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ABSTRACT
Quantum many-body systems in thermal equilibrium can be described by the imaginary time Green’s function formalism. However, the
treatment of large molecular or solid ab initio problems with a fully realistic Hamiltonian in large basis sets is hampered by the storage of the
Green’s function and the precision of the solution of the Dyson equation. We present a Legendre-spectral algorithm for solving the Dyson
equation that addresses both of these issues. By formulating the algorithm in Legendre coefficient space, our method inherits the known
faster-than-exponential convergence of the Green’s function’s Legendre series expansion. In this basis, the fast recursive method for Legendre
polynomial convolution enables us to develop a Dyson equation solver with quadratic scaling. We present benchmarks of the algorithm by
computing the dissociation energy of the helium dimer He2 within dressed second-order perturbation theory. For this system, the application
of the Legendre spectral algorithm allows us to achieve an energy accuracy of 10−9Eh with only a few hundred expansion coefficients.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003145., s

I. INTRODUCTION

The equilibrium properties of many-body quantum systems
can be described by the finite temperature imaginary-time Green’s
function formalism,1 which is widely applicable to condensed mat-
ter physics, quantum chemistry, and materials science. Applications
include numerical methods for low energy effective model Hamil-
tonians such as lattice Monte Carlo,2 dynamical mean field theory3

and its extensions,4–6 and diagrammatic Monte Carlo.7 Ab initio cal-
culations using the random phase approximation,8 self-consistent
second order perturbation theory,9–17 Hedin’s GW approach,18–26

and self-energy embedding theory27–33 can also be formulated in
imaginary time.

While the finite temperature Green’s function formalism is
very successful in applications to model Hamiltonians, its appli-
cability to quantum chemistry and materials science remains lim-
ited to simple molecular and periodic problems. This is due to the
necessity of simultaneously describing both the core and valence
orbitals, which results in an energy scale that is difficult to describe

by a single imaginary time/frequency grid. A simple equidistant
Matsubara grid would contain millions of points, thus making the
storage and manipulation of the Green’s functions computationally
costly. In contrast, a grid with only a small number of equidis-
tant points will result in a poorly converged energy or density
matrix, making calculations with μHartree precision challenging.
Such precision is necessary in applications where the evaluation of
interaction energies,34–37 energies of conformers,38 or energies of
high-lying excited states39,40 is needed. Consequently, it is important
to develop a compact representation that yields highly converged
properties.

With the standard approach using equidistant Matsubara fre-
quency41 grids with finite frequency cutoff, the imaginary time
Green’s function only converges to the analytical result linearly in
the number of Matsubara frequencies. Amending the representa-
tion with a low order high frequency expansion results in poly-
nomial convergence.42–44 In practice, this is problematic, since for
systems with a wide range of energy scales, the number of coeffi-
cients is controlled by the largest energy scale.14 Alternatives such
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TABLE I. Overview of Green’s function representation approaches in both Matsubara frequency space and imaginary time combined with the scaling of solvers for the Dyson
equation. Where no convergence is listed, the scaling either involves additional parameters or is unknown.

Domain Basis Convergence Compactness Dyson scaling

Matsubara frequency Finite frequency cutoff O(1) Poor O(N)
Tail correction, pth order42–44 O(N−p) Fair . . .

Spline grid14 . . . Good . . .

Both frequency and time Sparse sampling52 . . . See Ref. 52 a O(N)
Minimax isometry53 . . . See Ref. 53 O(N)

Imaginary time Uniform mesh O(N−1
) Poor O(N3

)

Power mesh45,46,58 . . . Fair O(N3
)

Orthogonal functions Intermediate representation49–51
≲ O(e−N) Excellent No

Chebyshev polynomials48
≲ O(e−N) Very good O(N3

)

Legendre polynomials (this work) ≲ O(e−N)47 Very good O(N2
)

aThe compactness of the sparse sampling approach depends on the real-time basis employed.

as uniform power meshes have had some success.45,46 However, the
most compact representations are achieved using a set of (orthog-
onal) continuous basis functions directly in imaginary time, such
as orthogonal polynomials47,48 or numerical basis functions.49–53

The convergence of such a representation is faster than exponen-
tial,47,48 and asymptotically superior to any polynomially converging
representation.

In all imaginary time methods, a central step besides the solu-
tion of the impurity problem is the solution of the Dyson equation
for the single particle Green’s function.54–57 In the Matsubara fre-
quency representation,41 the Dyson equation is diagonal and can be
readily solved. However, the solution is plagued by the polynomial
convergence with respect to the number of frequency coefficients
used. In imaginary time, the Dyson equation is a non-trivial integro-
differential equation with a mixed boundary condition. Recently,
an algorithm for solving the Dyson equation in imaginary time
using the Chebyshev polynomials has been presented.48 This algo-
rithm preserves the exponential convergence of the orthogonal poly-
nomial expansion.47 However, the central convolution step has a
cubic scaling in the expansion order NL, ∼ O(N3

L), which limits the
applicability of the algorithm.

The development of compact representations and algorithms
for solving the Dyson equation is an active field of research (see
Table I for an overview of the state-of-the-art methods). For a recent
development, see Ref. 53.

In this paper, we present a Legendre spectral method for solving
the Dyson equation with super-exponential convergence and a con-
volution that scales quadratically ∼ O(N2

L), one order better than
previous formulations.48 The super-exponential convergence allows
us to achieve an energy accuracy of 10−9Eh in a realistic quantum
chemistry system with a few hundred expansion coefficients. We
show this in a proof-of concept benchmark: computing the dissoci-
ation energy of He2 using self-consistent second-order perturbation
theory, taking both the zero temperature and the complete basis
limit.

This paper is organized as follows: In Sec. II, we introduce
the Dyson equation. In Sec. III, we present our Legendre spectral
method. In Secs. IV and V, we apply our method to a realistic quan-
tum chemistry problem, the dissociation energy of the noble gas He2.
In Sec. VI, we present conclusions.

II. THEORY
The imaginary time single particle Green’s functionG is defined

on the interval τ ∈ [−β, β], G ≡ G(τ), where β is the inverse temper-
ature β = 1/T. It obeys the periodicity condition G(−τ) = ξG(β − τ),
with ξ = + 1 (−1) for bosons ( fermions), making it an (anti-)periodic
function with a step discontinuity at τ = 0 [see Fig. 1(a)]. The
imaginary time Dyson equation for G(τ) is54–57

[−∂τ − h]G(τ) − Σ ∗G = 0, (1)

where h is the single particle energy and Σ is the self-energy, which
accounts for all many-body interactions. We note in passing that
Σ(τ) has the same periodicity as G(τ). The boundary condition for
Eq. (1) is G(0) − ξG(β) = −1, and the Fredholm type59 imaginary
time convolution is defined as Σ ∗G ≡ ∫

β
0 dτ̄ Σ(τ − τ̄)G(τ̄).

Analytically, the Dyson equation [Eq. (1)] can be solved using
the Fourier series expansion,

G(τ) =
1
β

∞
∑

n=−∞
e−iωnτG(iωn), G(iωn) = ∫

β

0
dτ eiωnτG(τ),

where the Matsubara frequencies iωn are given by iωn ≡ i πβ (2n + η)
with η = (1 − ξ)/2 and n integers.54–57 In Matsubara frequency space,
the Dyson equation [Eq. (1)] is diagonal,41

[iωn − h − Σ(iωn)]G(iωn) = 1. (2)

Numerically, however, the discontinuity at τ = 0 results in a slow
asymptotic decay G(iωn) ∼ (iωn)

−1 as iωn → ±i∞ [see Fig. 1(b)].
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FIG. 1. Single particle Green’s function in (a) imaginary time G(τ), (b) Matsubara
frequency G(iωn) [with (iωn)

−1 black line], and (c) Legendre expansion coeffi-
cients Gn for site one in the fermionic two level system with the second quatization
Hamiltonian H = −μc†1 c1 +V(c†1 c2 + c†2 c1)+ ϵc†2 c2 at inverse temperature β = 1,

where c†i creates and ci annihilates a fermion at site i and μ = −3, ϵ = 3.3, and
V = 4.

This prevents a naïve finite frequency |n| < Nω approximation
G(τ) ≈ 1

β ∑∣n∣<Nω
e−iωnτG(iωn) from converging in Nω [the maximal

error in G(τ) scales as ∼ O(N0
ω) = O(1)]. The standard solution to

this problem is to use a finite number p of high-frequency “tail” coef-
ficients Ḡk to approximate G(iωn) ≈ ∑

p
k=1 Ḡk/(iωn)

k for |n| > Nω,
where the known asymptotic decay implies Ḡ1 = 1. This type of tail
correction procedure gives polynomial convergence in G(τ) with the
power determined by the order p of the tail expansion ∼ O(N−pω )

[see, e.g., Refs. 42–44]. In Fig. 2, this is shown for the case of p = 3
using the TRIQS library.60

Since G(τ) is continuous on τ ∈ [0, β], it can be much
more efficiently represented by a finite orthogonal polynomial
expansion,

G(τ) ≈
NL

∑
n=0

GnLn[x(τ)], (3)

where Ln[x] are Legendre polynomials defined on x ∈ [−1, 1] and
x(τ) = 2τ

β − 1. The Legendre coefficients Gn have a faster than
exponential asymptotic decay47 [see Fig. 1(c)]. This also causes the

FIG. 2. Error in density Δn as a function of Legendre expansion order NL and
number of Matsubara frequencies Nω for the same system as in Fig. 1.

finite NL expansion at the right-hand side of Eq. (3) to converge
faster than exponential ≲ O(e−NL) to the analytical G(τ).

III. LEGENDRE SPECTRAL METHOD
Here, we develop a Legendre spectral method for solving the

Dyson equation [Eq. (1)], reformulating the integro-differential
equation in the space of Legendre coefficients Gn [Eq. (3)]. In the
space of a finite Legendre expansion of order NL, Eq. (1) is cast to a
linear equation system,

NL

∑
n=0
(−Dkn − h1kn − [Σ∗]kn)Gn = 0k, (4)

where terms with one and two indices are vectors and matrices
in Legendre coefficient space. The last row of the left-hand side
of the matrix is modified to enforce the boundary condition of
Eq. (1). The resulting method has faster than exponential conver-
gence and quadratic scaling ∼ O(N2

L), one order better than previous
approaches.48

The differential operator ∂τ in Eq. (1) acting on the Legendre
polynomials takes the form61

∂τLn[x(τ)] =
2
β
∂xLn(x) =

2
β

n−1

∑
k=0, k+n odd

(2k + 1)Lk(x)

=∑
k
DknLk(x). (5)

Hence, the derivative matrix Dkn in Eq. (4) is given by

β
2
Dkn ≡

⎧⎪⎪
⎨
⎪⎪⎩

2k + 1, 0 ≤ k ≤ n, k + n odd,

0, elsewhere
(6)

and is upper triangular (see Fig. 3). Using Ln(±1) = (±1)n, the Dyson
equation boundary condition can be written as

− 1 = G(0) − ξG(β) =∑
n
((−1)n − ξ)Gn. (7)
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FIG. 3. Matrix structure of the spectral derivative operator Dkn and the convolution
operator [Σ∗]kn for ϵ = 1 and Σ(τ) = e−ϵτ(ξe−ϵβ − 1)−1 at β = 1 and ξ = −1
( fermions).

A. Spectral convolution
The imaginary time convolution [Σ ∗ G] in the Dyson equation

[Eq. (1)] can be separated into the two terms of Volterra type,

[Σ ∗G](τ) = ∫
β

0
dτ′Σ(τ − τ′)G(τ′)

= ∫

τ

0
dτ′Σ(τ − τ′)G(τ′) + ∫

β

τ
dτ′ξΣ(β + τ − τ′)G(τ′),

(8)

using the periodicity property Σ(−τ) = ξΣ(β − τ). In Eq. (8), Σ(τ) is
only evaluated for τ ∈ [0, β], avoiding the discontinuity at τ = 0.

In Legendre coefficient space, the convolution operator [Σ ∗]
can be written as a sum of two matrices B≶kn, representing the two
Volterra terms [Eq. (8)],

[Σ∗]kn ≡ B
<
kn + ξB>kn. (9)

Stable recursion relations for B≶nk have been derived by Hale and
Townsend62 using the Fourier connection between Legendre poly-
nomials and spherical Bessel functions. Since the derivation is
detailed in Ref. 62, we only state the result specialized to the imagi-
nary time convolution in Eq. (8) here and provide a derivation in the
Appendix.

The coefficients are related by the recursion relation,

B≶k,n+1 = −
2n + 1
2k + 3

B≶k+1,n +
2n + 1
2k − 1

B≶k−1,n + B≶k,n−1, (10)

which for each column require two previous columns to be known.
The recursion is only stable for the lower triangular coefficients
in B≶kn. The upper triangular coefficients are computed using the
transpose relation,

B≶k,n = (−1)n+k 2k + 1
2n + 1

B≶n,k. (11)

The two first columns are given by the starting relations,

B≶k,0 =

⎧⎪⎪
⎨
⎪⎪⎩

Σ0 ±
Σ1
3 , k = 0,

±(
Σk−1
2k−1 −

Σk+1
2k+3), k ≥ 1,

B≶k,1 = ∓B
≶
k,0 +

B≶k−1,0

2k − 1
−

B≶k+1,0

2k + 3
, k ≥ 1,

(12)

with the special case for k = 0, B≶0,1 = ∓B
≶
1,0/3, using the Legendre

coefficients Σn of the self-energy Σ [cf. Eq. (3)].

B. Convergence and scaling
Since each coefficient in B≶kn can be computed in O(1) opera-

tions, the scaling of the convolution matrix construction is ∼ O(N2
L).

The self-energy Σ(τ) is a smooth function with asymptotic exponen-
tially decaying Legendre coefficients, which causes the entries of the
dominantly diagonal spectral convolution operator [Σ ∗]kn to decay
exponentially both along and away from the diagonal (see Fig. 3).

The numerical solution of G(τ) from the Dyson equation con-
structed in terms of the linear system in Eq. (4) converges faster than
exponentially to the analytical solution, with the increased num-
ber of Legendre coefficients NL (see Fig. 2). This is in stark con-
trast to the polynomial convergence of the standard Matsubara tail
approach42–44 (also shown in Fig. 2).

C. Imaginary time transform
To retain the high accuracy of the Legendre spectral Dyson

solver, the method has to be complemented with stable transforms
between Legendre coefficients and imaginary time,

Gn =
NL

∑
i=0

SniG(τi), G(τi) =
NL

∑
n=0

LinGn. (13)

To construct the well-conditioned transform matrices Sni and Lin, we
employ the Legendre quadrature and the Legendre–Gauss–Lobatto
points xi ∈ {x : (1− x2

)LNL(x) = 0}, x0 = −1, xN = 1, re-scaled to the
imaginary time interval [0, β], τi = β xi+1

2 . Using xi, the matrices Sni
and Lin can be directly constructed (avoiding matrix inversion),

Lin = Ln(x(τi)), Sni =
β

2Wn
ωiLn(x(τi)), (14)

where ∫
1
−1 dx Ln(x)Lm(x) = δnm 2

2n+1 ≡ δnmWn and
ωi =

2
N(N+1)

1
LNL (xi)2 (see, e.g., Refs. 61 and 63).

IV. APPLICATION (GF2)
As a proof of concept application of the Legendre spec-

tral Dyson solver developed in this paper, we employ the solver
in a quantum chemistry setting using a Gaussian basis set. We
will employ self-consistent second order perturbation theory, also
known as GF2,9–17 which has seen a revival in recent years, both in
ab initio condensed matter applications8,15 and in quantum chem-
istry11,16,58,64 in combination with embedding methods.29 Our imple-
mentation is built on the Coulomb integrals of the pyscf library.65

In the resulting non-orthogonal basis set, the Dyson equation
takes the form

∑
j
[Sij(∂τ − μ) + Fij + Σij∗]Gjk(τ) = 0, (15)

where i, j, k are orbital indices, Sij is the overlap matrix, and Fij is the
so-called Fock matrix, Fij ≡ hij + Σ(HF)

ij . The boundary condition for
this equation is∑j(Gij(0) − ξGij(β)) ⋅ Sjk = −1ik. Here, the single par-
ticle term hij accounts for electronic kinetic and nuclear-electronic
matrix elements, and the Hartree–Fock self-energy Σ(HF)

ij is given by

Σ(HF)
ij =∑

kl
Pkl(vijkl − vilkj/2), (16)
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FIG. 4. Schematic of the GF2-self-consistency loop.

where Pij is the density matrix Pij = −2Gij(β) and vijkl is the electron–
electron Coulomb repulsion integral.

In GF2, the imaginary-time-dependent part of the self-energy
Σ(τ) is approximated with the second order self-energy diagram
using the full electron Greens function G, Σ ≈ Σ(GF2)[G], where

Σ(GF2)
ij (τ) = ∑

klmnpq
Gkl(τ)Gmn(τ)Gpq(β − τ)

×vimpk(2vjnlq − vjlnq). (17)

The evaluation of Σ(GF2)(τ) for fixed τ scales as ∼ O(N5
),64 where N

is the number of atomic orbitals.
Solving for the GF2 Green’s function, G amounts to solv-

ing Eqs. (15)–(17), which is a highly non-linear problem. To find
the solution, we perform self-consistent iterations (see Fig. 4 for
a schematic picture). The inner loop solves the Dyson equation
[Eq. (15)] and updates the Hartree–Fock self-energy Σ(HF) [Eq. (16)]
until convergence (in the Fock-matrix F). At convergence in F, one
step of the outer loop is performed by re-evaluating the GF2 self-
energy Σ(GF2) [Eq. (17)] and computing the relative change in total
energy E. If the change is above a fixed threshold, the inner loop is
started again. To compute the inter molecular energies, which is an
energy difference, we need a threshold of 10−10.

The total energy E of the system is given by

E =
1
2

Tr[(h + F)P] + Tr[Σ ∗G] + Enn, (18)

where Enn is the nuclei–nuclei Coulomb energy. The imaginary time
trace Tr[⋅] is defined as Tr[A] ≡ −∑iAii(β),44,66 and the Σ ∗ G con-
volution is computed with the spectral Legendre convolution as in
Eq. (4).

V. RESULTS
The faster than exponential convergence of the Legendre spec-

tral Dyson solver [Eq. (4)] is particularly suited for high precision
calculations. A prime example is the computation of the binding
energy De in noble-gas dimers, where the weak bonding requires
high precision calculations of total energies. The binding energy De
is obtained from the minimum of the interaction energy Eint(r) as a
function of atomic separation r,

De ≡ −Eint(re) ≡ −min
r

Eint(r), (19)

where re is the equilibrium atomic distance. The interaction energy
Eint is, in turn, given by

Eint(r) ≡ EA2(r) − 2EA(r), (20)

where EA2 is the total energy of the dimer and EA is the total
energy of the single atom (the monomer) evaluated using the stan-
dard counterpoise correction.67 In the noble gases, the total energies
EA and EA2 are of the order of Hartrees (∼Eh ≡ 1 Hartree), while
the binding energy De is of the order of tens of micro-Hartrees
(∼10μEh), hence requiring high precision calculation of the total
energies.

We use He2 as a prototype system since there exist pub-
lished reference results for the binding energy De and equilib-
rium distance re calculated with Hartree–Fock (HF), second-order
Moller–Plesset perturbation theory (MP2), coupled cluster singles
doubles (CCSD) theory, and coupled cluster singles doubles and
non-iterative perturbative triples [CCSD(T)] theory.68 The MP2
method is closely related to GF2 and uses the second order self-
energy [Eq. (17)] evaluated at the HF Green’s function G(HF),
Σ(MP2)

≡ Σ(GF2)[G(HF)]. However, note that the prefactors in the total
energy differ.10,69

Figure 5 shows Eint(r) (and −De) of He2 computed with HF,
MP2, and GF2 in the aug-cc-pvqz basis together with CCSD and
CCSD(T) reference results on De.68 The GF2 results are obtained
by fitting a 4th order polynomial to 21 r-points of Eint(r) com-
puted in a 0.1 Bohr range centered around the minimum at
re. The GF2 results are obtained using the Legendre spectral
Dyson solver, while HF and MP2 are computed using pyscf.65

As shown in Fig. 5, He2 does not bind within the Hartree–
Fock approximation, which gives a strictly positive interaction
energy. Compared to MP2 our GF2 results are a considerable
improvement using the coupled cluster CCSD and CCSD(T) as a
reference.

FIG. 5. Interaction energy Eint as a function of atomic distance r of He2 with basis
aug-ccpvqz using HF, MP2, and GF2. The HF and MP2 results are computed with
pyscf;65 the GF2 results are computed using β = 50E−1

h , Nτ = 192. The CCSD
and CCSD(T) results are from Ref. 68.
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A. Complete basis set limit
In order to extrapolate the results to the complete basis set

(CBS) limit,70,71 we repeat the calculations using the augmented
correlation consistent (aug-cc-pvnz) basis set series, with n = d, t, q, 5
(i.e., n = 2, 3, 4, 5).72–74 This series has been shown to enable accu-
rate extrapolation of a number of properties due to its systematic
convergence in n.70,75–85

In Table II, we summarize the binding energy De and equilib-
rium distance re of He2 computed by MP2, CCSD, CCSD(T), and
GF2 using the aug-cc-pv{d,t,q,5}z basis sets. The aug-cc-pv{d,t,q,5}z
GF2 energies are computed at β = 50E−1

h using Nτ = 128, 160,
192, and 250 τ-points, respectively. The convergence in Nτ is
imposed so that the absolute values of the elements in highest
Legendre coefficient matrix are smaller than 10−10. The zero tem-
perature convergence (at β = 50E−1

h ) is ensured by requiring
that the finite temperature MP2 total energy differs by less than
0.1 nHartree compared to the zero temperature MP2 total energy
from pyscf.

We note that the number of τ-points Nτ used for the aug-
cc-pv{d,t,q,5}z basis sets is of the same order as the number of
atomic orbitals N. Hence, the scaling of GF2, ∼ O(Nτ ⋅ N5

),
is comparable to the scaling of CCSD, ∼ O(N6

). As given
in Table II, the accuracy of the GF2 result for De is compa-
rable to that of CCSD when compared to that of CCSD(T),
while the CCSD result for re is closer to the CCSD(T) result
than that of GF2. This makes GF2 a considerable improvement
over MP2.

With the systematic convergence of De and re as a function of
basis set size n, it is possible to extrapolate to the complete basis limit
n →∞.68 We extrapolate De and re using our GF2 aug-ccpv{t,q,5}z
results by fitting the exponential model: A ⋅ e−B(n−2) + C, proposed
in Ref. 68, where A, B, and C are parameters. The applicability of
the model is checked by a logarithmic plot (see Fig. 6). The resulting
CBS limit of our GF2 results is De ≈ 29.67μEh and re ≈ 5.680 a0 (see
also Table II).

TABLE II. Dissociation energies De (top) and equilibrium distances re computed by
MP2, CCSD, CCSD(T), and GF2 with the basis sets aug-cc-pvnz, with n = d, t, q, 5.
The MP2, CCSD, and CCSD(T) results are from Ref. 68.

De (μEh) MP2 CCSD CCSD(T) GF2

aug-ccpvdz 12.69 16.78 18.57 18.17
aug-ccpvtz 17.97 23.77 27.10 24.63
aug-ccpvqz 19.66 25.79 29.64 26.59
aug-ccpv5z 20.71 27.09 31.25 27.79
CBS 22.98 30.06 34.70 29.67

re (Bohr) MP2 CCSD CCSD(T) GF2

aug-ccpvdz 6.1680 6.0580 6.0086 6.0547
aug-ccpvtz 5.9175 5.8060 5.7452 5.8244
aug-ccpvqz 5.8606 5.7546 5.6891 5.7722
aug-ccpv5z 5.8244 5.7210 5.6537 5.7388
CBS 5.769 5.672 5.607 5.680

FIG. 6. Basis extrapolation of equilibrium distance (re) and dissociation energy
(De) He2 with basis aug-ccpvnz with n = 2, 3, 4, 5. Left panels: raw data and fitting.
Right panels: check of fitting results.

VI. CONCLUSION AND OUTLOOK
We introduce a Legendre-spectral algorithm for solving the

Dyson equation in Legendre coefficient space. By staying in
Legendre-coefficient space, the algorithm converges super exponen-
tially with respect to the number of Legendre coefficients NL used
to represent the imaginary time Green’s function.47 This is in stark
contrast to the Matsubara frequency space based approach with
only polynomial convergence.42–44 The exponential convergence is
shared with a recently presented Chebyshev polynomial based algo-
rithm,48 where the convolution scales as ∼ O(N3

L). Currently,
there is no known algorithm for Chebyshev series that can compute
the convolution term with the same efficiency as in the Legendre
series.62 Our work goes beyond this, employing a Legendre convo-
lution with O(N2

L) scaling and enabling the application to larger
ab initio systems.

To benchmark the algorithm, we apply it to the quantum
chemistry computation of the dissociation energy of the noble gas
He2 using self-consistent second order perturbation theory (GF2).
The exponential convergence of our algorithm allows us to reach
the required 10−9Eh zero temperature total-energy precision using
only 100–200 Legendre coefficients in the Dunning basis series
aug-ccpvnz.72–74

The algorithm is also relevant for condensed matter ab initio
applications in periodic systems that require high precision, such as
GF29–17 and Hedin’s GW.18–26 This is a promising venue for future
research.
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APPENDIX: CONVOLUTION MATRIX
In this appendix, we derive Eqs. (10)–(12) in the main text. The

derivation follows Ref. 62 but with more details for both integrals in
Eq. (8).

1. Convolution and Fourier transform
The convolution of two continuous integrable functions is

defined as62

h(x) = ( f ∗ g)(x) ≡ ∫
∞

−∞
dt f (t)g(x − t). (A1)

With the assumption f and g being periodic functions, their Fourier
transform can be written as

F{ f }(ω) = ∫
∞

−∞
dx e−iωxf (x), (A2)

F−1
{ f }(x) =

1
2π ∫

∞

−∞
dx eiωxf (x), (A3)

which satisfy the Fourier inversion theorem F−1
{F{ f }} = f and

convolution theorem,86

F{ f ∗ g} = F{ f } ⋅F{g}. (A4)

2. Legendre polynomials
The Legendre polynomials Pn(x) can be defined recursively

using the three term recurrence relation,

P0(x) = 1, P1(x) = x,
(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x).

(A5)

They are orthogonal on [−1, 1],

∫

1

−1
dx Pm(x)Pn(x) = δm,n

2
2n + 1

, (A6)

and the derivatives satisfy the recurrence relation,

(2n + 1)Pn(x) =
d
dx
[Pn+1(x) − Pn−1(x)]. (A7)

The Fourier transform and inverse Fourier transform of the Legen-
dre polynomials can be expressed in terms of Bessel functions of the
first kind,

F{Pn} = ∫
1

−1
dx e−iωxPn(x) = 2(−i)njn(ω), (A8)

F−1
{Pn} = ∫

1

−1
dx eiωxPn(x) = 2injn(ω), (A9)

where jn(z) is the nth spherical Bessel function and Pn = 0 outside
[−1, 1].

By combining Eqs. (A4) and (A8), the convolution of Legendre
polynomials can be expressed in terms of Bessel functions,

(Pm ∗ Pn)(x) =
2(−i)m+n

π ∫

∞

−∞
dω eiωxjm(ω)jn(ω). (A10)

This is the central observation of Ref. 62 that enables the derivation
of recursion relations for the Legendre polynomial convolution.

The main property of spherical Bessel functions used is the
three term recurrence relation,

j−1(z) =
cos z
z

, j0(z) =
sin z
z

,

jn+1(z) =
2n + 1

z
jn(z) − jn−1(z), n ≥ 0. (A11)

The convolution equation [Eq. (A1)] can be computed by
replacing the two continuous function f (x) and g(x) on the bounded
interval with polynomial approximates fM(x) and gN(x) of suffi-
ciently high degree. With two Legendre series fM(x) and gN(x)
supported on x ∈ [−1, 1],

fM(x) =
M

∑
m=0

αmPm(x), gN(x) =
N

∑
n=0

βnPn(x). (A12)

Equation (A1) becomes

h(x) = ( fM ∗ gN)(x) = ∫
min(1,x+1)

max(−1,x−1)
dt fM(t)gN(x − t)

= ∫

x+1

−1
dt fM(t)gN(x − t) + ∫

1

x−1
dt fM(t)gN(x − t), (A13)

which can be computed separately in two integration domains
x ∈ [−2, 0] and x ∈ [0, 2] (see Fig. 4.1 in Ref. 62).

a. First interval x ∈ [−2, 0]
For x ∈ [−2, 0], we have h(x) = h<(x), where

h<(x) = ∫
x+1

−1
dt fM(t)gN(x − t) =

M+N+1

∑
k=0

γ<k Pk(x + 1). (A14)

Using the orthogonality of Legendre polynomials [Eq. (A6)], we
have

γ<k =
2k + 1

2 ∫

0

−2
dx Pk(x + 1)∫

x+1

−1
dt fM(t)gN(x − t)

=
N

∑
n=0

βn
2k + 1

2

M

∑
m=0

αm ∫
0

−2
dx Pk(x + 1)

× ∫

x+1

−1
dt Pm(t)Pn(x − t), (A15)
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collecting terms, we can write γ<k = ∑
N
n=0 B

<
k.nβn, where

B<k,n =
2k + 1

2

M

∑
m=0

αm ∫
0

−2
dx Pk(x + 1)

× ∫

x+1

−1
dt Pm(t)Pn(x − t)

=
2k + 1

2

M

∑
m=0

αm ∫
0

−2
dx Pk(x + 1)(Pm ∗ Pn)(x)

=
2k + 1

2

M

∑
m=0

αm ∫
1

−1
ds Pk(s)(Pm ∗ Pn)(s − 1). (A16)

Using the Fourier expression for the Legendre convolution
[Eq. (A10)], B<k,n can be expressed in terms of spherical Bessel
functions,

B<k,n =
2k + 1
π

M

∑
m=0
(−i)m+nαm ∫

1

−1
ds Pk(s)

× ∫

∞

−∞
dω eiω(s−1)jm(ω)jn(ω). (A17)

Consider the B<k,n+1 term, changing the order of integration and
Fourier transforming the remaining Legendre polynomial give

B<k,n+1 =
2(2k + 1)

π

M

∑
m=0
(−i)m+n+1 ikαm

× ∫

∞

−∞
dω jk(ω)jm(ω)jn+1(ω)e−iω. (A18)

Applying the recursion relation of the spherical Bessel functions
[Eq. (A11)] on n and k, we have

(−i)m+n+1ikjk(ω)jm(ω)jn+1(ω)

= (−i)m+n+1ikjk(ω)jm(ω)(
2n + 1
ω

jn(ω) − jn−1(ω))

=
2n + 1
2k + 1

(−i)m+n+1ik ( jk+1(ω) + jk−1(ω)) jm(ω)jn(ω)

+ (−i)m+n−1ikjk(ω)jm(ω)jn−1(ω). (A19)

Back insertion in Eq. (A18) and simplifying prefactors in k give

B<k,n+1 = −
2n + 1
2k + 3

B<k+1,n +
2n + 1
2k − 1

B<k−1,n + B<k,n−1. (A20)

b. Second interval x ∈ [0, 2]
For x ∈ [0, 2], we have h(x) = h>(x), where

h>(x) = ∫
1

x−1
dt fM(t)gN(x − t) =

M+N+1

∑
k=0

γ>k Pk(x − 1). (A21)

γ>k can be computed in the same way as γ<k [see Eq. (A15)],

γ>k =
2k + 1

2 ∫

2

0
dx Pk(x − 1)∫

1

x−1
dt fM(t)gN(x − t)

=
N

∑
n=0

βn
2k + 1

2

M

∑
m=0

αm ∫
2

0
dx Pk(x − 1)

× ∫

1

x−1
dt Pm(t)Pn(x − t), (A22)

collecting terms, we can write γ>k = ∑
N
n=0 B

>
k.nβn, where

B>k,n =
2k + 1

2

M

∑
m=0

αm ∫
2

0
dx Pk(x − 1)

× ∫

1

x−1
dt Pm(t)Pn(x − t)

=
2k + 1

2

M

∑
m=0

αm ∫
2

0
dx Pk(x − 1)(Pm ∗ Pn)(x)

=
2k + 1

2

M

∑
m=0

αm ∫
1

−1
ds Pk(s)(Pm ∗ Pn)(s + 1). (A23)

Using the Fourier expression for the Legendre convolution
[Eq. (A10)] gives

B>k,n =
2k + 1
π

M

∑
m=0
(−i)m+nαm ∫

1

−1
ds Pk(s)

× ∫

∞

−∞
dω eiω(s+1)jm(ω)jn(ω). (A24)

Since the exponent in the integral is unchanged when applying the
recursion relations of the spherical Bessel functions, we conclude
that B> obeys the same recursion relation as B<, albeit with a differ-
ent starting point since the “seeding” integrals have a different sign
in the exponent.

c. Summary
The convolution matrices for both intervals can be expressed as

the integral sums,

B≶k,n =
2(2k + 1)

π

M

∑
m=0
(−i)m+n ikαm

× ∫

∞

−∞
dω jk(ω)jm(ω)jn(ω)e

∓iω, (A25)

differing only in the sign in the exponent. The coefficients are related
by the recursion relation,

B≶k,n+1 = −
2n + 1
2k + 3

B≶k+1,n +
2n + 1
2k − 1

B≶k−1,n + B≶k,n−1. (A26)

In practice this recursion relation is only stable below the diagonal
with k > n. To get entries above diagonal, the transpose relation that
can be derived from the integral expression [Eq. (A18)], is used,

B≶k,n = (−1)n+k 2k + 1
2n + 1

B≶n,k. (A27)

3. Initial values B≶k,0 and B≶k,1

To start the recursion, the initial values for n = 0 and 1 are
needed. To derive explicit expressions for these terms, we repeatedly
use the Volterra integral formula for Legendre polynomials from
Ref. 87,

Sa,n(x) = ∫
x

a
dt Pn(t), (A28)

Sa,0(x) = x − a, (A29)

Sa,n(x) =
1

2n + 1
[Pn+1(t) − Pn−1(t)]xa, (A30)
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for a = ±1, we get

S±1,0(x) = x ∓ 1 = P1(x) ∓ P0(x), (A31)

S±1,n(x) =
1

2n + 1
[Pn+1(x) − Pn−1(x)], (A32)

where we have used Pn(±1) = (±1)n to cancel the constant terms.
Returning to the convolution matrices, we have for B<k,n and

n = 0, using P0(x) = 1,

B≶k,0 = ±
2k + 1

2

M

∑
m=0

αm ∫
1

−1
dx Pk(x)∫

x

∓1
dt Pm(t)

= ±
2k + 1

2

M

∑
m=0

αm ∫
1

−1
dx Pk(x)S∓1,m(x)

= ±
2k + 1

2

M

∑
m=0

αm
2m + 1 ∫

1

−1
dx Pk(x)[Pm+1(x) − Pm−1(x)],

(A33)

repeatedly using the Legendre orthogonality relation [Eq. (A6)]
gives

B≶k,0 =

⎧⎪⎪
⎨
⎪⎪⎩

α0∓
α1
3 , k = 0,

±(
αk−1
2k−1 −

αk+1
2k+3), k ≥ 1.

(A34)

For the second column with n = 1, we detail the derivation of
B<k,1, the other case B>k,1 can be done analogously. Using P1(x) = x,
we get

B<k,1 =
2k + 1

2

M

∑
m=0

αm ∫
0

−2
dx Pk(x + 1)∫

x+1

−1
dt Pm(t)P1(x − t)

=
2k + 1

2

M

∑
m=0

αm ∫
1

−1
dx Pk(x)∫

x

−1
dt Pm(t)(x − t − 1)

= −B<k,0 +
2k + 1

2

M

∑
m=0

αm ∫
1

−1
dx Pk(x)∫

x

−1
dt Pm(t)∫

x

t
ds

= −B<k,0 +
2k + 1

2

M

∑
m=0

αm ∫
1

−1
dx Pk(x)r∫

x

−1
ds ∫

s

−1
dt Pm(t),

(A35)

where the last step is obtained by changing the order of integration.
The last integral relation is a double Volterra integral and can, hence,
be written using S−1,m(x) as

B<k,1 = −B
<
k,0 +

2k + 1
2

M

∑
m=0

αm ∫
1

−1
dx Pk(x)∫

x

−1
ds S−1,m(s)

= −B<k,0 +
1
2

M

∑
m=0

αm ∫
1

−1
dx [Pk−1(x) − Pk+1(x)]S−1,m(x), (A36)

where we, in the second step, have used partial integration and the
Legendre derivative relation [Eq. (A7)].

For the second case B>k,1, the only difference is when we change
the integration variable, we get (x − t + 1), instead, of (x − t − 1)

in Eq. (A35), so the sign before Bk ,0 is changed to +1. By using
Eq. (A33), we obtain the recursion relation,

B≶k,1 = ∓B
≶
k,0 +

B≶k−1,0

2k − 1
−

B≶k+1,0

2k + 3
, k ≥ 1, (A37)

with the special case for k = 0, B≶0,1 = ∓B
≶
1,0/3.
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