ] by

N [f ](ξ) = sup
z∈Γ(ξ)

|f(z)|.

Let us state the following well-known result on the Lp-boundedness of the admissible 
maximal function that can be found in [34, Theorem 5.6.5] or [37, Theorem 4.24].

Theorem F. Let 0 < p < ∞ and f ∈ H. Then

‖N [f ]‖Lp(Sn) � ‖f‖Hp .
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Finally, the following theorem (Theorem 4.10 of [37]) connects the Poisson transform 
and the two maximal functions.

Theorem G. For f ∈ L1(Sn), we have

N [P [f ]](ξ) � M [f ](ξ).

2.4. Kahane-Khinchine inequalities

Consider a sequence of Rademacher functions rk(t) (see [15, Appendix A]). For almost 
every t ∈ (0, 1) the sequence {rk(t)} consists of signs ±1. We state first the classical 
Khinchine’s inequality (see [15, Appendix A] for example).

Khinchine’s inequality: Let 0 < p < ∞. Then for any sequence {ck} of complex numbers, 
we have

(∑
k

|ck|2
)p/2



1∫

0

∣∣∣∣∣∑
k

ckrk(t)

∣∣∣∣∣
p

dt. (2.5)

The next result is known as Kahane’s inequality, and it will be usually applied in 
connection to Khinchine’s inequality. For reference, see for instance Lemma 5 of Luecking 
[23] or the paper of Kalton [19].

Kahane’s inequality: Let X be a Banach space, and 0 < p, q < ∞. For any sequence 
{xk} ⊂ X, one has

⎛⎝ 1∫
0

∥∥∥∑
k

rk(t)xk

∥∥∥q

X
dt

⎞⎠1/q




⎛⎝ 1∫
0

∥∥∥∑
k

rk(t)xk

∥∥∥p

X
dt

⎞⎠1/p

. (2.6)

Moreover, the implicit constants can be chosen to depend only on p and q, and not on 
the Banach space X.

2.5. Separated sequences and lattices

Let β(z, w) denote the Bergman metric on Bn, and D(a, r) = {z ∈ Bn : β(a, z) < r} be 
the Bergman metric ball of radius r > 0 centered at a point a ∈ Bn (see [37, Chapter 1]). 
A sequence of points Z = {ak} ⊂ Bn is said to be separated if there exists δ > 0 such 
that β(ai, aj) ≥ δ for all i and j with i �= j. This implies that there is r > 0 such that 
the Bergman metric balls D(ak, r) = {z ∈ Bn : β(z, ak) < r} are pairwise disjoint.

We need a well-known result on decomposition of the unit ball Bn. By Theorem 2.23 
in [37], there exists a positive integer N such that for any 0 < r < 1 we can find a 
sequence {ak} in Bn with the following properties:
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(i) Bn =
⋃

k D(ak, r);
(ii) The sets D(ak, r/4) are mutually disjoint;
(iii) Each point z ∈ Bn belongs to at most N of the sets D(ak, 4r).

Any sequence {ak} satisfying the above conditions is called an r-lattice (in the Bergman 
metric). Obviously any r-lattice is a separated sequence.

Our main application of separated sequences is in context of the following important 
result. It is essentially due to Coifman and Rochberg [12], and can be found in Theorem 
2.30 of [37]. Note that we only need one part of the cited theorem, and it is easily seen 
to be valid for all separated sequences.

Theorem H. Let 0 < p < ∞, α > −1, and s > n max{1, 1/p} − n/p. For any separated 
sequence {ak}, and λ = {λk} ∈ 
p, the function

f(z) =
∑
k

λk
(1 − |ak|2)s

(1 − 〈z, ak〉)s+
n+1+α

p

belongs to Ap
α, where the series converges in the quasinorm topology of Ap

α. Moreover, 
‖f‖Ap

α
� ‖λ‖�p .

2.6. Tent spaces

Tent spaces were introduced in the paper of Coifman, Meyer and Stein [11] to study 
problems in harmonic analysis. They provide us with simple, yet general framework for 
questions regarding important spaces such Hardy spaces, Bergman spaces and BMOA. 
Luecking [22] used tent spaces to study embedding theorems for Hardy spaces on Rn. 
These results have been translated to Bn by Arsenovic and Jevtic [5,18].

Let 0 < p, q < ∞ and ν be a positive Borel measure. The tent space T p
q,ν consists of 

ν-measurable functions f on Bn with

‖f‖p
Tp
q,ν

:=
∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|qdν(z)

⎞⎟⎠
p
q

dσ(ξ) < ∞.

Analogously, the space T p
∞,ν consists of ν-measurable functions f on Bn with

‖f‖p
Tp
∞,ν

:=
∫
Sn

(
ess sup

z∈Γ(ξ)
|f(z)|

)p

dσ(ξ) < ∞.

The essential supremum is taken with respect to the measure ν. The case p = ∞ is 
different. For non-zero u ∈ Bn, we define ζu = u/|u| and set Q(u) = {z ∈ Bn : |1 −
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〈z, ζu〉| < 1 − |u|2}. We agree that Q(0) = Bn. The space T∞
q,ν consists of ν-measurable 

functions f on Bn with

‖f‖T∞
q,ν

= sup
ξ∈Sn

⎛⎜⎝ sup
u∈Γ(ξ)

1
(1 − |u|2)n

∫
Q(u)

|f(z)|q(1 − |z|2)ndν(z)

⎞⎟⎠
1/q

< ∞.

By comparing with the discussion in Section 5.2 of [37], we notice that f ∈ T∞
q,ν if 

and only if dμf (z) = (1 − |z|2)n|f(z)|qdν(z) is a Carleson measure on Bn. Moreover, 
‖f‖T∞

q,ν

 ‖μf‖1/q

CM .
The aperture γ > 0 of the Korányi region is suppressed from the notation, and it 

is well-known that any two apertures generate the same function space with equivalent 
quasinorms. When ν(z) = (1 −|z|2)α, we write T p

q,ν = T p
q,α. The spaces T p

∞,α are obviously 
independent of α, and we simply write T p

∞. Note that Theorem D states that f ∈ H

belongs to Hp if and only if Rf ∈ T p
2,1−n, and Fubini’s theorem shows that Ap

α consists 
of holomorphic functions in T p

p,α−n. This explains the special role of the number 2 in 
Theorem 1.

We will employ a discretization scheme. For this purpose a particularly important case 
is given when ν =

∑
k δak

, where Z = {ak} is a separated sequence and δak
are the usual 

Dirac point masses at points ak. We denote f(ak) = λk, and say that λ = {λk} ∈ T p
q (Z), 

if

‖λ‖p
Tp
q (Z) :=

∫
Sn

⎛⎝ ∑
ak∈Γ(ξ)

|λk|q
⎞⎠

p
q

dσ(ξ) < ∞,

when 0 < p, q < ∞, and λ = {λk} ∈ T p
∞(Z), if

‖λ‖p
Tp
∞(Z) :=

∫
Sn

(
sup

ak∈Γ(ξ)
|λk|

)p

dσ(ξ) < ∞.

Finally, λ = {λk} ∈ T∞
q (Z), if

‖λ‖T∞
q (Z) = sup

ξ∈Sn

⎛⎝ sup
u∈Γ(ξ)

1
(1 − |u|2)n

∑
ak∈Q(u)

|λk|q(1 − |ak|2)n
⎞⎠1/q

< ∞.

As before, we have that λ ∈ T∞
q (Z) if and only if the measure dμλ =

∑
k |λk|q(1 −

|ak|2)nδak
is a Carleson measure. Moreover, ‖λ‖T∞

q (Z) 
 ‖μλ‖1/q
CM .

We will need the following duality result for the tent spaces of sequences. For the proof, 
see [5,18,22].
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Theorem I. Let 1 < p < ∞ and Z = {ak} be a separated sequence. If 1 < q < ∞, then 
the dual of T p

q (Z) is isomorphic to T p′

q′ (Z) under the pairing:

〈λ, μ〉T 2
2 (Z) =

∑
k

λk μk(1 − |ak|2)n, λ ∈ T p
q (Z), μ ∈ T p′

q′ (Z).

If 0 < q ≤ 1, then the dual of T p
q (Z) is isomorphic to T p

∞(Z) under the same pairing.

2.7. Estimates involving Bergman kernels

Let us next recall the following well-known (Forelli-Rudin) integral estimates that 
have become very useful in this area of analysis (see [37, Theorem 1.12] for example).

Lemma J. Let t > −1 and s > 0. Then∫
Sn

dσ(ξ)
|1 − 〈z, ξ〉|n+s

� (1 − |z|2)−s

and ∫
Bn

(1 − |u|2)t dV (u)
|1 − 〈z, u〉|n+1+t+s

� (1 − |z|2)−s

for all z ∈ Bn.

We also need the following discrete version of the previous estimate.

Lemma K. Let {ak} be a separated sequence in Bn and let n < t < s. Then

∑
k

(1 − |ak|2)t
|1 − 〈z, ak〉|s

� (1 − |z|2)t−s, z ∈ Bn.

The following more general version of Lemma J will be used, whose proof can be found 
in [25].

Lemma L. Let s > −1, s + n + 1 > r, t > 0, and r + t − s > n + 1. For a ∈ Bn and 
z ∈ Bn, one has ∫

Bn

(1 − |u|2)sdV (u)
|1 − 〈z, u〉|r|1 − 〈a, u〉|t � 1

|1 − 〈z, a〉|r+t−s−n−1 .

Finally, we will use an integral estimate connecting the Korányi regions and the 
Bergman type kernels. Its original form is due to Luecking [22], and the present ver-
sion can be found in [5] and [18]. Note that the converse inequality also holds, and is 
quite trivial to prove.
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Lemma M. Let 0 < s < ∞ and θ > n max{1, 1/s}. If μ is a positive measure, then

∫
Sn

⎡⎣ ∫
Bn

(
1 − |z|2

|1 − 〈z, ξ〉|

)θ

dμ(z)

⎤⎦s

dσ(ξ) �
∫
Sn

μ(Γ(ξ))sdσ(ξ).

3. Lemmas on discretization

We will on several occasions use Kahane’s and Khinchine’s inequalities throughout 
the proof of our main theorem. These tools provide discretized versions of the conditions 
we really need. In this section, we show how to obtain the continuous characterizations 
from the discrete ones. For Bergman space analogues of these lemmas, see [21].

Lemma 2. Let 0 < p, q < ∞ and β > −n −1. There exists r0 ∈ (0, 1) so that, if 0 < r < r0
and Z = {ak} is an r-lattice, then

∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|q(1 − |z|2)βdV (z)

⎞⎟⎠
p
q

dσ(ξ)

�
∫
Sn

⎛⎝ ∑
ak∈Γ(ξ)

|f(ak)|q(1 − |ak|2)n+1+β

⎞⎠
p
q

dσ(ξ),

whenever f is holomorphic on Bn and in T p
q,β.

Proof. It is clear that∫
Γ(ξ)

|f(z)|q(1 − |z|2)βdV (z) �
∑

ak∈Γ̃(ξ)

∫
D(ak,r)

|f(z)|q(1 − |z|2)βdV (z),

where Γ̃(ξ) is an approach region with a larger aperture. By using the standard repro-
ducing formula for f(z) − f(0) followed by a change of variables with the corresponding 
ball automorphism (compare with the proof of Theorem 2.3 in [21] or see Lemma 2.2 in 
[20]), we obtain for z, u with β(z, u) < r < 1/2 that

|f(z) − f(u)|q � rq
∫

D(u,1)

|f(w)|q (1 − |u|2)n+1

|1 − 〈w, u〉|2n+2 dV (w),

where the constant implied by “�” does not depend on r. Thus, an application of Fubini’s 
theorem gives us
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∑
ak∈Γ̃(ξ)

∫
D(ak,r)

|f(z) − f(ak)|q(1 − |z|2)βdV (z)

�
∑

ak∈Γ̃(ξ)

∫
D(ak,r)

rq
∫

D(ak,1)

|f(w)|q (1 − |ak|2)n+1

|1 − 〈w, ak〉|2n+2 dV (w)(1 − |z|2)βdV (z)

�rq
∑

ak∈Γ̃(ξ)

∫
D(ak,1)

|f(w)|q(1 − |w|2)βdV (w)

�rq
∫

˜̃Γ(ξ)

|f(w)|q(1 − |w|2)βdV (w).

The last inequality is due to (2.2), and ˜̃Γ(ξ) is an approach region with aperture larger 
than Γ̃(ξ). Therefore,

∑
ak∈Γ̃(ξ)

∫
D(ak,r)

|f(z)|q(1 − |z|2)βdV (z)

�
∑

ak∈Γ̃(ξ)

∫
D(ak,r)

|f(z) − f(ak)|q(1 − |z|2)βdV (z) +
∑

ak∈Γ̃(ξ)

|f(ak)|q(1 − |ak|2)n+1+β

�rq
∫

˜̃Γ(ξ)

|f(w)|q(1 − |w|2)βdV (w) +
∑

ak∈Γ̃(ξ)

|f(ak)|q(1 − |ak|2)n+1+β .

Recall that different apertures define the same tent space with equivalent quasinorms. 
Raising to power p/q and integrating over Sn yields

∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|q(1 − |z|2)βdV (z)

⎞⎟⎠
p/q

dσ(ξ)

�
∫
Sn

⎛⎝ ∑
ak∈Γ(ξ)

|f(ak)|q(1 − |ak|2)n+1+β

⎞⎠p/q

dσ(ξ)

+ rp
∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|q(1 − |z|2)βdV (z)

⎞⎟⎠
p/q

dσ(ξ).

Since the constants in “�” do not depend on r, we will find the desired r0, which 
completes the proof. �

By a similar argument, we obtain the following lemma.
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Lemma 3. Let 0 < p < ∞ and β ≥ 0. There exists r0 ∈ (0, 1) so that, if 0 < r < r0 and 
Z = {ak} is an r-lattice, then∫

Sn

sup
z∈Γ(ξ)

|f(z)|p(1 − |z|2)βdσ(ξ) �
∫
Sn

sup
ak∈Γ(ξ)

|f(ak)|p(1 − |ak|2)βdσ(ξ),

whenever f is holomorphic on Bn such that the left-hand-side is finite.

Proof. Note first that, by Lemma 2.24 in [37],

|f(z)|p(1 − |z|2)β � 1
(1 − |z|2)n+1

∫
D(z,r)

|f(w)|p(1 − |w|2)βdV (w)

� 1
(1 − |z|2)n+1

∫
D(ak,2r)

|f(w)|p(1 − |w|2)βdV (w),

for some ak in the lattice. Therefore, for 0 < r < 1/4, we have

sup
z∈Γ(ξ)

|f(z)|p(1 − |z|2)β � sup
ak∈Γ̃(ξ)

1
(1 − |ak|2)n+1

∫
D(ak,2r)

|f(w)|p(1 − |w|2)βdV (w).

A small modification of the corresponding argument in the previous lemma gives us

sup
z∈Γ(ξ)

|f(z)|p(1 − |z|2)β

� rp sup
z∈˜̃Γ(ξ)

|f(z)|p(1 − |z|2)β + sup
ak∈Γ̃(ξ)

|f(ak)|p(1 − |ak|2)β .

Integrating over Sn gives the desired result, by the same reasoning as before. �
4. The case p ≤ q

In this section we prove the items (1) and (2) of our main theorem. When n = 1, these 
results can be found in the paper of Wu [35]. However, our proofs differ substantially 
from his. We also note that Theorem 4 is formulated in terms of a Bloch type condition, 
which we find easier to use in practice than the s-Carleson condition in [35]. Let us start 
with the following.

Theorem 4. Let 0 < p ≤ min{2, q} or 2 < p < q < ∞ and α > −1. Then Jb : Ap
α → Hq

is bounded if and only if

‖b‖Bγ := sup |Rb(z)|(1 − |z|2)γ < ∞,

z∈Bn
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with γ = n
q + 1 − (n+1+α)

p . Moreover, ‖Jb‖Ap
α→Hq 
 ‖b‖Bγ .

Proof. Let us first consider the necessity. By the standard pointwise estimate for the 
derivative of Hardy space functions, we have

|f(z)||Rb(z)| � (1 − |z|2)−n/q−1‖Jb‖Ap
α→Hq · ‖f‖Ap

α
.

Now, taking

f(u) = fz(u) = (1 − |z|2)s−
n+1+α

p

(1 − 〈u, z〉)s

for large enough s gives that

sup
z∈Bn

|Rb(z)|(1 − |z|2)n
q +1−n+1+α

p � ‖Jb‖Ap
α→Hq < ∞,

and the necessity is proven.
Next, we look for the sufficiency. Note that p and q of the theorem satisfy either p < q

or p = q ≤ 2. In the former case, by using the second part of Theorem B,

‖Jbf‖Hq � ‖R(Jbf)‖Ap
p+np/q−n−1

=

⎛⎝∫
Bn

|f(z)|p|Rb(z)|p(1 − |z|2)p+np/q−n−1dV (z)

⎞⎠1/p

� ‖b‖Bγ · ‖f‖Ap
α
.

In the case q = p ≤ 2, we use the first part of Theorem B:

‖Jbf‖Hp � ‖R(Jbf)‖Ap
p−1

=

⎛⎝∫
Bn

|f(z)|p|Rb(z)|p(1 − |z|2)p−1dV (z)

⎞⎠1/p

� ‖b‖
B1− (1+α)

p
· ‖f‖Ap

α
.

Therefore, in both cases,

‖Jb‖Ap
α→Hq � ‖b‖Bγ .

This completes the proof. �
We next prove item (2) of our main theorem.



S. Miihkinen et al. / Journal of Functional Analysis 279 (2020) 108564 17
Theorem 5. Let 2 < p < ∞ and α > −1. Then Jb : Ap
α → Hp is bounded if and only if

dμb(z) := |Rb(z)|
2p

p−2 (1 − |z|2)
p−2α
p−2 dV (z)

is a Carleson measure. Moreover, ‖Jb‖Ap
α→Hp 
 ‖μb‖

p−2
2p

CM .

Proof. For any f ∈ Ap
α, consider the measure dμf,b(z) = |f(z)|2|Rb(z)|2dV1(z). Then

‖Jbf‖pHp 

∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|2|Rb(z)|2 dV1(z)
(1 − |z|2)n

⎞⎟⎠
p/2

dσ(ξ) =
∫
Sn

μ̃f,b
p/2(ξ)dσ(ξ). (4.1)

We now first prove the sufficiency part. For any h ∈ H
p

p−2 , we have by Hölder’s 
inequality∫

Bn

|h(z)|dμf,b(z) =
∫
Bn

|h(z)||f(z)|2|Rb(z)|2(1 − |z|2)dV (z)

�

⎛⎝∫
Bn

|h(z)|
p

p−2 |Rb(z)|
2p

p−2 (1 − |z|2)
p−2α
p−2 dV (z)

⎞⎠
p−2
p

‖f‖2
Ap

α

�‖h‖
H

p
p−2

· ‖μb‖
p−2
p

CM · ‖f‖2
Ap

α
.

The last inequality is due to dμb being a Carleson measure. Therefore, we proved that the 
identity Id : H

p
p−2 → L1(dμf,b) is bounded. By Luecking’s theorem (i.e., Theorem E), 

we have ∫
Sn

μ̃f,b
p/2(ξ)dσ(ξ) < ∞

with

‖μ̃f,b‖L p
2 (dσ) 
 ‖Id‖

H
p

p−2 →L1(dμf,b)
� ‖μb‖

p−2
p

CM · ‖f‖2
Ap

α
.

Thus Jb : Ap
α → Hp is bounded and ‖Jb‖Ap

α→Hp �
∥∥μb

∥∥ p−2
2p

CM
. This concludes the proof of 

the sufficiency.
Let us next consider the necessity. Assume that Jb : Ap

α → Hp is bounded. Then for 
any f ∈ Ap

α, by (4.1), we have∫
μ̃f,b(ξ)p/2dσ(ξ) � ‖Jb‖pAp

α→Hp · ‖f‖p
Ap

α
< ∞.
Sn
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We see that the measure dμf,b satisfies the conditions of Theorem E for parameters 1
and p

p−2 . It follows that for any h ∈ H
p

p−2 , we have

∫
Bn

|h(z)|dμf,b(z) � ‖Jb‖2
Ap

α→Hp · ‖f‖2
Ap

α
· ‖h‖

H
p

p−2
.

Now define the measure dνh,b(z) = |h(z)||Rb(z)|2dV1(z), and then the estimate above 
can be written as:∫

Bn

|f(z)|2dνh,b(z) � ‖Jb‖2
Ap

α→Hp · ‖f‖2
Ap

α
· ‖h‖

H
p

p−2
.

This is a Carleson measure condition for the Bergman spaces. Therefore, since p > 2, by 
the results in [23] (see also Theorem B in [28]), we have for any r > 0

ν̂h,b(z) := νh,b(D(z, r))
(1 − |z|2)n+α+1 ∈ L

p
p−2 (Bn, dVα)

and ‖ν̂h,b‖
L

p
p−2 (dVα)

� ‖Jb‖2
Ap

α→Hp ‖h‖
H

p
p−2

. By subharmonicity (see Lemma 2.24 in 

[37]), we have

νh,b(D(z, r)) � |h(z)||Rb(z)|2(1 − |z|2)n+2,

and this estimate together with corresponding norm inequalities gives us∫
Bn

|h(z)|
p

p−2 |Rb(z)|
2p

p−2 (1 − |z|2)
p−2α
p−2 dV (z) � ‖Jb‖

2p
p−2
Ap

α→Hp · ‖h‖
p

p−2

H
p

p−2
. (4.2)

For a ∈ Bn, we define h := ha(z) = (1 −〈z, a〉)−β , where β > n(p −2)/p. By the standard 
integral estimates,

‖ha‖
p

p−2

H
p

p−2

 1

(1 − |a|2)
βp
p−2−n

.

Inserting this into (4.2) shows that dμb satisfies the condition (2.1) with s = 1. Therefore 

dμb is a Carleson measure and ‖μb‖
p−2
2p

CM � ‖Jb‖Ap
α→Hp , which completes the proof of the 

necessity. �
5. The case p > q

We have proven the items (1) and (2) of Theorem 1 in the previous section. In this 
section, we will use a factorization trick for the tent spaces of sequences to solve the 
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remaining case for p > q. Here we also solve the case 0 < q < min{2, p}, which is left 
open in [35]. It is contained in Theorems 7 and 8.

We recall a fact about the factorization of quasinormed spaces of sequences X, Y
and W . We say that W = X · Y , if for x = {xk} ∈ X and y = {yk} ∈ Y , we have 
‖{xkyk}‖W � ‖x‖X‖y‖Y , and every w = {wk} ∈ W can be expressed as {wk} = {xkyk}
with ‖w‖W � inf ‖x‖X‖y‖Y , where the infimum is taken over all possible factorizations 
of w. Note that then the linear functional τ ∈ W ∗, if

|τ({xkyk})| � ‖x‖X‖y‖Y

for every x ∈ X and y ∈ Y .
We will use the following result concerning factorization of sequence tent spaces. A 

similar result for tent spaces of functions over the upper half-space was proven in [10] by 
Cohn and Verbitsky. This version is also likely known to specialists, but we were unable 
to find a proof in the literature.

Proposition 6. Let 0 < p, q < ∞ and Z = {ak} be an r-lattice. If p < p1, p2 < ∞, 
q < q1, q2 < ∞ and satisfy

1
p1

+ 1
p2

= 1
p
, and 1

q1
+ 1

q2
= 1

q
.

Then

T p
q (Z) = T p1

q1 (Z) · T p2
q2 (Z).

Proof. It suffices to prove

T p
q (Z) = T p

∞(Z) · T∞
q (Z), 0 < p, q < ∞. (5.1)

Based on this we can obtain the desired result by using the following facts

T p
∞(Z) = T p1

∞ (Z) · T p2
∞ (Z), T∞

q (Z) = T∞
q1 (Z) · T∞

q2 (Z).

So let us prove (5.1). We follow the idea from [10]. We begin by showing that, for 
sequences α = {αk} ∈ T p

∞(Z) and β = {βk} ∈ T∞
q (Z), we have λ = α · β ∈ T p

q (Z) with

‖λ‖Tp
q (Z) � ‖α‖Tp

∞(Z) · ‖β‖T∞
q (Z).

We will use the inequality∑
|αk|p |βk|q (1 − |ak|2)n � ‖α‖p

Tp
∞(Z) · ‖β‖

q
T∞
q (Z), (5.2)
k
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that can be proved in the same manner as some variants appearing in [11,30] (see also 
[27]). We have

‖α · β‖p
Tp
q (Z) =

∫
Sn

⎛⎝ ∑
ak∈Γ(ζ)

|αk|q |βk|q
⎞⎠p/q

dσ(ζ). (5.3)

If p/q > 1, consider a positive function ϕ ∈ Lp/(p−q)(Sn). Then∫
Sn

( ∑
ak∈Γ(ζ)

|αk|q |βk|q
)
ϕ(ζ) dσ(ζ) �

∫
Sn

(∑
k

|αk|q |βk|q
(1 − |ak|2)2n
|1 − 〈ζ, ak〉|2n

)
ϕ(ζ) dσ(ζ)

=
∑
k

|αk|q |βk|q (1 − |ak|2)n Pϕ(ak),

where Pϕ denotes the Poisson integral of ϕ. Recall that, when β ∈ T∞
q , the measure 

μβ =
∑

k |βk|q(1 − |ak|2)nδak
is a Carleson measure with ‖μβ‖CM 
 ‖β‖qT∞

q (Z). Hence

∑
k

|Pϕ(ak)|p/(p−q)|βk|q (1 − |ak|2)n � ‖β‖qT∞
q (Z) · ‖ϕ‖

p/(p−q)
Lp/(p−q)(Sn)

This together with the estimate (5.2) and Hölder’s inequality yield∫
Sn

∑
ak∈Γ(ζ)

|αk|q |βk|q ϕ(ζ) dσ(ζ)

≤
(∑

k

|Pϕ(ak)|p/(p−q)|βk|q (1 − |ak|2)n
)(p−q)/p (∑

k

|αk|p |βk|q (1 − |ak|2)n
)q/p

� ‖ϕ‖Lp/(p−q)(Sn) · ‖α‖qTp
∞(Z) · ‖β‖

q
T∞
q (Z).

By duality, we obtain that ‖α ·β‖Tp
q (Z) � ‖α‖Tp

∞(Z) · ‖β‖T∞
q (Z) when p > q. If p = q, this 

inequality is a direct consequence of the estimate (5.2).
Finally, consider the case that p < q. In this case, starting from (5.3), we use Hölder’s 

inequality with exponent q/p > 1 (that has conjugate exponent q/(q− p)), and then the 
estimate (5.2) to get

‖α · β‖p
Tp
q (Z) ≤

∫
Sn

(
sup

ak∈Γ(ζ)
|αk|

) p(q−p)
q

⎛⎝ ∑
ak∈Γ(ζ)

|αk|p |βk|q
⎞⎠p/q

dσ(ζ)

≤ ‖α‖
p(q−p)

q

Tp
∞(Z)

⎛⎝∫ ∑
ak∈Γ(ζ)

|αk|p |βk|q dσ(ζ)

⎞⎠p/q
Sn
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 ‖α‖
p(q−p)

q

Tp
∞(Z)

(∑
k

|αk|p |βk|q (1 − |ak|2)n
)p/q

� ‖α‖p
Tp
∞(Z) · ‖β‖

p
T∞
q (Z).

Next, assume that λ ∈ T p
q (Z) and let 0 < s < p. We define the function

α(z) =

⎛⎜⎝ 1
σ(I(z))

∫
I(z)

( ∑
aj∈Γ(ξ)

|λj |q
)s/q

dσ(ξ)

⎞⎟⎠
1/s

,

and set αk = α(ak) for ak ∈ Z. We want to show that {αk} ∈ T p
∞(Z), which is equivalent 

to

ξ �→ sup
ak∈Γ(ξ)

|αk|s ∈ Lp/s(Sn).

Writing

Aλ(ξ) =
∑

aj∈Γ(ξ)

|λj |q,

we note that |α(z)|s � P [As/q
λ ](z), which follows easily by noting that when ξ ∈ I(z), 

one has |1 − 〈z, ξ〉| 
 1 − |z|2. Therefore, according to Theorem G,

sup
ak∈Γ(ξ)

|αk|s � sup
z∈Γ(ξ)

|α(z)|s � N [P [As/q
λ ]](ξ) � M [As/q

λ ](ξ).

Since p/s > 1, an application of the Hardy-Littlewood theorem (2.4) gives us that 
{αk} ∈ T p

∞(Z) and that ‖{αk}‖Tp
∞(Z) � ‖λ‖Tp

q (Z).

We now set βk = λk/αk and show that {βk} ∈ T∞
q (Z): that is

μβ =
∑
k

|βk|q(1 − |ak|2)nδak

is a Carleson measure. Let ε > 0 be chosen so that q/ε > 1, s/ε > 1 and

s ≥ qε

q − ε
.

If now dν is a probability measure on some space Ω, then for any positive measurable 
function f , Hölder’s inequality yields
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1 =

⎛⎝∫
Ω

f−εfεdν

⎞⎠1/ε

≤

⎛⎝∫
Ω

f−qdν

⎞⎠1/q ⎛⎝∫
Ω

f
qε

q−ε dν

⎞⎠
q−ε
qε

≤

⎛⎝∫
Ω

f−qdν

⎞⎠1/q ⎛⎝∫
Ω

fsdν

⎞⎠1/s

.

Using this estimate in case that Ω = I(z), dν = σ(I(z))−1dσ and f = A
1/q
λ , gives us

|α(z)|−q � 1
σ(I(z))

∫
I(z)

dσ(ξ)
Aλ(ξ) .

Now, for a ∈ Bn, we have∫
Bn

(1 − |a|2)n
|1 − 〈z, a〉|2n dμβ(z) =

∑
k

(1 − |a|2)n
|1 − 〈ak, a〉|2n

|λk|q |αk|−q(1 − |ak|2)n

� (1 − |a|2)n
∑
k

|λk|q
|1 − 〈ak, a〉|2n

∫
I(ak)

dσ(ξ)
Aλ(ξ)


 (1 − |a|2)n
∫
Sn

1
Aλ(ξ)

∑
ak∈Γ(ξ)

|λk|q
|1 − 〈ak, a〉|2n

dσ(ξ)

� (1 − |a|2)n
∫
Sn

1
|1 − 〈ξ, a〉|2n

1
Aλ(ξ)

( ∑
ak∈Γ(ξ)

|λk|q
)
dσ(ξ)

= (1 − |a|2)n
∫
Sn

dσ(ξ)
|1 − 〈ξ, a〉|2n < ∞.

The last inequality follows from Lemma J. We immediately obtain that {βk} ∈ T∞
q (Z)

with the estimate ‖{βk}‖T∞
q (Z) � 1. Therefore, given λ ∈ T p

q (Z), there are sequences 
α ∈ T p

∞(Z) and β ∈ T∞
q (Z) such that λ = α · β with ‖α‖Tp

∞(Z) · ‖β‖T∞
q (Z) � ‖λ‖Tp

q (Z). 
The proof is complete. �
Theorem 7. Let α > −1, 0 < q < ∞ and p > max{2, q}. Then Jb : Ap

α → Hq is bounded 
if and only if the function

Ub(ξ) :=

⎛⎜⎝ ∫
Γ(ξ)

|Rb(z)|
2p

p−2 (1 − |z|2)
2−2α
p−2 +1−ndV (z)

⎞⎟⎠
p−2
2p

belongs to L
pq

p−q (Sn). Moreover, ‖Jb‖Ap
α→Hq 
 ‖Ub‖ pq .
L p−q (Sn)
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Proof. Since p/(p − q) > 1, it will be convenient for us to prove the equivalent claim in 
terms of Uq

b ∈ L
p

p−q (Sn).
Let us first take care of the sufficiency part. Using the area function description of 

the Hardy spaces and Hölder’s inequalities, we have

‖Jbf‖qHq �
∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|Rb(z)|2|f(z)|2(1 − |z|2)1−ndV (z)

⎞⎟⎠
q/2

dσ(ξ)

≤
∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|Rb(z)|
2p

p−2 (1 − |z|2)
p−2α
p−2 −ndV (z)

⎞⎟⎠
q(p−2)

2p

·

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|p(1 − |z|2)α−ndV (z)

⎞⎟⎠
q
p

dσ(ξ)

�

⎛⎝∫
Sn

Ub(ξ)
pq

p−q dσ(ξ)

⎞⎠
p−q
p

‖f‖q
Ap

α
.

This proves the sufficiency part with ‖Jb‖Ap
α→Hq � ‖Ub‖

L
pq

p−q (Sn)
.

Let us now consider the necessity. Suppose that Jb : Ap
α → Hq is bounded. A straight-

forward approximation argument (see Lemma 7 in [31]) using the dilations bρ(z) = b(ρz)
(0 < ρ < 1) shows that it suffices to establish the corresponding estimate in the case 
where the left-hand-side expression in Lemma 2 is finite. By Lemma 2 it is sufficient to 
prove that

ξ �→

⎛⎝ ∑
ak∈Γ(ξ)

|Rb(ak)|
2p

p−2 (1 − |ak|2)
2−2α
p−2 +2

⎞⎠
q(p−2)

2p

∈ L
p

p−q (Sn), (5.4)

when Z = {ak} is an r-lattice and r is small enough.
Now consider the test functions

Ft(z) =
∑
k

(1 − |ak|2)n/pλkrk(t)fk(z),

where λ = {λk} ∈ T p
p (Z), rk : [0, 1] → {−1, +1} are the Rademacher functions, and

fk(z) = (1 − |ak|2)b−(n+1+α)/p

b
(1 − 〈z, ak〉)
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are suitable kernel functions with b > (n +1 +α)/p. Notice that λ ∈ T p
p (Z) if and only if 

((1 − |ak|2)n/pλk) ∈ 
p. We could naturally work with 
p, but we will use a factorization 
trick, which is more transparent in the tent space notation.

By the area function description of the Hardy spaces, the construction of Ft and the 
atomic decomposition of the Bergman spaces, we have for every t ∈ [0, 1],

∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

∣∣∣Rb(z)
∑
k

(1 − |ak|2)n/pλkrk(t)fk(z)
∣∣∣2dV1−n(z)

⎞⎟⎠
q/2

dσ(ξ)

� ‖Jb‖qAp
α→Hq‖λ‖qTp

p (Z).

Integrating with respect to t and using Fubini’s theorem, we get

∫
Sn

1∫
0

⎛⎜⎝ ∫
Γ(ξ)

∣∣∣Rb(z)
∑
k

(1 − |ak|2)n/pλkrk(t)fk(z)
∣∣∣2dV1−n(z)

⎞⎟⎠
q/2

dt dσ(ξ)

� ‖Jb‖qAp
α→Hq · ‖λ‖qTp

p (Z).

Next, we use Kahane’s inequality and Fubini’s theorem to obtain

∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

1∫
0

∣∣∣Rb(z)
∑
k

(1 − |ak|2)n/pλkrk(t)fk(z)
∣∣∣2dt dV1−n(z)

⎞⎟⎠
q/2

dσ(ξ)

� ‖Jb‖qAp
α→Hq · ‖λ‖qTp

p (Z).

Further, using Khinchine’s inequality gives that

∫
Sn

⎛⎜⎝∑
k

|λk|2
∫

Γ(ξ)

|Rb(z)|2(1 − |ak|2)2n/p|fk(z)|2dV1−n(z)

⎞⎟⎠
q/2

dσ(ξ)

� ‖Jb‖qAp
α→Hq · ‖λ‖qTp

p (Z).

For θ > n max{2/q, 1}, using Lemma M we obtain

∫
Sn

⎛⎝∑
k

|λk|2
∫
Bn

(
(1 − |z|2)
|1 − 〈z, ξ〉|

)θ

|Rb(z)|2(1 − |ak|2)2n/p|fk(z)|2dV1−n(z)

⎞⎠q/2

dσ(ξ)

� ‖Jb‖qAp
α→Hq · ‖λ‖qTp

p (Z).

Replacing the integral over Bn by an integral over D(ak, r), and using subharmonicity 
(see Lemma 2.24 in [37]) and standard estimates, we arrive at
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∫
Sn

(∑
k

|λk|2
(

(1 − |ak|2)
|1 − 〈ak, ξ〉|

)θ

|Rb(ak)|2(1 − |ak|2)2−2(1+α)/p

)q/2

dσ(ξ)

� ‖Jb‖qAp
α→Hq · ‖λ‖qTp

p (Z).

Finally, for every ξ ∈ Sn, summing over only the points ak ∈ Γ(ξ) (and noting that 
ak ∈ Γ(ξ) implies that (1 − |ak|2) 
 |1 − 〈ak, ξ〉|) gives that

∫
Sn

⎛⎝ ∑
ak∈Γ(ξ)

|λk|2|Rb(ak)|2(1 − |ak|2)2−2(1+α)/p

⎞⎠q/2

dσ(ξ) � ‖Jb‖qAp
α→Hq · ‖λ‖qTp

p (Z).

(5.5)
Recall that by (5.4), we want to prove that

ξ �→

⎛⎝ ∑
ak∈Γ(ξ)

|Rb(ak)|
2p

p−2 (1 − |ak|2)
2−2α
p−2 +2

⎞⎠
q(p−2)

2p

belongs to Lp/(p−q)(Sn). Write ν = {νk}, where

νk = |Rb(ak)|q(1 − |ak|2)
q
p (p−1−α).

This means that we want to prove

ν ∈ T
p

p−q
η (Z), η = 2p

q(p− 2) .

For every s > 1, this is equivalent to the statement ν1/s := {ν1/s
k } ∈ T

ps/(p−q)
ηs (Z). For 

s large enough, we have

T
ps

p−q
ηs (Z) =

(
T

(
ps

p−q

)′

(ηs)′ (Z)
)∗

=
(
T s′

2s
2s−q

(Z) · T
ps
q

ps
q

(Z)
)∗

,

where the last identity is the factorization of the corresponding tent spaces of sequences 
given in Proposition 6.

Let us take

μ = {μk} ∈ T

(
ps

p−q

)′

(ηs)′ (Z),

and factor it as suggested

μk = τk λ
q/s
k , τ = {τk} ∈ T s′

2s (Z), λ ∈ T p
p (Z).
2s−q
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Then (note that we may, without loss of generality, assume that all sequences are non-
negative)

∑
k

μk ν
1/s
k (1 − |ak|2)n =

∑
k

τk λ
q/s
k ν

1/s
k (1 − |ak|2)n



∫
Sn

( ∑
ak∈Γ(ξ)

τk λ
q/s
k ν

1/s
k

)
dσ(ξ)

≤
∫
Sn

( ∑
ak∈Γ(ξ)

τ
(2s/q)′
k

)1−q/2s( ∑
ak∈Γ(ξ)

λ2
k ν

2/q
k

)q/2s
dσ(ξ)

≤ ‖τ‖T s′
2s

2s−q

(Z)

⎛⎝∫
Sn

( ∑
ak∈Γ(ξ)

λ2
k ν

2/q
k

)q/2
dσ(ξ)

⎞⎠1/s

.

Here the two last inequalities are just applications of Hölder inequalities with 2s/q and 
s, respectively, which are legal by making s large enough.

Analyzing the second factor by using our earlier estimate (5.5), we establish

∑
k

μk ν
1/s
k (1 − |ak|2)n � ‖Jb‖q/sAp

α→Hq · ‖τ‖T s′
2s

2s−q

(Z) · ‖λ‖
q/s

Tp
p (Z).

Taking infimum over all possible factorizations yields

∑
k

μkν
1/s
k (1 − |ak|2)n � ‖Jb‖q/sAp

α→Hq · ‖μ‖
T

(
ps

p−q

)′
(ηs)′ (Z)

.

We obtain (5.4) by the duality of tent spaces of sequences and ‖Ub‖
L

pq
p−q (Sn)

�
‖Jb‖Ap

α→Hq . The proof is therefore completed. �
The following result will complete our main theorem.

Theorem 8. Let 0 < q < p ≤ 2 and α > −1. Then Jb : Ap
α → Hq is bounded if and only 

if the function

Vb(ξ) := sup
z∈Γ(ξ)

|Rb(z)|(1 − |z|2)
p−1−α

p

belongs to L
pq

p−q (Sn). Moreover, ‖Jb‖Ap
α→Hq 
 ‖Vb‖

L
pq

p−q (Sn)
.

Proof. Let us first prove the sufficiency. By Theorem D and Hölder’s inequality with 
exponent p/q > 1, we have
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‖Jbf‖qHq �
∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|Rb(z)|2|f(z)|2(1 − |z|2)1−ndV (z)

⎞⎟⎠
q/2

dσ(ξ)

≤
∫
Sn

Vb(ξ)q

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|2(1 − |z|2)1−n− 2
p (p−1−α)dV (z)

⎞⎟⎠
q/2

dσ(ξ)

≤ ‖Vb‖q
L

pq
p−q (Sn)

⎛⎜⎜⎝∫
Sn

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|2(1 − |z|2)1−n− 2
p (p−1−α)dV (z)

⎞⎟⎠
p/2

dσ(ξ)

⎞⎟⎟⎠
q/p

.

We estimate the second factor of the line above:∫
Γ(ξ)

|f(z)|2(1 − |z|2)1−n− 2
p (p−1−α)dV (z)

�
∑

ak∈Γ̃(ξ)

(1 − |ak|2)1−n− 2
p (p−1−α)

∫
D(ak,r)

|f(z)|2dV (z)

�
∑

ak∈Γ̃(ξ)

(1 − |ak|2)2−
2
p (p−1−α)− 2

p (n+1)

⎛⎜⎝ ∫
D(ak,2r)

|f(z)|pdV (z)

⎞⎟⎠
2/p

.

Since p/2 ≤ 1, we get

⎛⎜⎝ ∫
Γ(ξ)

|f(z)|2(1 − |z|2)1−n− 2
p (p−1−α)dV (z)

⎞⎟⎠
p/2

�
∑

ak∈Γ̃(ξ)

(1 − |ak|2)α−n

∫
D(ak,2r)

|f(z)|pdV (z)

�
∫

˜̃Γ(ξ)

|f(z)|p(1 − |z|2)α−ndV (z).

Combining the estimates above gives that

‖Jbf‖qHq � ‖Vb‖q
L

pq
p−q (Sn)

⎛⎜⎜⎝∫
Sn

⎛⎜⎜⎝ ∫
˜̃

|f(z)|p(1 − |z|2)α−ndV (z)

⎞⎟⎟⎠ dσ(ξ)

⎞⎟⎟⎠
q/p
Γ(ξ)
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� ‖Vb‖q
L

pq
p−q (Sn)

⎛⎝∫
Bn

|f(z)|p(1 − |z|2)αdV (z)

⎞⎠q/p

This yields the sufficiency of the condition

ξ �→ sup
z∈Γ(ξ)

|Rb(z)|(1 − |z|2)
p−1−α

p ∈ L
pq

p−q (Sn). (5.6)

And moreover, ‖Jb‖Ap
α→Hq � ‖Vb‖

L
pq

p−q (Sn)
.

Let us now turn to the necessity. By reasoning similar to the corresponding point in 
the proof of Theorem 7, we may use an approximation argument. Let us assume that our 
r-lattice {ak} satisfies Lemma 3. We can follow that argument of necessity in Theorem 7, 
using Kahane’s inequality and Khinchine’s inequality together with similar techniques, 
leading to estimate (5.5). By writing ν = {νk}, where

νk = |Rb(ak)|q(1 − |ak|2)
q
p (p−1−α),

it is sufficient to show that

ν ∈ T p/(p−q)
∞ (Z).

For every s > 1, this is equivalent to

ν1/s := (ν1/s
k ) ∈ T ps/(p−q)

∞ (Z) =
(
T s′

2s
2s−q

(Z) · T
ps
q

ps
q

(Z)
)∗

,

by the factorization result in Proposition 6. The reader should notice here that if p ≤ 2, 
then

q

ps
+ 2s− q

2s = 1/ρ

for some ρ ≤ 1. So the factorization and the duality can be carried over.
Now, the argument can be completed by carrying out the same reasoning as in the 

corresponding place in the proof of Theorem 7. We only need to choose s large enough 
such that all applications of Hölder’s inequality are valid. The necessity will follow by 
virtue of Lemma 3, and then the proof is complete. �

By combining the theorems in Sections 4 and 5, we obtain the whole proof of our 
main result.
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6. Concluding remarks

6.1. Trivial case

Looking at Theorem 1, it is important to know when the conditions are void, that is, 
when the only b ∈ H generating bounded Jb are the constant functions. In this case, we 
always have Jb = 0. The following corollary follows easily from the main theorem.

Corollary 9. Let α > −1, 0 < p, q < ∞ and b ∈ H. Then the following hold:

(1) Let 0 < p < q < ∞. If α− p > n(p/q − 1) − 1, then Jb : Ap
α → Hq is bounded if and 

only if Jb = 0.
(2) Let 0 < q ≤ p < ∞. If α − p > −1, then Jb : Ap

α → Hq is bounded if and only if 
Jb = 0.

Since Ap
α decreases with respect to p, and increases with respect to α, it should not 

come as a surprise that the deciding factor is the quantity α− p.

6.2. Comparison with Jb acting between Hardy spaces

Since Hp often appears as the limit of Ap
α when α → −1, it makes sense to compare 

our results with those of [26] where the boundedness of Jb : Hp → Hq is described. We 
list some remarks, which should be taken only in the heuristic sense.

(1) If 0 < p ≤ min{2, q} or 2 < p < q < ∞, then as α → −1, the characterizing condition 
becomes

sup
z∈Bn

|Rb(z)|(1 − |z|2)n
q −n

p +1 < ∞.

This agrees exactly with the Hp case, when 0 < p < q < ∞. When p = q ≤ 2, this 
becomes the Bloch condition, which is slightly weaker than BMOA condition for 
the Hp case.

(2) If 2 < p = q < ∞, then as α → −1, the characterizing condition becomes that 
dμb(z) = |Rb(z)|

2p
p−2 (1 − |z|2)

p+2
p−2 dV (z) is a Carleson measure. In the Hp case one 

has the BMOA condition, which is equivalent to |Rb(z)|2(1 − |z|2)dV (z) being a 
Carleson measure. Note that 2p/(p − 2) > 2, but the conditions become the same as 
p → ∞ (i.e., 2p/(p − 2) → 2).

(3) If p > max{2, q}, then as α → −1, the characterizing condition becomes that

ξ �→

⎛⎜⎝ ∫
|Rb(z)|

2p
p−2 (1 − |z|2) 4

p−2+1−ndV (z)

⎞⎟⎠
p−2
2p
Γ(ξ)
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belongs to L
pq

p−q (Sn). Similarly to the previous case, this agrees with the Hp case in 
the limit when p → ∞. Indeed, by Theorem D, this agrees with b ∈ H

pq
p−q .

(4) If 0 < q < p ≤ 2, then as α → −1, the characterizing condition becomes that the 
function ξ �→ supz∈Γ(ξ) |Rb(z)|(1 −|z|2) belongs to L

pq
p−q (Sn). In the terminology and 

notation of [31], this means that b ∈ BT
pq

p−q . It is not difficult to see that for any 

β > −1, one has H
pq

p−q ⊂ BT
pq

p−q ⊂ A
pq

p−q

β , and no inclusion can be reversed.

6.3. Integration operators from Hardy to Bergman spaces

It is also interesting to study, for b ∈ H, the boundedness of Jb : Hp → Aq
α for α > −1

and 0 < p, q < ∞. We can always assume that b(0) = 0, and by the characterization of 
Bergman spaces in terms of radial derivatives, we have ‖Jbf‖qAq

α

 ‖R(Jbf)‖q

Aq
α+q

. Using 

the basic identity R(Jbf) = fRb we see that the boundedness is equivalent to∫
Bn

|f(z)|q |Rb(z)|q (1 − |z|2)q+αdV (z) � ‖f‖qHp .

In other words, we have the embedding from Hp into Lq(μ) with dμ(z) = |Rb(z)|q (1 −
|z|2)q+αdV (z). Thus, by the Carleson-Duren and Luecking’s theorems we get the follow-
ing result.

Theorem 10. Let b ∈ H and α > −1. Then:

(i) For 0 < p < ∞, the operator Jb : Hp → Ap
α is bounded if and only if dμ(z) =

|Rb(z)|p (1 − |z|2)p+αdV (z) is a Carleson measure.
(ii) For 0 < p < q < ∞, the operator Jb : Hp → Aq

α is bounded if and only if b belongs 
to the Bloch type space Bγ with γ = 1 + (n+1+α)

q − n
p .

(iii) For 0 < q < p < ∞, the operator Jb : Hp → Aq
α is bounded if and only if the 

function

Hb(ζ) :=
∫

Γ(ζ)

|Rb(z)|q (1 − |z|2)q+α−ndV (z)

belongs to Lp/(p−q)(Sn).

In the one-dimensional case, part of the previous results were obtained by J. Rättyä 
in [33]; and the case p < q and n > 1 has been done recently in [13].
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