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Geometric Supervision and Deep Structured Models for Image Segmentation

Måns Larsson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The task of semantic segmentation aims at understanding an image at a pixel level.
Due to its applicability in many areas, such as autonomous vehicles, robotics and
medical surgery assistance, semantic segmentation has become an essential task
in image analysis. During the last few years a lot of progress have been made for
image segmentation algorithms, mainly due to the introduction of deep learning
methods, in particular the use of Convolutional Neural Networks (CNNs). CNNs
are powerful for modeling complex connections between input and output data but
have two drawbacks when it comes to semantic segmentation. Firstly, CNNs lack
the ability to directly model dependent output structures, for instance, explicitly
enforcing properties such as label smoothness and coherence. This drawback mo-
tivates the use of Conditional Random Fields (CRFs), applied as a post-processing
step in semantic segmentation. Secondly, training CNNs requires large amounts of
annotated data. For segmentation this amounts to dense, pixel-level, annotations
that are very time-consuming to acquire.

This thesis summarizes the content of five papers addressing the two afore-
mentioned drawbacks of CNNs. The first two papers present methods on how
geometric 3D models can be used to improve segmentation models. The 3D mod-
els can be created with little human labour and can be used as a supervisory
signal to improve the robustness of semantic segmentation and long-term visual
localization methods.

The last three papers focuses on models combining CNNs and CRFs for se-
mantic segmentation. The models consist of a CNN capable of learning complex
image features coupled with a CRF capable of learning dependencies between out-
put variables. Emphasis has been on creating models that are possible to train
end-to-end, giving the CNN and the CRF a chance to learn how to interact and
exploit complementary information to achieve better performance.

Keywords: Semantic segmentation, supervised learning, convolutional neu-
ral networks, conditional random fields, deep structured models, self-supervised
learning, semi-supervised learning.
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Chapter 1

Introduction

Understanding the content of an image is something that humans excel at. If I
were to ask you to describe the objects present in an image you would in almost
all cases manage that task effortlessly. However, if I ask you to state a set of rules
to decide if an image contains a cat or a dog, you might have difficulties. Humans
are so good at parsing and understanding visual scenes that we do not reflect on
how we do it. Designing methods that do this automatically has however been
proven to be a challenging problem and the field of Computer Vision is still very
active.

Given an image, information can be extracted on different levels. This is ill-
ustrated in Figure 1.1 where a few examples of image analysis tasks of different
detail are shown. The focus of this thesis is semantic segmentation, which aims
at understanding an image on a pixel level. This means that we want to assign a
label to each pixel, describing the object it is depicting. For example, going back
to Figure 1.1, we have assigned the label "person" to the pixels colored pink and
the label "dining table" to the pixels colored yellow.

Semantic segmentation has numerous of applications. In robotics, agents are
usually required to extract useful information and understand their environment
to perform tasks such as navigation and manipulation of objects. This is some-
thing that can be achieved with a camera and a semantic segmentation algorithm.
Also, autonomous vehicles require a precise understanding of their surrounding
to be able to make safe decisions in traffic. Semantic segmentation algorithms
are also useful for numerous applications in medical research and clinical care,
such as computer aided diagnosis and surgery assistance. Since many of the im-
ages handled in medical applications are three dimensional manual segmentation
is time consuming. Having an automatic method will in these cases save medical
personnel a lot of time and be very helpful for time-critical tasks such as surgery
planning.
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Chapter 1. Introduction

Figure 1.1: Example of scene understanding tasks with increasing detail from
left to right. From left: image captioning, object detection, semantic segmentation
and instance segmentation. This thesis focuses on semantic segmentation. Image
modified from [1].

Traditionally, semantic segmentation algorithms have been approached by ex-
tracting some type of hand-crafted image features from the image. These features
could be something as simple as a color gradient or a more complex function of the
pixel values. A model relating these features to semantic classes is then created,
or learnt from annotated examples, i.e. a set of images paired with their "true"
semantic segmentations. During recent years most methods have moved from
hand-crafted features to using Convolutional Neural Networks (CNNs), capable of
learning complex features directly from image data.

The introduction of CNNs for semantic segmentation meant a large improve-
ment in performance and we are now able to create models that are fairly good at
understanding the content of an image (given that it is similar to the images it has
been trained on). A drawback with a CNN is however that they cannot explicitly
take the dependencies between output variables, i.e. how the label of one pixel
depends on the label of the output pixels, into account. This can however be done
using Conditional Random Fields (CRFs), which have been used extensively for
semantic segmentation. Because of this, many methods combine a CNN and a
CRF creating a Deep Structured Model (DSM) capable of learning complex image
features while still taking output dependencies into account.

The parameters of these DSMs are usually learnt from data. This learning can
be easily achieved by using traditional deep learning methods to train the CNN.
Then, using the output of the CNN to form the CRF, learning the weight of the
CRF. This approach, commonly referred to as piece-wise training, is suboptimal
since the parameters of the CNN is learnt while ignoring output dependencies. A
better approach is to train the CNN and CRF jointly, or end-to-end. This gives
the CNN and the CRF a chance to learn how to interact to achieve better results.
A sketch of piece-wise and end-to-end training of a DSM is shown in Figure 1.2.

DSMs and CNNs usually contains many learnable parameters, or weights,
which require a lot of annotated data to train properly. For semantic segmenta-

2



1.1. Thesis Scope
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Figure 1.2: Comparison of piece-wise and end-to-end training of a deep structured
model (DSM). For the piece-wise training (above) the CNN is trained first and as
a second step the parameters of the CRF are trained keeping the weights of the
CNN fixed. During end-to-end training (below) the weights of the CNN and CRF
are jointly trained, giving them a chance to learn how to interact to achieve better
results.

tion, annotating data is a tedious task meaning that large datasets are costly and
time-consuming to acquire. Methods that alleviate the need for densely annotated
data can usually be divided into one of the following categories: unsupervised,
weakly-supervised or semi-supervised learning. As their respective names suggest
unsupervised learning aims at training models without any manually annotated
data, weakly-supervised learning with weaker annotations that are easier to obtain
and semi-supervised learning where one part of the dataset is annotated and the
other contains no labels.

1.1 Thesis Scope

The topic of this thesis is semantic segmentation in Computer Vision. It contains
five papers that can be divided into two main parts. The first one being develop-
ment of methods to utilize geometric supervision to improve segmentation methods
and the second one being development of DSMs for semantic segmentation.

The first part consists of two papers, both of them revolving around the uti-
lization of 3D models to improve segmentation models. These works contain tools
from unsupervised, weakly-supervised and semi-supervised learning that are used

3



Chapter 1. Introduction

conjunction with geometric 3D models created from images. The geometric su-
pervision is used to improve upon semantic segmentation methods or train CNNs
that output fine-grained segmentation containing information useful for visual lo-
calization methods.

This second part consists of three papers, all of them presenting solutions
to semantic segmentation problems. The applications have varied widely and
different types of data have been considered, from 3D CT images to RGB images
of horses to indoor scene understanding. The main focus has been on developing
robust and accurate models to solve these problems. These models consist of a
CNN capable of learning complex image features coupled with a CRF capable of
learning dependencies between output variable, in our case pixel or voxel labels.
Emphasis have been put on creating this type of models that also are possible to
train end-to-end as well as the methods needed to enable this type of training.

1.2 Thesis Outline

The first part of this thesis consists of this introductory chapter, followed by Chap-
ter 2 that provides background knowledge to the papers included in the thesis as
well as placing them in an academic context. Chapter 3 summarizes the work and
contributions of the thesis as well as each paper separately. A brief discussion of
future work is given in Chapter 4. Finally, the included papers are appended in
Part II.

4



Chapter 2

Background

The background chapter will start off with a brief introduction to the problem
of semantic segmentation. Afterwards some background on Convolutional Neural
Networks (CNNs) as well as Conditional Random Fields (CRFs) will be given.
Following that, end-to-end training of Deep Structured Models (DSMs), i.e. a
combination of a CNN and a CRF, will be discussed. Lastly, a section on train-
ing semantic segmentation algorithms without full supervision is included. The
sections in this chapter are by no means exhaustive but aim at giving the reader
enough background knowledge to understand the papers included as well as place
them in an academic context.

2.1 Semantic Segmentation

Semantic segmentation, or scene labeling, is the process of assigning each pixel
of an image to the semantic class that it is depicting. The semantic class should
depend on the surrounding information, or context, of the pixel. That means that
we want to understand what the image is containing on a pixel level. What classes
we are interested in dividing the image pixel in depends on the task and what
information about our surrounding we are interested in. Given a set of images
from a camera mounted on the front of a car we might want to classify each pixel
as being one of e.g . "driveable surface", "sidewalk" or "pedestrian" whereas given
a medical CT image of the abdomen we might want to classify pixels into different
organs, or perhaps "tumour" and "not tumour". An example of visualizations of
semantic segmentations is shown in Figure 2.1.

5



Chapter 2. Background

Figure 2.1: Two examples of semantic segmentations. To the left is an image
from the Mapillary Vistas dataset [2], a street-level image dataset with 66 semantic
classes. The semantic class of each pixel is visualized by overlaying the original
pixel with the class color. To the right is a slice of a CT image from the MICCAI
2015 challenge “Multi-Atlas Labeling Beyond the Cranial Vault” [3] for organ seg-
mentation in the abdomen. Here the voxels of a class are visualized by delineating
them with the class color. Note that only one slice of the original 3D CT volume
is shown.

2.1.1 Evaluation

Given an image paired with a semantic segmentation it is quite easy for a human
to visually evaluate the segmentation as good or bad. It is however important to
quantify how good a segmentation is, both to be able to quickly evaluate a method
applied to a big set of images and also to be able to compare between different
methods. A straightforward metric to use is the pixel accuracy which is defined as
the ratio between correctly classified pixels and total number of pixels. However,
for some datasets, the per-pixel accuracy can be quite misleading. Given, for
example, an image with a lot of pixels labeled as "background". A segmentation
method simply assigning the "background" label to all pixels will get a high pixel
accuracy even though it obviously performs poorly.

An alternative metric is the commonly used Intersection over Union (IoU) or
"Jaccard" index. Given the set of pixels A segmented as a class and the set of
pixels B belonging to the same class according to the annotation the IoU is

IoU =
|A ∩B|
|A ∪B]

. (2.1)

6
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Figure 2.2: The Dice coefficient plotted as a function of the intersection over
union. The Dice coefficient and intersection over union are two commonly used
measure to quantify segmentation results. Note that the Dice coefficient is higher
than the intersection over union for any segmentation result.

In terms of true/false positives/negatives we get

IoU =
#tp

#tp+ #fn+ #fp
, (2.2)

where #tp denotes number of true positives, #fn denotes number of false negatives
and so on. The IoU is a value between zero and one where a value of one means
a perfect overlap of the segmentation and the ground truth while a value of zero
means no overlap at all. For multi-label problems the mean IoU (mIoU) over all
classes is usually measured as an overall performance indicator of a segmentation
method.

For medical image segmentation tasks the Sørensen-Dice coefficient, or sim-
ply Dice coefficient, is a common metric. Keeping the notation above, the Dice
coefficient is defined as

Dice =
2|A ∩B|
|A|+ |B|

, (2.3)

which in terms of true/false positives/negatives can be written as

Dice =
2#tp

2#tp+ #fn+ #fp
. (2.4)

Similarly to the IoU, the Dice score can vary between zero and one. The relation
between the Dice score and the IoU is Dice = 2 IoU/(1+IoU) which is visualized in

7
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Figure 2.3: Evolution of Semantic Segmentation systems. Initially, most ap-
proaches relied on hand-crafted image features and a fairly simple CRF model, this
is represented in the first row showing the "Textonboost" work [4]. The second
row uses a more sophisticated CRF model, DenseCRF, presented in [5]. Later on,
most works have replaced the hand-crafted features with features learned from data
with a Convolutional Neural Network. An early example of this is [6]. In [7], it
was shown that the CRF inference could incorporated as a part of the CNN. This
allowed simultaneous learning of the CNN and CRF weights, further improving
results. This image is taken from [1] and result for this figure were obtained using
the publicly available code of [6–10].

Figure 2.2. As can be seen from the figure, the Dice coefficient always corresponds
to a lower intersection over union.

2.1.2 Development of Approaches

Semantic segmentation methods date back to the 1970s [11,12]. Many of the early
approaches tried to divide the image into semantic areas and then relate these
areas to each other using a fixed rule-based system. It was in most cases hard
to get these kind of rule-based or grammar-based methods to generalize well and
performance was quite poor.

From the early 2000s up until now the popularity and performance of semantic
segmentation methods have increased tremendously. The early methods utilized
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2.1. Semantic Segmentation

powerful tools such as image descriptor and machine learning [13]. The majority
of these methods are data driven and require manually annotated images to be
able to train the models. The models can, once trained, be applied to unseen
images and segment them into the semantic classes that were present in the man-
ually annotated images. Many state-of-the-art methods [4, 5] used a CRF to be
able to model interactions between the input images and output labels but also
interactions between output labels. Given a CRF model most early approaches
used the following pipeline

1. Extract features from the image, e.g . the RGB color of the pixel and its
surrounding pixel or some more advanced features such as Textons [14] or
SIFT [4].

2. Use extracted features and the annotated image to train an appearance
model, i.e. a local classifier.

3. Use the output of the appearance model to form the unary term, i.e. the
part of the CRF that models interactions between input and output.

4. Define, or learn from data, how the CRF should model interactions between
output labels. Most commonly the type of interactions were pairwise, i.e.
between the classes of two pixels.

5. Perform inference on the CRF model to segment an image.

This is of course a rough pipeline which many methods will not fit into. In addi-
tion, a lot of extensions and variants exists for each step of the pipeline. Regarding
the first point of extracting features, most work has moved from carefully designed
features to learning features from annotated data, usually with a CNN. This will
be discussed thoroughly in Chapter 2.2. Also, several works have done data driven
approaches to learn the pairwise interactions described by the CRF. In addition,
several different types of CRF models have been proposed. A notable example is
the DenseCrf presented in [5] where every pair of pixels is connected by a pairwise
term in the CRF. Finally, during the last few years methods that learn the param-
eters of the CRF as well as the weights of the feature extracting CNN jointly have
appeared. Two of them are the papers included in this thesis but more examples
exist [7, 15, 16]. Figure 2.3 provides a summary of the development of semantic
segmentation systems.
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2.2 Learning Features

As mentioned in Section 2.1.2, most methods for semantic segmentation currently
use image features learnt from annotated data. The dominating approach is to
apply a CNN to learn these features and inspecting most popular semantic seg-
mentation benchmarks, top entries on the leaderboard all use a CNN. In this
section an introduction to Artificial Neural Networks (ANNs) and CNNs is given.

The idea behind ANNs and CNNs is not new. Already in the 1960s the bio-
logically inspired Perceptron was introduced [17] which resembles the commonly
used ANNs of today. Also the idea of introducing spatial invariance in ANNs were
presented already in 1980, when K. Fukushima et al . introduced the "Neocogni-
tron" [18]. During the 1980s and 1990s there was some progression in the field of
neural networks but it was not until 2012 that these types of methods got their
breakthrough. In 2012 Krizhevsky et al . [19] presented "Alexnet", a CNN for
classifying images of the ImageNet [20] dataset that achieved considerably better
than the previous state-of-the-art. Since then, approaches using CNNs have be-
come dominant in most detection and classification problems [21]. For the task of
semantic segmentation a defining paper was J Longs et al . "Fully convolutional
networks for semantic segmentation" [10] which introduced a method of trans-
forming CNNs previously used for classification to efficiently segment an image.
These types of "Fully Convolutional" networks has since then been standard for
semantic segmentation.

2.2.1 Multilayer Neural Networks

The most common ANNs have a "feed-forward" neural network architecture. In
feed-forward neural networks computations are done layer-wise, and the values
of the data at one layer of the network depend only on computations in previous
layers. In one layer of the network, the input to the layers is multiplied by a weight
vector Wi and a bias vector is added bi according to

gi = Wihi−1 + bi, (2.5)

where hi−1 is the output of the previous layer (or the input data if i is the first
layer). The vectors hi are commonly referred to as hidden units (except for the
inputs h0 and the output hL), or neurons, and their size depends on the size of the
weight matrices Wi. A weight matrix with less rows than columns will decrease
the size of the hidden units vector. After this computation the output gi is passed
through a non-linear activation function

hi = σ(gi). (2.6)
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Computation layers are stacked on top of each other and the output of the last
layer L is the output of the neural network y = hL. In modern literature, these
types of neural network layers are often referred to as fully connected layers.

2.2.2 Activation Functions

Activation functions are a crucial part of the neural network. If activation func-
tions were to be omitted the computations of the entire network would consist of
only linear functions and could be replaced with an equivalent single matrix mul-
tiplication. In contrast, with non-linear activation functions, it has been shown
that a feed-forward neural network is a universal function approximator [22]. This
means that, in theory, they can learn any function.

In the early days of neural networks, smooth non-linear activation functions
were commonly used. Two examples of these are the sigmoid, defined as

σ(x) =
1

1 + e−x
, (2.7)

and the hyperbolicus tangent function σ(x) = tanhx. These functions are quite
similar but differs in range, the output of a sigmoid lie within ]0, 1[ while the
output of tanh(x) lie within ]− 1, 1[. The rectified linear unit (ReLU) [23], which
is defined as σ(x) = max(0, x), is a commonly used activation function. Including
ReLU activation functions in a neural network generally makes the training faster
as well as allowing training of networks with more layers [21].

The activation function of the final layer is usually chosen differently to the
intermediate activation functions. The choice usually depends on what task we
are training the network to solve. For example, if we want to use the network to
solve a regression problem we might not use any final activation function at all,
allowing for unbounded output values of the network. If we instead are interested
in image classification we could use a softmax activation function defined as

σ(x)j =
exj∑C
k=1 e

xk
for j = 1, ..., C. (2.8)

The softmax function outputs a set of values all between zero and one and which
sum to one. The value of σ(x)j can hence be used as an estimation of the prob-
ability of the current input belonging to class j.
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2.2.3 Convolutional Neural Networks

Convolutional Neural Networks [24] are designed to process data that has an in-
herent grid-like structure, such as 2D RGB images, 3D videos or medical images
such as CT scans. Since many of these data types have a lot of input para-
meters, an RGB image of standard size can for example be represented with
512×512×3 = 786432 values, the weight matrixW of a fully connected layer would
become very large. This would make the computations very demanding while also
giving the neural network an extremely large amount of weights, something that
might cause overfitting.

CNNs circumvent this problem by using a biologically inspired spatial weight
sharing scheme [25]. Instead of learning full weight matrices for each layer a
CNN learns a bank of filters for each convolutional layer. The intermediate values
between layers are referred to as feature maps and keep their spatial grid-like
structure throughout the network. Learning filters, instead of full weight matrices,
means that the same weight values will be applied at every spatial position for each
layer, greatly reducing the number of weights needed to be learnt. This would be
the equivalent of restricting the weight matrix of equation (2.5) to be a Toeplitz
matrix. In addition, the convolutional layers are spatially invariant, meaning that
input patterns found in different parts of an image will be processed similarly
regardless of spatial position.

Another common component of a CNN are pooling layers. A pooling layer
applies a rectangular window to each feature map forwarding for example the
maximum number present in the window (for max-pooling layers). Pooling layers
introduces an invariance to small shifts in input data while also reducing the
spatial size of the feature maps, controlling the capacity of the neural network [21].
Adding pooling layers also enlarges the receptive field of higher level features. The
receptive field of a feature is the part of the input image that might influence
the value of the feature, a larger receptive field enables learning of more complex
features. A common approach to building an CNN for image classification is to
stack a couple of convolutional and pooling layers, adding activation functions
(typically ReLU) after the convolutional layers. This enables the CNN to learn
more complex and high-level features for each stacked layer. Ideally the first few
layers learn to extract low level image features such as edges, lines and blobs while
later layers extracts complex features such as faces, legs or wheels. Finally one or
several fully connected layer can be applied to transform the features from spatially
structured maps to for example a vector of estimated class probabilities.
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Convolutional Layers

As mentioned, the convolutional layers of a CNN each learn a bank of filters. Given
an input feature map X of size W in × H in × F in, where W is the width, H the
height and F the number of feature maps. A trained bank of filters is applied
according to

Yj = Bj +
∑
i

Wij ∗Xi, (2.9)

where Xi denotes the i-th feature map of X and Wij denotes the values of the
learnt filters. The output feature map Y has a size of W out×Hout×F out, padding
can be used to keep the same width and height as the input feature map. The filter
bank has a size of K1 ×K2 × F in × F out, where K1 ×K2 is the size of each filter.
For each output, optionally, a bias weight is learnt. Bj denotes this bias resized
to the width and height of the output feature map. The size of the filters differs
from application to application but a size of 3× 3 is most commonly used [26–28].

A variant of the convolutional layer designed to provide a greater increase of
the receptive field (the region of the input that affects a particular unit of the
network) between subsequent layers is the à-trous or dilated convolutions [29].
These convolutions uses a set of upsampled filters where only weights at every l-th
index is non-zero. Here, l is usually referred to as the dilation factor, note that
dilated convolution with l = 1 is just standard convolution.

Pooling Layers

Pooling layers perform down-sampling of the image features [30]. Several types of
pooling layers exist, the most common ones are max pooling and average pooling.
These layers applies a fixed size window to the input feature map in strides. It then
outputs the max (or average) of the values in this window. Choosing a stride equal
to the window size results in non-overlapping regions that forwards information to
the next feature map. Choosing a window size of 2 × 2 and a stride of 2 would
result in a down-sampling of the spatial size of the feature map by a factor of 2.

2.2.4 Learning

Once the architecture of our CNN is set we can view it as a function approximator
f(x,θ), where x is the input and θ the learnable weights of all layers. This
section will give a brief introduction to the most important parts needed for the
learning process. Note that this is only applicable for supervised learning, where
an annotated dataset is available.
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Loss Function

A loss function is a way to quantify how well the CNN is performing, measuring
the compatibility of the CNNs output, or prediction, to the ground truth label.
The loss is generally defined for one sample of the dataset, and during learning
the weights of the CNN, θ are adjusted to minimize the mean of the losses

L(X,Y ,θ) =
1

N

∑
i

l(yi, f(xi,θ)). (2.10)

Here X,Y are the set of input and labels of a given dataset with N samples and
xi, yi denotes the data/label pair of one sample.

A commonly used loss function for classification tasks is the cross-entropy loss.
For a CNN with a softmax activation function as a last layer, outputting an esti-
mate of the probabilities of the input xi belonging to each class, the cross-entropy
loss may be defined as

l(yi, f(xi,θ)) = − log(fyi(xi,θ)). (2.11)

Here, fyi(xi,θ) is the estimate of the probability from the CNN that the input
belongs to the ground truth class yi. The name cross-entropy loss comes from
the fact that this loss minimizes the cross entropy between the distribution of the
ground truth labels and the label distribution generated by the CNN, given that
the samples are independent and identically distibuted random variables.

Loss Minimization

As previously mentioned, the learning is achieved by minimizing a defined loss
function over the given dataset. Since there generally is not any closed-form so-
lution to the learning problem, θ∗ = arg max(L(X,Y ,θ)), local optimization
methods are often used. Commonly, a variant of gradient descent is used which
updates the parameters of the CNN according to

θi+1 = θi − η∇θL(X,Y ,θi), (2.12)

where η is the step size or learning rate. For large datasets this is however inefficient
and a stochastic approximation of the gradient can be used instead. This is called
mini-batch gradient descent and is defined as

θi+1 = θi − η
∑
i∈B

∇θl(yi, f(xi,θi)), (2.13)

where B is the batch which in turn is a subset of the complete dataset. Using
a mini-batch of size one is referred to as stochastic gradient descent. There are
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several variants of this update rule, designed to reduce noise of the estimated
gradient and accelerate convergence. Some examples are gradient descent with
momentum [31], with Nesterov momentum [32], AdaGrad [33] and Adam [34]. All
of these are first-order methods which means that they only require the calculation
of the gradient with regards to the weights.

The gradient of the loss function with respect to all the weights of the network
can be efficiently computed using the back-propagation algorithm [31] – a practical
application of the chain rule for derivatives. Given the loss derivative ∂L

∂y
with

respect to the output of a simple layer described by y = f(x, θ), where x is the
input, y the output and θ the weights. The loss derivative with respect to the
input can calculated by simply applying the chain rule ∂L

∂x
= ∂L

∂y
∂f
∂x
, similarly for

the weights we get ∂L
∂θ

= ∂L
∂y

∂f
∂θ
. Using this back-propagation we can start from

the final layer of the network and calculate the loss with respect to the input of
each layer, propagating the loss gradient all through the network until we have
calculated it with respect to every weight of the network.

Since the learning problem is non-convex and almost all methods are based on
local optimization it is a possibility for the learning to get stuck in a poor local
minimum. In practice, this is generally not a big problem, even for different initial
conditions many networks reach a solution of very similar quality [21]. Recent
work points towards the existence of a lot of saddle points in the loss surface that
the learning algorithm might get stuck in [35,36]. However, all of them have very
similar and low values of the loss function and hence give a good enough solution.

Regularization

Overfitting is a term used for when training a model makes it perform well on the
training data but poor on unseen input data. Since a typical CNN contains a very
large number of free parameters it is prone to overfitting. A large enough CNN
could "memorize" the training data instead of learning good rules that generalize
to unseen data. Because of this, several regularization methods meant to prevent
the CNN from overfitting have been developed.

Ideally, we would like to just add training data until the CNN is incapable of
overfitting. Annotating new data is however a timely process which we generally
want to avoid. An alternative to adding new training data is to perform data aug-
mentation on the already available data. This means changing the samples of the
data slightly in an randomized way during training. Common augmentation oper-
ations used for image tasks are, random cropping of the image, random rotation
or simply adding noise to the pixel values.
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Another fairly simple regularization technique is weight decay. This means
adding an extra term to the loss function that penalize large values of the para-
meters of the CNN. For the case of L2 weight decay the term λ1

2

∑
i θ

2
i , where

λ is the weight decay strength, is added to the loss function in (2.10). For L1

regularization we instead add the term λ
∑

i |θi|, favoring sparse solutions.
Two additional, very popular, regularization techniques are Dropout [37] and

Batch Normalization [38]. These are added as separate layers to the CNN and
have different functionalities during learning and during inference. Dropout works
by only keeping the values of each neuron non-zero with given probability p, the
others are set to zero. During inference, all neuron values are kept but scaled with
a factor p. Batch Normalization shifts the values of the features to have a specific
mean and variance for each mini-batch during training. In addition to avoiding
overfitting to some extent, this also allows the use of a higher learning rate during
training [38].

CNNs for Semantic Segmentation

The task of annotating data is considerably harder and more time-consuming
for semantic segmentation where each pixel need to be annotated, compared to
image classification where only one label per image is needed. This restricts the
size of available datasets for semantic segmentation and there are no available
datasets of the same size as for example Imagenet [39], which contains millions of
annotated images. Due to this, many popular CNNs for semantic segmentation
have a classification counterpart that has been trained on the million images of
Imagenet. The architecture of the classification CNN is then changed to enable
dense output maps, transforming it to a segmentation CNN. The weights of the
first few layers are however kept, with the motivation that these layers have learnt
to extract meaningful image features during the extensive classification training.
This approach have shown to be preferable to training from scratch for many
segmentation tasks, even for images fairly different from the Imagenet data [40–42].

Repurposing a classification network for semantic segmentation is not entirely
straight-forward. As mentioned in Section 2.2, a defining paper for this was "Fully
convolutional networks for semantic segmentation" by J Long et al . [10] where they
presented segmentation version of several classification network that were state-of-
the-art on Imagenet at that time. The fully connected layers of these networks were
transformed to convolutional layers with filter size 1×1, which changes the previous
classification scores to spatial feature maps. These feature maps, together with
feature maps earlier in the CNN were upsampled using deconvolution layers [43]
and merged providing dense output predictions for images of arbitrary size. These
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CNNs can then be trained for segmentation end-to-end using a pixel-wise version
of the cross-entropy loss presented in Section 2.2.4.

Despite the success of fully convolutional networks of [10] this architecture has
several drawbacks. Pooling layers are great for image classification, enabling the
CNN to learn complex high-level image features. It is however not ideal since
performing pooling operations implies loss of spatial information on where the
image features came from in the image. Some works have tried to get rid of the
pooling layers entirely [44] and other types of layers have been introduced in an
effort to keep spatial information while still achieving large receptive fields. An
example of this is the dilated convolutions mentioned in Section 2.2.3.

Many recent works considering CNNs for semantic segmentation try to design
networks that are able to learn high-level image features while not losing spatial
information. Some examples include encoder-decoder networks such as Segnet
[45] and U-Net [46] as well as PSP-Net [47] and DeepLabv3+ [48] that processes
features on different resolution in separate paths.

2.3 Learning Structure

As mentioned in Section 2.2.3, CNNs are good at modeling complex relations bet-
ween input data and output data. They cannot however explicitly take depend-
encies between output variables into account. In addition, they are often trained
with a pixel-wise loss function, disregarding the fact that the output data is actu-
ally structured.

A way of taking output structure into account while also allowing for explicit
modeling of dependencies between output variables is using Probabilistic Graph-
ical Models (PGMs). A PGM models a probability distribution over a set of
random variables whose structure is defined via a graph. In this thesis we will
focus on Conditional Random Fields (CRFs) that are commonly used for semantic
segmentation.

2.3.1 Conditional Random Fields

Conditional Random Fields (CRFs) models the conditional probability, P (Y|x)
of a given output set Y = {Y1, ..., YN} and input x. Working with images, x
denotes the image values and we generally associate one input and one output
variable with each pixel. For semantic segmentation each output Yi is assigned
a value from a finite set of possible states L = {l1, l2, ..., lL}, where each state
represent a class label. The dependencies between output variables are described
by an undirected graph whose vertices are the random variables {Y1, ..., YN}. The
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conditional probability for the CRF can be written as

P (Y = y|x) =
1

Z(x)
exp(−E(y,x;w)), (2.14)

where E(y,x;w) denotes the Gibbs energy function with respect to the assignment
of labels to the output variables y ∈ LN . The parameters, w, of the CRF can
either be hand-crafted from prior knowledge or learnt from data. Z(x) is the
partition function given by

Z(x) =
∑
y∈LN

exp(−E(y,x;w)). (2.15)

It is hence a normalization constant making the conditional probabilities sum to
one. Note that the sum is over all possible combination of label assignments
available, it is therefore computationally expensive to evaluate the value of the
partition function.

For most image applications the Gibbs energy function decomposes over unary
and pairwise terms, i.e. terms depending on only one and two variable respectively.
The energy can be written as

E(y,x;w) =
∑
u∈V

ψu(yu,x;w) +
∑

(u,v)∈E

ψuv(yu, yv,x;w). (2.16)

The terms ψu(yu,x;w) and ψuv(yu, yv,x;w) are commonly referred to as unary
and pairwise potentials respectively. Note that the graph structure defines what
terms are present in this energy. For ψuv(yu, yv,x;w) to be non-zero node u and
v must share an edge.

Potential Types

The unary potentials, also known as the data cost, of the CRF energy are often
obtained from a pixelwise classifier estimating the class probabilities of each pixel.
Commonly the term for each pixel is set to

ψu(yu = lp) = −w1 log(P (yu = lp|x)), (2.17)

where P (yu = lp|x) is an estimate of the probability of pixel u belonging to class
lp.

For the pairwise potential the connectivity or structure of our graph needs to be
defined. This specifies what pairwise terms should be included in the energy, and
also which output variables should depend on each other. A simple and commonly
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Figure 2.4: CRF with a simple nearest neighbour connectivity, neighbourhood size
four. The variables yu are assigned class labels while the variables xu represents
the pixel values.

used structure is the nearest neighbour connectivity where pixels are connected
through an edge to its neighbours only. The size of the neighbourhood might vary
but for 2D images a size of four or eight is common. An example of this structure
can be seen in Figure 2.4.

The pairwise potentials, ψuv(yu = lp, yv = lq,x;w), defines the cost of assigning
label lp to pixel u and label lq to pixel v. It can hence be used to enforce consis-
tency and structure in the output. As an example, for semantic segmentation, we
generally want neighbouring pixels to have the same labels. A type of pairwise
term that enforces this is the Potts model given by

ψuv(yu = lp, yv = lq,x;w) = w21lp 6=lq , (2.18)

where 1lp 6=lq denotes the indicator function equaling one if lp 6= lq and zero oth-
erwise. This pairwise term can be generalized in several ways, for example we
might want to weight the cost of assigning different labels to neighbouring pixel
differently depending on if they have similar color or not. This can be achieved by
adding a weighting term according to

ψuv(yu = lp, yv = lq,x;w) = w31lp 6=lqe
−(xu−xv)2 , (2.19)

where xu and xv are the pixel values of pixel u and v. This type of pairwise terms
adds a lower energy if two neighbouring pixels differ a lot in color.
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Both of these pairwise terms are constructed using prior knowledge, such that
neighbouring pixel often have the same label unless there is a change in contrast.
This is of course not true in all cases and several works have instead tried to learn
the pairwise term from data [49, 50]. In Paper III we present a CRF model with
more general pairwise potentials that can be learnt from data.

Using a neighbourhood only consisting of neighbouring pixels limits the extent
on how far across the image information can propagate. A natural way to increase
this limit is to increase the size of the neighbourhood, for example connecting all
pixels closer than d pixels apart. The extreme of this would be to connect all
pairs of pixels which is done for the denseCrf model. The denseCrf model were
popularized by [5], that presented a method to perform efficient inference for these
types of CRFs. The pairwise terms for dense CRFs also include a weighting on
the distance between two pixels, hence the strength of the pairwise term decays
exponentially with the distance between the pixels.

It is also possible to include potentials that depend on more than two pixel
labels, i.e. higher order potentials. Higher order potentials can for example be
used to enforce consistency within superpixels or utilize object detection results
for semantic segmentation [51–54].

Inference

The inference problem, giving a semantic segmentation, equates to finding the
maximum a posteriori labeling of the model in equation 2.14. Finding the mini-
mizer to the Gibbs energy,

y∗ = arg min
y

E(y,x;w), (2.20)

is an equivalent problem. This problem is in general NP-hard [55], typical app-
roaches to solving it can hence be divided into two categories, exact algorithms
that only apply to special cases of the energy and approximate solutions. We will
provide a few examples here but for an extensive overview of approaches we refer
to [56,57].

If we deal with a binary segmentation problem, i.e. only are interested in two
classes, and if the energy is submodular the globally optimal solution can be found
using the graph cuts method [57]. This approach can be extended to multi-label
problems using the α-expansion [58], however we lose the guarantee of finding the
global optimum.

Several popular methods are based on a relaxation of the original problem,
these are usually the most efficient ones for performing inference in denser CRFs.
One example is the mean-field method where the original distribution is P (y|x) is
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approximated with a fully factorized one Q(y). The optimization is then done by
minimizing the Kullback–Leibler divergence between the two distributions. Other
approaches rely on a continuous relaxation of the Gibbs energy, and then using
local search methods to find a local minimum of the energy. This type of methods
have been shown to outperform mean-field on several tasks [59] and is the approach
used in Paper III.

Parameter Learning

The learning problem consists of estimating the parameters of the CRF, w, based
on a training set (y(k),x(k))Nk=1. The goal with the training is that if inference is
performed for an input image from the data set, we want a solution close to the
ground truth labeling. An intuitive approach to the learning problem is based on
the maximum likelihood principle, i.e. finding the set of parameters that maximizes
the probability of the training set.

A major difficulty when performing maximum likelihood training for CRFs is
that it requires computation of the partition function for each training instance
and for each iteration of a numerical optimization algorithm. This is of course
computationally expensive and makes learning infeasible for CRF models used for
semantic segmentation. Most popular learning methods therefore make approx-
imations that simplify the computation of the partition function. Mean field is
an example of this where the fully factorized distribution simplifies computation
of the partition function [5]. Piece-wise training is also an option which only re-
quires computation of local normalization factor over fewer variables [60,61]. Other
methods instead try to estimate the partition function using sampling [62].

Another approach is to use a learning method that avoids the computation of
the partition function, for example learning a model that maximizes the margin
between the energy of the ground truth and any other output configuration [63,64].
This can be formulated as

max
w

ζ

s.t. E(y,x(k);w)− E(y(k),x(k);w) ≥ ζ ∀ k and y 6= y(k).
(2.21)

Since there is an exponential amount of constraints in this optimization problem it
is not feasible to solve it as is. A solution to this is to iteratively add the constraints
that currently is furthest away from being satisfied [65]. This learning method is
utilized in Paper IV.
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2.4 End-to-End Learning

Combining CNNs and CRFs is a powerful approach for dense classification tasks
such as semantic segmentation. The CNNs ability to learn complex high-level im-
age features paired with the CRFs ability to model output dependencies generally
yields impressive results. However, many existing approaches use a two step train-
ing process to learn the weights of the CNN and CRF. Firstly, the CNN is trained
to perform pixel-wise segmentation on the available data set. Secondly, the CRF
is trained keeping the unary potentials fixed (although based on the output of the
CNN). This is often referred to as piece-wise training and is non-ideal since the
CNN is learnt while ignoring dependencies between output variables.

Instead, a better solution would be to perform end-to-end training. This means
jointly training the CNN and the CRF at the same time. In this way the CNN
and the CRF get the chance to learn how to interact and exploit complementary
information to achieve as good of a result as possible. During recent years several
examples of these deep structured model trained end-to-end have been proposed
in the literature [7, 50, 66–68]. This section aims at providing a brief introduction
to some of these methods, for more details we refer to [1].

2.4.1 CRF Inference as a Neural Network Layer

Given an iterative CRF inference method only consisting of differentiable opera-
tions, these operations can be implemented as neural network layers. Each step in
the inference routine equaling one forward pass of a network layer. By implement-
ing the back-propagation routines for this layer, which amounts to applying the
chain rule for derivative, the error derivatives with respect to the parameters of
the CRF can be computed during training. In addition, the error derivative with
respect to the output of the CNN can be computed and the error can be propa-
gated all the way back through the CNN. This enables the parameters of both the
CRF and the CNN to be updated simultaneously during learning. This is usually
referred to as unrolling inference algorithms and was shown to be possible for the
mean-field inference algorithm [7]. In Paper III we show that this is possible for
gradient-based CRF inference as well.
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2.4. End-to-End Learning

2.4.2 Back-propagating CRF Learning Objective

Many of the approaches for CRF parameter learning presented in Section 2.3.1 can
be abstracted to minimizing a global objective L. This global objective depends
on the samples of the data set, the parameters of the CRF as well as the output
of the CNN, denoted z, used to create the CRF potentials. If we are able to
calculate the gradient of this global objective with respect to the CNN output,
∇zL, we can back-propagate this gradient back through the CNN to calculate
∇θL, where θ are the weights of the CNN. The weights can then be updated using
local search methods. The same thing is possible for the weights of the CRF, if
∇wL is calculated.

This approach of learning is usually formulated as a bi-level optimization prob-
lem [69–71] on the following form

min
θ

N∑
i=k

l(y(k),y∗k), (2.22)

subject to y∗k = arg min
y∈C

E(y, z(θ),x(k),w) ∀ k. (2.23)

Here, C is the constraint set, E the CRF energy and (y(k),x(k))Nk=1 the training set.
Since the optimal solution y∗k of the inner optimization problem will depend on
the output of the network, z, and the weights of the CRF, w, the gradients ∇zL
and ∇wL can be calculated. In short, for the unconstrained case, this can be done
by applying the implicit function theorem on the first order optimal conditions of
the energy function (∇yE = 0), and using the fact that y is a function of z. This
enables the calculation of ∇zy∗k by solving a linear system consisting of second
order derivatives of E. Having ∇zy∗k enables back-propagation through the energy
minimization, in this case CRF inference, and hence end-to-end learning.

For more details, as well as the constrained cases, we refer to [70]. In Paper IV
we present a method for doing this utilizing the max margin training approach
for CRFs introduced in Section 2.3.1. Other examples of methods in this category
are [50,62,66].
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2.5 Learning Without Full Supervision

The learning approaches presented in previous sections all have one thing in com-
mon: they require an annotated dataset. Annotating data for semantic segmen-
tation is a tedious task, creating one high-level annotated image can take around 90
minutes [72]. For 3D medical images, annotations are even more time-consuming
and costly to acquire since there are a lot more pixels (or voxels) to be annotated
and medical expertise is needed. There are several ways of getting around this
problem, training neural networks without full supervision. In this section, three
prominent categories of these methods will be briefly discussed, namely unsuper-
vised learning, semi-supervised learning and weakly-supervised learning. Note that
this is not an exhaustive text on this topic but serves as background to Paper I
and II where tools from all three of these categories were utilized.

2.5.1 Unsupervised Learning

Unsupervised learning aims at extracting useful representations and patterns from
unlabeled data. In the context of deep learning, this usually equals training the
network to output informative features. This is similar to the motivation for pre-
training the network on a larger, related dataset as discussed in Section 2.2.4.
What counts as informative features depends on what the main goal of the neural
network is, hence a common way to evaluate unsupervised learning methods are
by applying the pre-trained network on a downstream task. This could, for ex-
ample be semantic segmentation where the network that has been pre-trained in
an unsupervised fashion is trained for semantic segmentation. The quality of the
unsupervised pre-training is then decided by the accuracy and training time of the
downstream task.

Autoencoder

An autoencoder is a neural network trained with backpropagation in an unsuper-
vised manner [73]. Instead of using annotated labels as training target the autoen-
coder is trained to output a copy of the input image, i.e. an autoencoder learns
the identity mapping for the training images.

Since this task is trivial, constraints need to be but on the structure of the
autoencoder network. A simple way of doing this is to add a bottleneck in the
network, i.e. a hidden layer with low dimensionality. In this way the network
needs to learn a compact encoding of the input data that contains all information
needed for it to be decoded to the original image. The features at the bottleneck
of the autoencoder are often referred to as code or latent representation. In the
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2.5. Learning Without Full Supervision

standard setup, the code has a lower dimensionality than the input data. However,
it has been shown that autencoders where the dimensionality of the code is higher
than the input also can learn meaningful encodings as well [74]. This by applying
regularization to the latent representation.

Self-supervised Learning

In self-supervised learning the annotated labels are replaced by pseudo-labels that
can be automatically generated from data. The network is then trained for this
pretext task by learning to predict the pseudo-labels. For the network to learn
to output useful features, the pretext task need to be meaningful considering the
downstream task. Examples of pretext tasks are image colorization [75], image
inpainting [76], image jigsaw puzzle solving [77, 78] and rotation prediction [79].
In [80] the pseudo-labels are created by k-means clustering of the output feature
vectors. The network is then trained to predict the pseudo-labels. By iterating the
k-means clustering and the pseudo-label prediction, the network learns to outputs
features useful for several downstream tasks.

2.5.2 Semi-supervised Learning

Semi-supervised learning defines a middle ground between supervised learning and
unsupervised learning. In the semi-supervised settings, one part of the available
dataset has labels while the rest is unlabeled. Semi-supervised learning seeks to
alleviate the need for a large amount of annotated data by allowing a network to
leverage the unlabeled part of the dataset. This is generally achieved by adding
another loss term during training that can be applied to unlabeled data. These
losses can be divided into three main classes [81]: entropy minimization, consis-
tency regularization and generic regularization. A short introduction to generic
regularization can be found in Section 2.2.4

Entropy Minimization

Entropy minimization encourages the network to increase its confidence on un-
labelled data. This is based on the assumption that the decision boundary should
not pass by high density regions of the data distribution [82]. In [83], the entropy
of the network on output data is minimized explicitly while in [84] this is done
implicitly by letting the network create pseudo-labels for the unlabelled data which
is then used as targets during training.
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Figure 2.5: A consistency regularization training schematic for semi-supervised
learning. The network is trained to produce consistent output for the original input,
x, and an augmented version of the image, x̂. The assumption made is that the
augmentation should not change the labels.

Consistency Regularization

Consistency regularization leverages ideas from data augmentation, generally used
as an regularization technique during supervised learning. In data augmentation,
a transformation is applied to the input image before being fed to the network.
The transformation is often randomized and is designed in a way such that the
original labels can be used for the augmented image. A similar approach can be
used in the semi-supervised setting for the unlabelled samples. The main idea
being that the network should output consistent labels for the original image, x,
and an augmented image, x̂. This is enforced by minimizing a consistency loss over
the two outputs, see Fig. 2.5. In this way, the network learns to be invariant to
the image changes that can be inferred by the augmentation routines used. In [85]
and [86], this consistency is enforced by minimizing the L2 distance between the
outputs of the network for x and x̂, while in [87] and [88] the network outputs are
viewed as probability distributions and the Kullback–Leibler divergence between
them is minimized.

Another type of consistency regularization is presented in [89], here a student
network is trained to produce consistent output to a "mean teacher" whose weights
are an ensemble of a student network’s weights.
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2.5. Learning Without Full Supervision

2.5.3 Weakly-supervised Learning

Weakly-supervised learning aims at utilizing weaker, more easily acquired, labels
for training. For semantic segmentation weak labels such as image tags [90–95],
object bounding boxes [91, 96, 97], points [98] or scribbles [99] have been used
to alleviate the need for dense annotations. The general approach is to infer
dense labels from the weak labels, the current network output and using additional
information or assumptions. An example is [95] where dense labels are inferred by
seeded region growing from discriminative regions in the image. The discriminative
regions are found by looking for highly activated regions in intermediate feature
maps of the network. In [91] both image tags and bounding boxes were utilized
in a weakly- and semi-supervised setting. An expectation–maximization method
was proposed for training the network using the weak labels.
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Chapter 3

Summary

The topics of this thesis revolves around image segmentation, and can be divided
into to main parts. The first one being development of methods to utilize 3D
geometry to improve segmentation methods and the second one being development
of DSMs for semantic segmentation. This chapter includes a summary of these
two parts followed by short individual summaries of the papers included in this
thesis.

Geometric Supervision for Segmentation

This work started as part of a project addressing the task of semantic localization,
i.e. utilizing semantic cues to estimate the pose of a camera given the image taken
and an 3D map. One step of the pipeline required accurate semantic segmentations
for road-scenarios. What we noticed, when trying some state-of-the-art models
trained on the cityscapes dataset [72], was that these performed very poorly on our
images. Especially for images taken during different seasons or lighting conditions.

In the same project we had created large 3D models of the same localization
at different seasons and time of the day. Paper I summarizes our effort to utilize
these 3D models to train a CNN that performs well for all image conditions present
in the localization dataset, being more robust to seasonal changes and weather
conditions. In short, we create a dataset consisting of pairs of images with 2D-2D
pixel correspondences. This is done by geometrically matching the 3D models
created during different seasons or time of the day. Given the 3D point matches,
the pixel positions for the 2D-2D correspondences in each image can be calculated
using the camera positions available in the 3D models.

With the insight that two pixels in each 2D-2D correspondence pair should
depict the same object, these can be used during training. To this end, we formu-
lated a loss function that encourages the output of the CNN to be consistent over
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every pair of pixel correspondences. This is related to the work on consistency
regularization presented in Section 2.5.2, but instead of relying on augmentation
methods for creating the input pairs these are created using the 3D models. In
this way we can learn the network to be invariant to higher level visual changes,
such as summer to winter or day to night.

Creating the dataset of 2D-2D correspondences are not completely automatic
and requires some manual labours for the alignment of the different 3D models.
Hence, the consistency training across the correspondences falls under weakly-
supervised training. This makes the complete training routine used in Paper I
both semi- and weakly-supervised. An estimated 30 hours of manual labor was
required to create one of the 2D-2D correspondence dataset, which contains 28766
image pairs. This in comparison to the Cityscapes dataset [72], where each image
required around 1.5 hours of annotation time.

The segmentation results in Paper I are quite convincing, by adding corre-
spondence training we managed to improve upon several strong baselines, even for
networks that have been trained on the Mapillary Vistas dataset [2] that is already
quite diverse when it comes to variety in lighting conditions and seasons. However,
we failed with one of the goals of the work, to show that the improved and more
robust segmentation algorithm gave a significant performance boost for semantic
visual localization algorithms. Even though there was a small improvement it was
less than expected.

Having segmentations that are consistent across lighting conditions and sea-
sonal changes is a crucial part of semantic long-term visual localization. This
because the invariance of semantic meaning of the surrounding is one of the as-
sumptions made when developing these localization methods. However, in many
cases there are only a few classes available that is meaningful for localization. For
example, the Cityscapes dataset [72] contains 19 classes, 8 of which cover dynamic
objects such as cars or pedestrians that are not useful for localization. The Map-
illary Vistas dataset [2] contains 66 classes, with 15 classes for dynamic objects.
Hence using semantic labels for visual localization results in a loss of discriminative
power. To combat this loss in discriminative power we present the Fine Grained
Segmentation Network (FGSN) in Paper II.

In Paper II we draw inspiration from unsupervised learning and do k-means
clustering of the output features of the CNN. Similar to the work in [80], the
cluster indices can then be used as pseudo-labels during training. In addition,
we use the 2D-2D correspondences from Paper I to train the network to output
consistent labels across seasons. In this way, we can arbitrarily choose the number
of output classes, by setting k, without having to do any additional annotating.
During inference the FGSN will output a dense segmentation map consisting of k
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classes, and even though the different classes might not have any specific semantic
meaning, they will be useful for localization due to the consistency training. Us-
ing the FGSN output instead of standard semantic segmentation maps improves
localization performance for several semantic visual localization algorithms.

Deep Structured Models

In the second part of the thesis, development of DSMs, emphasis has been put on
creating models that are possible to train end-to-end as well as the methods needed
for training. Paper III and Paper IV are obvious examples of this. In Paper V a
robust segmentation method for abdominal organs using CNNs is developed. The
original idea was to use the DSM and training routines developed in paper IV and
add it to this framework as well. However, this did not actually improve the results
much and was hence discarded. This brings up an important question, what types
of CRFs are needed to improve on the results of a CNN? This is something that
will be discussed in Chapter 4.

Regardless of using a DSM or not, Paper V presents a robust method for
abdominal organ segmentation. The paper combines a robust organ localization
with the use of specialized organ CNNs for segmentation. Since segmentation is
a key problem in medical image analysis, a method for organ segmentation can
be crucial for numerous applications in medical research and clinical care such
as computer aided diagnosis and surgery assistance. In addition, robustness is
something that is generally highly valuable for medical applications.

Paper IV introduces a method of training a DSM end-to-end using a max-
margin objective. However, several restrictions to the CRF is needed to be able
to do the training efficiently. The CRF used has a pairwise term where each pixel
is only connected to its closest neighbours. This can easily be extended, however
the method uses graph-cut inference of the CRF during training which becomes
slow for densely connected CRFs.

In Paper III a framework for training DSMs with more expressive CRFs is
presented, here a newly developed approximate inference method of the CRF is
used. However, we would like to point out that this should not be seen as a
strictly better approach than the one used in Paper IV. The max-margin approach
of Paper IV has the advantage of using a fast and exact inference algorithm of
the CRF. In addition the learning approach used have been shown to generalize
well, even for smaller datasets. Something that suited the experiments on smaller
medical data sets presented in the paper well.

The more expressive DSM presented in Paper III is however suitable for larger
datasets with more semantic classes. This enabled us to do experiments on for ex-
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ample the PASCAL VOC 2012 segmentation benchmark [100] consisting of several
thousands of annotated images and 21 semantic classes.

At the time of development of these methods, segmentation was all about
the evaluation numbers. The methods achieving the highest mean Intersection
over Union on the major benchmarks get the most attention. This is of course
positive in the manner of encouraging researchers to develop practically useful
and accurate methods. The major benchmarks are also an invaluable tool for
comparing different methods. However, the chase for better numbers combined
with the use of very data-hungry deep learning brings on a research pipeline that
is skewed towards parameter tuning instead of method development. This also
impacts the possibility to reproduce previous works.

Unfortunately, the methods presented in Paper IV and Paper III fail to achieve
state-of-the-art results on the major benchmarks. We have however successfully
shown the usefulness of both approaches in each paper respectively. Perhaps most
notable for Paper IV is the performance of the method on smaller medical datasets.
For Paper III the model has the ability to improve on a strong CNN baseline trained
on a lot of additional data, even though the DSM was only trained end-to-end on
a subset of the data.
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3.1. Paper I

Figure 3.1: In Paper I, pixel-to-pixel correspondences for images taken during
different seasons are created by aligning 3D models. These correspondences can be
used for training semantic segmentation networks robust to seasonal changes.

3.1 Paper I

M. Larsson, E. Stenborg, C. Toft, L. Hammarstrand, M. Pollefeys, T. Sattler and
F. Kahl ”A Cross-Season Correspondence Dataset for Robust Semantic Segmen-
tation”. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2019.

This paper presents a method to utilize 2D-2D point matches between images
taken during different image conditions for training convolutional neural networks
for semantic segmentation. Enforcing label consistency across the matches makes
the final segmentation algorithm robust to seasonal changes. The 2D-2D matches
are generated with little human interaction by geometrically matching points from
3D models built from images. Since only geometric information is used to align the
models, accurate alignment of models created during day/night or summer/winter
is possible. Adding the correspondences as extra supervision during training im-
proves the segmentation performance of the convolutional neural network, making
it more robust to seasonal changes and changes in weather conditions.

Enabling the use of 2D-2D correspondences, that can be created with little
human supervision, for training provides an alternative to manually creating pixel-
level annotations that is both cheaper and faster. For the training setup used in
the paper, parallels can be drawn to recent work on semi-supervised learning. For
example, in [88], a similar training setup is used, enforcing consistency between
an image from the training set and an augmented version of the same image.
The approach in Paper I differs by creating cross-season correspondences for the
training pairs, instead of relying on data augmentation.
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Image Sem. Classes 100 Clusters

Figure 3.2: In Paper II, a neural network that automatically discovers a large
set of fine-grained clusters is trained. It is experimentally shown that using a
larger number of clusters, instead of a small set of human-defined semantic classes,
improves localization performance.

3.2 Paper II

M. Larsson, E. Stenborg, C. Toft, L. Hammarstrand, T. Sattler and F. Kahl ”Fine-
Grained Segmentation Networks: Self-Supervised Segmentation for Improved Long-
Term Visual Localization”. IEEE International Conference on Computer Vision
(ICCV) 2019.

A big challenge for long-term visual localization is handling large appearance
changes. In order to gain robustness to such changes, many approaches use seman-
tic segmentations as an invariant scene representation, as the semantic meaning of
each scene part should not be affected by seasonal and other changes. However,
these representations are typically not very discriminative due to the limited num-
ber of available classes. To provide more discriminative semantic representation,
this paper proposes the use of Fine-Grained Segmentation Networks (FGSN).

FGSNs are a novel type of convolutional neural networks that output dense
fine-grained segmentations. Using k-means clustering, FGSNs can be trained in a
self-supervised manner, using the cluster assignments of image features as labels.
This enables the use of arbitrarily many output classes without having to create
annotations manually. In addition, the 2D-2D correspondence dataset from Paper I
is used to ensure that the classes are stable under seasonal changes.

Altough the fine-grained segmentations are not trained to specifically contain
any semantic information, the fact that they are consistent across seasonal changes
make them useful for visual localization. In fact, using fine-grained segmentations
instead of standard semantic segmentations improves performance for several vi-
sual localization methods utilizing segmentations. The improvement is most preva-
lent for cases without much semantic information, such as park areas where the
majority of the image is segmented as vegetation, see Fig. 3.2.
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3.3 Paper III

M. Larsson, A. Arnab, F. Kahl, S. Zheng, and P. Torr. ”Revisiting Deep Structured
Models in Semantic Segmentation with Gradient-Based Inference”. SIAM Journal
on Imaging Sciences. 2018.

In this paper we move from binary label CRFs with short spatial pairwise
interactions to CRFs being able to handle multiple labels and learn pairwise inter-
actions on larger distances. We present an inference technique based on gradient
descent on the Gibbs energy of the CRF. This inference method consists only of
differentiable operations which enables us to unroll the CRF inference as a number
of update steps of a Recurrent Neural Network (RNN). During learning, we can
also back-propagate through the RNN and do end-to-end training of the entire
model.

Two different types of CRF models are presented in the paper. The first one
consists of a spatial pairwise term as well as a high-dimensional bilateral kernels.
In contrast to many previous works we do not restrict these two kernels to have
Gaussian shape but allow for arbitrary shape of the spatial and bilateral kernels. In
addition, we introduce a new type of potential function which is image-dependent
like the bilateral kernel, but an order of magnitude faster to compute since only
spatial convolutions are employed. The major contributions of the paper are

• A new model for a pairwise CRF potential which is image-dependent like the
bilateral kernel, but does not require high-dimensional filtering. It is based
on a learned 2D filter bank which makes both inference and learning an order
of magnitude faster than high-dimensional filtering approaches.

• A new optimization method for CRF inference based on gradient descent
that enables end-to-end training.

• We show that our inference method supports learning pairwise kernels of arb-
itrary shape. The learned kernels are empirically analyzed and it is demon-
strated that in many cases non-Gaussian potentials are preferred.
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Figure 3.3: Comparison of piecewise versus joint training of a deep structured
model for some hand-picked example. The number shown in the upper right corner
is the Jaccard index (%).

3.4 Paper IV

M. Larsson, J. Alvén and F. Kahl. ”Max-Margin Learning of Deep Structured
Models for Semantic Segmentation”. Scandinavian Conference on Image Analysis
(SCIA). 2017.

This paper presents a method for learning the parameters of a Deep Structured
Model used for semantic segmentation. The learning problem is formulated as a
Structured Support Vector Machine (SSVM) and we show that it is possible to
calculate the derivative of the objective with respect to the output of the CNN.
This enables us to back-propagate all through the layers of the CNN and learn
the weights of the CNN and the CRF at the same time. Since the SSVM uses a
max-margin loss function that generally gives good generalization capabilities of
the trained model this method is especially suitable for application where labelled
data is limited.

Figure 3.3 shows a comparison of the piecewise and jointly trained models. As
can be seen the model where the CNN and CRF have been trained jointly performs
better, avoiding error such as cutting of the legs of the horse. This is because the
CNN has learnt to compensate for the slight shrinking effect of the CRF.
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Figure 3.4: Graphical representation of the method presented in Paper V.

3.5 Paper V

M. Larsson, Y. Zhang and F. Kahl ”Robust Abdominal Organ Segmentation Using
Regional Convolutional Neural Networks”. Applied Soft Computing. 2018.

This paper presents a method for segmenting 13 different abdominal organs
utilizing CNNs. The method can be divided into two main steps. Firstly, an
efficient and robust feature registration method is applied estimating the center-
point of each organ. Secondly, a convolutional neural network performing voxelwise
classification is applied to a region, defined by a prediction mask placed at the
estimated organ center-point. The prediction mask is created using the ground
truths of each organ in the training set. The approach of first localizing a region
of interest for each organ transforms the problem the CNN has to solve from a
large multi-label problem to 13 smaller binary-labels problems. We can therefore
train smaller CNNs and more specialized, or regional, networks that only need to
differentiate between a certain organ and the background.

During the development of this method and at the writing of the first draft
of this paper there were very few examples of deep learning methods applied to
medical 3D segmentation tasks and none for this specific task. Since then, there has
been a lot of development in this area and several papers have been published [101–
103] further showing that deep learning methods can perform really well on these
types of tasks.
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Chapter 4

Outlook

The field of semantic segmentation has moved at a high pace during the last
few years, especially when it comes to methods based on CNNs. Almost on a
monthly basis, there has been a new CNN with a different architecture pushing
state-of-the-art further. During 2015 and 2016 the results of CNNs presented for
semantic segmentation could be greatly increased by adding a CRF [7, 28]. This
is mainly due to the fact that the architectures of the networks used during this
time did not allow the CNN to learn interactions over long ranges. In addition,
the downsampling of the pooling layers resulted in a loss of spatial information
that prohibited the accurate segmentation of fine edges between classes, hence the
output usually became "blobby". Both of these errors are something that the most
commonly used CRF models excel at. However, during late 2016 and 2017 several
new CNNs have been proposed, raising state-of-the-art, that do not use a CRF for
post-processing [47,104]. This indicates that the type of CRFs commonly used in
semantic segmentation might not be necessary for these large scale problems with
a lot of annotated data. This trend has continued during the last few years.

An additional detail with the CRFs is that inference for most of the commonly
used models is still fairly slow, especially for dense models with edge-aware pairwise
potentials. Some work has been done on creating alternatives to these CRFs that
are less computationally demanding but still has the ability to refine segmentations
near edges [105,106]. This is also adressed as part of Paper III.

So, for CRFs and DSMs to be really useful for large scale segmentation problems
in the future there are two improvements needed. Firstly, the inference needs to be
faster, adding a CRF should not speed down the inference or training considerably.
Unless, of course, the gain in performance is worth it. Secondly, there might be a
need to rethink the type of models we are using and try to create CRFs that are
better suited to correct the errors that the new state-of-the-art CNNs do.
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Moving away from the large scale segmentation benchmarks there are still a lot
of applications where adding a CRF gives a big increase in performance. Looking at
datasets with slightly smaller training set, DSMs tend to perform better in general.
CRFs are also a good way to include prior knowledge in you segmentation pipeline.
Previous work has shown that geometric constraints, such as convex or star shaped
fore-ground objects only can be enforced by a CRF [107,108].

As discussed in section 2.5.3, there exists a lot of previous work on weakly-
supervised learning. However, when it comes to unsupervised learning and semi-
supervised learning the majority of work done in vision is related to image clas-
sification. Since the annotations needed for supervised training of segmentation
CNNs is especially time-consuming to acquire, developing methods for weak-, semi-
or un-supervised training of segmentation CNNs is an interesting and important
research direction.

4.1 Future Work

4.1.1 Structured Output

At the moment many of the top entries of the major segmentation benchmarks
train CNNs with a pixel-wise loss function, disregarding the fact that the output is
structured. Modern CNNs have the capability to, and probably do, implicitly learn
that there is structure in the output. However, actually taking the output structure
into account, whether by using a CRF or in some other way, could be beneficial.
There is hence interest in continuing the work on end-to-end training of DSMs,
both trying to improve computation speed and to design more expressive models.
In addition it would be interesting to do more work on DSMs for medical image
segmentation where more application-specific types of CRFs might be needed.

Another interesting approach to taking output structure into account was intro-
duced in [109], which used a Generative Adversarial Network (GAN) for semantic
segmentation. The idea was that the discriminator would be able to learn how
an ground truth segmentation should look like. Hence during training, the gener-
ator, that also performs the actual segmentation, would have to output realistic
segmentation to trick the discriminator. In this way the output of the segmen-
tation CNN would have to follow, and hence learn, the output structure of the
segmentations. This introduces an interesting opportunity to learn output struc-
ture without having to perform CRF inference. This idea has been further refined
in [110] and used in medical applications in [111,112]. Since these approaches are
able to take output structure into account during training without having to deal
with the drawback of using CRFs, this could be an interesting research direction.
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4.1.2 Weak Supervision

The underlying method used in Paper I is fairly simple. Given a way to create
pairs of input samples that should have the same class or output vector, consis-
tency regularization training can be used to utilize these pairs during training. As
previously mentioned, the pairs can be created completely unsupervised by uti-
lizing data augmentation methods [88]. Creating more advanced training pairs,
which enables the networks to learn to be invariant to higher levels changes, is an
interesting research direction. This has been explored to some extent, for example
in [113] corresponding day/night image pairs are used for training of a segmenta-
tion network. However, there is still a lot left to explore. In the self-driving car
scenario, most cars are equipped with several sensor. This opens up for ways of
utilizing data from different sensors, e.g . LIDAR, to create weak labels for seman-
tic segmentation, or vice-versa. In addition, the images are collected sequentially
which opens up the opportunity to utilize temporal consistency during training.

4.1.3 Visual Localization

In Paper II, we show how 3D models of the same location created at different sea-
sons and time of the day can be utilized to train segmentation networks useful for
long-term visual localization. An important step in creating these 3D models were
to localize each camera in the coordinate system of an initial 3D model. At the
time of writing the paper, some manual labour was needed to align the 3D model
correctly, but with the improvement of long-term visual localization methods this
might be possible to do automatically. The work in Paper I shows that semantic
algorithms can be improved via visual localization and Paper II shows that im-
proved segmentations can lead to improved and more robust localization results.
This lead to an interesting question, is it possible to create a positive feedback
loop, iteratively improving both segmentation and localization?

The concept of bi-level learning was introduced in Section 2.4.2 and was used in
Paper IV to train a DSM. Many interesting applications can be formulated as bi-
level learning problems, for some examples in conjunction with CNNs see [70]. For
visual localization, pose refinement is usually done by local optimization. Hence,
if we want to learn a good pose optimizer we can formulate it as a bi-level learning
problem, where the inner optimization problem is that of pose optimization and
the outer optimization problem is that of minimizing the learning loss. This is one
of our current projects, by utilizing the bi-level optimization formulation we can
directly train a CNN to output features for each pixel in an image that, given a
specific pose optimization method, minimizes a loss based on the distance between
the estimated camera pose and the ground truth camera pose.
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