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Distributed Direct Localization Suitable for Dense
Networks

Siwei Zhang, Member, IEEE, Emanuel Staudinger, Thomas Jost, Member, IEEE, Wei Wang, Member, IEEE,
Christian Gentner, Armin Dammann, Member, IEEE, Henk Wymeersch, Member, IEEE,
and Peter Adam Hoeher, Fellow, IEEE

Abstract—Traditional network localization algorithms con-
tain ranging and localization steps, which have systematic
disadvantages. We propose an algorithm dubbed direct par-
ticle filter based distributed network localization (DiPNet). A
node’s location is directly estimated from the received signals,
incorporating location uncertainty of neighboring nodes. The
propagation effects on DiPNet become insignificant for dense
networks, due to the massive-link collective physical layer
processing. DiPNet achieves a near-optimal performance with
low complexity, which is particularly attractive for realtime
dense-network localization.

Index Terms—network localization, direct position estima-
tion (DPE), Fisher information (FI), distributed particle filter

I. INTRODUCTION

Ubiquitous realtime location information in wireless net-
works is essential for a wide range of applications, from
mass-market location-aware services like autonomous driv-
ing [1], crowd sensing [2], communication enhancement
[3] and internet of things (IoT) [4], [5], to professional
multi-agent collaborations such as disaster management [6],
environmental sensing [7] and extraterrestrial robotic swarm
exploration [8], [9]. Many of these applications are global
navigation satellite system (GNSS)-impaired, which leads to
challenges in localization. In urban areas, cellular networks
(e.g. 3" Generation Partnership Project (3GPP)-long-term
evolution (LTE) and the upcoming 5" generation mobile
networks (5G)) can be exploited for terrestrial localization
[10]. In traditional terrestrial localization, multiple spatially
separated base stations (BSs) in line-of-sight (LOS) con-
dition to mobile terminals (MTs) are required as anchors.
The multi-anchor requirements can be relaxed by jointly
observing angular and distance information from large
antenna arrays [11]-[13]. However, large phased arrays
are not expected to be ubiquitously available in the near
future, due to the space and computational limitation of
the devices. For the aforementioned applications, mesh
networks with high MT density are expected, where an
MT directly communicates to its neighboring MTs via
radio links, for example in the intelligent transport systems
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Figure 1: Network localization for cooperative vehicles.

(ITS)-GS5. These massive links, often referred to as device-
to-device (D2D) links, can provide distance information
between MTs and offer opportunities for network local-
ization [4], [7], [14]-[16]. Through cooperation, an MT
estimates its own location relative to the local network. The
relative location information can be either fed directly to an
application, e.g. autonomous vehicular platooning illustrated
in Fig. 1, or fused with other sensors to obtain more
precise absolute location information. Network localization
possesses two unique characteristics in comparison with the
traditional anchor-based localization. Firstly, a majority of
the massive D2D links are in LOS condition due to short
ranges. These links provide a potential of localization with
high redundancy. Secondly, neighbor’s location uncertainty
has to be considered in addition. Intensive research has
been conducted to network localization. A comprehensive
overview of network localization algorithms is provided in
[14], and further completed by [4]. We briefly review the
algorithm classifications according to different perspectives.

1) Place of Position Estimation

An algorithm is considered as centralized if the position
of agent is calculated at a fusion center [17]. Whereas
if every agent calculates its own position based on local
observations, the algorithm is referred to as a decentralized
algorithm [14], [18].

2) Model of Measurements

Algorithms can be classified by the extractable position-
related information, for example, signal power, carrier phase
and symbol delay [19], [20]. They can also be classified
according to the measurement abstraction level, whether
to utilize the received waveform directly for localization,
for example in direct position estimation (DPE) [21], or an



abstracted single value metric with an associated likelihood
function. For the latter case, algorithms can be further
classified by the metrics extracted from the position-related
information, such as time of arrival (ToA), time difference
of arrival (TDoA), angle of arrival (AoA), received signal
strength (RSS) [20], [22].

3) Model of Unknowns

Non-Bayesian algorithms treat unknowns as determinis-
tic variables. A maximum likelihood (ML) approach can
be implemented by least-square Gauss-Newton algorithm
[20], which may suffer from local minima. Alternatively,
a convex-relaxation based approach such as semi-definite
programming (SDP) [23] and alternating direction method
of multipliers (ADMM) [17] can be applied to reduce the
effect of local minima. Bayesian algorithms treat unknowns
as random variables. The main task of the algorithm is
to infer the posterior probability density function (pdf) of
the random variables [24]. In general, calculating the exact
posterior pdf demands high dimensional marginalization,
which makes it impracticable for dense networks. Kalman
filter (KF)-based approaches approximate the system with
linear Gaussian models, and solve it with relatively low
complexity. Message passing (MP) is a popular category of
Bayesian algorithms, where agents infer their posterior pdfs
by only marginalizing over the inferences of their neighbors,
in a recursive fashion. MP is adaptable to different system
models with moderate complexity [14], [19].

4) Multi-Link Fusion

Naive algorithms such as least square (LS) treat all links
identically. Measurement quality can be quantified through
some characteristics of the signal, such as signal-to-noise
ratio (SNR), channel impulse response (CIR), propagation
condition, etc., and used in for example weighted least
square (WLS) [20]. For decentralized algorithms, neighbor’s
position uncertainty can be taken into account in heuristic
fashion [25], or systematically by the marginalization in
MP. The marginalization can be realized by expectation
maximization (EM), numerical integrals such as Gaussian
quadrature integrals, also known as sigma points [26], or
Monte Carlo (MC) integration such as used in distributed
particle filtering (DPF) [27]. In [15] the impact of neighbor’s
position uncertainty on agent localization is quantified by
the equivalent ranging information intensity (ERII). The
ERII can be exploited for example by projecting the neigh-
bor’s position uncertainty onto the distance measurement
[28]. This projection is also a systematic approach, which
has lower complexity compared to MP.

A more exhaustive literature survey on network localiza-
tion can be found in [4], [14].

In this work, we address decentralized network localiza-
tion under Bayesian framework, where position information
is extracted from the symbol delays. More precisely, we
focus on utilizing the received waveform directly for local-
ization, with a low complexity systematic multi-link fusion
scheme.

Most of the network localization techniques apply a two-
step approach, i.e. distance estimation (ranging) and loca-
tion estimation (localization). In the ranging step, distance

information between transmitters and receivers are extracted
from the signal propagation delay in physical layer (PHY).
In the localization step, the multi-link distance estimates
are fused combining certain ranging error models with
neighbor’s location uncertainty, typically by a non-linear
location estimator, for example MP such as the sum-product
algorithm over a wireless network (SPAWN) [14] or its low
complexity variation [28].

Unpredictable propagation conditions are a main source
of ranging error, which have been intensively investigated.
In LOS conditions, multipath components (MPCs) close
to the LOS path may introduce a multipath bias to the
distance estimate. In obstructed LOS or non-line-of-sight
(NLOS) conditions, an MPC may be mistakenly considered
as the LOS path, which leads to a NLOS bias. Besides,
low SNR may cause a failure in LOS path detection
[29], [30]. The impacts of the propagation conditions on
ranging have been theoretically addressed. The Cramér-Rao
bound (CRB) provides the asymptotically achievable root
mean square error (RMSE) of an optimal unbiased ranging
estimator, given a ranging model [31]. The Ziv-Zakai bound
(ZZB) additionally takes account of the a-priori informa-
tion and the detection probability and provides a tighter
bound especially for low SNR scenarios [29]. In practice,
a variety of ranging algorithms have been developed. In a
matched filter, the distance is estimated from the strongest
correlation peak, which is vulnerable to multipath effect.
A first peak detection can be applied to partially mitigate
the multipath effect [32]. High complexity super-resolution
algorithms, e.g. space-alternating generalized expectation-
maximization (SAGE) [33] and Kalman enhanced super
resolution tracking (KEST) [34], iteratively estimate all
MPCs for multipath mitigation. The NLOS bias effect can
be mitigated by exploiting the NLOS bias distribution [30],
[35], [36] or applying identify-and-discard techniques in
either signal [37] or location domain [38]. Most NLOS
bias mitigation techniques require a-priori information or
training data and may be subject to NLOS classification
failure. Recent studies propose to exploit the geometry
information contained in MPCs for localization [39]-[41],
which is associated with high complexity.

In two-step approaches, the location information con-
tained in the PHY signal is not fully exploited, since the
two steps are usually optimized separately. In DPE, the
location information is directly extracted from the PHY
processing [42], [43]. It exploits the signal correlation
function as soft hypotheses and avoids point estimations for
ranging. In additive white Gaussian noise (AWGN) and non-
cooperative scenarios, DPE has been proven to outperform
the traditional two-step approaches in the presence of low
SNR, which is utilized for GNSS receiver design [21], [44].
Concerning multipath scenarios, [45], [46] attempted to ex-
tend DPE to non-parametric maximum a posteriori (MAP)
location estimators taking all MPCs into consideration.
However, due to a high dimensional state space, it becomes
computational intractable. In [47], we intuitively discussed
that DPE with a one-path channel model is particularly
suitable for network localization even in the presence of



multipath. Massive LOS links collaboratively support the
correct location hypothesis and reject the wrong ones with
high probability.

This work is a substantial enhancement of [47] with the
following contributions:

« A DiPNet algorithm is proposed, combining DPE and
SPAWN for direct PHY network localization. DiPNet
incorporates neighbor’s location uncertainty by a low
complexity equivalent measurement likelihood (EL)
scheme, which enables realtime processing.

o The impacts of propagation channel on DiPNet are
analytically investigated, in the sense of asymptotic
localization unbiasedness and the resistance to erro-
neous distance information. It is proven that DiPNet
is robust against unpredictable propagation effects in
dense networks, due to collective PHY processing of
massive links.

o Simulations with realistic channel models and two
experiments are conducted, comparing DiPNet with a
variety of state-of-the-art algorithms.

The remainder of the paper is organized as follows. In
Section II the system model of network localization and
the SPAWN algorithm are introduced. The general concept
of EL and the DiPNet algorithm are derived in Section III
for an orthogonal frequency-division multiplexing (OFDM)
waveform. Theoretical analyses of DiPNet in multipath
environments are provided in Section IV. The proposed
DiPNet is evaluated compared to state-of-the-art algorithms
in Section V by both simulations and experiments. The
conclusions are drawn in Section VI

The following notations are used throughout the paper:

()%, ()T and (-)¥ stand for complex conjugate, trans-

pose and conjugate transpose.

o Column vectors, matrices and sets are denoted by bold
small (a), bold capital (A) and calligraphic capital
letters (A).

o I represents the identity matrix.

o Graph’s elements (vertices and edges) are denoted by
blackboard bold small letters (a and e).

« A/a denotes the sub-set of A excluding element(s) a.

e ||-|| represents the Frobenius norm of real/complex-
valued scalars, vectors or matrices.

o |A| represents the cardinality of set A.

o R{-} and I{-} denote the real and imaginary part(s).

e ~ N(u,C),CN(0,0%),U(a,b] and Exp(\) de-
note random variable(s) following normal, circularly-
symmetric complex normal, uniform and exponential
distributions with the corresponding parameters.

o Tr[-] denotes the trace of a matrix.

o E,[] denotes expectation over random variable(s) .

o V.f, fr and f denote the first (partial) derivative(s)
of f.

o« NYfEV,Vaf, fuy and f denote the second (partial)
derivative(s) of f.

* > mm=a = Zsza Zl;n:a denotes double summation.

II. NETWORK LOCALIZATION WITH D2D LINKS

A. Problem Formulation

We consider a network, for example as illustrated in Fig.
1, composed of |V| nodes in two-dimensional (2D) space
with node set V = {ai,---,a)y}. The position vector
of all nodes is defined as p = [plT,~~~,p|TV|]T € RV,
where p, = |7y, y,]? are the 2D Cartesian coordinates of
node a,,. Out of the |V| nodes, |B| are anchors with known
positions p € R2Bl, and belong to the anchor set B. The
remaining |M| nodes are agents, which form the agent set
M. Agents estimate their position pyg € RZMI w.rt. the
anchors in the anchor-based case and w.r.t. the other agents
in the anchor-free case. Nodes which can communicate
and conduct measurements with a, via radio signals are
considered as neighbors of a,, and included in its neighbor
set V. If the neighbor is an agent, it is also included in the
neighboring agent set M, of a,. We assume a symmetric
neighborhood relationship, i.e. a, is a neighbor of a,, if
and only if a, is also a neighbor of a,. The link between
these two nodes is denoted as €,,,,. Radio signals transmitted
from a, and received by a,, are denoted as r,,,, containing
relative position information between the two nodes, for
example the inter-node distance d,. 0. Agent a, extracts
generic position-related measurements z,, from r,,. The
total link set is defined as & = { -, €us, -}, with all
measurements z = [-- -, z. -], for all neighboring pairs
(au,ay,). We utilize graph theory to generally formulate
the network localization problem, including both anchor-
based and anchor-free cases. The network can be inter-
preted as a framework Fo = (Go,p) with an underlying
undirected graph Gy = (V, &), where nodes are interpreted
as the vertices and measurement links as edges. In order
to incorporate the anchors, we extend & with virtual links
without measurement to completely connect all the anchors,
i.e. the new edge set is & = EU{ -+, €uw, -}, for all
anchor pairs (a,,a,). The extended graph and framework
become G = (V,€) and F = (G, p), respectively. In the
case of insufficient number of anchors, the position of an
agent is not observable. Therefore, only the ‘shape’ of the
network can be estimated. The framework can be estimated
up to rigid affine transformation 7 (p) including translation,
rotation and flipping, where p is the estimated position
vector of nodes. The objective of network localization is
to find a framework F = (G, q), with nodes’ coordinates
q, whose ‘shape’ is as ‘similar’ as possible to the original
one F, given all the observations z. We define the average
shape difference €q,p

1
Eqp = \/Mlmm(q) - |2, (1)

as the metric to assess the ‘similarity’ of these two frame-
works, where ’7;pt is the optimal affine transformation [48],
fixing the anchor’s transformed estimates to their true posi-



tion. The network localization problem can be stated as

= argmin eq,p 2)
q

p
st.  Topt(PB) = P5- (3)

The network localizability is described in the rigidity theory
[49], which is beyond the scope of this paper. In this
paper, we assume J is always globally rigid. Another
indirect metric, which is used in Section V to evaluate
the performance of network localization, is the framework
distance RMSE

> e
Va,eM.a, €V /a, “uv

€a = ; “)
IM|([V]-1)
where £,, = ||ciuv - duv7q|| is the absolute error of
framework distance estimate d,, = ||Pv, — Qu]|-

B. OFDM Waveform and Multipath Propagation

We assume the signal r,, is modulated with the OFDM
scheme, which is widely employed in communications, e.g.
in wireless local area network (WLAN), LTE and ITS-
G5, as well as foreseen in 5G. An OFDM signal s,,(t)
is transmitted from a,, and received by a, through link e,,,.
We assume an odd number N of subcarriers, without loss
of generality. The transmitted OFDM symbol is expressed

as
N-1
2
] t
Spe?“™, 4)
N-1
T2

1
Sup(t) = ﬁ N

where w = 27 f,., fs is the subcarrier spacing, n is the
subcarrier index, and S,, is the information symbol carried
by the n'" subcarrier. In a realistic scenario, the signal is not
only distorted by sensor noise, but also affected by the prop-
agation channel. For LOS scenarios, the signal propagates
along the LOS path and some additional paths, referred
to as MPCs. Whereas for NLOS scenarios, the signal is
solely received via the MPCs. A generic path component [
is defined by its complex amplitude ¢y, = 4 /A,w,lej buv.t
with a power A,,; and a phase ¢, , and the total propa-
gation delay 7Ty, = Tuv,0 + Ouv,l + buy, Which includes the
LOS delay 7,0 = dyuv,0/co With the propagation speed ¢,
the NLOS delay b,, and the path’s delay additional to the
potential LOS path §;. The NLOS delay b,,, is positive for
NLOS scenarios and zero for LOS scenarios. The LOS path
is denoted with index 0, i.e. dyy,0 = 0. NLOS scenarios are
included by setting a0 = 0. The received sampled signal
can be generally written as the superposition of the potential
LOS path and L MPCs distorted with the additive Gaussian
noise €y, (i7) ~ CN (0,02) as
L
Tuv (ZT) = Z auv,lsuv,l(iT - Tuv,l) + €u (ZT), (6)
1=0

with a sampling period 7 and Vi = 1, - - -, N. The (delayed)
signal samples are represented in vector forms, for example,
r £ [r(T), - ,r(NT)|T and s(7) £ [s(T—7),- -+, s(NT—
7)]T. The clock offsets between nodes may bias the delay-
based distance information. However, it can be eliminated

with multi-way ranging. For the AWGN case, the two-way
ranging with an amplify-and-forward scheme [50] is equiv-
alent to the synchronized one-way ranging [51]. For the
multipath scenario, it is analogous to the synchronized one-
way ranging, with a channel equivalent to the convolution
of the forward and backward channels.

C. Distributed Bayesian Network Localization

A Bayesian estimator treats positions p as random vari-
ables and estimates them from the a posteriori pdf p(p|z).
The a posteriori pdf incorporates the a priori pdf p(p) and
the observation likelihood function p(z|p) by Bayes’ rule
according to

p(plz) x p(p)p(z|p). @)

We utilize the Bayesian estimation framework for descrip-
tion simplicity. With a state transition model and the first-
order Markov model assumption, the framework can be
extended to recursive Bayesian tracking with sequential
measurements. Particularly for dense networks, a distributed
localization algorithm is often advantageous, where an agent
a, estimates its own position using the marginalized a
posteriori pdf p(p.|z)

p@ﬂ@mMmJ/p@w%pw

X H p(va|pvapw) dpv/au- (8)
Veyw€Eo

Hereafter, the true position of an agent a,, is denoted as p o,
in order to differentiate from the unknown random variable
pu- We consider anchors as special agents with Dirac a
priori pdfs at their true positions. Due to cooperation among
agents, a 2(]M|—1) dimensional integral is needed for an
exact distributed Bayesian estimator of p,,, which makes it
impracticable. belief propagation (BP) is a popular approach
to reduce the complexity of marginalization, employed for
example in the SPAWN algorithm [14]. In SPAWN, an agent
a,, only considers a local sub-framework F,, = (G, pn,)
with a extended node set \V,, = V,,U{a, } and the underlying
star subgraph G, = (N,,&,), for example illustrated in
Fig. 1. The edge set £, contains all the links between a,,
and its neighbors. The marginalized a posteriori pdf p(p,|z)
is approximated by the belief bq(JK) of agent a,, which is
updated by exchanging belief information with neighbors
for K algorithmic iterations

Va, EVy

where k£ = 1,---, K. The SPAWN reduces the complexity
to |M,,| integrals with four dimensions for each iteration.
The marginalization in (9) can be realized by Monte Carlo
integration as in non-parametric belief propagation (NBP)
[18], by numerical integration for example in cubature
belief propagation (CBP) [26], [52], or analytically with
parametric belief propagation (PBP) for special distributions
[53]. Neither CBP nor PBP is suitable for direct network
localization, since the process of extracting location in-

/bg;k_l)p(zuvlpuapv> dp., 9



formation from PHY signal is highly non-linear and non-
Gaussian. In this case NBP is favorable. However, prop-
agating non-parametric beliefs to neighbors is considered
highly inefficient due to high communication throughput
demands. Besides, the Monte Carlo integration requires a
high computational power [53]. In our proposed approach,
non-parametric belief is updated locally at agents. Only
the first two moments of the belief are broadcast to the
neighbors, in order to reduce the communication overhead.

III. Low-COMPLEXITY NETWORK LOCALIZATION
A. Equivalent Measurement Likelihood (EL)

To further reduce the complexity, we define an EL based
on Fisher information (FI) theory, which will be used
later for the proposed DiPNet algorithm. The joint pdf
q(pn,,ze,) of the simplified graph G,, can be written as

q(pw, ze,) =00 T 05" p(Zus | Pus D).
Ay EVy

(10)

The Bayesian information matrix (BIM) Jus, of pas, is
expressed as

(1)

where Iy, = diag[IgO)7 S A ,Va, € V, is the a
priori location information of pys,, with individual a priori
information Lgf ) defined as

I} 2 By, [AB o).

Pw

JNu = I/\fu + EpNu,zsu [Agﬁ[/‘: 1np(Z5u |pNu )] )

12)

The equivalent Bayesian information matrix (EBIM) J,, of
Pu, derived from the theory of Schur’s complement [54],
determines the best achievable variance for the a posteriori
estimate p,. Assuming the beliefs bgf ) are concentrated
at their a priori means p,, = Ep [p,], the EBIM is

approximated as

I, =TD + > ieue,, (13)

VEV,

where 7, is the ERII defined as
Py = (14)

— 2 .
1 + Vyy Uv>—>uv

The projection vector &,,, and the projected variance o2, ,,,
are defined as

8 2 M7 o2 &gl (qU-Dylg,
which project the location uncertainty of a, onto the mea-
surement link e,,. The ranging information intensity (RII)
Uy 18 defined as

15)

) d2 In p(Zyy|Pu — Pov)
Vuw é _Epuvpv |:Ez”'”‘pu’pv |: d 32 U :| :|7

Y
=Vyv

(16)

where dy, = ||Pu — Po||- The proof of (13) is detailed in
Appendix I. A similar result has been reported in [15]. The
EBIM in (13) has a similar expression as the location infor-

mation J, .,y assuming the neighbor’s position is perfectly
known

J(u,u) = ISLO) + EPNu

> uwemea] . an

VEVy,

where e, £ Vp.duy 18 the direction vector. Alternatively,
equation (14) can be expressed by the equivalent ranging
uncertainty

~—1 _ ——1 2
Viw = Vuo +Uvr—>uv'

(18)

Hence the neighbor’s position uncertainty can be additively
aggregated to the ranging uncertainty. We utilize these
observations to define an EL, which can be applied to further
reduce the complexity of network localization.

Definition 1. An equivalent measurement likelihood (EL)

D(Zuv | Pu, Pv) is a pdf of 2., conditioning on p,, and p,,
such that

d* 10 p(Zuo|Pu, Pu) | .

ddz, “

The system can be further simplified to non-cooperative
localization, with a virtual likelihood function modeled with
the EL and the neighbor’s virtual a priori pdf modeled as
a Dirac function at point 135]“‘”. The EBIM of the simpli-
fied system J. equals to the original J,. Low-complexity
distributed network localization algorithms can be designed
as follows. Agent a, receives the first two moments of
its neighbor’s non-parametric belief, namely the position

. . (k—1) . . . (k—1)
estimate Py and the covariance estimate cov[py, '],
to approximate ERII in (14). Instead of the sum-product
algorithm in (9), the belief can be updated by the simplified
model using the EL

b b0 T #(zwlpu 60).
Va, €V,

19)

7Ezuu ‘pu sPov

(20)

The EL-based algorithm further reduces the complexity to
a single 2-dimensional integral per algorithmic iteration,
which enables distributed Bayesian network localization in
realtime. The concept of EL can be generally applied to any
distance-based measurement models. For example in [28],
it is used in two-step network localization with Gaussian
ranging models by exploiting the equivalent ranging vari-
ances (ERVs). In Section III-B, we introduce the DiPNet
algorithm, where an EL is adapted for direct localization
from the OFDM waveform.

B. DiPNet with OFDM Waveform

The DiPNet algorithm is derived based on a one-path re-
ceived signal assumption in LOS condition, i.e. ||cuyy,0]|# O
and L = 0. The assumed received signal is denoted as r,, o,
in order to be distinguished from the true received signal
r'yy- The one-path signal model enables low complexity lo-
cation estimation, at the cost of sub-optimality due to model
mismatch. In two step approaches, this mismatch may lead
to erroneous location estimates. In Sections IV and V it is
discussed that the impacts of the model mismatch on the
proposed DiPNet algorithm become insignificant in dense



networks, as a result of collective PHY processing. The
one-path model can be described by the likelihood function
P(Tyuw,0/Pus Pos Quw,0)- The amplitude vy, o is irrelevant to
position estimate and estimated separately as

b g = SuvlllPu = poll/co) Tuso
1w (IPw — Poll/co) |2

with a constant denominator expressed as [|S,,]||%. Accord-
ing to the theory of separable variables [55], the ranging
likelihood function can be expressed by inserting the phase
estimate into the original likelihood function as

21

2
Pu — Px

b (eu sl o) e exp (LR 2D
o lIsuoll

The cross-correlation function f(||p. — py||) is written as

H

pUH) = ru'U,O SU’U(”pU (23)

fUlpu — — Pull/co)-

The logarithmic likelihood function is proportional to the
squared cross-correlation function (SCF) || f(||pw — Pol)||?
which is asymptotically maximized at ||py, — Pv||= duv.0-
We will use these properties in Section IV to evaluate the
performance of DiPNet in multipath propagation conditions.
The ranging uncertainty ' in (18), i.e. the ranging CRB

denoted by CRB,,,,, is derived as in [28] with the one-path
OFDM signal model as

0(2)02
2| 0[P Z
A choice of EL for DiPNet is to aggregate the neighbor’s
position uncertainty as noise, i.e.

A(k 1) 2
. (k—1) £ (lpu — D )
p (ruv,O | Pu; pv X exp ( ~ 9
) 03v||suv||2
(25)

= CRB,, = . 24)

vy A

where 52, is the equivalent noise variance (ENV). The

correspondmg equlvalent ranging uncertainty u 1 has an
expression similar to 7,,,! in (24), by replacmg o2 wlth o
The ENV is derived by inserting v, Land v, I into (18) as

2 2 2?0 2 = 2 2
Oup =0y + 765%” ldwvol® D [1Sal?n?. (26)
0 _ N-1

n= 5

In the proposed DiPNet, the location belief is updated
according to (20) and (25), by replacing the algorithmic
signal model r,, with the real received signal r,,. A DPF
is implemented at each agent for non-parametric belief cal-
culation [27], [28]. @ particles 77(0) {P(1 0 ,P,SQ’O)}
are drawn at a,, according to its a priori pdf. Each particle
pp0) — (pq(f’o),wgf’o)) is defined with its position p(u -0)
and a normalized weight wf}’ 0 The non-parametric belief
at k' iteration can be represented as

Q
9~ Sl Do

p=1

pP). 27)

The weight is updated by (20) as

Wl
wPk) = 76’ 115 (ruv | p?

VEV,

O.pF V). @8

where C, is the normalization factor. With all building
blocks been introduced, we can finally describe the overall
DiPNet algorithm for an agent a, in Algorithm 1. For
numerical stability, DiPNet is operated in logarithm domain
with Jacobian algorithm as described in [56].

DiPNet only re?uests evaluating cross-correlation func-
tion f( ||p(p 0 2 II) at @ discrete points. An efficient
interpolation techmque for example the inverse fast Fourier
transform (IFFT), can be applied to calculate these values.
An advanced method can be utilized to further reduce
the computational complexity of interpolation [57]. DiPNet
has a complexity comparable to the ranging step in two-
step approaches, where the evaluation of cross-correlation
function f(d,,) is also required.

C. DiPNet vs. Traditional Network Localization Algorithms

A complexity and communication overhead comparison
of different algorithms is summarized in Table I, where K,
and K are the number of iterations for delay estimation
and SAGE, respectively, and (L + 1) is the model order
in SAGE. The DiPNet composed of EL and S-interpolated
IFFT requires only few messages in the order of | M, |K to
transmit and computational complexity nearly linear to the
number of particles () and the number of samples N.

In comparison to the state-of-the-art network localization
algorithms mentioned in the introduction, the DiPNet uti-
lizes a low measurement abstraction level as in DPE. It
adapts the Bayesian framework of MP to enable decentral-
ized calculation. Unlike traditional MP, neighbor’s belief
is exploited to calculate the EL instead of marginaliza-
tion, to achieve a flexible belief inference while retaining
low complexity. The concept of DiPNet even shares some
commonality to the vector tracking algorithm of GNSS
receivers, where the positioning solution feeds back into
the tracking of signal to reject outliers [58].

Compared with the traditional two-step approach, the di-
rect localization approach applied in DiPNet has also a few
unfavorable properties. Firstly, the cross correlation function
of each link has to be stored in a lookup table, which
requires more memory, or communication overhead for a
centralized variant, and has limited resolution. Secondly, in
order to apply low complexity MP algorithms, for example
by numerical integral [26], the measurement message has
to possess certain properties, which is not fulfilled by the
direct localization approach. Hence, it is not straightforward
to extend direct localization to low complexity MP.

We first prove the DiPNet is more robust in the considered
multipath environments, in comparison with the traditional
algorithms in the next Section. Then in Section V we
verify with simulation and experimental results, that for
the considered applications, the drawbacks of DiPNet are
insignificant compared to its advantages over the traditional
algorithms.



Algorithm 1: DiPNet algorithm for agent a,

1 for algorithmic iteration k = 0 to K do
if £ =0 then

draw particles ”P&O)
else

from a priori p(py)

receive moments of be“‘”,Vav e My,
calculate ENV &2 using (26),Va, € M,,
for particle p=1 to Q in parallel do

® N QA »n = W (]

update particle w{"" using (28) and (25)

9 normalize particles 731(/6)

10 calculate and broadcast moments of b&k)

Table I: Comparison of algorithms in the sense of complex-
ity and transmitted messages

Algorithm Complexity Messages
- Exact QM QM|
(Pe‘;s;“fc’go Sampled SPAWN | Q2| M. |K QIMu|K
perag EL QIVul K [Mu| K
Signal [Ranging] Correlation KN
. SAGE | Ks(L+1)K.N
(per link) I erpolated TFET | BN log BN
DiPNet (per agent) QWVulK + | IMuIK
[Vu|BN log BN

IV. DIPNET IN MULTIPATH ENVIRONMENTS

The multipath propagation condition violates the one-
path signal model assumed in DiPNet, which leads to
a sub-optimality for localization. Due to the stochastic
realizations of network and channel, it is difficult to analyze
the impacts of the model mismatch from a single link on the
DiPNet performance. Instead, we investigate the collective
propagation impacts from all links, utilizing the fact that
a generic agent a, in a dense network is often connected
with a large number of neighbors. We consider an agent
a,, surrounded by |V, | neighboring anchors. The agent a,
has a uniformly distributed a priori belief of its location
bgo) and, updates its belief to bgl) by the received signals
Iyy, V&, € V,. As mentioned in Section III, the updated
logarithmic belief can be expressed with the summation of
the SCFs of all links as

log b3 o > ek suu(Ipu — Poll/co) 1.
a,EVy

(29)

For discussion convenience, we define a polar coordinate
system originates at the true position p,, o of a,,, whose axes
are aligned with the ones of original Cartesian coordinate
system. The position of a, is reformulated with the LOS

distance d,,,,0 and the angle 6,,, to a,, as
Pv = Pu,0 + duv,O[COS euva sin euv]T~ (30)

The position of a,,, which is apart from the true position
with a distance Ad =ATcy and an angle 6, is expressed as

Pu = Pu,o+ Ad[cos 5, siné]T. (31)

The distance ||p, — Py || is reformulated as

IPu — Pull = \/@2, o+ 802 — 2dup 8dcos(0 — ).
(32)

We have in addition the following statistical assumptions of
the link parameters:

o The angle of the neighbor is uniformly independent and
identically distributed (i.i.d.) around p,, o, i.e. Oy, ~
U0, 27);

» The LOS distance d,, o between a,, and a, is i.i.d. and
independent from 6,,,;

« The link’s LOS/NLOS condition X,,,, €{ LOS, NLOS}
is i.i.d. given dyy 03

e The number of MPCs L, of each link is i.i.d. given
Xuvs

o The amplitude of each path ay,, ; is i.i.d., with a power
Ayy, depending on X, and dy, o and a uniformly
distributed phase ¢y, ~ UJ0, 27).

o The NLOS delay and additional path delay of MPCs,
buv and 0y, g, are iid. given X,,.

Since the propagation parameters of all links are i.i.d., in
an asymptotic case where |V, |— oo, we have

log bg) = Vul Ex,, [Hrfvsuv(”pu - pv||/00)||2 , (33)

where x,, is the random variables of the link e, including
all parameters mentioned above and the noise €,,. Here-
after, the subscripts v and v are omitted for simplicity when
a single link e,,,, is under investigation. The joint pdf of the
link’s random variables can be factorized as

p(x) =p(do) p(0) p(e) P ( Xldo) p(b;x) p(Aoldo;x)

L
((Ibo PI' L= L?X Hp 5l7 Al|d07X) (¢l)
- (34)

Expanding the received signal r according to (6), the
expectation of SCF over link & becomes

By [[rs([pu — poll/c0)]?]
02 I8l +Ea, | Ao Eollls(r0)”s(pu — pull/co) ]

B, [ LA By, 10, Bols(m)s(lpw — oll /o) 2]
(35)

with the expected path power Ay = E,4,[Al] and the ex-
pected MPC number L = Ep4,[L], given the LOS distance
dy. The derivation of (35) is detailed in Appendix II. We use
the notation 7 = ||p,, — Pw||/¢o in derivations for simplicity,
keeping in mind that 7 is a function of positions p,, and p,.
Let us further assume that the symbol on each subcarrier
has a constant power, for example phase-shift keying (PSK)

modulated, i.e. || S, [|= ||S]|,Vn = ==L ... N1 The [



path’s cross-correlation can be further written as

s(m)""s
NZ Z

(Hpu - va/CO)

*  —jnw(iT —T ymw (i1 —1
Sne gna( )G, edmwl )

=1 4 n=
. . N . .,
N Z S;:Smejnwn —jmwT Z e](m—n)sz
m,n= 1=1
=N§(m—n)
N2—1
:”SH2 Z ejnw(n—r) _ HS”QSIH(WN(Tl _’7')/2)
) sin (w(m — 7)/2)
n=-"3

2SI Di(llpu = poll), (36)

where D;(||p.—Pv||) is a circular symmetric function of p,,
around a given p,, obtained by rotating the order (N — 1)
Dirichlet kernel, also known as the periodic sinc function,
around p,.

A. Asymptotic Localization Unbiasedness

A condition of the DiPNet being asymptotically unbiased
for location estimate is that the true position p, ¢ is a local
maximum of log b\ for [V,|— co. Since D2(||p, — pu|)
is a smooth function for arbitrary ||p, — ps||# O, the
asymptotic unbiasedness condition can be proven by the
derivative test w.r.t. AT for A7 — 0 as

a]'?Jx H v — Pv 2
stationarity: lim [||r s(llpu — pull/co) ] =0,
AT—0 OAT
(37
o OB [[[rs([[pu — poll/co) 7]
concavity: lim <0.
AT—0 8 A’rz
(38)

The updated logarithmic belief log bV s asymptotically
proportional to the superposition of the expected contribu-
tions from each path, over dg,6,b and §;, as indicated in
(35) and (36). Therefore, we evaluate the derivatives of the
expected D;(||p. — Po||)? of the LOS path (I = 0) and the
MPCs (I > 0), w.r.t. A7 for A7 = 0. The first derivative of
the expectation over 6 is written as

IE¢[Di([[Pu — Poll)?]
OAT
ID((||lpu —puH)z}
OAT

N—-1
2

=Ey [2 cos(f — é) Z jmwed Smnw (G14b)

N—-1
2

lim
AT—0

—E, [ lim

AT—0

=0, (39)

m,n=—

with the notation S,,,,, = m +n, and proves the stationarity
condition (37). The second derivative of the expectation over

0 is expressed as

Di(Ipuo — poll)
& o PEAD(I ~ P
= 1i
AT—0 0 AT2
. a2Dl(||pu - pv||)2
Eg[Alrﬁo 0 AT2 ]

-7 Z (Sﬁmw +S jw)ejs’”"“(‘sl*b). (40)

It can be observed that the expectation of the second
derivative is independent of 6. Hence the expectation of
Di(||pu — pol|)? is isotropic in the sense of concavity for
limp, p, . For the LOS path, inserting dp = 0 and b = 0
into (40), the second order derivative states
. Tw?N?(N? — 1)

The condition of concavity can be reformulated by combin-
ing (35), (36) and (38) as

(41)

6LAEs, pja [D(Ipuo —pul)]
A 1 0 l s
s : _ 4] <0
¢ Hdo 7w N2(NZ — 1) o] <%
£&(do)
(42)

where ¢ is dubbed the concavity indicator and {(dp) is
the conditional concavity indicator (CCI) with a given dj.
The concavity condition holds, if and only if the concavity
indicator ¢ is negative. Most of the communication-related
channel parameters, e.g. power-delay profile, delay spread,
shadow fading, LOS probability and K-factor, are inten-
sively investigated. In comparison, the localization-related
channel characteristics, for example the distribution of §;
and b, is not always available from the study of channel
model. However, for the I MPC with arbitrarily distributed
&, and b, an upper-bound of D?(||puo — Pul|) can be
formulated from (40) as

N-1
)2 - 2 ||Smn||
Bi(puo—pul) <n 35 Skt

N-1
n,m=-="5-

~ mw?N?*(N?—1)  7wN(N?—-1)

B 6 37’0 ’

(43)

With (41), (43) and wN = 27 B, the CCI can be upper-
bounded, which yields a new sufficient negative condition
as

“ wgrn%]<a

(44)

>S(do)

For a given non-zero dy, if the expected LOS path power
is larger than the expected total power of all other paths,
there exists a minimal bandwidth, inversely proportional
to dyp, to guarantee the concavity condition (38) holds for
arbitrarily distributed 6; and b. In a few channel models,
both ¢; and b are assumed exponentially distributed [30],



i.e. p(b;X =NLOS)=Exp(ap), p(d;;X =LOS) =Exp(ar,)
and p(d;;X=NLOS)=Exp(an). The rate parameters ag, aj,
and ay can be derived from the mean NLOS delay and
delay spreads from channel models. The CCI in (42) can
be expressed in close form by marginalizing over §; and
b, as detailed in Appendix III. The CCI can be utilized
to analytically assess the applicability of DiPNet, given
limited system and channel characteristics. The DiPNet is
an asymptotically unbiased localization algorithm if {(dp) <
0,Ydy € (dmin, dmax ), Where dpin and dp,x are the minimum
and maximum operational distances of an application. The
CClIs in typical urban and rural areas are demonstrated in
Fig. 2 in Section V.

B. Resistance to Erroneous Distance Information

It is known that two-step localization approaches with
Gaussian ranging model are vulnerable to large distance
estimation offsets, for example due to wrongly detected
paths or clock offset. In order to evaluate the erroneous
distance information resistance of DiPNet, we investigate
a specific scenario as follows. An agent a, has a position
belief generically modeled by a smooth isotropic unimodal
pdf b;o , with the single mode at the origin. The logarithm
belief is defined as g(p,), which is a monotonically de-
creasing function of d, = ||p.|. A neighbor a, located
on the negative z-axis with coordinates p, = [—dg,0]7,
provides inter-agent distance information with a continuous
measurement function z(p,), which is a function of d,
and smooth at every point except p,. The new belief A in
logarithm domain is expressed as

h(pu) £ log bV (pu) = g(pu) + 2(Pu)-

Let us assume z(p,) reaches its global maximum with
an additional distance offset 6 > —dy. This offset may
introduce a local maxima shift to the belief h(p,), which
is under investigation.

(45)

Lemma 1. A point Poy = [Tox, Yoz | is a local maximum
point of h(py), if and only if (a) yor = 0, (b) it is a local

maximum point over x-domain and (c) o, > —do.
Proof. See Appendix IV. O

Lemma 1 indicates that it is sufficient to investigate the
local maxima shift of the belief over z-domain only, i.e., in
the direction of link e,,. We can redefine function h, z and
g as one dimensional function of z, by setting y,, = 0.

Theorem 1. For DiPNet, if the neighbor a, is separated
from a, by at least a fractional of sample in distance g,
defined in Appendix V, a path with an offset § shifts the
maximum of a,’s position belief from the origin to a local
maximum point Poy = [Toz,0]T. The belief shift ||z is
upper bounded by g, which decreases from <o/B to c/2B
with increasing ||6]|.

Proof. See Appendix V. O

Theorem 2. In addition to Theorem 1, if the original
position belief is modeled with isotropic bivariate normal

distribution b)) = N (0, o21), the belief shift ||z, || is more
tightly bounded by
161l

140’
Ok

1+ 392(f+p2)

v[dll< F  (46a)

[EZMI(ES

I8

, V|[o|> % (46b)
where p is inversely proportional to B|6|| and v is the
ratio between the the measurement and a priori belief
uncertainties. Both p and v are defined in Appendix VI.

Proof. See Appendix VL O

The upper bound expressed in (46a) is the belief shift
introduced by a two step approach, having a Gaussian
ranging model with a mean biased by arbitrary § and a
variance modeled by the ranging CRB, denoted as CRB;.
With Theorem 2 we can observe that for a small distance
offset, the belief shift from DiPNet is upper bounded by
the shift from the two step approach, i.e. increasing with
the distance offset ||§|] and bandwidth B. For a large
distance offset, the belief shift from DiPNet decreases with
increasing ||| and B, which is contrary to the two step
approach and makes the DiPNet more resistant to erroneous
distance information. The belief shift is demonstrated in
Fig. 3, which is explained in more detail in Section V.

V. RESULTS AND DISCUSSION
A. Simulation Results

We conduct simulations using an OFDM system designed
for multi-link ranging [50], [51], with parameters as follows:
bandwidth B = 37 MHz, number of subcarriers N = 2569,
subcarrier spacing fs. = 14.65KHz, carrier frequency
fe = 5.2GHz, transmit power Pr, = 1mW (0dBm),
temperature of 300 K for thermal noise calculation and an
additional noise figure of 15 dB.

In Fig. 2, we illustrate the CCI, ¢(dg) defined in Sec-
tion IV-A, with the channel parameters of urban (C2) and
rural area (D1) scenarios from the WINNER-II channel
model [59]. For arbitrary multipath bias §; and NLOS bias
b, the upper bound of {(dy) defined in (44) is calculated
with the K-factor, path-loss models and LOS probability
P(LOS) listed in the WINNER-II channel model. For expo-
nentially distributed d;, delay spreads from the WINNER-
I channel model are additionally included to marginalize
0;. The distribution of NLOS bias b is not included in the
WINNER-II model. We assume an exponentially distributed
NLOS bias with a mean of 0.3us, which is acquired by
an urban area raytracing tool developed in project GREAT
[60]. AWGN cases are included as benchmarks, where
¢(dg) = —Pr(X = LOS), representing the unrealistic
optimal cases of perfect multipath and NLOS mitigation.
For arbitrary 6; and b, if dy > 2m in urban areas or
dp > 1m in rural areas, {(dy) is negative, i.e. DiPNet
is an asymptotically unbiased location estimator. For ex-
ponentially distributed §; and b, DiPNet is asymptotically
unbiased for any dg > 0.1m. All ¢(dy) are converging to
the benchmarks with increasing dy, where LOS probability
becomes the decisive factor. The CCI of urban area is
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Figure 2: CCIs for urban and rural areas normalized to the
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Figure 3: Belief shift of a,,’s location.

significantly larger than the one of rural area for a large dy,
due to a faster decreasing LOS probability. The investigation
of the concavity indicator allows us to analytically conclude
that DiPNet is asymptotically unbiased in both urban and
rural areas. Besides, DiPNet in rural area may outperform
the one in urban area due to a higher LOS probability.

In Fig. 3, we demonstrate Theorem 2 in Section IV-B
with v = 1. The location belief shift ||z,.| with DiPNet
(in blue), its upper bound (in red), the belief shift with the
corresponding Gaussian two-step approach (in green) and
a sample expressed in meters (in black) against increasing
distance offset ¢ are plotted. The upper bound derived in
Theorem 2 is always smaller than one sample distance,
firstly increases then decreases as the envelope of the
DiPNet belief shift and becomes negligible for large ||d]|.
Whereas the belief shift of the Gaussian two-step approach
monotonically increases with ||0]|. This observation verifies
the erroneous distance information resistance of DiPNet.

Finally, we conduct simulations of anchor-free network
localization in urban and rural area with complete channel
models adapted from WINNER-II. Different sizes of fully
meshed networks composed of three to thirty agents are sim-
ulated. Agents are uniformly deployed in a 100 m x 100 m
area. DiPNet is compared with three two-step algorithms,
namely a correlation-based ranging approach [32], a SAGE-
based approach for multipath mitigation [33] and a SAGE-
based approach with only LOS links as a benchmark for
perfect NLOS-rejection. All the two-step approaches apply
the ERV concept [28] and the Gaussian ranging model,
with the one-path ZZB as ranging variance [29], [61]. A
DPF with 1000 particles is implemented at each agent for
every algorithms with parametric belief exchanges. Fig. 4
shows the ranging RMSEs from correlation and SAGE, in
comparison with the CRB and the ZZB. Ranging samples
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Figure 4: correlation-based and SAGE-based Ranging RM-
SEs in comparison with CRB and ZZB in both urban and
rural areas.

are collected from all the links in the networks under inves-
tigation in both urban and rural areas. SAGE outperforms
the correlation-based ranging as expected. However, both
ranging RMSEs diverge from the bounds due to the un-
predictable propagation effects, e.g. multipath/NLOS-bias,
fading and SNR estimation error. This divergence directly
limits the achievable localization accuracy for two-step
approaches with the ranging error modeled by the bounds, as
shown next. In Fig. 5, the anchor-free network localization
performances of the compared algorithms in urban and rural
areas are shown. In Fig. 5(a) and Fig. 5(b) the framework
distance RMSEs defined in (4) of the compared algorithms
with different network sizes are plotted. In Fig. 5(c) and
Fig. 5(d) the cumulative distribution functions (CDFs) of the
absolute framework distance error of different algorithms
are compared for networks with three and thirty agents.
The RMSEs of all algorithms decrease with an increasing
number of agents from three to thirty, which indicates a
cooperative gain through mesh networks. Correlation and
SAGE-based algorithms result in larger RMSEs than the
other two due to the NLOS-bias. The proposed DiPNet
performs similarly to the NLOS-rejected SAGE, which
verifies that the DiPNet is NLOS-bias resistant as proven
in Section IV-B. The DiPNet obtains similar sub-meter
RMSE:s in both urban and rural areas for a number of agents
larger than 12. The CDF plots show that in urban area,
localization outliers are more often present than in rural
area, except the DiPNet and NLOS-rejected SAGE in 30-
agent networks. It is due to the fact that the LOS probability
in rural area (95.1% ) is significantly higher than the one
in urban area (65.6% ). Both CDF and RMSE plots show
a slight outperforming of DiPNet compared to the NLOS-
rejected SAGE in dense networks in sub-meter error range.
It is caused by the non-resolvable MPCs in SAGE algorithm
and approximation error in ZZB.

B. Experimental Results

We conducted two outdoor experiments with six swarm
navigation prototypes developed at our research group [62],
on a grass field at the German Aerospace Center (DLR).
Two-way ranging between all prototypes is implemented in
a sequential fashion, with OFDM signals similarly to simu-
lations, except a transmit power of 100 mW (20 dBm) and a
carrier frequency of 5.5 GHz for forward links and 5.7 GHz
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Figure 5: Simulation results in urban and rural areas with
DiPNet,correlation-based, SAGE-based and NLOS-rejected
SAGE algorithms: (a) and (b) framework distance RMSE
for 3 to 30 agents, (c) and (d) absolute framework distance
error CDF for 3 and 30 agents.

for backward links are used. A second OFDM symbol with a
scattered pilot structure is transmitted additionally for SNR
estimation, counteracting non-ideal effects related to hard-
ware. All 30 links are pre-calibrated in our laboratory over
cables and radio frequency (RF) attenuators to compensate
hardware characteristics like the RF front-end delays and

the filter frequency responses. Five prototypes are placed
in approximately symmetric pentagonal formations, with a
dimension of 15 m in experiment 1 and a dimension of 30 m
in experiment 2, and remain stationary. The sixth prototype
is mounted on a remotely controlled rover, driving around
within a 50m x 80m area. An accurate ground truth of
agent’s location is continuously obtained with a reflecting
prism on the rover tracked by a tachymeter from Leica
Geosystems. The received raw OFDM symbols are collected
through Ethernet at a host computer and time-stamped
together with the ground truth, so that the experiments can
be replayed in laboratory for algorithm comparison. In total
17700 two-way measurements are collected, 260 snapshots
for experiment 1 and 330 snapshots for experiment 2. Sim-
ilar to simulations, we implement a SAGE-based algorithm
exchanging parametric beliefs, referred to as parametric
SAGE, to compare with DiPNet. In addition, sample-based
DPE and SAGE approaches are implemented, where particle
represented beliefs are directly exchanged and incorporated
in the DPF. To maintain similar complexity for each agent,
7157 particles are used for DiPNet and parametric SAGE,
whereas 100 particles are employed for sample-based DPE
and sample-based SAGE. The experimental setup is shown
in Fig. 6, including Fig. 6(a) images of experiments, where
stationary agents are marked in yellow and rover in red,
Fig. 6(b) agent’s true trajectories in experiment 2 and their
particle-represented beliefs from DiPNet at snapshot 61,
Fig. 6(c) and Fig. 6(d) agent’s true and estimated trajectories
in experiment 1 from parametric SAGE and DiPNet. The
rover is mostly driving smoothly with a moderate velocity,
except from snapshot 250 in experiment 2, where the
maximum velocity and rapid turns are experienced by the
rover with the trajectory illustrated in Fig. 6(b) in red.
The moving/stationary condition information is not available
at agents, i.e. the DPFs at all agents apply the same
mobility model. The optimal rigid affine transformation 7
is applied to generate Fig. 6(b)-Fig. 6(d) for visualization
convenience [48]. Comparing Fig. 6(c) and Fig. 6(d), we
can see that DiPNet significantly outperforms parametric
SAGE. A more detailed comparison can be found in Fig. 7,
with Fig. 7(a) and Fig. 7(b) showing the framework distance
RMSE for each snapshot and, Fig. 7(c) and Fig. 7(d)
showing the CDF of the absolute framework distance error.
In both experiments, the ranging links are distorted with the
MPCs from surrounding metallic structures. Additionally,
low SNR is observed for some links due to the grass
field ground reflection. DiPNet outperforms all three other
algorithms in both experiments. Both sample-based DPE
and DiPNet perform more robustly than their corresponding
two-step counter partners. Sample-based DPE experiences
a limited achievable accuracy due to small particle pop-
ulations, as reported in [53]. A larger network dimension
in experiment 2 leads to a higher failure rate for SAGE-
based approaches, while only slightly affects the accuracy
of DiPNet in sub-meter range. A higher rover dynamics also
slightly reduces the DiPNet accuracy in sub-meter level due
to a higher uncertainty in the state transition.
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Figure 6: Experiments: (a) experimental setup, (b) agent’s
true trajectories in experiment 2 and particles at snapshot
61, (c) and (d) agent’s true and estimated trajectories from
parametric SAGE and DiPNet in experiment 1.

VI. CONCLUSION

We propose a DiPNet algorithm, where the location
information is directly extracted from the received PHY
signals. DiPNet incorporates neighbor’s location uncertainty
and possesses low complexity for realtime processing. Com-
pared with the traditional two-step localization algorithms,
DiPNet avoids distance estimation, which makes it more
robust against unpredictable propagation effects. Through
theoretical investigation, it is proven that DiPNet is an
asymptotically unbiased location estimator in typical urban
and rural areas, where most of the considered applica-
tions take place. DiPNet is also proven to be resistant
to erroneous distance information, which is an essential
advantage for multipath/NLOS-bias and outlier mitigation.
Simulations with realistic WINNER-II channel models and
two experiments have been conducted. DiPNet achieves a
near-optimal performance and outperforms the state-of-the-
art algorithms, thanks to the collective PHY processing of
massive links. Considering the high estimation accuracy
achieved with a low complexity, DiPNet is particularly
attractive for realtime localization in dense networks.
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Figure 7: Experimental performances of DiPNet, parametric
SAGE, sample-based DPE and sample-based SAGE: (a) and
(b) framework distance RMSE at each snapshot, (c) and (d)
absolute framework distance error CDF.

APPENDIX I
DERIVATION OF EBIM IN (13)

The EBIM J,, can be formulated as

Ju = J(u,u) — Dy, (L1)



where J(, ) is defined in (17). The term D, is the
information degradation due to neighbor’s uncertainty

Du = Z J (u,v) J (v v)J(uv’U)’ (12)
vEN,

J(u’v) = _Epuapv I:I/Uveuvezy] (1.3)

Jow) =LY + Epp, [Puvewer,] . 14)

The superscript (k — 1) of 171 is omitted for simplicity.
With the assumption of concentrated belief, the following
approximation can be applied

(L5)

T1 .~ = =T
Ep, b, [Vuveuveuv] = VywCuv€yy

Inserting 1.3, (I.4) and 1.5 into (I.2) and apply the Sherman-
Morrison formula, the information degradation can be ap-
proximated as

D,
I o€y ,el, It
~ -2 = =T —1 UV FUU Fyv v = =T
~ E U €un€yy (IU T T 5 €€,
VEVy, Vm}o—vHuv
=2 4
V’LL’UO"LN—)HU )

Z _ 2 2
= VyvCuu <Vuvgyp—)uv -
1+ Uyy02
VeV, uv

Plugging (1.6) into (I.1), the EBIM J,, is reformulated as
Ju

&y (16)

VUV

=3 4

~1I 0) Vv T vsuw )—
~1 + (Vuu Vv O vsuw to T 5 CuvCyy
v; H 1 + VUUU?)»—HLU
@7
The expression in (13) is derived by simplifying (I1.7), which
completes the proof.

APPENDIX II
DERIVATION OF SCF EXPECTATION IN (35)

Ex [[Irs(7)]1]
L
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We have used the fact that paths have independent channel
gains «; with uniformly distributed phases to prove the
cross-terms (I) and 2) equal to zero. The sum of expec-
tations over all MPCs in (II.2) can be replaced with the
expectation over a single MPC, since the parameters of
MPCs, i.e. A; and §;, are i.i.d., i.e

Ex [rs(r)]?]
=028/ +Ba, | By pa, [40] Eollls(70)™s(r)]?]]
A
+Edo[EL\do[L] E 4,140 [Ai] Eéz,bldo[EG[”S(TI)HS(T”FH}'
L A,

(IL.3)

APPENDIX III
EXPECTATION OF D?(||pu,0 — Pv||) OVER
EXPONENTIALLY DISTRIBUTED §; AND b

For an MPC in NLOS case
Poll)]
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For an MPC in LOS case, we can replace ay by ar, and set
ag — 0O

Es, b:x=L0s[D} (| Pu,o — Poll)]
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2 2 2
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= ai TR
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APPENDIX IV
PROOF OF LEMMA 1

We first prove that local maxima of h(p,,) can only exist
on the z-axis, by its contradiction. Assume there exists a
local maximum at p, = [2,, y,]” , where y, # 0. The partial
derivatives h, and h, of h, w.r.t. z,, and y,, can be expressed
as

0g T 0z X, + do
. = il =0 V.1
Ody du | Oy dun (v-h
09 Yyu 0z Yu
h, = —2 2% =0. V.2
Y 0dy dy | Oy duy (V-2
Since ¥, # 0, from (IV.2) we have
0z 1 dg 1
= IV.
Dy dy ~ 0dy 4y (-3)

Additionally we have 99/a4, < 0, since g(p,,) is unimodal.
Inserting (IV.3) into (IV.1), we get
d() ag
e =——7->0.
d,, 0d,,
Hence p, is not a stationary point of h(p, ), which contra-
dicts to the assumption.
Then we apply the second derivative test with the follow-
ing derivatives evaluated at po; = [Togz, 0]

(AV.4)

Odyy @y +do Ody Ty Odyy  Ody 0

Oz, dyw = Oz dy Oy, Oy ’
Pdyy 1 Pd, 1

33/5 B duv’ 8.%3 B %7

Py _ Pds _ Py _ P

oz 0r2 01,0y,  Ox,0y, ’

0% 0%z Og 0z

hxy:O, hmx:@—’_%’ yy:duadu—’_duvaduru.

Combining (IV.2) and the assumption that p,, is a local
maximum point over x-domain, we can get

hy =20, hy=0and hy, <O0. av.s)

According to the second derivative test, p,, would be a local
maximum point of h, if and only if hyzhy, — hiy >0, i.e.,
hyy < 0. It can be shown after some algebra, that h,, < 0
only if x,, > —dy, which completes the proof.

APPENDIX V
PROOF OF THEOREM 1

The measurement function z(z,) can be substituted by
the log-likelihood function of DiPNet

2(x,) = SNR.Dy(( + do)/co)’/N.  (V.1)

In the case of § > 0, a natural number is defined as
k = |Bd/co| +1 € ZT, where x,, = § — xco/B is the
k™ zero point to the left of z(x,)’s main peak. |-| denotes
the floor operation. We further define ,,_; as the (k — 1)®
maximum point to the left of z(x,)’s main peak, where
~o = d. According to the property of periodic sinc function,
the value of D;((z, + dg)/co)” monotonically increases
from the origin to ~,_;, where it reaches a maximum. In
the case of vy,_1 > 0, the derivative z,(z,) of z w.r.t. z,
satisfies

2o (Y1) =0 and z,(xy) >0, VO <y < yp—1. (V2)

Additionally by the definition of unimodality, the derivative
9z (xy) of g wrt. x,, fulfills

92(0) =0 and g,(z,) <0, Vz,>0. (V.3)

Combining (V.2) and (V.3), we can get for the derivative
he(z4)

hz(0) > 0 and hy(ve_1) < 0. (V.4)

Therefore, there exists z,, € (0,7,-1], so that

hz(xu) > O,qu S (07x01]
hz(iﬂu) < O,Vﬂ?u S (xor37n—1]7

where the equality only holds at z,,. According to Lemma
1, the maximum point of the belief is shifted from the
origin to p,, which introduces a bias to the belief ||z, || <
lVe—1ll< 0x = ||7w—1 — @x||. The second inequality is
obtained by the property of periodic sinc function that
|z—1 — Ys—1ll< |7s—1 — xx||. The upper bound p,
decreases with increasing x from g; = </B and quickly
approaches its asymptotic value 9o, = c/2B. The proof can
be extended to —dy < § < 0 and yx—1 < 0 in a similar
manner, which completes the proof of Theorem 1.

APPENDIX VI
PROOF OF THEOREM 2

The measurement function z(z,) can be approximated
by its second-order Taylor expansion Z(x,,) at &, = yx—1

- 1
Z(mu) = 5 Zxa:(’%{fl)(xu - ’7/{71)2
<0
+ Zm(’%{fl)(mu - ’7571) + Z(WH71)~
———

=0

(VL1)

The maximum point Z,, of g(x, )+ Z(x,) can be calculated
with the equality of their derivatives

5 1

9 (Tu) + Zo(w4) = _?zu + Zza (V1) (Ty — Yo—1) =0
0

Fog = —In=L (V1.2)

1—

ngmx(’ﬁc—l)

With the property of the periodic sinc function, the deriva-
tives of z(x,,) and its Taylor expansion fulfill

0 < 2z (zu) 1< 1|22 (), (VL3)



where both equalities hold only for x,, = ~,_1. Therefore,
the bias ||z,.| of position belief h(p,) is smaller than
|Zoz||- Then we derive the derivatives of z(x,,), simplify-
ing the periodic sinc function with the sinc function, and
defining ¢ = @(6—7x-1)/2¢,

o ) __wSNR; sin?(N¢) (i B cos(NC))
w\Te—1) B NC ~ sin(NC)
w2SNR; sin?(N¢)
3
><< 3 N 2cos(N() Ncos2(NC)>
2N 2 (sin(N¢)  2sin®(N¢) /7
If ||0]|< co/B, Kk =1, i.e., { = 0. The second derivative z,
reaches its global minimum

:O’

Zrx (75—1 ) ~

. ( ) w2 N3SNR; 1 1
11m k— = — = — = —_—
¢ e\ Tt 62 CRB, w02
The bias of position belief is bounded by
- 6] __lal
1Zoz]| < |Zoz||= 32 =11 (VL4)
2r2 NSNR, B252
If 3] o/
Za:m(’}/n—l)
_w?SNR; (Ncos2(NC) B N sin?(N¢) B sin2(N())
c3¢? 2 2 2N (2
~ w?SNR; (NCOS(QNC) 1= cos(2NC)>
s 2 4N(2?
w?SNR, 1
_ N )
222 (v+ N
___2NSNR, ( & )
(0 —Ys-1)? T2 B?(6 — yx-1)?
2NSNR; 9
>— ——(1+p°), (VL5)
(I6l—ex)?
where p = c/xB(||5||-0.). Therefore
~ Ok
[0z | < [|Zox ]| < (VL6)

L+ szt
Combining (VI.4) and (VI.6), we have the inequality (46),
which completes the proof.
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