
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Theoretical simulations of dynamical systems for
advanced reservoir computing applications

VASILEIOS ATHANASIOU

Department of Microtechnology and Nanoscience - MC2
Chalmers University of Technology

Gothenburg, Sweden, 2020

ii

Theoretical simulations of dynamical systems for advanced reservoir computing
applications
VASILEIOS ATHANASIOU
ISBN 978-91-7905-293-5

c© VASILEIOS ATHANASIOU, 2020.

Doktorandavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4760
ISSN 0346-718X

Department of Microtechnology and Nanoscience – MC2
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Cover:

Printed in Gothenburg, Sweden 2020

iii

Theoretical simulations of dynamical systems for
advanced reservoir computing applications

Vasileios Athanasiou

Department of Microtechnology and Nanoscience - MC2

Chalmers University of Technology

Abstract

There are computational problems that are simply too complex and cannot be
handled by traditional CMOS technologies due to practical engineering limitations
related to either fundamental physical behavior of devices at small scales, or various
energy consumption issues. The field of unconventional computation has emerged
as a response to these challenges. Up to date unconventional computation encom-
passes a plethora of computing frameworks, such as neuromorphic computing, molec-
ular computing, reaction-diffusion computing, or quantum computing, and is ever
increasing in its scope. This thesis is biased towards developing sensing applica-
tions in the unconventional computing context. This initiative is further extended
towards developing novel machine learning applications.

The possibility of building intelligent dynamical systems that collect information
and analyze it in real-time has been investigated theoretically. The basic idea is to
expose a dynamical system to the environment one wishes to analyze over time. The
system operates as an environment sensitive reservoir computer. Since the state of
the reservoir depends on the environment, the information about the environment
one wishes to retrieve gets encoded in the state of the system. The key idea exploited
in the thesis is that if the state of the reservoir is highly correlated with the state of
the environment then the information about the environment can be inferred with a
modest engineering overhead.

A typical dynamical system is assumed to be a network of environment sensitive
elements. Each element can be something simple, but taken together, the elements
acquire collective intelligence that can be harvested. These ideas have been exam-
ined theoretically (and verified experimentally) by simulating various networks of
environment-sensitive elements: the memristor, the capacitor, the constant phase el-
ement and the organic field effect transistor element. The simulations were done in
the context of ion sensing, which is an extremely complex, many-body, and multi-
scale modeling problem.

v

“It always seems impossible until it’s done ”

Nelson Mandela

vii

Acknowledgements
Firstly, I would like to express my sincere gratitude to my supervisor Zoran Konkoli
for the continuous support of my doctoral studies and related research, for listening
to me and spending time for discussions, for his patience, motivation, and immense
knowledge. His guidance helped me in all the time of research and writing of this
thesis. I could not have imagined having a better supervisor for my doctoral studies.
I thank my co-supervisor Dag Winkler for his useful comments.
I thank the collaborators of the RECORD-IT project for the stimulating scientific dis-
cussions and for supplying me with useful experimental data.
Last but not the least, I would like to thank my family: my wife Christina for spend-
ing her life with me and supporting me, my son Alexandros who was born almost
in the beginning of my doctoral studies and gave me the power to do research for a
better future of humanity, to my parents and my brother’s family for supporting me
spiritually throughout writing this thesis and my life in general.

ix

Contents

Abstract iii

Acknowledgements vii

List of publications xii

1 Introduction 1
1.1 Aim and Scope . 3
1.2 Content of the Thesis . 4

2 Mathematical Primitives 7

3 On using reservoir computing for developing sensing applications 13
3.1 Sensing with memoryless readout layers 14

3.1.1 Sensing with one-memristor reservoirs 15
3.1.2 Towards collaborative sensing 17

3.2 Sensing with recurrent readout layers 21
3.2.1 Sensing with temporally extended bar codes 22

4 On reservoir computing with memristor networks 27
4.1 Memristor as a non-linear element . 27
4.2 Measuring the reservoir’s computing capacity 28
4.3 Improving the computing capacity of dynamical systems 32

4.3.1 Fixed input layer . 34
4.3.2 Optimised input layer . 35

4.4 Prediction models with memristor networks 35
4.4.1 Predicting with one memristor 37
4.4.2 Predicting with many memristors 38

5 Exploiting algorithms for efficient transient simulations 45
5.1 Transient simulation of electronic circuits with Constant Phase elements 45

5.1.1 Updating the convolution integral 46
5.1.2 Results . 48

5.2 Transient simulation of electronic circuits with Organic Electrochemi-
cal Transistors . 50
5.2.1 Equations of motion . 50

5.3 Results . 54

6 Summary of appended papers 57

Bibliography 61

xi

List of Abbreviations

AC alternating current
CMOS complementary metal-oxide-semiconductor
CPE constant phase element
DC direct current
ECG electrocardiograms
HAT hours between hospital and intensive care unit admittance
HR heart rate
ICU intensive care unit
ICULOS length of stay in intensive care unit
MFB memristor element connected with a delay feedback mechanism
MNA modified nodal analysis
NaN not a number, missing value of a data set
NOMFET nanoparticle organic memory field-effect transistor
ODE ordinary differential equation
OECT organic electrochemical transistor
OT-sensor oxytocin sensor
O2sat blood oxygen level saturation
PoA Point of Acquisition
PM parallel connection of memristors
QRS QRS peak in electrocardiograms
RC resistor-capacitor
RECORD-IT reservoir computing with real-time Data for future IT technologies
RLC resistor-inductor-capacitor
RNN recurrent neural network
SC sensing capacity
SWEET state weaving environment echo tracker
Temp Temperature

xii

List of publications

I. Vasileios Athanasiou & Zoran Konkoli (2017) On using reservoir computing
for sensing applications: exploring environment-sensitive memristor networks,
International Journal of Parallel, Emergent and Distributed Systems,
DOI: 10.1080/17445760.2017.1287264

II. V. Athanasiou, Z. Konkoli, On the use of collaborative interactions for em-
bedded sensing applications: Memristor networks as intelligent sensing sub-
strates, submitted 2020, Under review

III. Athanasiou V, Konkoli Z. On the efficient simulation of electrical circuits with
constant phase elements: The warburg element as a test case. Int J Circ Theor
Appl. 2018;46:1072–1090. https://doi.org/10.1002/cta.2474

IV. Athanasiou V., Pecqueur S., Vuillaume D., Konkoli Z., On a generic theory of
the organic electrochemical transistor dynamics, Organic Electronics, Volume
72, 2019, Pages 39-49, ISSN 1566-1199, https://doi.org/10.1016/j.orgel.2019.05.040

V. Athanasiou V., Konkoli Z. (2019). ‘On mathematics of Universal Computation
with Generic Dynamical Systems’ , in Adamatzky A., Akl S., Sirakoulis G. Ch.
(ed.) From Parallel to Emergent Computing. CRC Press Taylor and Francis
Group

VI. Athanasiou V., Konkoli Z. (2019) Memristor Models for Early Detection of Sep-
sis in ICU Patients, Computing in Cardiology 2019, Volume 46, ISSN 2325-
887X, 0.22489/CinC.2019.223

VII. Athanasiou V., Tadi K. K., Hurevich M., Yitzchaik S., Jesorka A., Konkoli Z. On
sensing principles using temporally extended bar codes, IEEE sensor journal,
https://doi.org/10.1109/JSEN.2020.2977462

VIII. Athanasiou V., Konkoli Z. On Improving The Computing Capacity of Dynam-
ical Systems, submitted 2019, under review

1

Chapter 1

Introduction

Moore’s law predicts that the number of transistors in a chip roughly doubles every
second year. [1] However, it is likely that this trend will slow down due to practi-
cal engineering limitations or specific physical effects pertinent to small scales, such
as wiring problems or electron tunneling. There are problems that are simply too
complex and cannot be handled by traditional CMOS technologies. In somewhat
technical terms, there are information processing applications that do not scale ac-
cording to the Moore’s law. Typical examples include problems in distributed, real-
time, or embedded information processing applications. Accordingly, there is a need
to develop alternative information processing solutions by using non-CMOS based
technologies, with the additional benefit of low power computation, depending on
the hardware used. In the information processing industry, and especially semicon-
ductor industry, functional diversification has emerged as the field where there is a
need to integrate non-CMOS devices with traditional CMOS devices.[2] The field of
unconventional computation has emerged as a response to this functional diversifi-
cation challenge. Up to date unconventional computation encompasses a plethora
of computing frameworks, such as neuromorphic computing, molecular computing,
reaction-diffusion computing, or quantum computing, and is ever increasing in its
scope. [3, 4, 5, 6, 7, 8]

In particular, reservoir computing has gained a considerable interest among the
unconventional computation community in the recent decade, both as a model of
computation and as a remarkably practical approach for realizing neuromorphic
computations. Historically, the field of reservoir computing started as an insight
about behavior of synaptic weights during the neural network training process. [9,
10, 11, 12] In the field of supervised learning the weights need to be adjusted to
achieve a desired computation. In reservoir computing, it has been realized that only
a limited set of weights needs to be adjusted in the network training process. While
it is true that a neural network is essentially a geometry free object, the weights that
need to be adjusted belong mostly to the links in the network that can be naturally
described as an “outer layer”.

This led to the further insight that instead of a neural network one could use an
arbitrary dynamical system as the core, and augment it with an outer layer. The
dynamical system used this way is referred to as a reservoir, and the outer layer is
referred to as the readout layer. The modern understanding of reservoir computing
emphasizes the fact that a Turing universal expressive power can be achieved in the
context of time-series data processing, if the reservoir exhibits separation property
on the state of inputs. This separation property is rather generic, it is not limited
in the engineering sense, and is often realized by complex systems at the edge of
chaos. [13]

Though the foundational ideas behind reservoir computing have been around
for quite some time, this is still an aggressively developing field which is gaining in

2 Chapter 1. Introduction

momentum. A reservoir computer is essentially a pattern recognition device. It con-
sists of two parts, a dynamical system, referred to as the reservoir, that can be driven
by external signals, and an easily trainable readout layer. The dynamical system has
memory properties, i.e. the current state of the system depends on its own history.
The external signals consist of the input accepted by the system. By assumption,
the readout layer is the only part of the device that can be optimised. The external
signals drive the system to a specific region of the configuration space, which con-
stitutes the act of computation since the information stored in the external signals
is transformed into the information stored in the internal state of the reservoir. The
term “reservoir” stands for the reservoir of states. The readout layer has access only
to instantaneous values of the state and extracts information related to the external
signals.

The key claim is that any computation can be realized this way, provided the
dynamical system is complex enough. Due to the inherent flexibility and the ease of
use the reservoir computing approach is being applied frequently in many applica-
tions that require neuromorphic computation. [14, 15] The reservoir computer can
be used with a minimum of preparation as an artificial intelligence unit that pro-
cesses external information. From the theoretical point of view, the specific feature
that makes reservoir computing popular is the ease of training. Likewise, from the
engineering point of view, the readout layer can be a relatively simple structure.

The work done in this thesis has been strongly aligned with the activities in the
RECORD-IT research project. In this project, it has been investigated whether it is
possible to use reservoir computing to build intelligent sensing devices that can col-
lect and analyze information simultaneously. The key idea is that the environment it
is wished to sense interacts with a dynamical system, which is referred to as a sensing
reservoir, or a state weaver. The sensing reservoir accumulates, or weaves in, informa-
tion about the environment into its internal state over time. In such a setup the flow
of information is not linear (from the sensor to the artificial intelligence unit), but the
sensor and the associated information processing intelligence are the same.

The work of this thesis can be used to develop intelligent bio-compatible devices
sensitive to changes of ion concentrations in their surrounding environments. Thus,
many of the ideas presented in the thesis have been motivated by a need to model
and simulate the network elements of interest for the RECORD-IT project, in the
following to be referred to as experimental elements. Such elements can be described
as wet nanoparticle organic memory field-effect transistors (NOMFETs), coated Si
nanowires, self-conjugated polymers, or arrays of photocells. The state of those ele-
ments depends on ion concentrations of their surrounding environment.

Additionally, most of these elements have memory properties because their state
depends on its own history. This property makes them useful building blocks for
solving temporal information processing problems, such as time series classification
or predictions. Due to this property, their state depends also on the history of their
environment. In the context of this thesis, the environment is considered as ion con-
centrations in their surrounding aqueous solution. Therefore, information about the
history of ion concentrations could be encoded in their state. Decoding this informa-
tion could be done by analysing their state with a readout layer.

Elements exhibiting these properties can be combined to build powerful sensing
devices. A natural theoretical paradigm for modelling these structures is a network
of environment sensitive electrical components. This paradigm can also be used for
temporal processing problems, such as time series classifications and predictions.
These options define the context of reservoir computing which this thesis work has
been done.

1.1. Aim and Scope 3

1.1 Aim and Scope

The overarching aim has been to study theoretically the possibility of using net-
works consisting of experimental elements for neuromorphic computations. This is
done in two directions. In the first direction, networks are considered as environ-
ment sensitive electrical circuits to be used for extracting information regarding the
environment temporal behavior. A key feature that is investigated is how coupling
between elements affects the sensing capacity of a network. Additionally, it is stud-
ied whether sensing capacity improves by supplying an external drive signal. Sim-
ilar ideas have been considered in the field of traditional machine learning (feature
engineering). [16] To simulate accurately the transient dynamics of such networks,
mathematical models of some elements have been developed because such accurate
and efficient models have not been found in literature. In the second direction, net-
works of experimental elements are considered for temporal information processing
problems such as the traditional time-series classification and prediction. Key find-
ings from the first direction have been useful for developing methods in this second
direction.

The key idea is that spatial-temporal information of the environment can be ac-
cumulated in the state of a reservoir if the system is arranged properly. [17, 18] This
could happen if small pieces of information that are scattered over time (and that
might be ignored in a standard sensing setup) can be accumulated, amplified, and
ultimately stored in the state of a network. When should one use such a device?

The use of such devices would be advantageous in situations where information
processing is necessary at the point of acquisition (PoA), e.g. at the side of sensors
where analog signals are obtained. Information can be extracted at the PoA by in
situ pre-processing, real-time analysis options can be provided, and accordingly a
whole network of sensors can become more responsive. [19] Moreover, from the
engineering point of view, such sensing solutions could be more flexible and eas-
ier to implement, reduce the necessary communication bandwidth, reduce energy
consumption, and be bio-compatible.

In reservoir computing, internal weights of networks are not trained. Therefore,
gradient descent optimisation techniques are avoided and so do problems of explod-
ing and vanishing gradients. Additionally, training time can be relatively small since
a reservoir is operated only once for each input during the training procedure. [14]
Accordingly, this ease of training suggests that physical devices could be trained
in the same way for executing neuromorphic computation. Using physical systems
instead of neural networks has been previously defined as physical reservoir com-
puting.[20]

Training hardware can be advantageous over training software models for sev-
eral reasons. Training time of hardware can be very small compared to software
models. In contrast to software models, the time needed to operate a piece of hard-
ware is independent of the hardware size. Therefore, one can increase the size of
hardware without severe increase in the training time. In summary, with physical
reservoir computing, large pieces of hardware can be trained with big data relatively
fast. This offers a possibility of developing an alternative way of neuromorphic com-
putation more efficient than the nowadays widely used deep learning models.

4 Chapter 1. Introduction

1.2 Content of the Thesis

The text is organised as follows. In chapter 2, key mathematical primitives im-
portant for understanding reservoir computing are explained. These mathematical
primitives feature frequently in the work and manifest themselves in many different
forms.

In chapter 3, papers I, II and VII are summarised. These papers introduce ex-
perimental components that exhibit memristive behavior. These elements can be
described by using a memristor like model. In papers I and II memristors are consid-
ered as physical elements. A memristor is a piece of hardware with a memory-like
property. In these theoretical studies we investigate how they can be used to sense
ionic concentrations. Paper VII is both a theoretical and an experimental study. In
this paper, an oxytocin sensor (OT-sensor) and its equivalent model have been con-
sidered for experiments and simulations respectively. The OT-sensor has memory
properties and its dependency on ionic concentrations has been found experimen-
tally and published in literature [21].

In paper I, it is demonstrated theoretically on a very simple classification prob-
lem that a single memristor can be used to classify the environment it is exposed to.
Only two environmental conditions have been considered, describing a static and
a varying environment. Firstly, by an intuitive analysis, it has been shown that en-
vironment classification can be encoded in the memristor’s state. A suitable drive
signal has been suggested based on intuitive reasoning. Then, a rigorous mathemat-
ical optimization problem has been set up, and solved by using genetic algorithms.
The optimization algorithm was allowed to search through a wider space of drive
signals. While the “intuitive drive” was a square-wave like form, the optimization
algorithm was allowed to search in the space of more complex sinusoidal drive sig-
nals.

In paper II, the cooperative behavior between memristor elements has been ex-
plored with a goal of achieving an additional functionality. In particular, it has
been investigated how the interplay between various network features influences
the sensing (computing) capacity of the device. The features of interest included the
number of network elements, their connectivity pattern, and the complexity of the
individual element. A big question which has been addressed is how to quantify in
rigorous mathematical terms the sensing capacity of device.

In paper VII, an OT-sensor has been considered for sensing whether zinc ion
concentrations are stable or varying in their surrounding aqueous environment.
The findings of optimising an external drive signal to increase the sensing capac-
ity, which have been shown in papers I and II, have been used here. However, in
paper VII, it was hard to encode environment related information in instantaneous
values of the OT-sensor’s state. It was possible to encode this information in the
history of sensor’s state. In that case, a readout layer with memory of the sensor’s
state would be necessary.

In chapter 4, papers V, VI and VIII are summarised. Key findings from chapter
3 are exploited for developing generic theories on temporal information processing
problems. In these three papers, memristor elements have been considered.

In paper V, a generic theory has been introduced for quantifying the computing
capacity of a generic reservoir. This theory can be used to compare many reservoirs
based on their ability to separate inputs. The key idea follows the central dogma of
reservoir computing, i.e. that the best reservoir should separate any pair of input
signals at the largest extent.

1.2. Content of the Thesis 5

In paper VI, one memristor element has been considered for a prediction prob-
lem. The problem is to predict at an early stage whether a patient in intensive care
unit has the sepsis by reading the history of the patient’s measured medical vari-
ables. The system consists of a simple input layer, the memristor element and a
memoryless output layer. Only the input and output layers are optimised. It has
been shown that performance can be greatly improved by training those layers but
cannot compete the performance of deep learning algorithms. In addition, in this
thesis, a novel method is provided and shows that many memristor elements can
be combined to achieve comparable performance to deep learning models. This
method is generic and can be applied at other prediction problems as well.

In paper VIII, a novel method is proposed to reduce the number of reservoir ele-
ments but without reducing the reservoir’s computing capacity. This method makes
use of the previously referred findings regarding optimising an external drive sig-
nal. It is demonstrated on a problem of electrocardiogram signal classification that
learning a drive signal can significantly improve the performance of a reservoir con-
sisting of just a single memristor element. Similar ideas feature in machine learning
as “feature engineering”.

In chapter 6, papers III and IV are summarised. In those papers, new algorithms
have been introduced for the efficient simulation of electronic circuits consisting of
experimental elements.

In paper III, a new method has been introduced for the efficient simulation of
electronic circuits which contain Constant Phase Elements (CPEs). We suggest an
algorithm for simulating circuits with CPEs based on the Modified Nodal Analysis
(MNA). The algorithmic complexity of the suggested algorithm is linear with the to-
tal time of the transient simulation. This algorithm is compared to a simple method
found in the literature: the consideration of resistance-capacitor circuits with equiv-
alent impedance to the CPEs. The comparison has been done both in terms of accu-
racy and algorithmic complexity.

Paper IV is a typical device modelling paper. A simple dynamical model of
the Organic Electrochemical Transistor (OECT) element has been suggested and im-
plemented for simulation purposes. The model has been systematically improved
through a series of carefully designed numerical experiments. The key outcome of
this work is a rigorous simulation algorithm that can be used to predict the response
of the currents through the transistor’s pins in time, depending on the history of
voltages that are applied at its pins. A key challenge that has been addressed was to
explain intriguing peaks in the experimental data for the drain current as a function
of time.

7

Chapter 2

Mathematical Primitives

The filter is a mapping that converts an input series of data q ≡ {q(t)}t∈I into a state
time series data x ≡ {x(t)}t∈I ,

q F−→ x (2.1)

where I denotes the index set and t denotes time. The individual values in the series
are indexed by the variable t, e.g. as q(t) or x(t). In the following, the index set
will be omitted when it is irrelevant for a discussion. The operation of the filter is
denoted as

x = F [q] (2.2)

and a specific value indexed by t can be selected as x(t) = F [x](t). Further, the
input and output data types do not need to match at all. For example, a filter F can
take a vectorial data as the input, a series of values {(q(t), u(t)}t with q, u ∈ R and
produce a single valued series {x(t)}t with x ∈ RNR as the state, with R being the
set of real numbers and NR being the dimensionality of x(t). For a given index t one
has x(t) = F [q, u](t).

The reservoir is a special type of a filter. It is a generic dynamical system, to
be denoted by R, that responds to a time-dependent external signal q(t) in a way
that the state of the system x at a particular time instance t depends on the way the
system has been driven in the past. Using the filter notation introduced above, this
behavior is represented as

x(t) = R[q](t) (2.3)

In this case the index set I is meant to describe the flow of time. Note that the
equation does not read x(t) = R(q(t)), which would imply that the state of the
system is an instantaneous function of q(t).

A reservoir to have the filter property should consist of elements with memory
properties. A model of such an element has been described in literature as the re-
current cell. [22] A recurrent cell is expressed mathematically as a model where the
model’s state at time t, R(t), depends on the state of the short past R(t− dt) (where
dt→ 0+) and on the model’s input u(t) through a non-linear function η:

R(t) = η
(

R(t− dt), u(t)
)

(2.4)

Recurrent cells are mainly used in computer science to build recurrent neural net-
works (RNN) by inter-connecting them. In an RNN, the state of one interconnected
recurrent cell may depend on the short past state of many other recurrent cells con-
nected to it. RNNs can be used for pattern recognition tasks if the connections be-
tween the cells and the readout layer are trained for this purpose.

Reservoir computing is a sub-field of RNNs where the connections between the
cells are not trained but just a readout layer is trained. This could be applied in cases

8 Chapter 2. Mathematical Primitives

where it is not feasible to train connections between interconnected models. For
example, in the case of executing pattern recognition tasks with physical systems, it
may not be possible to intervene in the internal structure of the material and modify
it. Additionally, it may be impractical in terms of time to train a model with a huge
number of internal parameters, and training a model consisting of many internal
parameters with a relatively big data-set could last weeks or even months. This long
time of training could be avoided by using reservoir computing because it is not
needed to train model’s internal connections.

In reservoir computing, it is only needed to train the readout layer, to be denoted
by ψ. This layer analyses the instantaneous state of the device x and produces the
output y

y(t) = ψ(x(t)) (2.5)

Note that the equation does not read y(t) = ψ[x](t) which would imply that ψ rep-
resents a filter. Training the readout layer is important because one should be able
to query the reservoir’s state. Further, the apparatus used to query the state should
be something simple, with a low degree of computational complexity, and presum-
ably something that is easy to engineer. This is the reason why a common reservoir
computing practice is to train a linear readout layer.

The key claim of reservoir computing: The abstract mathematical formulations
introduced above formalize the reservoir computing ideas. Clearly, without stating
what the expressive power of this model of computation is, the mathematical prim-
itives are an empty shell without substance. What gives substance to the field is the
claim that if the filterR has some well-defined mathematical properties, notably if it
separates the input, then any computation is possible with one and the same reser-
voir R. Thus for every desired pattern recognition task Φ[q](t), it is possible to find
a related readout layer ψΦ such that

Φ[q](t) = ψΦ(R[q](t)) (2.6)

This implies that a single dynamical system has, in principle, infinite computing
power, i.e. it can be used to compute anything. At first this might sound as an
impossible claim, but in fact this key insight from the liquid state machine model
rests on rigorous mathematical foundations of the Stone Weierstrass Approximation
theorem. [12].

The sensing goal: Every sensing procedure is done with a certain goal in mind.
For example, one might be interested in inferring whether a solution containing ions
is static or changes in time. Thus a sensing procedure can be formally described as a
pattern recognition task, described by the filter Φ,

ϕ(t) = Φ[q](t) (2.7)

The filter is constructed so that its output, the variable ϕ(t), convey the pattern
recognition information. For example, the filter could be constructed to output ϕ ≈ 0
for static ion concentration, or ϕ ≈ 1 for a varying one. It is useful to think of Φ as an
infinitely “intelligent” neural network that can be trained for any pattern recognition
task.

The sensing reservoir is defined a special dynamical system that can be driven
by an external input u and interacts with the environment q. An implementation
of the sensing reservoir idea is shown in Fig. 2.1 where a reservoir is assumed to
be embedded in an ionic solution. A network is used as a dynamical system, the
reservoir R. The network consists of NR interconnected electronic elements R1, R2,

Chapter 2. Mathematical Primitives 9

· · · , RNR in an electronic circuit, where NR = 3 in Fig. 2.1. Those elements are
assumed to behave as recurrent cells, where their state at time t, Rm(t) depends on
the state of the short past Rm(t− ∆t), their individual voltage differences, um(t) and
the environmental condition q(t):

Rm(t) = ηm

(
Rm(t− dt), um(t), q(t)

)
(2.8)

By analysing the above equation, the state Rm(t) can also depend on the states
Rj(t − dt), m 6= j if the individual voltage difference um(t) depends on Rj(t − dt).
This is possible, if the electronic components are connected into a network. Then,
the state of one electronic component would depend on the history of the states of
the other electronic components:

Rm(t) = ηmR

(
R1(t− dt), R2(t− dt), · · · , RNR(t− dt), u(t), q(t)

)
(2.9)

A network consisting of such electronic components implements the filter prim-
itive since each element behaves as a recurrent cell. The state of the network at time
t, x(t), is given as:

x(t) ≡ (R1(t), R2(t), · · · , RNR(t)) (2.10)

Input: Environmental condition

Sensor: Reservoir as element-network

Readout

layer
Classification: ion-element interactions

-

-

-

-

- -

+

+ +

+ +

+

+
+ +

+

+

+

+

+

-

-

-

-

- -

-

-

-

-

Drive: Voltage source

 !

 "

 #

: element

FIGURE 2.1: A modification of figure taken from paper I. The net-
work is driven by a signal and is affected by the environmental condi-
tions of ionic solutions. The readout layer receives the instantaneous
values of the network state and contributes to the classification of the

environmental condition.

In the filter notation, the state of the reservoir can be written as

x(t) = R[u, q](t) (2.11)

10 Chapter 2. Mathematical Primitives

and, the sensing performed by the reservoir is represented as

y(t) = S [u, q](t) = ψ(x(t)) (2.12)

where y(t) is the variable that conveys the result of the sensing measurement. The
key idea is that all the sensing functionality should be done by the reservoir, and not the read-
out layer. In principle, in reservoir computing, it is not aimed at identifying ways of
finding a readout layer which would improve the sensing performance. It is aimed
at finding ways which would improve only the functionality of the reservoir. Thus
the readout layer should be something simple to engineer with a low degree of com-
putational complexity such as a linear readout layer:

y(t) = w0 + w1 R1(t) + w2 R2(t) + · · ·+ wNR RNR(t) (2.13)

where W = (w0, w1, · · · , wNR) are linear weights of the readout layer. In this thesis,
whenever a linear readout layer is considered, the linear weights are calculated with
least square error regression.

Since the readout layer is a simple structure, accurate sensing may not be possi-
ble if the reservoir were not complex enough. In physical reservoir computing there
may not be an option to intervene, modify and increase the reservoir complexity,
where, by assumption, one is interested in building computers from dynamical sys-
tems that cannot be easily modified. [23, 24] In this thesis, it is suggested that it is
possible to work around this problem. The key idea is that an external drive signal
can be optimised to achieve advantageous correlations between environment and
reservoir’s state, increasing the performance of reservoir computing.

A hand drawn illustration of the sensing reservoir concept (a modification of a
figure from [18]) is shown in Fig. 2.2. The reservoir is denoted by R with the state
of the reservoir at time t denoted by x(t). This state depends on the whole history
of the drive signal u and the environmental condition signal q. To optimize the
sensor, a drive signal u has to be found such that the output y is driven to 1 if the
environmental condition is a varying one, and to 0 if the environmental condition
can be characterized as a stable one.

Sensor optimization: The goal is to optimize the sensing reservoir so that it mim-
ics the behavior of Φ: Formally, one tries to achieve that y(t) ≈ ϕ(t) to the largest
extent possible, uniformly over time. This defines a rigorous mathematical opti-
mization problem, where the goal is to find a drive u∗ such that

u∗ = argminuδ[u, q] (2.14)

where δ[u, q] is a measure of how well the prediction of the sensing reservoir matches
the desired classification goal Φ,

δΦ[u, q] ≡ ||S [u, q](t)−Φ[q](t)||t (2.15)

with ||...||t being a measure of the distance between two filters, the one realized by
the reservoirR and the one by Φ. In the following, when the sensing goal is known
or not central for the discussion instead of δΦ[u, q] we write δ[u, q], omitting the
explicit dependence on the sensing goal Φ. The subscript on the distance symbol
indicates that one should in some sense provide a distance estimate over all times.
For example, one could define the distance as

||S [u, q](t)−Φ[q](t)||2t ≡ lim
T→∞

1
T

∫ T

0
dt {S [u, q](t)−Φ[q](t)}2 (2.16)

Chapter 2. Mathematical Primitives 11

 (!)

"(!)

#(!)

 ! = [", #](!)

 !

#(!) Stable Varying Stable Varying

y(!)

1

0

FIGURE 2.2: A hand drawn illustration of the sensing reservoir con-
cept (a modification of a figure from [18]).

which is the definition used in the thesis. The distance measure generated this way
will be denoted as δ∗[u, q].

13

Chapter 3

On using reservoir computing for
developing sensing applications

How does one optimize a reservoir for a particular pattern recognition task? One of
the recurring challenges in this thesis is to, for a given network, find a drive signal
u∗ that maximizes the sensing capacity of the network SC[u, q]:

u∗ = argmaxuSC[u, q] (3.1)

It is hard to define the sensing capacity rigorously but not impossible. For example,
for a given sensing goal Φ one can define the sensing capacity specific to this sensing
goal by using the prediction errors δΦ[u, qi], i = 1, 2, · · · , E. In machine learning one
measures the total prediction error,

ε =
E

∑
i=1

δΦ[u, qi] (3.2)

and a viable definition of the sensing capacity measure would be

SCΦ[u] ∼
1
ε

(3.3)

indicating that a small prediction error should be associated with a large fitness.
However, a slightly different estimate could be used

SCΦ[u] ∼
E

∑
i=1

1
δΦ[u, qi]

(3.4)

Finally, the overall sensing capacity of the device can be calculated as the average
over the individual sensing capacities

SC[u] ∼ 〈δΦ[u, qi]〉Φ (3.5)

where the symbol 〈...〉Φ denotes the averaging procedure.
However, such a definition of the sensing capacity is dependent on how the aver-

aging procedure 〈...〉Φ is performed and ultimately which classification problems are
covered. Instead, another definition of the sensing capacity is provided in the thesis
that does not rely on how one defined the classification goals, but only depends on
how the sensor behaves in general. The key assumption in these studies is that the
trajectory separation in the phase space controls the sensing capacity.

Mathematically, trajectory separation can be described as follows. Let q1, q2, · · ·
, qE denote the set of distinct environmental conditions to be classified. If the state of

14 Chapter 3. On using reservoir computing for developing sensing applications

the reservoir occupies different regions Ω1, Ω2, · · · , ΩE, when exposed to the condi-
tions q1, q2, · · · , qE then a classification is possible. In particular, if the separation of
the trajectories is strong, the classification could be achieved with a relatively simple
memoryless readout layer, e.g. a linear classifier might be sufficient as the one in
Eq. (2.13). Otherwise, if separation of trajectories is not strong, then, a more com-
plex readout layer is needed, probably a readout layer with memory and non-linear
properties.

The sensing capacity SC[u, q] is an overarching concept that features in many
papers and naturally generalizes to the notion of computing capacity. In fact, it is
often hard to distinguish the two, the distinction essentially being defined by the
application context. The exact definition of the sensing capacity SC[u, q] varies in
different papers depending on the needs. Typical papers that deal with the sens-
ing/computing capacity topic are in papers I, II, VII and VIII.

3.1 Sensing with memoryless readout layers

In papers I and II memristor models have been considered as recurrent cells of reser-
voirs. In those papers, the purpose has been to define sensing capacity measures
which correlate with the degree of trajectory separation. Those measures were used
as fitness functions when training memristor networks. The purpose was to find a
drive signal u so that the degree of trajectory separation is large. In those papers, a
large number of memristor networks were tested and relatively large sensing capac-
ities were found for some of them.

A memristor is a non-linear, passive, two-terminal component with a time-varying
resistance often being referred to as the memristance R(t). The memristor element
is suitable for temporal information processing since it exhibits the filter property:
The memristance value at a specific time instance depends on the whole history of
the applied voltage signal up to that time.

In this thesis, a simple Pershin Di Ventra model [25] is used. The memristance
R(t) changes depending on the voltage signal ∆V that is applied across the element
according to a simple law. If −Vthr < ∆V < Vthr, then the memristance changes
as Ṙ = α∆V, where here and in the following the dot over a symbol defines a time
derivative ẋ = dx

dt . For ∆V < −Vthr or ∆V > Vthr, Ṙ = β∆V + const; α, β are
device dependent parameters, const is a constant value and usually α � β. The
memristance is bounded between the lowest value Rmin > 0 and the maximum
value Rmax. This can be written as:

Ṙ(t) = f (∆V(t), β)Θ(R(t), ∆V(t)) (3.6)

with
f (∆V, β) = β∆V +

1
2
(α− β) ·

(
|∆V + Vthr| − |∆V −Vthr|

)
(3.7)

and

Θ(R, ∆V) =

0, if ∆V = 0
θ(Rmax > R), if∆V > 0
θ(R > Rmin), if∆V < 0

where θ(Rmax > R) is zero unless the condition in the argument is satisfied, and
likewise for θ(R > Rmin).

3.1. Sensing with memoryless readout layers 15

The environment model: By assumption, the network is affected by the envi-
ronmental conditions of the ionic solutions surrounding it. The key challenge is to
assume a suitable model for the environment-memristor interaction. There are nu-
merous options, and special care has been given to choosing an appropriate model.
In paper I, based on a careful literature study, it has been argued that it is reason-
able to assume that the rate of the memristance change should depend on the ion-
concentration. Thus, for simulation purposes, it has been assumed that the param-
eter β is environment sensitive. Assuming that the variations of the environmental
signal are small, one can use the standard working point model used in electronics:
β(t) = a + bq(t).

3.1.1 Sensing with one-memristor reservoirs

In paper I, the simplest possible network, with one element, has been trained to
handle a classification problem with two environments. Since the emphasis is on
testing the overall workings of the method, a relatively simple classification problem
has been chosen. The goal is to distinguish between two different environments, a
stable and a varying one. These were represented by a relatively simple signal pair
denoted by q1 and q2 and shown in Fig. 3.1. The figure has been taken from paper I.
Normally, in the supervised learning approach, a class is represented by a group of
similar signals, but we have considered only one signal per class. In such a way it is
possible to have an intuitive understanding how the optimal drive should look like.

As discussed in chapter 2, this classification problem can be represented as an
optimization problem where the goal is to minimize the distances between the clas-
sification performed by the system and the desired classification. The goal is to train
the system, i.e. to find the drive u∗, so that sensing is done as

S[u∗, q1] ≈ Φ[q1] (3.8)
S[u∗, q2] ≈ Φ[q2] (3.9)

where the pattern recognition problem that needs to be learned by the memristor is
given by Φ[q1](t) = 0 and Φ[q2](t) = 1.

The above optimization problem has been solved using genetic algorithms, where
the following fitness function was used as the optimization goal:

SC1[u] = ∑
q

1
δ∗[u, q]

(3.10)

The sum is over environmental conditions. Effectively, the fitness function above,
describes the fact that the goal is to find the smallest possible distances for every
environmental condition. If both distances are small, SC1 is large. In a way, the
fitness function specified above is a measure of the sensing capacity of the system.

A drive signal was found firstly by direct intuitive reasoning. The dynamics of
the memristor element were analyzed and there was a good understanding of how
to choose a drive signal to lead the memristance to a specific direction under one spe-
cific environmental condition. For the two environmental conditions, a drive signal
was identified so that the memristance occupies two different regions under the two
environmental conditions respectively. This is shown in Fig. 3.2 where the output is
shown under the environments q1 and q2 and the found drive signal. The intuitive
reasoning was based on the fact that a drive signal can be found such that the mem-
ristance increases and decreases with the same rate under the stable environment q1

16 Chapter 3. On using reservoir computing for developing sensing applications

FIGURE 3.1: Figure taken from paper I. The environmental condi-
tions which are denoted as q1 and q2.

q=q1

q=q2

FIGURE 3.2: Figure taken from paper I. The simulated outputs of the
one-memristor network under the intuitively found drive signal and

the environmental conditions q1, q2.

resulting in stable memristance around the initial value. Additionally, for the same
drive signal, under the environmental condition q2, the memristance increased with
a larger rate than decreased. This resulted in a constantly increasing memristance.
Therefore, the memristance occupied different regions under the conditions q1 and
q2.

This intuitive solution was found to be in a good agreement with the drive ob-
tained by running the genetic algorithm. The output for this drive signal and each
of the environmental conditions q1 and q2 is shown in Fig. 3.3. Under the condition
q1 and the optimized drive signal, the dynamics were such so as the memristance
decreases on average. However, under the condition q2 and the drive signal u∗, the
memristance increased on average. Interestingly, under the optimized drive the out-
put is driven faster to the target values Φ[q1](t) and Φ[q2](t) than the output for the
intuitive drive (Fig. 3.2). However, there is a larger variance around the target values
with the optimised drive than the intuitive drive.

There are mainly two major results by finding a drive signal with both ways.

3.1. Sensing with memoryless readout layers 17

q=q1

q=q2

FIGURE 3.3: Figure taken from paper I. The simulated outputs of the
one-memristor network under the optimum drive signal (from the

genetic algorithm) and the environmental conditions q1 and q2.

Firstly, the synchronization between the drive signal and the environmental con-
ditions is important so that memristance can be driven to different regions under
different environmental conditions. The phase space separability idea is illustrated
nicely in Figs. 3.2 and 3.3. However, the space separability deteriorates by a slight
loss of synchronisation. This is shown in paper I by implementing numerical ex-
periments with slightly modified either the optimised drive signal or the signal q2.
Secondly, several numerical simulations were implemented and it was found that
when increasing the amplitude of the drive signal, there was a faster response but
a larger variation around the target Φ[q]. This indicates that there is a trade-off be-
tween time response and variation around the target Φ[q].

3.1.2 Towards collaborative sensing

In paper I, it was found that a one-memristor network can be used for classifying
two environment time-series q1 and q2. This indicates that a many-memristor net-
work, with many different memristors, could be used to separate between different
features of the environmental conditions, and perform a generic classification. This
has been investigated in paper II where the classification task is the same as in paper
I, i.e. the network should distinguish between a varying or a stable environment. To
test how well the system generalizes, a larger number of environmental conditions is
considered. Every environment qi is represented as group of signals qi ≡ {qa

i ; a ∈ Ei}
where Ei is the index set that describes the environment qi.

Simulations were done to investigate a specific idea. One memristor of the net-
work could contribute to the separation based on different features between a con-
stant environment qa

1 and a varying qa
2. Another memristor could contribute on the

separation based on other different features between a constant environment qb
1 and

a varying environment qb
2. So on, other memristors could be used for separating

other different features. For this to be done, all the memristor elements ought to be
connected so that the separation of different features can be distributed among the

18 Chapter 3. On using reservoir computing for developing sensing applications

network elements. In other words, this would require the collaboration between the
elements for which separation tasks they will be assigned.

Assuming that collaboration between memristor elements can be exploited as
advocated, how should the elements be connected into a network for the best pos-
sible effect? In paper II, it has been attempted to answer this very broad question
in three directions. Firstly, it has been investigated how the number of identical
memristor elements and their connectivity patterns affect the sensing capacity of the
network. Secondly, it has been investigated if it is possible to increase the sensing
capacity by increasing the complexity of memristors. The complexity of memris-
tors has been increased by adding heterogeneous time delay feedback mechanisms.
Even though memristors are identical, they are allowed to have a different time de-
lay feedback. Thirdly, it has been investigated if it is possible to increase the sensing
capacity by adding heterogeneous memristors in a network but without a time de-
lay feedback. In practice, there is variability across memristor elements. [26, 27]
This means that in practice it is almost impossible to build two identical memristors.
Therefore, in this direction, it is investigated whether memristor variability can be
exploited for sensing.

To investigate network structures in these three directions, it is firstly needed to
address the big questions of paper II:

• How can one quantify the sensing capacity of the reservoir without consider-
ing the readout layer? An equivalent question is, how much information about
the environment can be stored in the state of the reservoir?

• Is the sensing capacity necessarily favored by just increasing the number of
memristor elements?

• Which connectivity patterns are favorable for a larger sensing capacity? In
particular, can delay feedback mechanisms be used with an advantage?

The time series of the environmental conditions (the training data) are shown in
Fig. 3.4. These signals will be called the training data since the drive signal has been
optimized for those conditions. The training data are labeled with their correspond-
ing class and therefore finding the optimum drive signal is a supervised learning
task. In order to test whether the optimum network can be generally used for clas-
sifying stable and varying environmental conditions, a bigger labeled data set was
created, the testing data. The testing data consists of thousand randomly created
conditions accompanied with the label of their corresponding class.

In paper II, a readout layer has not been considered because optimising the read-
out layer should not affect the optimization process, or influence the conclusions.
An attempt has been made to focus exclusively on the sensing capacity of the reser-
voir per se. In papers I and II, the sensing capacity of the network was based on
measuring the interclass separability, i.e. when the network is driven by different
environmental conditions, then the state should be driven to different regions.

One of the questions that was needed to answer in paper II was how to quantify
the sensing capacity of a memristor network without using a predefined readout
layer. In paper II, a measure has been used which is indicative of the state sepa-
ration, the separability index ν. The concept behind the definition of the index ν
is illustrated in that each memristance of the network should be driven on average
to different regions when different environmental conditions are applied. The state
should be linearly separable on average.

3.1. Sensing with memoryless readout layers 19

Class 0: Stable environmental conditions

(10 randomly generated conditions)

Class 1: Varying environmental conditions

(10 randomly generated conditions)

Training data

a b

FIGURE 3.4: Figure taken from paper II. The training data for the two
different classes. a) The training data for Class 0 b) The training data

for class 1.

Mathematically, the ideas discussed above were implemented as follows. The
mean value of the mth resistance of a memristor network under the environmental
condition qa

i is given as:

R̄m[u, qa
i] =

1
T

∫ T

0
dtRm[u, qi

j](t) (3.11)

For a given network with NR memristors and under a drive signal u, the distance
between two environmental conditions belonging to classes i and j, qa

i and qb
j , is

given as:

di,a
j,b =

√√√√ 1
NR

NR

∑
m=1

(
R̄m[u, qa

i]− R̄m[u, qb
j]
)2

(3.12)

Totally, for a given network, a drive signal u and a set of training data with classes
c1, c2, · · · , ck, the index ν is calculated as the geometric mean of all the possible ND

distances di,a
j,b

ν[u; c1, c2, · · · , ck] =

(
k

∏
i=1

k

∏
i′=i+1

Ni

∏
j=1

Ni′

∏
j′=1

di,i′
j,j′

) 1
ND

(3.13)

The structures of the memristor networks were investigated in three directions.
In the first direction, the complexity of the network topology was increased by
adding identical memristors in parallel and in series. Six networks were consid-
ered: N1, N2, · · · , N6 with the number of memristors given by NR = 1, NR = 2, · · · ,
NR = 6 respectively. In the second direction, the complexity of the elements was
increased by introducing the MFB element: a memristor with a time-delay feedback
loops. Time-delay feedback loops were used because the system is expected to gain
additional memory properties. The MFB unit at the time t keeps track of the mem-
ristance of a previous time with a delay τ, R(t − τ), and converts it to a voltage
signal with a linear mapping. The converted voltage is added to the voltage signal
across the memristor element. An example is given in Fig. 5 of paper II which shows
two networks the NFB1 and the NFB2 with 1 and 2 MFB units respectively. In the
network NFB2 an MFB unit is added to the network NFB1: The memristance signal
of NFB1 is converted to voltage and is used to drive the added MFB unit. Similarly,

20 Chapter 3. On using reservoir computing for developing sensing applications

N1 N2 N3 N4 N5 N6

 /!"

training data

test data

FIGURE 3.5: Figure taken from paper II. The optimum separability
index when considering the training data and the measured separa-
bility index on the test data for the different network structures N1,

N2, N3, N4, N5 and N6.

the network NFB3 was considered by adding an MFB unit to NFB2, the network
NFB4 by adding an MFB unit to NFB3. In a similar way, NFB5 and NFB6 networks
were considered. For the networks NFB2, NFB3, · · · , NFB6, the time delays of the
MFB units were also considered as free parameters to be optimized. In the third
direction, heterogeneous memristor elements were added in series and in parallel.
It has been assumed that the parameter β(t) of each memristor depends differently
on the environmental condition q(t):

β(t) = (1 + m0)q(t) + m0 (3.14)

where m0 is assumed to be unique for every memristor element and randomly cho-
sen between 0 and 1. In Fig. 6 of paper II, the networks constructed in the third
direction NSP2, NSP4, NSP6 and NSP8 are shown.

The separability index ν was maximized by training all the memristor networks
with the training data. Additionally, to evaluate the performance of the optimized
networks, the separability index was measured on the test data. Regarding the first
direction, the index ν for training and testing the networks N1, N2, · · · , N6 is shown
in Fig. 3.5. Regarding the second direction, the index ν for training and testing the
networks N1, NFB1, NFB2, · · · , NFB6 is shown in Fig. 3.6. Regarding the third
direction, the index ν for training and testing the networks NSP2, NSP4, NSP6 and
NSP8 is shown in Fig. 3.7.

In the first direction, the separability index did not increase when adding mem-
ristor elements in parallel and in series. With such network structures and by adding
identical memristor elements there is no adequate collaboration between the mem-
ristor elements.

In the second direction, the separability index increased when adding memristor
elements with a time delay feedback. More specifically, as the dimension of the state
increases from (NR = 1 for N1) towards (NR = 4 for NFB4), then, the separability
index on both training and test data increased. This means that elements collaborate

3.2. Sensing with recurrent readout layers 21

N1 NFB1 NFB2 NFB3 NFB4 NFB5 NFB6

 /!"

training data

test data

FIGURE 3.6: Figure taken from paper II. The optimum separability
index when considering the training data and the measured separa-
bility index on the test data for the different network structures N1,

NFB1, NFB2, NFB3, NFB4, NFB5 and NFB6.

when added into the network. Additionally, the index ν did not improve consid-
erably for both the training and the test data when adding MFB units to NFB4.
Therefore, NFB4 can be considered as the network with the minimum amount of
resources for achieving the largest index ν. One can also notice that the index ν on
the testing data is favored by an increased number of MFB units. Especially, the
distance between the index ν on training and testing data tends to be very small
when considering the network NFB6. This happens because when the dimensional-
ity of the state is large, then, there are more chances for the state to occupy different
regions for different environmental conditions (phase space separation).

In the third direction, the separability index for the training data always in-
creased when adding more memristor elements. This means that by increasing the
dimensionality of memristor networks in the third direction, the reservoir could sep-
arate better the environmental conditions of the training data. However, the same
did not happen for test data. The separability index for the test data is almost the
same for both NSP2 and NSP8. This means that a drive signal was found for separat-
ing environmental conditions of the training data but not necessarily of the test data,
a problem which is usually called as over-fitting in machine learning. To overcome
over-fitting, one could train the drive signal on a larger number of environmental
conditions in the training data at the cost of a larger training time.

3.2 Sensing with recurrent readout layers

So far, in the previous section, for some reservoirs, a drive signal has been found
so that the reservoir’s state is driven to different regions of the configuration space
when the reservoir is exposed to different environmental conditions. However, there
might be cases where this is hard to achieve. The state of the reservoir might be
driven to overlapping regions of the configuration space under different environ-
mental conditions. How should one deal with cases when it is impossible to find
a drive signal for achieving a large degree of trajectory separation? Is it possible
to find a drive signal so that information about the environment is encoded in the
shape of trajectory time-series?

22 Chapter 3. On using reservoir computing for developing sensing applications

N1 NSP2 NSP4 NSP6 NSP8

 /!"

training data

test data

Direction 3

FIGURE 3.7: Figure taken from paper II. The optimum separability
index when considering the training data and the measured separa-
bility index on the test data for the different network structures N1,

NSP2, NSP4, NSP6 and NSP8.

sensor
 (!)

"(!)

#[, "](!) Sample

&

Compress

Sentence Readout

Layer

Class of q(t)

FIGURE 3.8: The proposed sensing setup with a recurrent readout
layer.

These questions have been addressed in paper VII where a model of an existing
biosensor, [21], has been considered as a recurrent cell. With this model, it was not
possible to find a drive signal for achieving a large degree of trajectory separation.
In paper VII, a method has been developed for encoding environment related infor-
mation in the history of the state trajectory time-series instead of their instantaneous
values. Then, to decode information about the environment, it is necessary to con-
struct a readout layer with an access to earlier states of the device. Thus one needs
a readout layer with memory. Then the information about the environment being
encoded in the history of the state trajectory time-series can be processed. In this
thesis, readout layers with memory properties are called recurrent readout layers.

3.2.1 Sensing with temporally extended bar codes

In paper VII, a method has been developed for encoding information about ionic
variations in the shapes of the sensor’s state trajectory signals. The purpose has
been to train a drive signal so that the sensor’s state trajectory signals have different
shapes when the sensor is exposed to different environmental conditions.

The sensing setup is shown in Fig. 3.8. The sensor is exposed to a drive signal
u(t) and an environment signal q(t). The sensor produces the state signal I[u, q](t)
as output. Then, the state signal is sampled and compressed by the next unit of the
setup. This unit receives as input the state signal I[u, q](t) and produces a sequence
of characters, a sentence. The readout layer receives this sentence as input and pro-
duces as output the result of environment classification.

The proposed method is demonstrated in both theoretical and experimental terms
by considering an Oxytocin monolayer based impedimetric biosensor for zinc and
copper ions, to be referred to as the OT sensor. The equivalent electronic circuit

3.2. Sensing with recurrent readout layers 23

model for the OT sensor has been published in [21]. The OT sensor-environment
model is obtained because the resistances of the equivalent circuit depend on the
level of zinc and copper ionic concentration. Curves of those dependencies are pro-
vided by Tadi et al. in [21]. To demonstrate the method principles, the exposure
of the OT sensor only to zinc ions has been considered, and a simple task has been
investigated to infer whether the OT sensor is exposed to a stable or a varying zinc
concentration. In paper VII, the equivalent circuit is considered only for small fre-
quencies of the drive signal which is the voltage signal across the OT sensor.

The OT sensor’s state is the current which flows across the OT sensor I[q, u](t).
This sensor has filter properties because the electronic equivalent circuit which de-
scribes the dynamics of the sensor contains constant phase elements. The voltage
across constant phase elements at time t depends on the whole history of the current
which has passed through the element.

One problem with numerically simulating an electronic circuit with such ele-
ments is that the algorithmic complexity is O(n2) with n being the size of the time
grid. In paper III, a method is suggested, tested and evaluated for reducing the algo-
rithmic complexity by one order of magnitude from O(n2) to O(n). This method has
been used in paper VII for implementing numerical simulations of electronic circuits
with the OT sensor. This method is summarised in chapter 5 of this thesis.

The sample and compress unit samples the output I[u, q](t) and compresses it
in a string of characters. One could compare temporally extended signals of the
output I[u, q](t) in order to extract environment related information. However, to
do so, computationally expensive algorithms would be needed such as the cross-
correlation method. To avoid such large computational costs, the output signal
I[u, q](t) is compressed into a string of characters. Then the task of the readout layer
is to classify the environmental condition with specific probabilities.

A hand-drawn example of the sensing setup is shown in Fig. 3.9. The OT sensor
is exposed to an environmental condition of zinc ionic variation q(t) which is not
shown in this figure. This means that the dynamics of the OT sensor depends on
q(t), i.e. the resistances of the equivalent electronic circuit model depend on q(t).
The drive signal u(t) is chosen to be a periodical squared wave pulse, a very natu-
ral choice for this type of a device. Each period consists of five plateaus and each
plateau lasts τ seconds. During each pulse, the current I[q, u](t) relaxes towards
stationary conditions with a relaxation time τ∗. This relaxation time depends on the
resistances of the equivalent circuit which in turn depend on the levels of zinc con-
centration (q(t)). Therefore, the relaxation time varies when the zinc concentration
varies. During each pulse, the sample and compress unit produces a character. In
paper VII, this unit generates a character ’u’ (’d’) if I[u, q](t) increases (decreases)
on average during a pulse. The readout layer reads the sentence and remembers
nc = 3 characters to make a decision. For every three character word, the readout
layer outputs the probability that the environment belongs to class 0 by finding this
word in the readout layer’s database. The database contains the possibility for the
environment to belong to class 0 for every three character word.

In paper VII, the drive signal u(t) and the database of the readout layer are
trained on a set of environment signals. Here, the classification task is similar as
in the previous section, i.e. to classify whether the environment (zinc concentration)
varies or is stable. An advantage of the proposed method is that the training proce-
dure can take place in two phases. In the first phase, the drive signal is trained and
in the second phase the database of the readout layer is trained.

In the first phase, a drive signal is trained by supervised learning so that the

24 Chapter 3. On using reservoir computing for developing sensing applications

 (!)

"[, #](!)
!

!

u u d d u u d d d

c

d

fr

usentence !

Readout

Layer
- !- 0.6 0.1 0.9 0.7 0.6 0.1 0.6 0.9

Readout Layer ($% = 3)&
WORD Probability

of Class 0

uuu 0.2

uud 0.6

udu 0.3

udd 0.1

duu 0.7

dud 0.8

ddu 0.9

ddd 0.6

FIGURE 3.9: A hand-drawn example of the sensing setup with a re-
current readout layer.

setup produces different character sequences under different environmental con-
ditions. The training data consists of signals describing different patterns of ionic
variations. The optimisation problem of finding a drive signal should be formulated
so that the more different sentences from different environmental conditions are, the
better a drive signal is and the larger its fitness is. If sentences coming from different
environmental conditions are very different to each other, then, there are increased
chances that specific words can be found that occur with a high probability only un-
der one specific environmental condition. Such words, are called bar codes in paper
VII.

The fitness of a drive signal can be evaluated by making comparisons between
all the pairs of sentences which occur under different environmental conditions. For
this purpose, a similarity measure, σ[s1, s2] between any two sentences s1 and s2,
is introduced in paper VII to estimate how similar two sentences are. For given
classes of environmental signals, any two sentences associated with any two distinct
classes of environmental conditions should be as different as possible. Likewise,
the sentences associated with the same class should be as similar as possible. The
similarity measure is quantified by using the concept of sequence alignment inspired
by the field of bioinformatics. The well-known Needleman - Wunsch algorithm has
been used, which has been published in [28]. A detailed implementation of this
algorithm is given in paper VII.

In the second phase, the trained drive signal can be used to learn the database of
the readout layer. The sensor is operated with the optimised drive signal and under
many signals of the environmental condition q(t). Then, statistics are implemented
to update the database with the probability of a word to occur under each class.
For example, if the word "udududuuddud" is found to occur 990 times under envi-
ronment signals of class 0 and 10 times under environment signals of class 1, then,
whenever the readout layer receives this word, it would infer that the environment
belongs to class 0 with probability 99%.

Training the drive signal and the readout layer in two phases is advantageous
for two reasons. Firstly, data sets with different sizes can be used for each phase.
In particular, a training data set with a small size can be used in the first phase be-
cause learning the drive signal is computationally expensive: the sensor needs to be

3.2. Sensing with recurrent readout layers 25

operated many times for each signal of the training data set. On the contrary, the
readout layer can be trained with a much larger size of a training data set because
the second phase is less computationally expensive: the sensor needs to be operated
only once for each signal of the training data set. Additionally, training the readout
layer with a much larger data set can improve the statistics of calculating the proba-
bilities in the database. Secondly, training the sensing setup in two phases offers the
flexibility to choose whether to implement each phase either theoretically or exper-
imentally. For example, a drive signal can be learnt in the first phase theoretically
by numerical simulations and the readout layer can be learnt by experiments in the
second phase. Otherwise, both phases could be implemented theoretically or even
both phases could be implemented experimentally.

In paper VII, two combinations have been demonstrated, a theoretical and an ex-
perimental demonstration. In the theoretical demonstration, both phases have been
implemented theoretically. In the experimental demonstration, the first phase has
been implemented theoretically and the second phase experimentally. The second
phase is implemented experimentally by considering a pipette which has been de-
veloped in another work. [29] With this pipette, it is possible to provide pre-defined
zinc concetrations in a sequence programmed with a control software. This pipette
is used in paper VII for the experimental demonstration. For both demonstrations,
two patterns of zinc variations are considered; class 0: stable environment with mi-
nor changes in the zinc concentration; class 1: varying environment with noticeable
changes in zinc concentration.

Theoretical demonstration: In this demonstration, in the first phase 10 environ-
ment signals are considered per class. To solve the optimization of finding the best
drive v∗, the space of periodic square-wave modulated drive signals was sampled
with plateaus of length τ and period 5τ. Both the plateau values and the period
were optimised. It is important here to notice that τ should be smaller than the re-
laxation time of the system which is around 20 seconds. If τ > 20 seconds, then, the
system would be very likely to relax to stationary conditions whatever form the zinc
concentration looks like.

In the second phase, the training set consisted of a much larger number of envi-
ronmental conditions (M = 1000, N = 2). In this step, a table with the occurrences
of all nc = 15 letter words has been built by counting how many times a specific
word occurs when the system is simulated under the optimal drive v∗ and all the
signals of the training set. Those frequencies can be used to calculate the probability
that the sensor is exposed to classes 0 and 1 when a specific word occurs.

The theoretical demonstration in paper VII shows that there are words that oc-
cur frequently, and when they do occur, they occur predominantly under a specific
environment class. The words were clustered in four groups. The first group can be
used to identify class 0 with great fidelity. In this first group, words have been found
which are periodically repeated with a period of five characters. The second group
can be used to identify class 1. In this group, words have been found where this
periodicity is broken. In particular, within 15 characters, the periodicity is disturbed
at least once. The third group illustrates the case where there is roughly an even
distribution, it might be hard to tell, and the last fourth group contains words with
too low frequency that signify nothing.

Remarkably, in paper VII, it is shown that a reservoir with only one sensor can be
taught to “speak” sentences about the ionic environment with a sufficient amount of
structure so that one can distinguish between the zinc variation patterns. As shown
in this work, during some pulses, the signal I[u, q](t) is weak and it is hard to dis-
cern whether it is going up or down, i.e. whether the character "u" or "d" should

26 Chapter 3. On using reservoir computing for developing sensing applications

be assigned. The system can be optimized to encode information about the envi-
ronment in such weak signals. However, only the automated algorithm can discern
such weak signals because it is hard to see by the naked eye.

The experimental demonstration: The first phase was implemented with the
same procedure as in the theoretical demonstration, by numerical simulations, with
some differences because the numerical simulations should mimic the response of
the real device in the laboratory. This is significant for a synergy between first phase
(theory) and second phase (experiment). In the second phase, two experiments were
implemented per environmental conditions, four in total. For every experiment, the
OT sensor was driven by the optimal drive found in the first phase. Experiments of
the second phase were implemented by varying the zinc concentration around the
OT sensor with the multifunctional pipette. [29]

Words with nc = 10 characters have been identified and accompanied with the
number of their occurrences under each class of environment. Based on their occur-
rences they have been divided into three groups. Group 1 consists of all the words
that appear some times under class 0 and do not appear at all under class 1. The
words of group 1 could be used as bar codes of class 0. Group 2 consists of words
which could be used as bar codes of class 1. These words appear most of the times
under class 1 but they do also appear a few times under class 0. In group 3, there
are words that appear almost the same number of times under both classes. Those
words could be hardly used as bar codes of either class.

However, it is worth noting that output currents under environment class 0 and
under environment class 1 were found to have different scales. Therefore, there are
some experimental conditions which were different for two different experiments.
These differences in experimental conditions were not considered in the model used
for the numerical simulations implemented in the first training phase. This finding
makes it clear that to combine numerical simulations in the first training phase with
experiments in the second training phase one needs to have an accurate model of all
the experimental conditions.

27

Chapter 4

On reservoir computing with
memristor networks

The findings from the previous section can be used to generalize, to further develop
methods for temporal processing problems such as time series classification and pre-
diction. So far, in the previous sections, a simple classification problem of sensing
has been disucssed, i.e. to classify whether the environment signal is stable or vary-
ing. The methods are generic, and one can use the same methods outside of the
sensing context. In fact, sometimes it is hard to draw a line between the two. Nat-
urally, the signal q used to describe the environmental condition can be considered
as the input to the classification problem. For example, electrocardiogram signals
could be considered and then the task could be to classify if an electrocardiogram
signal belongs to a healthy or diseased subject. This chapter describes how memris-
tor networks can be used in the traditional machine learning sense.

The memristor’s resistance, memristance, is bounded between a maximum and
a minimum value. The fact that the memristance is bounded is a reason why mem-
ristor is a non-linear element. This is explained in section 4.1.

In section 4.2 a measure of reservoir computing capacity is presented. This mea-
sure has been developed and published in paper V. It can be used to compare differ-
ent reservoirs based on their ability to occupy different regions of the phase space
under different input signals, i.e. to separate inputs. It is tested on memristor net-
works and conclusions are drawn regarding strategies of designing optimal mem-
ristor networks in the reservoir computing context.

In section 4.3, generic methods are presented for improving the computing ca-
pacity of dynamical systems. Those methods have been developed in paper VIII
and have been demonstrated with one memristor element on an electrocardiogram
(ECG) signal classification task.

In section 4.4, it is shown that memristors can be used to build devices for pre-
dictions. In paper VI, a memristor has been trained for predicting at an early stage
whether a patient has the sepsis disease. This method is extended in this thesis to
consider networks of many memristors.

4.1 Memristor as a non-linear element

If one wishes to use memristor elements for sequence classification then it is im-
portant to assure that the memristance approaches the boundaries at least once as
the reservoir evolves in time. This is shown by a hand-drawn example in Fig. 4.1:
the sequence of voltage pulses across a memristor element can be encoded into the
memresistance, provided the resistance has approached the boundaries during the
application of the input signals.

28 Chapter 4. On reservoir computing with memristor networks

In this example, a memristor model is exposed to two sequences of bits "1010"
and "1100" (notice the same amount of 0s and 1s in both strings but with different
order). Those bit sequences are converted into voltage signals V1 and V2 across the
memristor model as it is shown in panels a) and b). In panel a), the parameter β = β1
of the memristor is quite small and the resistance value after applying either of the
input sequences is driven towards the same value R1F = R2F. Therefore, it is impos-
sible to infer which of the two sequences was applied by only reading the resistance
value R1F. Since the parameter β = β1 is quite small, the resistance does not ap-
proach the boundaries for either of the input sequences. Therefore, non-linearity
is never exploited, which implies that with this choice of parameters the system is
rather “dull” from the information processing of view. Non-linearity normally im-
plies “inteligence”.

In contrast to the above case, in panel b), it is shown that the sequence of applied
voltage pulses matters when the memristor has approached its boundaries. In this
example, the parameter β = β2 is assumed much larger and the resistance value
is not the same after applying either of the input sequences (R1F 6= R2F). Since
parameter β is much larger the resistance approaches the boundaries under both
sequences. Therefore, it is possible to encode the sequence into the resistance value:
if one reads a resistance value closer to R1F (R2F) then would infer that the input
sequence is "1010" ("1100").

4.2 Measuring the reservoir’s computing capacity

In paper V, a measure has been developed which can be used to compare different
reservoirs based on their computing capacity. The computing capacity of a reservoir
is defined as the ability of the reservoir to separate any pair of input signals. It
is assumed that for a pair of input signals i1 and i2, the system adopts the states
R[i1](T) and R[i2](T) after being exposed to the input for a time T. It can be claimed
that the larger the distance ||R[i1](T)− R[i2](T)|| between those regions is, the better
the reservoir separates the inputs i1 and i2. The distance ||R[i1](T) − R[i2](T) for
each pair of inputs i1 and i2 is defined as:

||R[i1](T)− R[i2](T)|| =
(

1
NR

m=NR

∑
m=1

(Rm[i1](T)− Rm[i2](T))2

)(1
2)

(4.1)

By considering Np input pairs, Np distances can be calculated for every reservoir
of interest. By doing statistics on those Np distances it is possible to quantify the
ability of a reservoir to separate inputs. In paper V, those distances are used to create
a graph with the cumulative frequency of the distances. A hand-drawn example of
such a graph is given in Fig. 4.2 where the cumulative frequency Φ5 is shown for all
the calculated distances σ5. The minimum distance can be σ5 = 0 and the maximum
distance σ5 = Rmax − Rmin. This graph shows that Φ5i1̇00 % of distances are equal or
smaller than σ5i.

Another hand-drawn example is shown in Fig. 4.3. This example can be used
to explain how the graph of the cumulative frequency Φ5 can be used to compare
different reservoirs. There, the graph of the cumulative frequency Φ5 is shown for
three different reservoirs and is generated by the same pairs of inputs. "Reservoir
1" performs worse than the other reservoirs: many pairs of inputs have not been
separated at all with σ5 = 0. "Reservoir 2" performs better than "Reservoir 1": A
less number of input pairs has been separated with zero distance and most pairs

4.2. Measuring the reservoir’s computing capacity 29

FIGURE 4.1: A hand-drawn example of the memristance behavior
under two different cases and Vthr = 0. In panel a), the memristor

model has a parameter β = β1 and in panel b), β = β2 >> β1.

0 !"# $!%&

'()*(+

*(
0

1

*(%

'(%

FIGURE 4.2: A hand-drawn example. On the vertical axis the cumu-
lative frequency Φ5 of all the distances σ5 in the horizontal axis. It is

shown that Φ5i · 100 % of distances are equal or smaller than σ5i.

30 Chapter 4. On reservoir computing with memristor networks

0 !"# $!%&

'()*(+

*(
0

1
Reservoir 1

Reservoir 2

Reservoir 3

FIGURE 4.3: A hand-drawn example. The cumulative frequency Φ5
with regards to distances σ5 for three different reservoirs, Reservoir 1,

Reservoir 2 and Reservoir 3.

have been separated with a larger distance. "Reservoir 3" performs better than all
the other reservoirs: Not even one pair of inputs is separated with zero distance and
most pairs are separated with larger distances than "Reservoir 1" and "Reservoir 2".

In paper V, the cumulative frequency has been used to compare six memristor
networks on their ability to separate inputs. Six memristor networks have been con-
sidered which consist of non-identical memristors. Five of the networks have the
same structure as the networks N1, NSP2, NSP4, NSP6 and NSP8 which have been
considered in paper II. Those networks are called in paper V as "Network 1", "Net-
work 2", "Network 3", "Network 4" and "Network 5" respectively. The sixth network
is randomly generated with 16 memristors and random connections between them.
This network is called as "Network 6".

The cumulative frequency of those networks for 1000 pairs of inputs is shown in
Fig. 4.4, which is a figure taken from paper V. Panel (a) depicts a broader range of
the distances. Panel (b) emphasizes the important region for distances close to zero.
Thus of the two, panel (b) is the most important one. From the separability point of
view, it seems that Network 5 performs best (the black full line is the lowest of all
curves), followed by the second best, Network 4. Interestingly, Networks 6 and 3 are
very close in their power to separate inputs, though they consist of vastly different
number of memristors. This shows that the size of memristors does not necessarily
matter for this choice of networks. Network 6 is the largest of all, but still does not
offer the best performance. The best performing Network 5 is not as big as Network
6 but easily outperforms it.

Network 5 and Network 6 have different structures and that might be the main
reason of their different power on separating inputs. Network 5 is constructed in
a way that all the memristors are exposed to a variety of voltage differences. Each
memristor in the network is roughly exposed to a different voltage range of the drive
u(t) depending on its position in the network. Why is this so? The memristor net-
work is essentially a voltage divider.

Due to the structure of Network 6, almost all the memristors are likely to be
exposed to similar scales of the input voltage difference, and further typical voltage
differences they experience are rather small. Therefore, almost all the memristors in
Network 6 are expected to have a relatively small response to the input signal and
not to separate inputs at a large extent.

The results in paper V agree with the results obtained in paper II regarding the
computational power of Network 2, Network 3, Network 4 and Network 5 (which
have the same structure as NSP2, NSP4, NSP6 and NSP8 respectively of paper

4.2. Measuring the reservoir’s computing capacity 31

FIGURE 4.4: Figure taken from paper V. The cumulative frequency of
the six considered networks in a) the whole range of distances and b)

in the range of low distances.

32 Chapter 4. On reservoir computing with memristor networks

II). In paper II, the largest separability index on the training data was found for
NSP8. Similarly, in paper V, network 5 was found with the best power to separate
inputs. Similar conclusions are drawn for the other networks. The network NSP6
fitted better on the training data than NSP4 in paper II. Similarly, Network 4 was
found to separate better inputs than Network 3. Therefore, both papers agree that
input separation is favored by adding memristors in series and parallel, direction 3
in paper II.

However, there are some drawbacks regarding direction 3 in paper II. To begin
with, the algorithmic complexity of simulating electronic circuits is worse than lin-
ear with regards to the number of nodes in the circuit. Therefore, by increasing the
number of elements in this direction, the execution time of numerical simulations is
not linear in the number of elements. It is supra-linear in the number of elements.
However, this only holds for software models. This would be of no concern if mem-
ristor networks were operated as pieces of hardware. Additionally, by increasing
further the number of elements and considering networks with 10, 12, · · · memris-
tors, some memristors would be exposed to a limited range of typically small volt-
age differences and would not be responsive at all (the voltage divider property).
The only way to increase the number of memristor elements without memristors
being exposed to smaller voltage scales is to add new memristors in a circuit by
using parallel connections. Increasing the number of memristors in such a way is
studied in the section 4.4 of this thesis. However, an infinite number of memristors
connected in parallel is not feasible either in hardware implementations because cir-
cuits with many resistances in parallel would require powerful voltage sources that
could pump very large currents through the circuit. Therefore, one should try to
find memristor network structures with maximum input separation but with the
minimum amount of memristor elements.

4.3 Improving the computing capacity of dynamical systems

Instead of modifying the internal structure of a dynamical system one can try to
adjust the input that is being fed into the system to achieve optimal separation. In
paper VIII, the findings of the previous papers I and II are further developed for con-
sidering reservoirs with the minimum number of elements. Typical of reservoir com-
puting is to implement a neuromorphic computation by considering a large amount
of interconnected elements. However, in paper VIII, it has been shown that by using
a reservoir with only one memristor, and an optimised drive signal, more than 93%
of electrocardiogram signals can be classified correctly.

Two implementations of the ideas discussed in this thesis are shown in paper
VIII. Firstly, in Implementation 1 the reservoir is stimulated by a drive signal u and
an input signal q. The dynamics of the reservoir is defined by Ṙ(t) = H(R(t), q(t), u(t)).
Secondly, in Implementation 2, the complexity of the system can be increased by
adding a feedback, Ṙ(t) = H(R(t), q(t), u(t) + uR(t)), where the feedback signal
uR(t) is a function of the reservoir state uR(t) = h(R(t)). Note that H is considered
fixed, and only once H is given, one chooses the appropriate implementation.

To find an optimal drive signal u, the same training procedure as the one used in
paper VII is considered, a genetic algorithm optimisation. The system is trained on
a set of data. The ability of the system to generalise is examined by using a separate
set of test data.

In paper VIII, the training procedure consists of two phases. Firstly, the drive
signal and the feedback (if used) are trained without considering the readout layer.

4.3. Improving the computing capacity of dynamical systems 33

In this phase, the goal is to find the optimal drive signal and the feedback function
(if used) that achieves the maximal trajectory separability. The separability index ν
has been used to measure trajectory separability. Secondly, only the readout layer
is optimised, by keeping the drive signal and the feedback function found from the
first phase.

Herein, it is important to notice that the readout layer implementation used in
paper VIII differs somewhat from the central reservoir computing dogma. In reser-
voir computing, the readout layer should be memory-less. However, in paper VIII,
the readout layer averages the memristance values over a time interval. Inference
is done by a linear combination of the average memristance values instead. The
average memristance values are provided to the readout layer because the separa-
bility index ν accounts for the average memristance values. Therefore, maximising
the separability index ν indicates the maximisation between the average values of
memristances. When compared to the classical reservoir computing readout layer,
the computational cost of implementing such a unit is marginal.

Two options of how the input signal q(t) interacts with the reservoir are con-
sidered. In option 1, the input signal influences the β parameter of the memristor
model similarly to the assumptions made in papers I and II when memristor net-
works were considered for sensing. In option 2, it is assumed that the input signal
acts as an external voltage source. In this option, the parameter β of the memristor is
kept fixed. These two options (Options 1 and 2) along with the two implementations
(Implementations 1 and 2) result in the four models I1O1, I2O1, I1O2 and I2O2.

The performance of those four models has been compared with a set of simpler
models in which neither a drive signal nor a feedback function are optimised. Those
simpler models reveal a “raw” intelligence of just a memristor reservoir. Those mod-
els are used to answer the question: what would be the computing capacity of a
single memristor reservoir without training any drive signal or feedback function.

The models have been trained and tested on a labelled data set of electrocar-
diogram (ECG) signals. A binary classification problem has been investigated. The
strategy of using the single memristor for ECG signal classification is simple to de-
scribe: the memristance ought to be driven towards Rmin or Rmax depending on
whether the input signal belongs to either of the two classes. If this can be achieved,
classification can be performed by simply checking whether the average memris-
tance value exceeds a pre-defined threshold.

In the training procedure, 40 signals from each class have been used. The ability
of the trained models to generalise has been validated on a separate set of test data
where 740 signals have been used from each class. The quality of recognition is
described in terms of the success rate being defined by the percentage of correct
signal classifications of the test data set. In paper VIII, the models have been tested
on the worst case when few training examples are available. The set of test data has
been considered to be much larger than the set of training data (740 >> 40). It has
been shown that reservoir computing performs relatively well with a few training
examples [30, 31] and this is also investigated in paper VIII. Reservoir computing
can extract general features from the training data set because a small number of
parameters needs to be learnt.

The downloaded ECG signals, which are used in paper VIII, are all synchronized
according to the QRS peak. The top of the QRS peak is a natural time reference for
all ECG signals. The models are also trained with non-synchronised signals. This is
a harder since the phase of ECG is unknown to the trained models. For this purpose,
the signals have been randomly shifted in time so that they are all non-synchronised

34 Chapter 4. On reservoir computing with memristor networks

to each other. Thus the models are tested on two different major cases, when the
ECG signals are aligned and when the signals are asynchronous.

Additionally, all the ECG signals have been converted with linear mappings into
signals of the memristor’s β parameter in the case of option 1 and into voltage source
signals in the case of option 2. Those linear mapping are called in this thesis as the
input layer. One could argue that training the input layer could be important for
improving the performance of the models. This argument can be based on the hand-
drawn example of the section 4.1 which shows that it is important that the memris-
tance approaches the boundaries during the application of input signals. Modifying
the input layer would result in a modified way that the memristance approaches the
boundaries and therefore a different non-linear functionality of the memristor ele-
ment. In paper VIII, the additional computing capacity by training the input layer is
shown in the results section. Firstly, the input layer has been kept fixed. Secondly,
the input layer has been trained additionally to the drive signal and the feedback
function.

4.3.1 Fixed input layer

The maximum separability index in the first phase of the training procedure and the
percentage of correct classifications is shown in Table 2 of paper VIII for both aligned
and asynchronous ECG signals.

For the aligned signals, it was found that:

• A larger separability index ν was obtained for the models with a feedback
mechanism (I2O1 and I2O2) than the ones without feedback (I1O1 and I1O2).
The lowest separability indexes were obtained for the models I0O1 and I0O2
where neither a drive nor a feedback were optimised.

• All the success rates with optimised input features (I1O1, I2O1, I1O2 and I2O2)
were found S > 93.2% indicating that these or similar models can be used for
classifying aligned ECG signals.

• The success rates were smaller for the models with an additionally optimised
feedback than the models with just an optimised drive signal. This indicates
over-fitting. Training of an additional parameter (feedback) improved training
procedure but failed to improve testing. The additional parameter was too
powerful so that models fit too much on details of the training data which are
not generally met on the test data.

• The success rates for models with just a drive signal (I1O1 and I1O2) were
found larger than the models without any drive signal (I0O1 and I002). In
particular, by training a drive signal, the success rates improved from 87.2%
to 97.9% and from 51.9% to 97.8%. Therefore, training a drive signal resulted
to exceptional success rates which could not be achieved by just using one
memristor element.

• Additionally, for the model I1O2, even though the training process resulted in
a very low separability index, the success rate was large (97.8%). This hap-
pened because it was still possible to construct a readout layer which classifies
most of the input signals correctly. By inspecting closer the memristance over
time, we saw that although the instantaneous memristance R(t) was driven to
overlapping regions, the average value of the state was separable. This is one
of the advantages of using a readout layer which averages the state over time.

4.4. Prediction models with memristor networks 35

For the asynchronous signals it was found that:

• The separability indexes ν and the success rates were found smaller for each
model than when considering aligned signals. This was expected since now
the models should be smarter and infer correctly independently of the input
signal phase.

• Including and optimising a feedback mechanism (models I2O1 and I2O2) im-
proved both the training procedure (separability index) and the success rate on
the test data. Therefore, there was no over-fitting by using the asynchronous
signals.

4.3.2 Optimised input layer

The maximum separability index in the first phase of the training procedure and the
percentage of correct classifications is shown in table 3 of paper VIII.

The comparison between the results of a fixed and an optimised input layer has
shown that:

• The best success rates were found when the input layer was optimised. For the
aligned signals, it was found 98.6% and for the asynchronous signals 93.1%.

• Over-fitting was noticed since the additional training of the input layer re-
sulted in larger separability indices but smaller success rates.

• By only training an input layer resulted in success rates smaller than 90%. The
only way to achieve S > 90% was to provide an additional input feature such
as a drive signal or a drive signal with a feedback function.

4.4 Prediction models with memristor networks

In paper VI, a setup with one memristor element has been suggested for predict-
ing, at an early stage, whether a patient in intensive care unit (ICU) has the sep-
sis or not. For this purpose, data sets of clinical variables from ICU patients have
been downloaded from the 2019 Physionet Computing in Cardiology Challenge
(https://physionet.org/content/challenge-2019/1.0.0/). [32] The data consist of
clinical variable values from 45643 ICU patients. An example of the data for each
patient is shown in Fig. 4.5. There are 41 columns. From the 1st until the 39th col-
umn the values of clinical variables are given for each hour of staying in ICU. These
hours are symbolised as X in Fig. 4.5. In the 40th column, the length of stay in ICU
(hours) is given and in the 41st column the label of the data is given, a boolean value
which is 1 if the patient was clinically diagnosed with sepsis six hours afterwards
and 0 otherwise.

The data have been preprocessed with a standard score normalization. The mean
value µj and standard deviation σj of each clinical variable have been calculated.
Then, each clinical variable xj is modified according to:

xj − µj

σj
(4.2)

In paper VI, an inference unit is used as a basic component. The setup of the
inference unit is shown in Fig. 4.6 which is taken from paper VI. In this figure, the
graphs are hand-drawn examples to illustrate the main ideas. The symbols xj(t)

36 Chapter 4. On reservoir computing with memristor networks

1 2 3 39 40 41

HR O2Sat Temp HAT ICULOS Label

X X X X 1 X

X X X X 2 X

X X X X 3 X

X X X ! ! !

X X X X "#$% X

Medical parameter:

Index:

Values of medical

parameters:

FIGURE 4.5: Data for a patient in ICU. In the first row, the indices of
all the medical parameters are provided. In the second row, the names
of medical parameters are provided, where HR stands for heart rate,
O2sat for blood oxygen saturation levels, Temp for temperature, HAT
for hours between hospital admittance and ICU admittance, ICULOS
for length of stay in ICU and label is a boolean value with 1 if the
patient was clinically diagnosed with sepsis six hours afterwards and

0 otherwise.

 !("): HR

 #("): O2Sat

 $("): Temp

 $%("): HAT

&

input: clinical variables input transformation

T'![!](")

T'#[#](")

T'$[$](")

T'$%[$%](")":hours in ICU

*

+,

&

-

.

39 .

+,: virtual time

Voltage time-series

39 .

- -

/

0

*

1

+,

- -

1
1,24

1,56

17
sepsis region

non-sepsis region

Electronic circuit model
Memristance time-series

-156

" = 8 " = :

" = 8 " = :" = ;

FIGURE 4.6: Figure taken from paper VI. The setup of predicting
early with one memristor whether a patient has the sepsis.

4.4. Prediction models with memristor networks 37

with j = 1, · · · 39 denote the 39 measured clinical variables. Data retrieved from
20643 (25000) patients have been used as a training (validation) data set.

The voltage signal across the memristor element is generated by transforming
the clinical variables. A different transformation function TRj[xj] has been used for
each input xj to produce a voltage pulse with a certain duration. By this way, 39
pulses would be created every hour of stay in ICU (as it is shown in Fig. 4.6). If
the clinical variable xj(t) is not available at time t (NaN), then the transformation
function returns zero i.e a decision cannot be made whether the memristance value
should move towards the sepsis region or not. An example of transformation type
could be the following:

TRk
j [xj](t) = wjb + wj0 xj(t) + wj1 xj(t− 1) + · · ·

+ wjk xj(t− k)
(4.3)

With such a transformation function, a linear correlation between chronically pre-
vious values of the same input can be accounted since xj(t), xj(t − dt), · · · are
included. It is obvious that this correlation would include first, second, third etc.
derivatives of the input xj. The question is if non-linear correlations between the
inputs x1(t), x2(t), · · · x39(t) are accounted. These correlations are possible to be
accounted if the voltage signal is produced as many pulses per hour because the
memristor is a non-linear element.

However, such a non-linear correlation would not be accounted if the voltage
signal was produced as one pulse per hour of stay in ICU. An example of such trans-
formation for producing one pulse Vpul(t) per hour t would be:

Vpul(t) = w0 + w1 x1(t) + w2 x2(t) + · · ·w39 x39(t) (4.4)

It is obvious that the above transformation function would account for only linear
correlations between the inputs x1(t), x2(t), · · · , x39(t) of the same hour t.

The produced voltage signal V(t) is applied across a memristor element. The
simulation of the memristance results in a memristance time-series R(t). The mem-
ristance is always initialized at the value Rin at time t = 0. Then, the memristance
changes depending on the applied voltage signal. The purpose of this setup is to
encode the early diagnosis of sepsis in the memristance: For the specific example of
Fig. 4.6, if the memristance is larger than the value Rb, then the unit predicts sepsis.
Initially, when R = Rin it is assumed that the probability of a patient to have the
sepsis is 0 since the model has not been exposed to any input yet. Therefore, the
sepsis region cannot involve Rin. Instead, the sepsis region should involve Rmax or
Rmin. If the sepsis region involves Rmax (Rmin) then Rb > Rin (Rb < Rin).

The goal is to train the transformation functions used and the parameters Rb of
the models involved. To grade the fitness of a choice of such parameters, a utility
score [32] has been used. This score is 0.0 if a system predicts always non-sepsis
and 1.0 if the system predicts correctly all the cases of sepsis and non-sepsis. This
utility score is additionally explained in paper VI and further details of calculating
this score can be found in [32].

4.4.1 Predicting with one memristor

Firstly, one inference unit was trained with a procedure explained in paper VI. In this
procedure, a genetic algorithm optimization has been used by using both the train-
ing and validation data sets. The goal has been to train the transformation functions

38 Chapter 4. On reservoir computing with memristor networks

and the parameter Rb. By using transformation functions TR0
j , the best utility scores

during the training procedure were found as 0.3140 (0.2411) for the training (valida-
tion) data. The utility score 0.3140 corresponds to around 80% correct predictions of
non-sepsis labels and 58% correct predictions of sepsis labels.

Many inference units I1, I2, · · · , IN , different to each other, can be also combined
to improve the prediction accuracy. In paper VI, inference units have been used in
parallel to improve the prediction accuracy. If each inference unit Ii is trusted with
a probability tri, where ∑N

i=1 tri = 1 and predicts sepsis with a probability Pri, then,
the whole system would predict sepsis with a probability:

PrN(R) =
N

∑
i=1

Tri Pri(R) (4.5)

In paper VI, an algorithm has been suggested for training sequentially the in-
ference units I1, I2, · · · , IN . In paper VI, up to three inference units were trained
sequentially and the best utility scores were obtained 0.3241 (0.2501) for the training
(validation) data set.

In paper VI, it has been shown that by additionally training a second and third
model improved the utility scores on both training and validation data sets. A ques-
tion is whether training additional models always improves the utility scores. In
particular, would the utility scores always increase given that all the models I3, I4,
· · · IN consisted of the same transformation function? Moreover, which transforma-
tion function would be suitable? Another question is if the usage of more complex
transformation functions, such as neural networks, could improve the utility scores.
All these questions are to be answered in future work.

The best algorithm of paper VI was submitted on the 2019 Physionet Computing
in Cardiology Challenge (https://physionet.org/content/challenge-2019/1.0.0/) [32]
and received a utility score 0.200 on an unknown separate data set. This utility score
corresponds to around 80% correct predictions of non-sepsis labels and 44% of cor-
rect predictions of sepsis labels. It is remarkable that this result has been obtained
by just training a few hundred parameters. However, the best submission in this
challenge obtained a utility score 0.364 which is far larger than 0.200.

Therefore, the suggested solutions of paper VI under-fit the training data set.
Under-fitting the data set means that the suggested models are not complex enough
to model non-linear details of the data. The question here is how should one use
many memristors to model even better details of the data, i.e. to over-fit the data.
To over-fit the data, a reservoir computing paradigm is suggested with memristors
connected in parallel.

4.4.2 Predicting with many memristors

This section shows that networks consisting of non identical memristors connected
in parallel [14] can be used for over-fitting the training data and achieve utility scores
comparable to the largest ones obtained in the 2019 Physionet Computing in Cardi-
ology Challenge.

The key idea is to exploit heterogeneity. Heterogeneous transformation functions
may be used to develop different voltage signals. Then, the heterogeneous voltage
signals may be applied across heterogeneous memristor elements. If the memristor
elements operate by approaching their boundaries then each memristor introduces
a non-linearity necessary for "intelligence". We ensured this happenen, in two ways:

4.4. Prediction models with memristor networks 39

b)

a)

PM

PM

FIGURE 4.7: The prediction setup by using memristors connected in
parallel. a) A PM is defined as a system with a vector input and out-
put a prediction. b) The structure of the PM consists of transformation
functions TFi which produce voltage signals Vi, memristor models Ri

and a linear readout layer which outputs the prediction at time t.

Firstly, a different voltage signal has been generated across each memristor. Sec-
ondly, the memristors are heterogeneous and hence the boundaries are approached
in many different ways for each memristor. Finally, by only training a linear readout
layer it is possible to extract important information from the reservoir for accurate
predictions.

The prediction setup with memristors connected in parallel is shown in Fig. 4.7.
In panel a), the generic setup is shown where a PM is herein defined as a model
which receives as input at hour t the history of clinical variables x1(0), x2(0), · · · ,
x40(0), x1(1), x2(1), · · · , x40(1), · · · , x1(t), x2(t), · · · , x40(t) and produces a prediction
as whether the patient is going to have the sepsis within the next 6 hours.

Note that data have been exploited differently in this section than in the previous
one. In this section the fortieth clinical variable, length of stay in ICU, has been also
used as input. In paper VI, this variable was assumed to be incorporated in the
internal dynamics of the system. However, during the attendance of the conference
"Computing in Cardiology 2019", it was pointed out by many attendees that length
of stay in ICU is an important parameter and needs to be used as input. Additionally,
the missing values "NaN" have been treated differently in this section of the thesis.
Forward filling has been used to fill the missing values. If a clinical variable value is
missing at hour t then the latest existing value is used, e.g. at time t− 1 or at time
t− 2 etc.

In Fig. 4.7 b), one can see details of how the PM is constructed. At time t, the

40 Chapter 4. On reservoir computing with memristor networks

input vector is transformed into the voltage signals V1, V2, · · · VNR with the trans-
forming functions TF1, TF2, . . . , TFNR respectively. In this section, a transforming
function TFi converts an input vector x1(t), x2(t), · · · , xNR(t) into a voltage signal
Vi with sequence of pulses w1i x1(t) + b1i, w2i x2(t) + b2i, · · · , w40i x40(t) + b40i. The
parameters w and b are randomly generated for each transforming function with
values between −1.0 and +1.0.

The memristors are randomly generated too by a random choice of the parame-
ters that describe the memristor model: Vthr, α, β and initial memristance value Rin.
Here, it is important to notice that relatively large values of the parameters α and β
have been generated to assure that memristors approach their boundaries. During
each hour t, the average memristances of each memristor R̄1(t), R̄2(t), · · · , R̄NR(t)
are provided into the linear readout layer. The readout layer is used to calculate the
following quantity:

lc(t) = wL
0 +

m=NR

∑
m=1

wL
m R̄m(t) (4.6)

If lc(t) > 0.5, then the prediction is sepsis, otherwise, the prediction is non sepsis.
Forward propagation of the PM: In this paragraph, it is explained how the PM

is operated when data from a patient with index ind is imported as input: xind
1 (t),

xind
2 (t), · · · , xind

40 (t) for t = 0, 1, 2, · · · . The corresponding label of this input vector
is denoted as xind

41 (t) and has value either 0 or 1. Before, the operation, the mem-
ristances are initiated at the initial value of each memristor Rin. Initially, the PM is
operated at t = 0. The voltage signals across the memristors are produced through
the transformation functions and are applied. This results in updating the memris-
tance and recording the mean memristance values during t = 0, R̄ind

1 (0), R̄ind
2 (0),

· · · , R̄ind
NR

(0). Afterwards, the PM is operated at t = 1, the voltage signals for t = 1
across the memristors are produced through the transformations functions and are
applied. The memristances are updated and the new values are recorded: R̄ind

1 (1),
R̄ind

2 (1), · · · , R̄ind
NR

(1). This procedure is repeated at every hour t and all the values
R̄ind

1 (t), R̄ind
2 (t), · · · , R̄ind

NR
(t) are recorded. For each hour, the linear readout layer

predicts whether the patient has the sepsis by calculating the quantity:

lc(t, ind) = wL
0 +

m=NR

∑
m=1

wL
m R̄ind

m (t) (4.7)

where if lc(t, ind) > 0.5, then the prediction is sepsis, otherwise, the prediction is
non sepsis.

Training procedure: The parameters wL
0 , wL

1 , wL
2 , · · · , wL

NR
are the only trainable

ones of the PM. The PM is operated only once under each available input and all
the memristance values R̄ind

m are summarised in a state space matrix as it is shown
in Fig. 4.8. The multiplication between the state space matrix and the readout layer
weights vector should be approximately equal to the labels. For this approximation
to occur, the weights are found by least square error regression.

A problem would occur with least square error regression if the number of 0
labels is different than 1 labels. In particular, in the provided data sets for sepsis
prediction, the number of 0 labels is quite larger than 1 labels. Therefore, solving the
least square error regression would heavily approximate 0 labels than 1 labels.

In this thesis, to approximate with equal importance both 0 and 1 labels, the
elements of the state space and label matrix are modified when the corresponding
label is 1. Assuming that the number of 0 labels is denoted with nr0 and the number

4.4. Prediction models with memristor networks 41

(!"#, $)

% & ' *+ -

(1,0) .+%
%(-) .+&

%(-) ' .+*+
% (-) 1

(1,1) .+%
%(%) .+&

%(%) ' .+*+
% (%) 1

(1, /) / / / / /

(2,0) .+%
&(-) .+&

&(-) ' .+*+
& (-) 1

(2,1) .+%
&(%) .+&

&(%) ' .+*+
& (%) 1

(2, /) / / / / /

(/, /) / / / / /

3

4%
5

4&
5

46
5

/

4*+
5

4-
5

7

1

89:
: (0)

89:
: (1)

/

89:
; (0)

89:
; (1)

/

/

State space matrix
Labels

Readout

Layer

FIGURE 4.8: The state space matrix consists of all the average mem-
ristances R̄ind

m (t) of the memristor m, patient ind and at time t. The
readout layer is a linear readout layer with a vector of all the train-
able parameters wL

m. The state space matrix multiplied with the read-
out layer vector should approximate the labels xi

mnd(t)

of 1 labels is denoted with nr1, then the state space and labels matrix are modified as
follows.

• For each ind and t

– If label xind
41 (t) == 1,

∗ For m = 1 to NR

· Modify R̄ind
m (t) := (nr0

nr1
)

1
2 R̄ind

m (t)

· Modify xind
41 (t) := (nr0

nr1
)

1
2

∗ End-For
∗ Replace element at row (ind, t) and column 0 with (nr0

nr1
)

1
2

– End-If

• End-For

Then, the weights of the readout layer are calculated with least square error regres-
sion by using the modified state space and labels matrices instead.

Training PMs: Many PMs have been trained with variable number of memristor
elements. The training procedure has been implemented for PMs with number of
memristors 40, 80, 120, 180, 260, 350 and 500. The training data set obtained from
20643 has been used.

The utility scores after performing the training procedure on each PM are shown
in Fig. 4.9. When the number of memristors per PM increases, then better utility
scores are obtained. A utility score 0.353 was obtained with 120 memristors per PM.
This utility score is larger than the ones obtained with one inference unit in paper
VI, ≈ 0.314. Therefore, a PM with 120 randomly generated transforming function
and memristors performed better than one inference unit which consists of one op-
timised transforming function and one memristor element. Additionally, with 500

42 Chapter 4. On reservoir computing with memristor networks

(500, 0.430)

(350, 0.403)

(260, 0.396)

(180, 0.366)

(120, 0.353)

(80, 0.303)
(40, 0.302)

FIGURE 4.9: The utility scores after performing the training proce-
dure. The utility scores are shown on the vertical axes and the num-

ber of memristors per PM is shown in the horizontal axes.

memristors per PM, a utility score 0.43 was obtained which is comparable to the
best utility score obtained in the 2019 Physionet Computing in Cardiology Chal-
lenge. The utility score 0.43 corresponds to 77.4% correct predictions of the hours
when there was no sepsis label (true negatives) and 72.1% correct predictions of the
hours when there was sepsis label (true positives). It is remarkable that this was
achieved by training only 501 parameters.

The results in Fig. 4.9 show that training PMs with even larger number of mem-
ristors can contribute to an even better fitting to the training data set. If one wants to
fit even better the training data set, then, PMs with larger than 500 memristors could
be considered. However, one limitation noticed during the numerical simulations
was that the algorithmic complexity of the least square regression was supralinear
in the number of memristor elements. In particular, training the PM with 80 mem-
ristors costed much more than double execution time when training the PM with
40 memristors. Therefore, if one wants to continue in the direction of training PMs
with much larger number of memristors then faster algorithms are required for solv-
ing the regression problem, such as gradient descent optimisations. However, least
square regression always guarantees on finding the best solution while gradient de-
scent optimisation algorithms do not guarantee that [33].

A boosting algorithm: Fitting to the training data set can be further improved
if a boosting algorithm is used. A second PM can be trained to predict correctly
what the first PM has failed to predict. Then, a third PM can be trained to predict
correctly what the other two PMs have failed to predict together. This process can
be continued further.

In this thesis, a system consisting of many PMs is suggested as it is shown in Fig.
4.10. The input vector is supplied to each PM. Each PM updates its internal state,
which are the memristances of their memristors, and returns as output a prediction
as 0 (non sepsis) or 1 (sepsis). Another unit, called "Voting" in the figure, reads all
the predictions and returns an overall prediction. If the majority of PMs’ prediction
is 1 (sepsis), then "Voting" returns 1 (sepsis), otherwise it returns 0 (non sepsis). If
the number of 0 predictions is equal to the number of 1 predictions then the overall
prediction is 0.

4.4. Prediction models with memristor networks 43

PM 1 PM 2 PM !"

Input

#

Prediction 1 Prediction 2 Prediction !"

Voting

Overall prediction

FIGURE 4.10: A system consisting of many PMs.

The training procedure: The PMs are trained sequentially. Firstly, PM 1 is trained
as it has been explained before for the training procedure of one PM. Then each PM is
trained sequentially to correct wrong predictions from the majority of the previously
trained PM. For each PM, training is implemented with least square error regression
but by accounting only the rows of the state space matrix that the overall prediction
can be corrected by training one additional PM. To clarify the latest sentence, the
following examples are given:

• First example: label 0 and predictions of the previously trained PMs 0, 1, 0, 1.
This case is of interest. It is important for PM 5 to output prediction 0 because
if it predicts 1 then the overall prediction would be wrong 1.

• Second example: label 0 and predictions of the previously trained PMs 0, 1, 1,
1. In this case, even if PM 5 predicts 0, then, the overall prediction would be 1.
This case would be considered of no interest because a correction of the overall
prediction is not possible. The key idea behind this strategy is that the least
square regression error should focus on maintaining other correct predictions
or correct others that can be corrected by only one additional PM.

• Third example: label 0 and predictions of the previously trained PMs 0, 0, 0, 1.
This case would be also considered of no interest. Even if PM 5 predicts wrong
1, then the overall prediction would still be correct 0.

This training procedure has been implemented for a sequence of 20 PMs with 500
memristors per PM. The utility scores obtained when training each additional PM
are shown in Fig. 4.11. By training the first PM, the utility score was found 0.430.
This utility score corresponds to 77.4% correct predictions of non-sepsis labels and
72.1% correct predictions of sepsis labels. After training the second PM, the utility
score of the two-PM system was worse 0.342. This happened because a system with
two PMs favors the correct predictions of non-sepsis against the correct predictions
of sepsis. Favoring correct non-sepsis predictions at the cost of correct sepsis pre-
dictions resulted in a decreased utility score: 91.4% correct predictions of non-sepsis
labels against 45.1% correct predictions of sepsis labels. This is reasonable since a

44 Chapter 4. On reservoir computing with memristor networks

FIGURE 4.11: The obtained utility scores are shown on the vertical
axis after training a system with PM. The number of PM per system

is shown in the horizontal axes.

system with two PMs predicts sepsis only if both PMs predict sepsis. As more and
more PMs were sequentially trained, the utility score had an increasing trend and a
utility score 0.592 was obtained with a 20 PM system.

45

Chapter 5

Exploiting algorithms for efficient
transient simulations

This chapter of this thesis summarizes the work done in papers III and IV. There has
been a need to simulate accurately and efficiently several experimental elements.
In this thesis, a generic electronic circuit simulator has been developed for simulat-
ing the transient behavior of electronic circuits with environment sensitive elements.
The ultimate goal was to use the simulator as an optimization tool to identify opti-
mal network designs (e.g. the drive signal and the network parameters). The sim-
ulator has been implemented as an integral part of an automatic genetic algorithm
optimization procedure where many network designs are tested with some stochas-
ticity until the one with a desired functionality is found. Since such a numerical
optimization process involves an extremely large number of simulations, then, each
simulation should be executed in a relatively short time, to make such an optimiza-
tion approach feasible.

While many electronic component models have been imported to the simulator
from the literature, e.g. the widely used models for resistor, memristor, capacitor,
inductor, some components were modelled from scratch. In particular, a lot of effort
has been put into developing efficient simulation algorithms for the constant phase
element (CPE) and the organic electrochemical transistor (OECT). CPEs are models
of electronic circuits that are used in equivalent electronic circuits of elements where
ionic diffusion is involved. The OECTs are special purpose devices used for analyz-
ing ionic solutions. There is a genuine lack of accurate and algorithmically efficient
models for simulating OECT and CPE transient behaviors. Further, for the OECT
element of interest, some models are available, but because of their special-purpose
nature, they have severe limitations and could not be used directly.

In section 5.1, a new method for simulating the transient response of CPEs is
given. In section 5.2, a generic theory of OECT transistors is given which can be
used to develop a model for simulating the transient response of OECTs.

5.1 Transient simulation of electronic circuits with Constant
Phase elements

The problem regarding the transient simulation of electrical circuits with CPEs is
that a repeated numerical evaluation of a computationally expensive convolution
integral is needed, shown in Eq. (5.1). This integral relates the instantaneous voltage
drop Vw(t) across the element, with the current that has passed through it Iw(t′) with
t′ ≤ t. To avoid this problem, various methods have been suggested in the literature.

The standard method is to approximate the CPE element by an equivalent RLC
circuit. [34, 35, 36, 37] These circuits are easier to simulate. For example, there are

46 Chapter 5. Exploiting algorithms for efficient transient simulations

commercial packages available that can be used to simulate them efficiently. How-
ever, these methods are only accurate in a short range of frequencies due to a finite
(often a relatively small) number of resistors, capacitors or inductors. The accuracy
in a wide range of frequencies requires the increase in the number of elements, and
this increase implies a larger algorithmic complexity cost. It has been pointed out in
[37] that the accurate approximation of RLC circuits in a wide range of frequencies
is still an open problem.

Another set of methods focuses on expanding the convolution kernel as an infi-
nite series of special functions. [38, 39] The advantage of these approaches is that if
the series converges fast then only few terms in the series expansion need to be kept.
However, in general it is hard to know how many terms should be kept.

A novel method has been developed for simulating the transient dynamics of
CPEs that is both generic, remarkably efficient, and surprisingly accurate. For sim-
plicity reasons this thesis focuses on a specific type of CPE, the Warburg element.
The Warburg element is one type of CPE where the applied voltage difference Vw at
time instance t, Vw(t), and the current passing through it Iw at time instance t, Iw(t)
have a phase difference equal to 45 degrees. The method for simulating transient
response of the Warburg element can be easily extended to CPEs.

The need for developing the new method emerges from the fact that the calcu-
lation of the voltage across the CPE, Vw(t), requires the calculation of the following
convolution integral [40]:

Vw(t) =
Aw(αw)

Γ(αw)

∫ t

0
(t− u)αw−1 Iw(u) du, αw ∈ [0, 1) (5.1)

with Γ being the usual Gamma function, e.g. Γ(1/2) =
√

π, and Aw(αw) is a device
dependent constant.

Calculating numerically the convolution integral is reasonable for short time in-
tervals. However, a repeated numerical evaluation of the convolution integral can be
very expensive for long times. Problems arise regarding the memory usage and the
computation time because the time instances of the current Iw(t) have to be stored
for a long time interval [0, t]. Additionally, the larger this time interval is, the more
computationally expensive the calculation of this integral becomes. [40] For exam-
ple, assuming a grid of n time points {t0 = 0, t1, · · · , tm, · · · , tn}, the computational
cost of evaluating the convolution integral scales as

O(n2) ∼
n

∑
m=0

O(m) (5.2)

where O(m) is the algorithmic cost of evaluating the integral for a fixed time instance
tm. Paper III suggests a generic method for decreasing the algorithmic complexity
by one order of magnitude.

5.1.1 Updating the convolution integral

For the Warburg element, αw = 1/2 and the voltage is calculated as the following
convolution (’*’ denotes the convolution operation):

Vw(t) =
Aw√

π

1√
t
∗ Iw[t] =

Aw√
π

Φw(t) (5.3)

where Aw ≡ Aw(αw = 1/2).

5.1. Transient simulation of electronic circuits with Constant Phase elements 47

The computational cost of any standard quadrature algorithm for the approxi-
mation of the convolution integral Φw(tn) in a discrete grid of n time-points {t0, t1,
· · · , tm, · · · , tn} scales with the size of the time grid n, where t0 = 0 and the distance
between two successive time-points is given as ∆ti = ti − ti−1:

Φw(tm) ≈
m

∑
j=0

wm
j Iw,j (5.4)

where for further convenience the following notation is used: Iw,j = Iw(tj) and, the
weight wm

j depends on the time-points of the grid tj and tm.
While the computational cost of evaluating Eq. (5.4) at a fixed time instance tm

is O(m), the problem is that a repeated evaluation for many time instances leads to
a quadratic cost O(n2), and here it is assumed that the time grid of the simulation
consists of n time points. To deal with this problem, in paper III, a method has
been developed to calculate the convolution integral at time tm, Φw(tm), by using
the already calculated Φw(tm − dt). To do that, the convolution integral Φw(tm) is
split in two parts:

Φw(tm) = H(tm, tλ) + Ψ0(tm, tλ) (5.5)

where,

H(tm, tλ) =
∫ tm

tλ

Iw(u) du√
t− u

(5.6)

and,

Ψ0(tm, tλ) =
∫ tλ

0

Iw(u) du√
t− u

(5.7)

where H(tm, tλ) is calculated with high precision and Ψ0(tm, tλ) is calculated by a
simple update of the previously calculated Ψ0(tm−1, tλ−1).

The key idea is shown in Fig. 5.1. The One part, Ψ0(tm, tλ), is used to approx-
imate the convolution integral between 0 and tλ and the other part, H(tm, tλ), for
the approximation between tλ and tm. At the next time step tm+1, the convolution
integral is written again a sum of the two parts:

Φw(tm+1) = H(tm+1, tλ+1) + Ψ0(tm+1, tλ+1) (5.8)

Notice here that the successive distances tm − tλ and tm+1 − tλ+1 are approximately
equal. Therefore, the calculation of H(tm, tλ) would require similar algorithmic com-
plexity to the calculation of H(tm+1, tλ+1). However, the calculation of Ψ0(tm+1, tλ+1)
requires larger algorithmic complexity than the calculation of Ψ0(tm, tλ) because
tλ+1 > tλ.

Since the algorithmic complexity of calculating H(tm, tλ) is similar at every time
point tm, we calculate this part with high precision. However, the algorithmic com-
plexity of calculating Ψ0(tm, tλ) increases as tm increases.

According to the developed method in paper III, Ψ0 at the next time point, Ψ0(tm+1,
tλ+1), can be approximated by a simple update of Ψ0 at the previous time point,
Ψ0(tm, tλ). For this purpose, a dynamical system has been suggested with N + 1
equations and a closure function. This dynamical system is shown in Eqs. (50) and
(51) in paper III. The definition of the closure function is given in Eq. (49) in paper

48 Chapter 5. Exploiting algorithms for efficient transient simulations

 ! ! + " !#$ % % + " %#$

&(%, ')*-(%, ')

&(%#$, '#$)*-(%#$, '#$)

1

 % .

1
2

3

FIGURE 5.1: Figure taken from paper III. The concept of calculating
the convolution integral at the time-point tm + ∆tm+1 by using the
previous convolution integral at the time-point tm. The integral Φ(tm)
(Φ(tm + ∆tm+1)) is calculated by convolution between the current
and the curve reaching the time-point tm (tm + ∆tm+1). The integral
Φ(tm + ∆tm+1) is approximated by three different calculations. Re-
gion 1 refers to the tail window calculation by using information from
the previous convolution integral. Regions 2 and 3 refer to analytical
calculation of the convolution integral by linear interpolating the cur-

rent Iw(t).

III:

r(tm+1, tλ) =

∫ tλ

0
Iw(u) du

(tm+1−u)
2·N+3

2∫ tλ

0
Iw(u) du

(tm+1−u)
2·N+1

2

(5.9)

One of the questions of this paper is how to calculate the closure function above. To
calculate it analytically, it has been chosen that the current is constant Iw(u) = Io.

Finally, an algorithm is suggested for performing transient simulations of elec-
tronic circuits with Warburg elements by using the Modified Nodal Analysis (MNA).
The Warburg element is suggested to be used similarly to a Voltage source object
with the MNA. The MNA is widely used in electronic circuit simulators for transient
simulations and therefore the integration of the developed method with electronic
circuit simulators is amenable.

5.1.2 Results

In paper III the designed algorithm was tested on a simple circuit driven by a voltage
source. Different numerical simulations were performed for two different cases of
the voltage source signal: DC and AC signals of different frequencies. The size of
the dynamical system was set for all the simulations as N = 1.

By performing those numerical simulations, the effect of the distance tm− tλ was
investigated on the algorithmic complexity and the error. It was found that there is a
trade-off between the error and the algorithmic complexity. By choosing the distance
tm − tλ one can regulate this trade-off. By increasing the distance tm − tλ, then, the
error decreases at the cost of a larger execution time of the algorithm.

5.1. Transient simulation of electronic circuits with Constant Phase elements 49

*
*

*

-
-

-

>
>

>

<
<

<

k = 100 k = 200 k=500
method

0.5

1.0

1.5

2.0
error(%)

* f0

- 10
3×f0

> 10
6×f0

< 10
9×f0

FIGURE 5.2: Figure taken from paper III. The error(%) when the cir-
cuit was simulated with an AC voltage source as a sinus signal with
amplitude 0.001V and four different cases: with period 1/ f0 = 0.628s,
1/(103 f0), 1/(106 f0) and 1/(109 f0) respectively. The time-step dt
was such that 100 time-points were sampled per sinus cycle. The cir-
cuit was simulated for five cases: k = 30, k = 100, k = 200, k = 500
and k = ∞. The parameter k denotes the number of time-points
which have been used to calculate H(tm, tλ) with high precision. The
error is calculated as the absolute difference between the ideal case
k = ∞ and the every other case k = 30, 100, 200, 500 divided by the
maximum value of the simulation for k = ∞. In the time domain, the
error is oscillating from 0 to a maximum value. The maximum error is
depicted on the vertical axes. The error(%) when k = 30 is not shown
in this figure for resolution reasons. This error was found as 2.54%,

4.17%, 4.69% and 4.71% at the four frequencies respectively.

By comparing our method with a simple RC (resistor-capacitor) circuit, it was
found that the execution time of our method is similar to a Three-RC circuit (with
three capacitors and three resistors). This finding is interesting because one would
expect a much larger execution time with our method since our method is heavily
dependent on the approximation of H(tm, tλ) being computed with high precision.
However, the execution time with RC methods is relatively large due to the larger
number of nodes in the equivalent circuits (6 nodes were used with the Three-RC
circuit and 3 nodes with our method).

A key result is that our method is stable at a large range of frequencies (1Hz−
1GHz) as it is shown in Fig. 5.2. This is a great advantage of our method: The RLC
circuits have equivalent impedance to constant phase elements in a small range of
frequencies while our method is stable in very large range of frequencies. If one
wanted to use an "RC circuit" method for achieving a low error in a larger range
of frequencies, then, one should design an RC circuit with more components and
voltage nodes but the algorithmic complexity of simulating such a circuit would be
heavily increased.

50 Chapter 5. Exploiting algorithms for efficient transient simulations

5.2 Transient simulation of electronic circuits with Organic
Electrochemical Transistors

Transient simulations of electrical circuits with OECTs can be a useful tool for de-
signing efficient environment sensitive networks for biosensor applications. Such
simulations can provide mechanistic understanding of the underlying physical con-
cepts too. For example, they can be used to infer circuit parameters by fitting simu-
lations to experimental data, etc.

In the literature, there have been successful theoretical models which unravel
the underlying principles of OECTs. [41, 42, 43, 44] However, there are limitations
regarding the usage of these models for building simulator primitives that are easily
integrated in electric circuit simulators, e.g. such as SPICE.

For example, Faria et al. [44] have proposed a model for the drain current tran-
sient response. Their model is useful for predicting the transient drain current in a
range of time when the gate voltage input is known in the whole range before the
start of the simulation. However, when connecting OECTs in a network then the gate
voltage cannot be known in the whole range. As an example, the gate voltage of one
OECT might be dependent on the chemical concentrations around other OECTs, and
therefore this gate voltage cannot be known before the simulation. Sideris et al [45]
have also suggested a method for simulating the OECT transient. Their method is
based on polynomial approximations of the drain current.

However, in literature a theoretical model of OECTs has not been found which
is represented mathematically as a recurrent cell. In particular, there is a need for a
model Moect which should estimate the three currents at time t, Ioect(t), (drain, source
and gate current) provided the three currents at time t− dt, Ioect(t− dt) and the three
electrode voltages at time t, Voect(t), and t− dt, Voect(t− dt):

Ioect(t) = Moect (Ioect(t− dt), Voect(t), Voect(t− dt)) (5.10)

In paper IV, such a model has been suggested. This approach is more generic
than the one by Sideris et al, since it is based on a genuine dynamic ordinary differ-
ential equation (ODE) paradigm, and allows for more flexible numerical integration
techniques. For example, with a model Moect it is possible to simulate networks
of OECTs inter-connected to each others or even networks where OECTs are inter-
connected to other electronic elements.

5.2.1 Equations of motion

In paper IV, the equations of motion, which were previously developed by Bernards
and Malliaras [41] have been generalised, and a system of partial differential equa-
tions has been obtained that describes how ionic degrees of freedom are coupled
with the electrical degrees of freedom in the material.

The geometry of both the device and the electrolyte are shown in Fig. 5.3. The
device is a semiconducting substrate with dimensions {L, w, y} and is covered by
ionic solution above. The device volume is divided in vertical slices with infinites-
imal volumes, as shown in Fig. 5.3a. Every infinitesimal volume is described by
using the equivalent circuit model, as shown in Fig. 5.3b. The gate voltage Vg(t)
is applied on the top of the electrolyte. The voltage on the boundary between the
semiconductor and the electrolyte at the position x and time t is denoted as Vch(x, t).

5.2. Transient simulation of electronic circuits with Organic Electrochemical
Transistors

51

w

y

dx

Device

Electrolyte

z

a) dxb)

 !

"#

$%(&)

 !

"#

$%(&)

$'*(+, &)

V(+, &)

$'*(+ - .+, &)

V(+ - .+, &)

 !

"#

$%(&)

$'*(+ / .+, &)

V(+ / .+, &)

0 0
z

y

L

"#

w

z

dx

1
 !
1

w

dx

y

c) d)

FIGURE 5.3: Figure taken from paper IV. a) The geometry of the elec-
trolyte and the device is divided in infinitesimal slices with length dx.
Each slice contains two parts. The volume dx w y occupies the region
in the OECT material. Above this volume, there is a volume of elec-
trolyte dx w z. b) The equivalent circuits of the device and the elec-
trolyte. The material acts as a volume capacitance where Cd is the ca-
pacitance of the device sub-volume. The electrolyte sub-volume has
a resistance Re. Applied voltages are: the gate voltage Vg, Vch(x, t) is
the time-dependent voltage at the boundary between electrolyte and
device at the position x, and V(x, t) is the local voltage in the device
sub-volume. c) The electrolyte is modeled by an equivalent resistance

Re. d) The device is modeled by an equivalent capacitor Cd.

52 Chapter 5. Exploiting algorithms for efficient transient simulations

V(x, t) denotes the voltage inside the electrolyte. This simple model features a resis-
tance Re coupled in series to a capacitor Cd. The resistance describes the flow of ions
through the slice of the electrolyte above the semiconductor (Fig. 5.3c).

After passing the electrolyte, the ions enter into the semiconductor material. It
has been argued that a good model which describes this process is a volume capac-
itance. The capacitance of the piece of material with volume v = ywdx is given by
Cd = cdv where cd is the volume capacitance of the device material (Fig. 5.3d).

In every small volume of the device there is an accumulated charge density
Q(x, t). In the equivalent circuit, this charge density is the charge of the capacitor
Cd. By solving Kirchhoff laws in the equivalent circuits, the following dynamical
equation is derived:

∂Q(x, t)
∂t

= −Q(x, t)
τ

+
1
τ

cd y w [Vg(t)−V(x, t)] (5.11)

with the time constant of the equivalent circuit given by τ = recdzy.
Across the semiconductor material, the Ohm’s law relates the current density

J(x, t) flowing through the semiconductor device and the voltage V(x, t).

J(x, t) = −eµρ(x, t)
∂V(x, t)

∂x
(5.12)

where ρ(x, t) is the local density of charge carriers, e is the charge of the carrier,
and µ is their mobility. The free charge carrier density ρ(x, t) is regulated by the
concentration of ions Q(x, t) that are absorbed in the material: an increase in Q(x, t)
leads to a decrease in ρ(x, t). An approximate relationship between ρ and Q has been
suggested in [41]:

ρ(x, t) = ρ0

(
1− Q(x, t)

Qmax

)
(5.13)

where ρ0 and Qmax are device parameters.
Equations (5.12) and (5.11) have been solved and analyzed by making the as-

sumption that the transient charge in the device Q(x, t) can be approximated by the
charge density at the steady state condition Qst(x, t) times a variable T:

Q(x, t) ≈ T(t)Qst[x, ξ(t)] (5.14)

The variable T denotes how far the system is from the steady state condition. If
T = 1, then the system is at the steady state. Otherwise, the system has less charge
(T < 1) or more charge (T > 1) than in the steady state condition. The externally
controlled electrode voltages: gate Voltage Vg(t), drain voltage Vd and source Volt-
age Vs are collectively denoted as ξ(t). These voltages determine the stationary state
charge density profile. If ξ is altered, the charge density profile Qst(x) changes too,
and to emphasize this we use Qst(x, ξ)

After the straight forward but somewhat tedious algebra, which will not be re-
produced here, the solution of the Eq. (5.12) by using the above assumption results
in an analytical equation for the drain current ID:

ID(t) = fO[T(t), ξ(t)] =

= G

(
1−

Vg − Vd
2

Vp

)
(Vd T)2

T Vd −
[
Vp (1− T)

]
Log

(
1 + T Vg

Vp−T Vg

) (5.15)

5.2. Transient simulation of electronic circuits with Organic Electrochemical
Transistors

53

where G is the conductance of the semiconductor given as G = eµρoW Y
L and Vp is

the pinch-off voltage of the semiconductor.
The analysis of the Eq. (5.11) with the above assumption considering a discrete

time grid with time step ∆t results in the following update rule for the parameter T:

T(t) =
τ

τ + ∆t
Λ(t, ∆t) T(t− ∆t) +

∆t
∆t + τ

Ξ(t) (5.16)

where

Λ(t, ∆t) ≡ 〈Λ(x, t, ∆t)〉x (5.17)
Ξ(t) ≡ 〈Ξ(x, t)〉x (5.18)

with

Λ(x, t, ∆t) =
Qst[x, ξ(t− ∆t)]

Qst[x, ξ(t)]
=

Vg(t− ∆t)−Vst[x, ξ(t− ∆t)]
Vg(t)−Vst[x, ξ(t)]

(5.19)

and

Ξ(x, t) =
Vg(t)−V[x, T(t), ξ(t)]

Vg(t)−Vst[x, ξ(t)]
(5.20)

Herein, due to the fact that it is computationally expensive to calculate the integrals
in Eqs. (5.17) and (5.18), Λ(t, ∆t) and Ξ(t) are calculated by setting x = L

2 in Eqs.
(5.19) and (5.20). It is not set x = 0 or x = L because there are not transient dynamics
at the bounds.

The parameter Ξ(t) indicates how far the transient dynamics is from the steady
state conditions. If V[x, T(t), ξ(t)] = Vst[x, ξ(t)], then, T = 1 and Ξ(t) = 1, other-
wise, Ξ(t) 6= 1 and the update rule has a tendency to move T towards 1.

The parameter Λ(t, ∆t) indicates if the steady state conditions have changed. If
ξ(t − ∆t) = ξ(t), then, Λ(t, ∆t) = 1, otherwise, Λ(t, ∆t) 6= 1. This means that if
Λ(t, ∆t) 6= 1 then Λ(t, ∆t) T(t− dt) 6= T(t− dt) and the update rule is done from a
different point of view.

However, up to here, the contribution of the current coming through the gate,
gate current, has not been considered to contribute to the drain current. In previous
works, it has been assumed that when the steady state conditions change, then a
specific amount of the gate current is driven to the drain and the rest to the source
electrode. This gate current is the reason for spikes observed experimentally in the
drain current. [46, 44] Therefore, the total current through the drain electrode ID,tot
would be calculated by adding a portion of the gate current ∆Ig(t):

ID,tot(t) = ID(t) + α1 ∆Ig(t) (5.21)

where 0 < α1 < 1, while (1− α1) ∆Ig(t) flows into the source electrode. It has been
assumed that the gate current is given by

∆Ig(t) =
Qst,tot(t)−Qst,tot(t− dt)

dt
(5.22)

with the notation Qst,tot(t) ≡ Qst,tot[ξ(t)], where

Qst,tot[ξ(t)] ≡
∫ L

0
dxQst[x, ξ(t)] (5.23)

54 Chapter 5. Exploiting algorithms for efficient transient simulations

4-parameter model

(, !", #, $%)

G

S D

FIGURE 5.4: The OECT four-parameter model suggested in this the-
sis; S, G and D denote the electrode voltage nodes at the source, gate

and drain respectively.

Finally, an algorithm is introduced for the transient simulation of OECT models
connected to an electronic circuit by using the MNA [47]. The key primitive of the
MNA paradigm is the idea of a stamp, as explained in paper III. The stamp of the
OECT element is represented by three voltage dependent current sources: one cur-
rent source at the drain node with the total drain current given by Eq. (5.21), one
current source at the gate node with the current given as −∆Ig(t) in Eq. (5.22) and
one current source at the source node given as −ID + ∆Ig(1− α1).

The four parameters of the model: The OECT model developed in this thesis is
parameterized by the following quantities: the conductance G, the pinch-off voltage
VP, the time constant τ and the parameter α1 as shown in Fig. 5.4.

5.3 Results

An example of fitting the model to experimental data is shown in Fig. 5.5. The exper-
imental drain current was recorded by collaborators in the RECORD-IT project by
using the methods given in [48, 49]. The experimental setup: Vs = 0V, Vd = −0.1V
and the gate voltage was pulsed with a square wave pulse of two levels 0V and 0.3V
with 50% duty cycle. The four parameters of the model have been optimized so as
the simulated total drain current ID,tot fits the experimental data.

As one can see in Fig. 5.5, the simulated total drain current agrees with the
experimental one. The spike behaviour is correctly reproduced, both the onset and
the recovery phases. Additionally, the simulated output relaxes towards the same
steady state condition as the one in the experiment. However, there is a behavior that
cannot be explained by the current model. In the experiment, the upward spikes are
larger than the downward ones. The theoretical model predicts a fully symmetric
behavior. For example, when the gate voltage increases from 0V to 0.3V and when
it decreases from 0.3V to 0V, then, the spike currents should have the same absolute
value according to the analytical equations derived.

We also noticed in numerical simulations, that when the total current converges
towards the steady state solution, then, the variable T converges towards 1. Ad-
ditionally, when the total current decreased towards the steady state current, the
variable T had larger values than one T > 1 and when the total current increased,
then, it was that T < 1. This behavior of T shows that the dynamical system is stable.

5.3. Results 55

 ! , tot(A)

time (s)

FIGURE 5.5: The simulated and the experimental drain current, with
the theoretical parameters fitted to the experimental data. Dashed

line: experimental data; The full line: the theoretical prediction.

In paper IV, a theoretical approach has been developed for simulating the tran-
sients of electrical circuits that contain OECT elements. The dynamical system is
stable since the parameter T always converges to T = 1 when the external voltages
are kept constant. Thus the OECT element always attains the steady state if given
enough time, which is an important consistency check. The developed model is rela-
tively easy to integrate into an arbitrary electric circuit simulator, especially the ones
that use the MNA method.

The model describes nicely the experimental data, apart from predicting sym-
metric spike currents. It is possible that the asymmetric spike currents observed in
the experiment, are a result of the low sampling frequency of the experimental data,
and are in fact symmetric in reality. It would be interesting to test against experimen-
tal data collected with a larger sampling frequency. Further, regarding the relaxation
to the state condition, we speculate that it might be that there are different time de-
cay constants for the two different phases of increasing and decreasing towards the
steady state conditions.

The model that has been developed can be used for reverse engineering of the
OECT operation to understand underlying principles of the OECTs. Additionally,
the fitting of the model to data can be used to investigate the sensitivity of the four
OECT parameters (Fig. 5.4) to environmental conditions. For example, inferring
the dependencies of the model parameters on chemical concentrations is a crucial
task necessary for designing efficient sensors. These can be extracted by fitting the
models to data for different ionic concentrations.

57

Chapter 6

Summary of appended papers

In paper I, the possibility of using environment sensitive memristor networks for ad-
vanced sensing applications has been investigated theoretically. The simplest possi-
ble memristor network has been considered which is a single environment sensitive
memristor unit. The key challenge was to find an external drive signal so that the
memristor’s resistance is driven to two different regions when the memristor is ex-
posed to two different environment signals. Two drive signals were found. The
first drive signal was found by an intuitive analysis and the second drive signal was
found by a genetic algorithm optimisation. For both drive signals, a synchronisation
was found between the drive signals and the environment signals so that resistor’s
memristance was separable. In this paper, it was also shown that if this synchro-
nisation is lost then memristance was not separable anymore. Finally, a trade-off
between response time and phase space separation was shown. When the power of
the drive signal increased, then, the response time increased at the cost of a reduced
phase space separation.

In paper II, a separability index has been used as measure of the phase space sep-
aration. The separability index should be large given that the information embedded
in the environment is highly correlated to the system state. This index has been de-
fined in the context of this thesis without considering a specific readout layer. The
separability index has been computed for a range of memristor networks with an
increasing degree of complexity. The architectural features of memristor networks
were identified which guarantee large phase space separation. The presence of feed-
back loops and increased degree of network heterogeneity were found to have the
most impact on phase space separation.

In paper III, new methods have been developed and tested for performing tran-
sient simulations of electrical circuits that contain constant phase elements (CPEs).
The problem is that the numerical evaluation of a convolution integral describing
the response of a constant phase element is computationally very expensive with al-
gorithmic complexity O(n2) for a grid with n time-points. The developed methods
in paper III reduce the algorithmic complexity by one order of magnitude. Those
objects can be used to integrate a CPE object in a simulator operating with Modified
Nodal Analysis in a broad range of frequencies. This has not been achieved before.
For example by using other methods (RLC equivalent circuits), one should consider
a quite large circuit to operate with equivalent impedance to CPEs in the range of
frequencies 1Hz− 1GHz which requires large execution times.

In paper IV, a dynamical model has been proposed for simulating the transient
current responses of OECT devices. This model is advantageous since it can be sim-
ulated without any prior knowledge of the voltages at the electrodes. It can be used
for transient simulations of electrical circuits consisting of many OECT devices cou-
pled with other elements. It can be also used for reproducing the current behavior of
OECT devices with different geometries: the device geometry of the model has been

58 Chapter 6. Summary of appended papers

fitted to experimental data of a device with different geometry. Additionally, this
model reproduces the spike-and-recovery phase of the experimental OECT drain
currents. However, it cannot reproduce some fine features of the experimental drain
current behavior such as the experimental increasing spikes have larger magnitude
than the experimental decreasing ones. Finally, the provided model is a generic
template with separate modules and each module can be separately treated. As an
example, a different model for the spike and recovery phase can be considered, for
the ionic degrees of freedom or for the charge density distribution. All these can be
easily integrated in future work.

In paper V, a new method has been introduced for comparing reservoirs with
regards to their ability to separate inputs. Numerical experiments have been imple-
mented on a series of memristor networks which have the same structure as some
memristor networks considered in paper II. Both papers agree that input separation
is favored by adding memristors in series and parallel. However, by adding contin-
uously memristor elements in series and parallel is not expected to always increase
the ability to separate inputs. This has been explained in details in the end of sec-
tion 4.2 where it is concluded that other methods are needed to achieve maximum
separation with the minimum number of memristor elements in a network.

In paper VI, a new method for training memristor models to predict sepsis at an
early stage has been suggested. The results show that a single memristor with 79
trainable parameters as an input layer can achieve utility scores ≈ 0.3140 which cor-
respond to approximately 80% true negatives and 58% true positives. This method
is promising because it uses a few number of parameters but cannot be compared
with other deep learning methods where thousand of parameters are trained. There
is certainly underfitting to the training data. This thesis follows with a study on us-
ing memristor networks for overfitting the training data. The methods developed in
paper VI are used to consider systems with heterogeneous memristors connected in
parallel and only a trainable readout layer. The results of this thesis show that 500
memristors connected in parallel can achieve utility scores on the training data set
comparable to other deep learning methods (≈ 0.43 utility score). This utility score
was the maximum achieved on a separate test set in 2019 Physionet Computing in
cardiology Challenge. This is a remarkable result because only 501 parameters have
been trained. Another boosting algorithm has been also suggested in which one sys-
tem can learn to correct the mistakes made by other systems. By using 20 systems
consisting of 500 memristors each an even better overfitting has been obtained with
utility score 0.59. Then, the next step would be to regulate overfitting and achieve
a reasonable bias-variance trade-off. Since few parameters are trained in reservoir
computing, it is expected that overfitting could be easily overcome, e.g. by using a
larger training data set. The method developed in this thesis is generic and can be
applied at other prediction problems or be extended even for regression problems.

In paper VII, a novel idea has been suggested for training chemical sensors to ex-
ecute pattern recognition tasks of temporally extended variations of ionic concentra-
tions. The idea has been demonstrated, both theoretically and experimentally, on a
simple system consisting of only one chemical sensor and on the task of recognising
simple patterns of zinc variations in a liquid. It has been shown that optimizing an
auxiliary drive signal is a powerful resource for improving the sensor performance.
A suitable drive signal was found so that the sensor’s state becomes highly informa-
tive about patterns of ionic variations in the environment of the sensor. It has been
shown that information about ionic variations can be correlated with shapes of state
signals. This idea is combined with a data compression algorithm which converts
signals into strings of characters where each character contains information about

Chapter 6. Summary of appended papers 59

the shape of the signal. The work featured a strong synergy between theoretical and
experimental effort. The optimal drive signal was found through numerical simu-
lations, where response of a theoretical model sensor has been studied under many
conditions. This was the drive used in experiments. In the absence of a theoretical
model, one could envision an experimental drive optimization procedure where a
sensor is investigated under specific conditions in vitro. Once the drive has been
found, one can potentially use it for in vivo applications. By the theoretical demon-
stration in this paper, it was shown that the proposed method works in theory, i.e.
strings of characters were found which occurred with a high probability of one class
of environment. The experimental demonstration points towards the right direction,
but further work is needed to confirm its success.

In paper VIII, a novel classification method has been suggested that can be used
to increase the intelligence of pattern recognition devices. Intelligence that normally
resides in a reservoir can be moved to an external drive signal. This would allow
engineering reservoirs with less complexity but without reducing the computing ca-
pacity of the device. Additionally, the intelligence of an existing system which is
not meant to be modified could be increased. In this paper, it has been shown that
electrocardiogram signals can be classified as either healthy or diseased by a single
memristor element with an optimised drive signal. This system has been trained
with few training examples (80 signals), has been tested with 1480 signals and still
performed very well. One reason for this performance could be the few number of
training parameters, 10 parameters were used to train the drive signal and 2 param-
eters to train a feedback whenever it was used. It has been also shown that train-
ing feedback mechanisms or input layers significantly improved the performance
of the device. Those options would be useful for software implementations since a
few number of parameters need to be trained but would cost in energy resources in
hardware implementations.

In brief, the main findings of this thesis are as follows:

• An optimised drive signal can maximise the correlation between reservoir state
and the environment one wishes to analyse.

• A measure of reservoir computing capacity can be defined without the consid-
eration of a readout layer (sensing goal).

• Connecting heterogeneous elements in a network is necessary for increasing
the network’s computing capacity.

• One memristor can be used to perform classification tasks with the success rate
that matches other state of the art approaches (e.g. deep learning methods).

• A new method has been suggested for simulating electronic circuits with con-
stant phase elements. This algorithm is stable in a broad range of frequencies
(1 Hz - 1 GHz) and costs linear algorithmic complexity with respect to the time
of simulation.

• A generic theory has been proposed for modeling organic electrochemical tran-
sistors transient dynamics. An important practical outcome of this work is a
model object that can be incorporated into any electronic circuit time-domain
simulator.

61

Bibliography

[1] G. E. Moore. “Cramming more components onto integrated circuits (Reprinted
from Electronics, pg 114-117, April 19, 1965)”. In: Proceedings of the Ieee 86.1
(1998), pp. 82–85.

[2] R. Cavin et al. “Emerging Research Architectures”. In: Computer 41.5 (2008),
pp. 33–37.

[3] T. Sienko. Molecular Computing. MIT Press, 2003. ISBN: 9780262194877. URL:
https://books.google.se/books?id=RleBQgAACAAJ.

[4] M. Hiratsuka, T. Aoki, and T. Higuchi. “Enzyme transistor circuits for reaction-
diffusion computing”. In: Ieee Transactions on Circuits and Systems I-Fundamental
Theory and Applications 46.2 (1999), pp. 294–303.

[5] A. Hjelmfelt, E. D. Weinberger, and J. Ross. “Chemical implementation of finite-
state machines”. In: Proceedings of the National Academy of Sciences of the United
States of America 89.1 (1992), pp. 383–387.

[6] Christopher Bennett et al. “On the inverse pattern recognition problem in the
context of the time-series data processing with memristor networks”. In: Ad-
vances in Unconventional Computation. Ed. by Andrew Adamatzky. Vol. Vol 2.
Prototypes and algorithms. Springer, 2016.

[7] Erik Bergh and Zoran Konkoli. “On improving the expressive power of chem-
ical computation”. In: Advances in Unconventional Computation. Ed. by Andrew
Adamatzky. Vol. Vol 2. Prototypes and algorithms. Springer, 2016.

[8] Zoran Konkoli. “On reservoir computing: from mathematical foundations to
unconventional applications”. In: Advances in Unconventional Computation. Ed.
by Andrew Adamatzky. Vol. Vol 1. Theory. Springer, 2016.

[9] Herbert Jaeger. The "echo state" approach to analysing and training recurrent neural
networks. Report GDM Report 148 (contains errors). German national research
center for information technology, 2001.

[10] H. Jaeger and H. Haas. “Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication”. In: Science 304.5667 (2004),
pp. 78–80.

[11] W. Maass, T. Natschlager, and H. Markram. “Real-time computing without
stable states: A new framework for neural computation based on perturba-
tions”. In: Neural Computation 14.11 (2002), pp. 2531–2560.

[12] H. Markram T. Natschläger W. Maass. “The "Liquid Computer": A Novel Strat-
egy for Real-Time Computing on Time Series (Special Issue on Foundations of
Information Processing)”. In: TELEMATIK 8.1 (2002), pp. 39–43.

[13] M. Lukosevicius, H. Jaeger, and B. Schrauwen. “Reservoir Computing Trends”.
In: KI - Könstliche Intelligenz 26.4 (2012), pp. 365–371.

[14] Chao Du et al. “Reservoir computing using dynamic memristors for temporal
information processing”. In: Nature Communications 8.1 (2017), p. 2204. ISSN:
2041-1723. DOI: 10.1038/s41467-017-02337-y.

https://books.google.se/books?id=RleBQgAACAAJ
http://dx.doi.org/10.1038/s41467-017-02337-y

62 BIBLIOGRAPHY

[15] Hamedani Kian et al. “The Novel Applications of Deep Reservoir Comput-
ing in Cyber-Security and Wireless Communication”. In: Intelligent System and
Computing. 2019. DOI: 10 . 5772 / intechopen . 89328. URL: https : / / www .
intechopen . com / online - first / the - novel - applications - of - deep -
reservoir-computing-in-cyber-security-and-wireless-communication.

[16] Alice Zheng and Amanda Casari. Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists. O’Reilly Media, Inc., 2018, p. 218.
ISBN: 1491953241, 9781491953242.

[17] Zoran Konkoli. The state weaving environment-echo tracker (SWEET/RECORD-
IT) sensing setup and algorithm (patent pending). Patent. 2016.

[18] Z. Konkoli. “The sweet algorithm: generic theory of using reservoir comput-
ing for sensing applications”. In: International Journal of Parallel, Emergent and
Distributed Systems (2016).

[19] G. Monte. “Sensor signal preprocessing techniques for analysis and predic-
tion”. In: 2008 34th Annual Conference of IEEE Industrial Electronics, pp. 1788–
1793. ISBN: 1553-572X. DOI: 10.1109/IECON.2008.4758225.

[20] Gouhei Tanaka et al. “Recent advances in physical reservoir computing: A
review”. In: Neural Networks 115 (2019), pp. 100 –123. ISSN: 0893-6080. DOI:
https://doi.org/10.1016/j.neunet.2019.03.005. URL: http://www.
sciencedirect.com/science/article/pii/S0893608019300784.

[21] Kiran Kumar Tadi et al. “Oxytocin-Monolayer-Based Impedimetric Biosensor
for Zinc and Copper Ions”. In: ACS Omega 2.12 (2017), pp. 8770–8778. ISSN:
2470-1343. DOI: 10.1021/acsomega.7b01404. URL: https://doi.org/10.
1021/acsomega.7b01404.

[22] Yong Yu et al. “A Review of Recurrent Neural Networks: LSTM Cells and Net-
work Architectures”. In: Neural Computation 31.7 (2019), pp. 1235–1270. DOI:
10.1162/neco_a_01199%M31113301. URL: https://www.mitpressjournals.
org/doi/abs/10.1162/neco_a_01199.

[23] Gouhei Tanaka et al. “Recent advances in physical reservoir computing: A
review”. In: Neural Networks 115 (2019), pp. 100–123. ISSN: 0893-6080. DOI:
https://doi.org/10.1016/j.neunet.2019.03.005. URL: http://www.
sciencedirect.com/science/article/pii/S0893608019300784.

[24] Zoran Konkoli. “On reservoir computing: from mathematical foundations to
unconventional applications”. In: Advances in Unconventional Computing. Ed.
by Andrew Adamatzky. Vol. 1. Theory. Springer, 2016.

[25] Massimiliano Di Ventra et al. “Circuit elements with memory: memristors,
memcapacitors, and meminductors”. In: Proceedings of the IEEE 97.10 (2009),
pp. 1717 –1724.

[26] S. Smaili and Y. Massoud. “Analytic modeling of memristor variability for
robust memristor systems designs”. In: 2014 IEEE International Symposium on
Circuits and Systems (ISCAS). 2014, pp. 794–797. DOI: 10.1109/ISCAS.2014.
6865255.

[27] R. Naous, M. Al-Shedivat, and K. N. Salama. “Stochasticity Modeling in Mem-
ristors”. In: IEEE Transactions on Nanotechnology 15.1 (2016), pp. 15–28. ISSN:
1536-125X. DOI: 10.1109/TNANO.2015.2493960.

http://dx.doi.org/10.5772/intechopen.89328
https://www.intechopen.com/online-first/the-novel-applications-of-deep-reservoir-computing-in-cyber-security-and-wireless-communication
https://www.intechopen.com/online-first/the-novel-applications-of-deep-reservoir-computing-in-cyber-security-and-wireless-communication
https://www.intechopen.com/online-first/the-novel-applications-of-deep-reservoir-computing-in-cyber-security-and-wireless-communication
http://dx.doi.org/10.1109/IECON.2008.4758225
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.03.005
http://www.sciencedirect.com/science/article/pii/S0893608019300784
http://www.sciencedirect.com/science/article/pii/S0893608019300784
http://dx.doi.org/10.1021/acsomega.7b01404
https://doi.org/10.1021/acsomega.7b01404
https://doi.org/10.1021/acsomega.7b01404
http://dx.doi.org/10.1162/neco_a_01199 %M 31113301
https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01199
https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01199
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.03.005
http://www.sciencedirect.com/science/article/pii/S0893608019300784
http://www.sciencedirect.com/science/article/pii/S0893608019300784
http://dx.doi.org/10.1109/ISCAS.2014.6865255
http://dx.doi.org/10.1109/ISCAS.2014.6865255
http://dx.doi.org/10.1109/TNANO.2015.2493960

BIBLIOGRAPHY 63

[28] Saul B. Needleman and Christian D. Wunsch. “A general method applica-
ble to the search for similarities in the amino acid sequence of two proteins”.
In: Journal of Molecular Biology 48.3 (1970), pp. 443–453. ISSN: 0022-2836. DOI:
https://doi.org/10.1016/0022- 2836(70)90057- 4. URL: http://www.
sciencedirect.com/science/article/pii/0022283670900574.

[29] Alar Ainla et al. “A multifunctional pipette”. In: Lab on a Chip 12.7 (2012),
pp. 1255–1261. ISSN: 1473-0197. DOI: 10.1039/C2LC20906C. URL: http://dx.
doi.org/10.1039/C2LC20906C.

[30] Sanjukta Krishnagopal, Yiannis Aloimonos, and Michelle Girvan. “Similarity
Learning and Generalization with Limited Data: A Reservoir Computing Ap-
proach”. In: Complexity 2018 (2018), p. 15. DOI: 10.1155/2018/6953836. URL:
https://doi.org/10.1155/2018/6953836.

[31] Priyadarshini Panda and Narayan Srinivasa. “Learning to Recognize Actions
From Limited Training Examples Using a Recurrent Spiking Neural Model”.
In: Frontiers in neuroscience 12 (2018), pp. 126–126. ISSN: 1662-4548 1662-453X.
DOI: 10 . 3389 / fnins . 2018 . 00126. URL: https : / / www . ncbi . nlm . nih .
gov/pubmed/29551962https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5840233/.

[32] Ma Reyna et al. “Early prediction of sepsis from clinical data: the PhysioNet /
Computing in Cardiology Challenge 2019”. In: Critical Care Medicine 48 (2020),
pp. 210–217. DOI: 10.1097/CCM.0000000000004145.

[33] Raschka Sebastian and Mirjalili Vahid. “Predicting Continuous Target Vari-
ables with Regression Analysis”. In: Python Machine Learning. Packt Publishing
Ltd., 2019.

[34] N. A. Sekushin. “Equivalent Circuit of Warburg Impedance”. In: Russian Jour-
nal of Electrochemistry 45.7 (2009).

[35] Y. Tsividis and J. Milios. “A detailed look at electrical equivalents of uniform
electrochemical diffusion using nonuniform resistance-capacitance ladders”.
In: Journal of Electroanalytical Chemistry 707 (2013).

[36] J. Valsa J. Vlach. “RC models of a constant phase element”. In: INTERNA-
TIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS 41.1 (2013),
pp. 59–67. ISSN: 0098-9886.

[37] O. Enacheanu et al. “Identification of fractional order models for electrical net-
works”. In: IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.
2006, pp. 5392–5396. DOI: 10.1109/IECON.2006.348151.

[38] Agnieszka Jakubowska and Janusz Walczak. “Analysis of the Transient State
in a Series Circuit of the Class RLβCα”. In: Circuits, Systems, and Signal Process-
ing 35.6 (2016), pp. 1831–1853. ISSN: 1531-5878. DOI: 10.1007/s00034-016-
0270-2. URL: https://doi.org/10.1007/s00034-016-0270-2.

[39] Francisco Gómez, Juan Rosales, and Manuel Guía. “RLC electrical circuit of
non-integer order”. In: Central European Journal of Physics 11.10 (2013), pp. 1361–
1365. ISSN: 1644-3608. DOI: 10.2478/s11534-013-0265-6. URL: https://doi.
org/10.2478/s11534-013-0265-6.

[40] O. Kanoun. Lecture Notes on Impedance Spectroscopy: Measurement, Modeling and
Applications. CRC Press, 2012. ISBN: 9780203610756. URL: https : / / books .
google.se/books?id=31-dDQAAQBAJ.

http://dx.doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
http://www.sciencedirect.com/science/article/pii/0022283670900574
http://www.sciencedirect.com/science/article/pii/0022283670900574
http://dx.doi.org/10.1039/C2LC20906C
http://dx.doi.org/10.1039/C2LC20906C
http://dx.doi.org/10.1039/C2LC20906C
http://dx.doi.org/10.1155/2018/6953836
https://doi.org/10.1155/2018/6953836
http://dx.doi.org/10.3389/fnins.2018.00126
https://www.ncbi.nlm.nih.gov/pubmed/29551962 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840233/
https://www.ncbi.nlm.nih.gov/pubmed/29551962 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840233/
https://www.ncbi.nlm.nih.gov/pubmed/29551962 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840233/
http://dx.doi.org/10.1097/CCM.0000000000004145
http://dx.doi.org/10.1109/IECON.2006.348151
http://dx.doi.org/10.1007/s00034-016-0270-2
http://dx.doi.org/10.1007/s00034-016-0270-2
https://doi.org/10.1007/s00034-016-0270-2
http://dx.doi.org/10.2478/s11534-013-0265-6
https://doi.org/10.2478/s11534-013-0265-6
https://doi.org/10.2478/s11534-013-0265-6
https://books.google.se/books?id=31-dDQAAQBAJ
https://books.google.se/books?id=31-dDQAAQBAJ

64 BIBLIOGRAPHY

[41] D./A. Bernards and G./G. Malliaras. “Steady-State and Transient Behavior of
Organic Electrochemical Transistors”. In: Advanced Functional Materials 17.17
(2007), pp. 3538–3544. ISSN: 1616-3028. DOI: 10.1002/adfm.200601239. URL:
http://dx.doi.org/10.1002/adfm.200601239.

[42] Jonathan Rivnay et al. “High-performance transistors for bioelectronics through
tuning of channel thickness”. In: Science Advances 1.4 (2015). DOI: 10.1126/
sciadv.1400251. eprint: http://advances.sciencemag.org/content/1/4/
e1400251.full.pdf. URL: http://advances.sciencemag.org/content/1/4/
e1400251.

[43] Jacob T. Friedlein et al. “Optical Measurements Revealing Nonuniform Hole
Mobility in Organic Electrochemical Transistors”. In: Advanced Electronic Mate-
rials 1.11 (2015). 1500189, 1500189–n/a. ISSN: 2199-160X. DOI: 10.1002/aelm.
201500189. URL: http://dx.doi.org/10.1002/aelm.201500189.

[44] Gregório C. Faria, Duc T. Duong, and Alberto Salleo. “On the transient re-
sponse of organic electrochemical transistors”. In: Organic Electronics 45 (2017),
pp. 215–221. ISSN: 1566-1199. DOI: https://doi.org/10.1016/j.orgel.2017.
03 . 021. URL: http : / / www . sciencedirect . com / science / article / pii /
S1566119917301313.

[45] P. Sideris, S. Siskos, and G. Malliaras. “Verilog-A modeling of Organic Electro-
chemical Transistors”. In: 2017 6th International Conference on Modern Circuits
and Systems Technologies (MOCAST). 2017, pp. 1–4. DOI: 10 . 1109 / MOCAST .
2017.7937645.

[46] Jacob T. Friedlein et al. “Microsecond Response in Organic Electrochemical
Transistors: Exceeding the Ionic Speed Limit”. In: Advanced Materials 28.38
(2016), pp. 8398–8404. ISSN: 1521-4095. DOI: 10.1002/adma.201602684. URL:
http://dx.doi.org/10.1002/adma.201602684.

[47] Chung-Wen HO, ALBERT E. RUEHLI, and PIERCE A. BRENNAN. “The Mod-
ified Nodal Approach to Network Analysis”. In: IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS CAS-22 (1975). DOI: 10.1109/TCS.1975.1084079.

[48] Sébastien Pecqueur et al. “Concentric-Electrode Organic Electrochemical Tran-
sistors: Case Study for Selective Hydrazine Sensing”. In: Sensors 17.3 (2017),
p. 570. ISSN: 1424-8220. URL: http://www.mdpi.com/1424-8220/17/3/570.

[49] Sébastien Pecqueur et al. “Cation discrimination in organic electrochemical
transistors by dual frequency sensing”. In: Organic Electronics 57 (2018), pp. 232–
238. ISSN: 1566-1199. DOI: https : / / doi . org / 10 . 1016 / j . orgel . 2018 .
03 . 020. URL: http : / / www . sciencedirect . com / science / article / pii /
S1566119918301265.

http://dx.doi.org/10.1002/adfm.200601239
http://dx.doi.org/10.1002/adfm.200601239
http://dx.doi.org/10.1126/sciadv.1400251
http://dx.doi.org/10.1126/sciadv.1400251
http://advances.sciencemag.org/content/1/4/e1400251.full.pdf
http://advances.sciencemag.org/content/1/4/e1400251.full.pdf
http://advances.sciencemag.org/content/1/4/e1400251
http://advances.sciencemag.org/content/1/4/e1400251
http://dx.doi.org/10.1002/aelm.201500189
http://dx.doi.org/10.1002/aelm.201500189
http://dx.doi.org/10.1002/aelm.201500189
http://dx.doi.org/https://doi.org/10.1016/j.orgel.2017.03.021
http://dx.doi.org/https://doi.org/10.1016/j.orgel.2017.03.021
http://www.sciencedirect.com/science/article/pii/S1566119917301313
http://www.sciencedirect.com/science/article/pii/S1566119917301313
http://dx.doi.org/10.1109/MOCAST.2017.7937645
http://dx.doi.org/10.1109/MOCAST.2017.7937645
http://dx.doi.org/10.1002/adma.201602684
http://dx.doi.org/10.1002/adma.201602684
http://dx.doi.org/10.1109/TCS.1975.1084079
http://www.mdpi.com/1424-8220/17/3/570
http://dx.doi.org/https://doi.org/10.1016/j.orgel.2018.03.020
http://dx.doi.org/https://doi.org/10.1016/j.orgel.2018.03.020
http://www.sciencedirect.com/science/article/pii/S1566119918301265
http://www.sciencedirect.com/science/article/pii/S1566119918301265

	Abstract
	Acknowledgements
	List of publications
	Introduction
	Aim and Scope
	Content of the Thesis

	Mathematical Primitives
	On using reservoir computing for developing sensing applications
	Sensing with memoryless readout layers
	Sensing with one-memristor reservoirs
	Towards collaborative sensing

	Sensing with recurrent readout layers
	Sensing with temporally extended bar codes

	On reservoir computing with memristor networks
	Memristor as a non-linear element
	Measuring the reservoir's computing capacity
	Improving the computing capacity of dynamical systems
	Fixed input layer
	Optimised input layer

	Prediction models with memristor networks
	Predicting with one memristor
	Predicting with many memristors

	Exploiting algorithms for efficient transient simulations
	Transient simulation of electronic circuits with Constant Phase elements
	Updating the convolution integral
	Results

	Transient simulation of electronic circuits with Organic Electrochemical Transistors
	Equations of motion

	Results

	Summary of appended papers
	Bibliography

