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STATISTICAL MODELLING AND ANALYSIS OF BIG DATA ON 
PEDESTRIAN MOVEMENT 

GIANNA STAVROULAKI 1 ; DAVID BOLIN 2 ; META BERGHAUSER PONT 3 ; LARS 
MARCUS4; ERIK HÅKANSSON5 

ABSTRACT 
This work follows a long line of studies and empirical investigations in Space Syntax research, that, in 

general, try to conceptualise, describe and quantify the relation between physical space and human 

agency. How many people share public space is known to affect many socio-economic processes in 

cities, such as segregation, vitality and local commercial markets. Observing and measuring pedestrian 

movement through surveys, as well as statistically analysing it have been at the core of diverse 

investigations not least in the field of Space Syntax, not only a means to validate and measure the 

dependence of pedestrian movement on spatial configuration, but also as a means to forecast and predict 

pedestrian flows. However, these studies do not necessarily provide us with comparable, let alone 

generalisable findings that can lead to generalisable propositions. They remain in most cases specific 

investigations of particular cities, neighbourhoods or types of areas (e.g. city centres). Another issue, as 

will be elaborated in this paper, is that the typical statistical methods used, such as multivariate 

regression models, are not always the optimal or even suitable for modelling pedestrian movement, 

typically measured in pedestrian counts. 

This paper aims therefore, to directly address three methodological challenges: first, construction of 

comparable GIS-models; second, gathering large scale pedestrian data; third, applying advanced 

statistical modelling suitable for pedestrian data. The ultimate goal is to estimate the impact of spatial 

form on urban life in a way that is methodologically sound and can provide robust results that can be 

1 Chalmers University of Technology, Department of Architecture and Civil Engineering, SE-412 96 
Gothenburg, Sweden, gianna.stavroulaki@chalmers.se 
2 Chalmers University of Technology, University of Gothenburg, Department of Mathematical 
Sciences, SE-412 96 Gothenburg, Sweden, david.bolin@chalmers.se 
3 Chalmers University of Technology, Department of Architecture and Civil Engineering, SE-412 96 
Gothenburg, Sweden, meta.berghauserpont@chalmers.se 
4 Chalmers University of Technology, Department of Architecture and Civil Engineering, SE-412 96 
Gothenburg, Sweden, lars.marcus@chalmers.se 
5 University of Gothenburg, Chalmers University of Technology, Department of Mathematical 
Sciences, SE-412 96 Gothenburg, Sweden, gushakaer@student.gu.se 

1



 Proceedings of the 12th Space Syntax Symposium 

generalisable, and allows us to speak of the relation between spatial form and pedestrian movement in 

a way that is not specific to a certain area, or types of areas or streets, or even to a specific city.  

 

The results show, first, high and consistent correlations between spatial form and pedestrian movement 

in a study of unprecedented size that comprises three cities, including a large range of neighbourhoods 

of varying morphological types, from villa areas to urban cores, and offer convincing proof that the 

tested morphological variables have a strong impact on the spatial distribution of pedestrian flows in 

cities. Second, the study shows that the model with all explanatory variables has the highest explanatory 

power and the best model fit where Angular integration and Accessible FSI are the explanatory variables 

with the largest effect on pedestrian movement, but others are significantly contributing to the predictive 

power of the model. Third, the study contributes to the advancement of the statistical modelling that is 

suitable for the specificities of the data used, proposing the use of a negative Binomial model instead of 

regression models, most common in the field. 

KEYWORDS  
statistical modelling, pedestrian movement, anonymised pedestrian survey, spatial analysis, spatial 

morphology  

 

1. INTRODUCTION 
This paper describes results of a large empirical study that is aiming to quantify the effect of spatial 

form on pedestrian movement. We focus on the separate and combined impact of configuration, 

specifically the space syntax measures of angular centrality, in relation to other key morphological 

variables, (i.e. build density and land division) and the presence of attractions. The study was conducted 

in three European cities - Stockholm, Amsterdam and London – in a large variety of neighbourhoods in 

terms of density and building type, that further included a variety of different street types. The objective 

is both to test the relation between spatial form and pedestrian movement in a large and consistent study 

comprising more than one city and to advance the methodological framework used in such empirical 

studies - from the gathering of empirical data to their statistical modelling - to arrive at both scientifically 

valid and generalisable results concerning this relation. 

 

1.1. Theoretical and methodological background 

This work follows a long line of studies and empirical investigations in Space Syntax research, that, in 

general try to conceptualise, describe and quantify the relation between physical space and human 

agency. The interplay between humans and their environment is a question pondered by humanity for 

centuries. Even so, it has been addressed from the very beginning in space syntax theory (Hillier & 

Learman, 1973), and developed into descriptions of architectural and urban space, such as axial maps 

and convex spaces, with the aim to capture this relation (Hillier & Hanson, 1984). These descriptions 

are on the one hand, based in human affordances and on the other, the configurative (or syntactic) 

relation between individual spaces (Hillier, 2012). The first means that descriptions relate neither to 
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physical space in itself nor to human behaviour, but to what emerges when they meet; the second means 

that the descriptions used address the systemic level of space, which opens for linking these descriptions 

to dynamic affordances, such as movement, and not only static, such as what is perceived from a single 

point in space.  

 
If these constitute descriptions of the environment, similar care has been taken to understand what 

aspects of human behaviour need to be captured to establish the link between human agency and the 

physical environment. Central here has been the notion of generic function (Hillier, 1996), which avoids 

the entanglement of the innumerable aspects of human activity in cities, by cutting straight to activity 

that has direct spatial implications. Consequently, it, on the most fundamental level, identifies a 

distinction of urban space into, first, streets and other open spaces, that primarily have the function of 

urban movement, and second, city blocks and their buildings, that have the function of urban 

occupation.  

 

Hence, the fundamentals of a methodology to study the relation between humans and the urban 

environment is set up in the form of statistical correlation studies between systemic properties of 

descriptions such as axial maps and movement counts. Such studies have repeatedly reported a 

consistent relation between the two and have also generated theory, such as the theory of natural 

movement (Hillier et al., 1993), which has remained a key reference in space syntax research. Based on 

earlier and new studies (i.e. Peponis et al, 1989; Hillier et al, 1987), it aimed to demonstrate the primacy 

of spatial configuration over attraction when it comes to the influence on the distribution of pedestrian 

movement in urban space. However, it also added that since pedestrian movement, in turn, has a strong 

influence on the distribution of land-use, attractions will add to the influence of configuration on 

movement, creating a multiplier effect. 

 

More recently, a study by Hillier and Iida (2005), has taken over as key reference to this central relation 

between configuration and pedestrian movement in space syntax research. Importantly, this study is set 

in a different theoretical framework that concerns the psychology behind human navigation in space 

and how different distance measures, such as metric, topological or angular, best reflect this. The aim 

of the study was the test and validation of angular distance in measures of centrality in street networks, 

a technique that we will also use in this paper. Building on an earlier study by Penn et al (1998), an 

extensive empirical study was conducted that proved angular distance as a powerful means for the 

purpose. 

 

Apart from the referenced papers, numerous studies have to this day been scrutinising the impact of 

spatial configuration on pedestrian movement, also in relation to other factors, such as land use and 

built density (e.g. Peponis et al., 1997; Read 1999; Berghauser Pont and Marcus, 2015; Marcus et al, 

2017; Ozbil et al. 2011, 2015; Netto et al. 2012; Legeby 2013; Ståhle et al. 2005). For instance, 

Berghauser Pont and Marcus (2015) and Ståhle et al. (2005) show that correlations vary depending on 

built density and morphological neighbourhood type, and Read (1999) highlighted the variations 

between local grids and super-grids.  
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Hence, observing and quantifying pedestrian movement and statistically correlating it to different 

explanatory variables of spatial form has been at the core of extensive and diverse investigations aiming 

to validate and measure the dependence of pedestrian movement on spatial configuration, but it has also 

been a means to forecast and predict pedestrian flows. Although studies of this kind around the globe 

have generally reported high and consistent correlations, there have also been some methodological 

inconsistencies, for instance, in the kind of empirical data used, the explanatory variables tested or the 

statistical methods applied. Also, they have seldom been based on data samples of a size and distribution 

that can be said to represent cities as a whole, let alone comprise several cities allowing for comparison. 

Often, studies are confined to neighbourhoods and use datasets too small for robust statistical analysis. 

 

A reason is that it has been difficult to access, collect or even process data sets of a size that can support 

large scale comparative studies, something made possible in recent years of increasing computational 

power and data access. Although, studies of specific areas in cities are very useful for understanding 

the effect of configuration on movement, since other variables are possible to control (for example, 

density often being evenly distributed, the demographic and socioeconomic profile being relatively 

stable, and land use distribution possible to control), they do not provide findings that can support 

generalisable propositions. A case in point, is the fact that the statistical results are inconsistent when it 

comes to radii of centrality, where the radius that is statistically significant changes from area to area, 

even in the same study. 

 

Another issue, which will be elaborated in the methodological part of this paper, is that the statistical 

methods typically used, such as multivariate regression models, are not always the optimum for 

modelling pedestrian movement measured by pedestrian counts. Also, particularities of spatial data, 

such as spatial autocorrelation is not always considered in the statistical modelling, jeopardizing the 

scientific validity and robustness of the explanatory and predictive power. The above methodological 

inconsistencies and gaps form a weak link in an unusually well-designed research programme. 

 

This paper aims therefore, to directly address these methodological challenges in a large empirical 

study. A new set of co-produced GIS-models of London, Amsterdam and Stockholm, based on Space 

Syntax methodology and constructed in exactly the same way was applied. These models allow us to 

extract consistent and comparable data on spatial form from all three cities. For equally consistent and 

comparable data on human activity, we used tracking of anonymized Wi-Fi signals from mobile phones 

to conduct a large-scale pedestrian survey6 in all cities – unique to our knowledge.7 Together this allows 

                                                                    
 

 
6 	The survey was led by Chalmers University of Technology in cooperation with Bumbee Labs 
consultancy, who provided the technology and conducted data processing in close discussion with 
Chalmers.  
7	There are some studies, mostly from computer and information science that use the same method, 
but in general either the experiments are very small scale aiming to validate and optimise the method, 
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for an unusually large and consistent study of the critical relation between spatial form and pedestrian 

movement both for research purposes and practices based upon its findings. Finally, the statistical model 

used to validate and quantify this relation, introduce methodological advancements more suitable for 

pedestrian data.   

 

In summary, we contribute to existing Space Syntax literature in three ways. First, we continue a long 

line of investigations relating spatial configuration to pedestrian movement, focusing on angular 

centrality measures, with a larger and more consistent study than any of the earlier. Second, we use a 

unique dataset of pedestrian flows, covering three different cities and hence a large variety of 

neighbourhood and street types, which provides information and results that are not only specific for 

certain areas or cities, but that are generalisable and demonstrate the consistent impact of variables of 

spatial form on pedestrian movement. Third, we advance the statistical methods used to analyse the 

relation between data on spatial form and movement by proposing predictive statistical models that 

consider particularities of spatial data, such as autocorrelation, but also particularities of pedestrian data, 

as measured by pedestrian counts. 

 

1.2. Outline of the paper 

The paper is organised in three sections, following this first introductory section. Section 2 describes 

the methods and datasets used in the study, where we, first, introduce the explanatory variables and 

describe how they are calculated; second, present the pedestrian survey and its method of data gathering; 

third, describe the structuring of the datasets; and fourth, describe the method of statistical analysis and 

modelling used throughout the study. Section 3 presents the results of the statistical analysis, the model 

fit and the coefficient estimates. Finally, Section 4 highlights the general conclusions of the study and 

proposes next steps.    

 

2. DATASETS AND METHODS  
The overall methodology for the statistical modelling and analysis of pedestrian data aims at testing the 

independent and relative impact of spatial form on pedestrian flows. We start by testing the explanatory 

power of angular integration and angular betweenness centrality, as two fundamental measures of 

spatial configuration. Then we statistically model the predictive power of the same measures in 

combination to two other key measures of spatial form – built density and land division, building on 

previous work (Marcus et al. 2017, Berghauser Pont and Marcus 2014, Bobkova et al. 2017). Finally, 

we include some attraction measures that arguably attract or are associated with increased pedestrian 

movement throughout the day or intermittently, such as public transportation nodes (i.e. tram, bus, ferry 

                                                                    
 

 

are indoor or are covering only a specific attraction or event. Examples on outdoor studies are: 
Schauer et al. 2014; Kurkcu and Ozbay 2017; Abedi et al. 2013, Petre et al. 2017; Barbera et al. 2013.		
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and train stops, bus and train stations), schools (including kindergartens) and local markets (i.e. all 

ground floor retail shops, restaurants and cafes).   

 

The datasets used in this study are structured per street segment and cover the metropolitan areas8 of 

three European cities, Stockholm, Amsterdam and London.  All cities are modelled together, but we 

include city as categorical variables to control for the effect of the city where data was collected. 

Because we conducted the pedestrian survey in different days of the week, also weekday was added as 

control variable.  

 

In the following sections, the main methodological steps and choices taken in this study will be 

presented. First, all the explanatory variables and method of calculation will be described; second, the 

pedestrian survey and the method of gathering big data on pedestrian movement will be presented; and 

third, the statistical methods and models used throughout the study will be introduced.  

 

2.1. Explanatory variables  

2.2.1. Angular Integration and Angular betweenness centrality 

Angular integration and angular betweenness centrality were calculated for the non-motorised street 

network of each city, or in simple words, the network, pedestrians use. This includes all streets and 

paths that are accessible for people walking, including those shared with vehicles and bicycles. Streets 

where walking is forbidden, such as motorways, highways, or high-speed tunnels, are not included in 

the analysis.  

 

The line-segment maps used are based on official road-centre-line maps9 and processed following the 

method described in Berghauser Pont et al. (2017a). To reduce calculation time, but, most importantly, 

to increase comparability, the same editing and generalisation procedures (e.g. removing errors and 

reducing the number of line-segments in a consistent manner10), are used for all cities.  

 

                                                                    
 

 
8 The metropolitan areas extend beyond the administrative boundaries and were defined following the 
Urban Morphological Zones (UMZ) as set by the European Environment Agency (EEA) and the 
Eurostat. A UMZ is defined as “a set of urban areas laying less than 200m apart”. (source: 
http://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-2006 (download date 13-7-
2016). The convex hull of each UMZ was used to provide a more regular shaped study area, more 
appropriate for spatial analyses.  
9 Official Road-Centre-Line maps: NVDB from Trafikverket, Sweden; ITN from Ordnance Survey, 
UK; and, NWB from Rijkswaterstaat-CIV, the Netherlands. The downloads were done from 05/2016 
to 10/2016.  
10 This process, before the final segmentation of the Road-Centre-lines to line-segments, included 
removing duplicate and isolated lines, snapping and generalizing. The snapping threshold used was 
2m (end points closer than 2m were snapped together). The generalizing threshold used was 0,5m 
(successive line segments with angular deviation less than 0,5m were merged into one). All editing 
procedures were done with PST. 
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Because the aim of this paper is to obtain a description of the three metropolitan regions that can predict 

the intensity of pedestrian flows, we select radii for analysis that are close to the more local scales of 

pedestrian movement with a maximum of 5km11. Also, to provide a uniform and continuous sampling 

of centrality, the radii are equally spaced and have a small interval (i.e. 500m), resulting in in 10 

different radii. All editing procedures were done with PST12. 

 

For angular betweenness centrality, the following equation is used: 

 
𝐵(#)		 = ∑ ()*	(#)

()*+,#,- 	  (1) 

 
where s and t are all nodes in the network different from x 

σst = the number of shortest paths from s to t 

σst(x) = the number of shortest paths from s to t that pass-through x 

 

For Normalised angular integration (NAIN) (Hillier et al. 2012), the following equation is used: 

 

𝐴𝐼1231(𝑥) =
15.7

89	∑ :(#,<)=>?
   (2) 

where  

N= node count or number of reached line-segments in the network  

D(x,i) = angular distance of the shortest path between i and x, calculated as the accumulated angular 

turns needed to get from line-segment x to line-segment i in the network. Angular distance is measured 

in degrees and then divided by 90 (Hillier and Iida, 2005). 

 

2.2.b. Built density and Land division 

Following the work of Berghauser Pont and Marcus (2014), built density and land division are 

calculated using a measure of accessibility and, more specifically, the cumulative-opportunities 

accessibility measure (Handy et al. 2016) with the distance threshold set at 500m walking distance. In 

particular, built density is described as the Accessible FSI (Floor space ratio)13 in 500m (Berghauser 

Pont and Marcus 2014) and land division is described as the Accessible number of plots in 500m 

(Bobkova et al 2017). Thus, for example, the measure of density is not considered as an individual 

property of each building, but as the amount of built up space, that is accessible from every street 

                                                                    
 

 
11 In order for all streets to be calculated within a context of 5km walking distance and reduce the 
possible “boundary effect” the area which was analysed was at least 5km larger than the study area in 
all directions.   
12 PST software (Place Syntax Tool, plugin QGIS) was used for editing and calculations. 
Documentation, including equations is available at https://www.smog.chalmers.se/pst. 
13 Built density is described, following the work of Berghauser Pont and Haupt (2010), by two 
measures: FSI(Floor space index) and GSI(Ground space index). However, since the two measures 
are colinear, only one is included in the explanatory variables used in the statistical study.    
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segment through the street network, adding up to a measure of accessible density, or in other words, 

human accessibility to built up space within a distance that most people are willing to walk, commonly 

recognized to be approximately 500 meters (Gehl 2010).  

 

In particular, for the density calculation, the Gross Floor Area (GFA) for each building polygon is 

calculated by multiplying the area of the building polygon with the average building height14. Next, we 

used the equation for Attraction reach in PST15 to calculate accessible Gross Floor Area (GFA) in 500m:   

𝐴𝑅(A) = ∑ 	(𝑓(𝑎)𝑤E𝐷(𝑜, 𝑎)H)I∈2   (3) 
       

where 

A = the set of reachable attractions within given radius, 

f(a) = attractions value associated with attraction a, 

D(o,a) = shortest distance from origin o to attraction a, 

w(x) = attenuation function. 

 

The attraction value f(a) is GFA when calculating FSI(o). D(o,a) is defined by the chosen radius and is 

here 500m from the origin. As origin, the midpoints of the line-segments are used. The attenuation 

function is not used. 

 
Accessible FSI(o) is then calculated as follows: 

FSI(o) = AR(o,GFA) / Area(o)      (4) 

 

where Area (o) is calculated as the area of the convex hull, defined by the end-points of all reachable 

line-segments within 500m from the origin. 

 

The measure of Accessibility to plots is directly related to the size of the plots and the grain of the land 

division. The higher the number of accessible plots within a radius is, the smaller the plots are and the 

finer the grain of land division is within that radius. Thus, again, as in the case of built density, we 

describe plot size not as an individual property of each plot, but as an area-based measure of the plot 

structure and the land division.  

 

                                                                    
 

 
14 The height data used to calculate GFA were received in ready-to–use formats for Amsterdam and 
London: 3dBAG from ESRI (http://www.esri.nl/) and Ordnance Survey. 
(https://www.ordnancesurvey.co.uk/) respectively. For Stockholm, height data were extracted from a 
laser dataset (Lantmateriet, slu.get.se) (see Berghauser Pont et al. 2017 for more details).  
15	PST software (Place Syntax Tool, plugin QGIS). Documentation, including equations is available at 
https://www.smog.chalmers.se/pst.	
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The accessible number of plots in 500m was calculated based on comparable plot layers constructed for 

the three cities, following the work of Bobkova et al (2017)16. In Sweden and the Netherlands, the plot 

layer is based on the cadastral system, while in the UK, the freehold property system is used17. To 

calculate accessible number of plots from each line segment within 500m walking distance, we use 

again the equation of Attraction reach (3) in PST, where the set of attractions are the plots.  

 

2.2.c. Attraction variables  

To evaluate the independent and relative impact of spatial variables on pedestrian flows, we add 

attraction variables to the explanatory variables list. The datasets of attractions are extracted from the 

point datasets of Open Street Maps18. To capture both the number of individual attractions on the street 

that could potentially make it a destination point for pedestrian movement, but also the general number 

of attractions on each street’s adjacent streets and local context, which could make it a potential 

thoroughfare between further destinations, we included two measures for each attraction: first, the 

number of attractions on each segment and second, the number of attractions accessible within walking 

distance 500m from each street segment.  The list of attraction variables is thus as follows: Accessible 

Local markets19 within 500m walking distance from each line-segment (i.e. midpoint), Number of Local 

Markets on each line-segment, Accessible Public transport nodes within 500m from each line-segment, 

Number of Public transport nodes on each line-segment, Accessible Schools within 500m from each 

line-segment, Number of Schools on each line-segment. 

Full name Abbreviation 

Angular Integration (NAIN), radius (for radius 1000m) 

Int1000 

Angular Betweenness, radius.   (for radius 3500) 

Bet3500 

Accessible FSI in 500m walking distance FSI_500 

Accessible Number of Plots in 500m walking distance Plot_500 

Accessible Local markets in 500m walking distance  LMarkets_500 

Number of Local Markets on segment LMarkets_Str 

Accessible Public transport nodes within 500m walking distance PubTr_500 

                                                                    
 

 
16 Both cadastral and freehold systems cover all types of land, including road and rail networks as well 
as water bodies, so the plot layers were constructed based on Hillier’s concept of generic function 
(1996), defined as ‘land used for long term stationary functions’. Hence, the final layer of plot 
polygons consists of land properties that cover all sorts of land except water and movement networks. 
17 Data sources: Fastighet maps from the Swedish Land registry for Sweden, the DKK database for 
Amsterdam, and the Land Registry Inspire Index polygons for London. The UK has two layers of plot 
systems, freehold and leasehold properties with only the former accessible to the public, instead of a 
single cadastral system (freehold property is the ownership of the property and the land it stands on 
and leasehold property is the ownership of the property for a fixed term without owning the land that 
it stands on). 
18 https://www.openstreetmap.org	
19 i.e.all ground floor retail shops, restaurants and cafes	
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Number of Public transport nodes on segment PubTr_Str 

Accessible Schools within 500m walking distance  Schools_500 

Number of Schools on the segment Schools_Str 
Table 1. List of variables and abbreviations 

2.2. Collecting big data on pedestrian movement  

In order to gather comparative empirical data to test the impact of the morphological variables on 

pedestrian movement, we conducted a large pedestrian survey in all three cities tracking anonymised 

Wi-Fi signals from mobile phones. The pedestrian survey included around 18 neighbourhoods per city 

(19 in Stockholm, 18 in Amsterdam, 16 in London) and was done within a three-week period in October 

201720. The areas were selected with the main objective to cover all building and street types ranging 

from small alleys to high streets, in neighbourhoods which differed in building type, from suburban 

villa areas of low density to central high-density areas with primarily closed building blocks. The 

selected neighbourhoods included business districts, mixed-use areas and residential areas of different 

income level (Fig1). 

                                                                    
 

 
20 The weather was similar in all cities, mostly moody with short periods of rain within the day.   
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Figure 1. Selected areas for a) Amsterdam, b) Stockholm and c) London.  
a)1_Zuidoost, 2_Amstelveen Elsrijk, 3_Noord Kadoelen, 4_Noord, 5_Noord Nieuwendam, 6_Spaarndammer en 
zeeheldenbuurt, 7_Slotermeer-noordoost, 8_Bos en Lomer, 9_Haarlemmerbuurt, 10_Jordaan, 11_Amstelveen Patrimonium, 
12_Burgwallen Nieuwe Zijde, 13_De Wallen, 14_Ijburg West, 15_Osdorp-oost, 16_De Pijp, 17_Nieuw Sloten, 
18_Watergraafsmeer 
b)1_Skarpnäck, 2_Sundbyberg, 3_Jungfrudansen, 4_Stora Mossen, 5_Stora Essingen, 6_Mälarhöjden, 7_Västertorp, 
8_Segeltorp, 9_Norrmalm, 10_Östermalm A, 11_Östermalm B, 12_Gamla stan, 13_Södermalm Maria Församlingen, 
14_Södermalm Katarina Församlingen, 15_Hammarby Höjgen, 16_Hammarby Sjöstad, 17_Järlasjö, 18_Tallkrogen, 
19_Hökarängen 
c)1_Hampstead garden suburb, 2_Hampstead station area, 3_West Hampstead, 4_Maida Hill, 5_Notting Hill, 6_Putney A, 
7_Putney B, 8_Soho, 9_Westminster, 10_Cornhill A, 11_Clapham, 12_Barnsbury, 13_Highbury East, 14_Hoxton, 15_Cornhill 
B, 16_Newington 
 

Because we are interested in the isolated effect of the spatial variables on pedestrian movement, we 

made sure that no big attractors such as train stations or large shopping malls were located on or near 

the selected streets.  

Samples of Wi-Fi signals were collected when devices were searching for wi-fi networks (so called wi-

fi probe requests). Each sample included a timestamp, a RSSI (Received Signal Strength Indication) 

and an anonymized indicator. This method was chosen not only because it is technically advanced and 
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appropriate to collect anonymized big data (Schauer et al. 2014), but also because it is GDRP 

compliant21 and can be used in in all European cities22. 

The detection devices were positioned at every street crossing in the selected areas. Each neighbourhood 

was monitored continuously for one workday from 6 AM in the morning to 10 PM in the evening. In 

total, data for 846 street segments were collected (354 in Stockholm, 296 in Amsterdam and 266 in 

London), reaching 766.645 pedestrian trips in London, 532.068 in Amsterdam and 789.889 in 

Stockholm. The collected data record how many people passed each street per hour, but also their 

average speed and exact paths through the area; revealing both flow patterns and intensities, as well as 

the microstructure of individual paths. 

The main variable used in this paper to represent the pedestrian movement in each street segment is the 

intensity23 of pedestrian flows in a whole day, defined as the total amount (count) of people that walked 

each street from 6 AM to 10PM. We only used street segments where we had full day data available, 

which resulted to a final dataset of 227 street segments in Stockholm, 296 in Amsterdam and 266 in 

London.  

2.3. Structuring the datasets for the statistical modelling  

As already described in section 2.2, all network centrality variables were calculated for line-segment 

maps using Angular segment analysis. The same line segments were used as origin points in the 

Attraction reach equation (3) in order to calculate Accessible FSI, Accessible number of Plots, and 

Accessibility to Attractions (public transport, schools, and local markets). As a result, all datasets with 

the explanatory variables were structured per line segment.  

The Wi-Fi-signals to measure pedestrian movement were monitored at street junctions and, 

respectively, the pedestrian counts were calculated for each street segment between each pair of adjacent 

junctions. These street segments often include more than one line-segments, especially in curvilinear 

streets. To deal with that, all values of the explanatory variables were transferred from the line segments 

to the street segments, using the proportion average function24.  

 

2.4. Statistical model  

The simplest possible model for the data would be a standard multiple regression, where the pedestrian 

count 𝑌<  at location 𝑖  is assumed to be a Gaussian random variable 𝑁(𝜂<𝜎P),	where 𝜎P  denotes the 

variance and the mean is 

                                                                    
 

 
21 GDPR (General Data Protection Regulation) for the EU member states. 
22 For other studies that use wi-fi tracking for outdoor observations see: Schauer et al. 2014; Kurkcu and 
Ozbay 2017; Abedi et al. 2013, Petre et al. 2017; Barbera et al. 2013. However, they are mostly small-
scale experiments aiming to validate and optimise the method, or are covering only a specific attraction 
or event. 
23  Other terms used in literature are pedestrian flows, pedestrian density, pedestrian movement, 
pedestrian rates, occupation rates. 
24 Proportion average takes into account the length of each line-segment.  	

12



 Proceedings of the 12th Space Syntax Symposium 

𝜂< = ∑ ΧR,<	S
RT8 𝜃R.   (5) 

Here the 𝑋R,<  denotes the 𝑘: th explanatory variable evaluated location 𝑖 , 𝜃R  is the corresponding 

regression coefficient, and Κ is the total number of explanatory variables. However, such a model works 

poorly for the data due to the highly skewed distribution of the counts, and due to the fact that the 

measurements are positive counts. One possible solution to this problem would be to instead model 

some transformation of the counts. One could for example let log(1 + 𝑌<)~	𝑁(𝜂<, 𝜎P), where the reason 

for 1 + 𝑌< is to ensure that those values are strictly positive. Although this works fairly well, as we will 

see later, it is unsatisfactory for mainly two reasons. The first is that the data are counts and thus integer 

valued, whereas the transformed regression model is a model for continuous data. The approximation 

of count data by a continuous distribution is problematic especially for low counts. The second is that 

the choice of transformation, log(1 + 𝑌)	is a bit ad-hoc.  

 

A more mathematically satisfactory solution is to use a regression model for count data. The standard 

choice here is Poisson regression, where 𝑌<  is assumed to be Poisson distributed with mean 𝑒a= . A 

feature of this model is that both the mean and variance of 𝑌< is assumed to be 𝑒a=  due to the Poisson 

assumption. When testing the model for the data, we found that the variance 𝑌<  in reality was much 

larger than the mean (a common term for this is over-dispersion) which means that Poisson regression 

would not give reliable results. A solution to the problem with over-dispersion is to replace the Poisson 

distribution with a more flexible distribution for count data which can model over-dispersion. A 

common such choice is the negative Binomial distribution 𝑛𝐵𝑖𝑛(𝜇, 𝑛), where 𝜇 > 0  is a parameter that 

determines the mean of the distribution and 𝑛 > 0 is a dispersion parameter. With this parametrisation, 

the variance is 𝜎P = 	𝜇 +	𝜇P/𝑛, which means that the parameter 𝑛 can be used to control the variance 

independently of the mean. Thus, the main model we use is a negative Binomial regression where we 

assume that 𝑌<~𝑛𝐵𝑖𝑛(𝑒a= , 𝑛). The parameters in the model that need to be estimated from the data are 

the regression coefficients as well as the dispersion parameter.  

 

Another potential problem to address is that there may be spatial correlation in the data which cannot 

be explained by the mean	𝑒a= . In this case, the estimated regression coefficients may be affected by this 

correlation and one should be careful with drawing conclusions from the model results. Thus, to get 

reliable results we include the remaining spatial correlation in the data in the model. We do this by 

including a random effect that models the spatial dependence. Specifically, we assume that the mean 

for the count 𝑌<   in neighbourhood 𝑗 is 𝑒a=9hi  where 𝑈k~𝑁(0, 𝜎P	) acts as a neighbourhood specific 

intercept. The variance 𝜎P, which is estimated from data, determines how much these neighbourhood-

specific intercepts vary.   

 

Finally, we selected the explanatory variables to include in the formulation of 𝜂<. We tested three 

different types of negative Binomial models for the mean, namely, Configurational, Spatial and 

Attraction. The Configurational model included just Angular integration and Angular betweenness as 

explanatory variables. Both measures were calculated in ten different radii as was explained in Section 

2.1.a.  
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Preliminary Pearson correlations (r) were used to compare and select the most representative variables-

radii (Fig2). This step was necessary in order to avoid inputting colinear variables to the statistical 

model. These preliminary results showed that for both Stockholm and Amsterdam the strongest 

correlations were found for Angular Betweenness 3500m, and Angular Integration 1000m. In the case 

of London, Angular Integration 1000m showed again the strongest correlation, but for Angular 

Betweenness radius 500m was stronger (0,369) than radius 3500m (0,185). However, for consistency 

and comparability reasons and in order to be able to use one model to arrive to general results, and not 

only specific for each city, we used Angular Betweenness 3500m for London as well as an input 

variable. To use, Angular Betweenness 500m, instead, for all cities was not an option, because in 

Stockholm this showed non-significant correlations. 

 
Figure 2. Table of Pearson correlations for Angular Integration and Angular Betweenness in different radii for each city. Highest 
values in bold.   

The Spatial model includes, besides the two configurational variables, the variables Built density (i.e. 

Accessible FSI) and Land division (i.e. Accessible number of plots). Finally, the Attraction model added 

all the attraction variables described in section 2.2.c. For all three models, we include “weekday” and 

“city” as categorical variables that control for the effect of the day the pedestrians were counted and the 

city.  

 

2.5. Estimation and validation methods  

The model parameters are estimated using the R-INLA (Rue et al. 2009) package with standard settings. 

In the estimation procedure, we rescaled all continuous explanatory variables by dividing each variable 

with its root mean-square deviation in order to improve the numerical stability. R-INLA estimates the 

model parameters in a Bayesian setting, by assuming that each regression coefficient 𝜃R	has an 

independent 𝑁(0, 𝜏P	) prior distribution. The parameters are estimated by the posterior mean 𝐸(𝜃R|𝑌), 

i.e. the expected value of the parameter given by the data. Since the explanatory variables were rescaled, 

the default choice of 𝜏P=1000 was found to be sufficiently large to not have an effect on the estimates 

of 𝜃R (meaning that the estimates did not change if we increased 𝜏P further, and thus the estimates are 

determined by the data and not by the prior distributions). 

 

To assess if an estimated model fits to the data, we examined the residuals 𝑒< = 	𝑌< − 𝜇<	, where 𝜇< 

is the mean count at location 𝑖 according to the model. A first thing to check is if there is any spatial 

structure in these residuals. To get plots that are easier to interpret, we calculated the mean of these 
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residuals for each neighbourhood and plotted this mean on the map of each city. The second thing to 

check is whether the residuals have the correct distribution according to the model. To do this, we 

simulate new data 𝑌p< from the model and compute the corresponding residuals �̂�_𝑖. We then display a 

quantile-quantile (QQ) plot25 of 𝑒st  shown against 𝑒<. The curve in this plot should follow a straight line 

if the residuals have the correct distribution. However, there is uncertainty in this procedure due to the 

random sampling of new data. To get a better understanding of this uncertainty, we repeat the procedure 

for 100 different simulated datasets and plot the QQ curve for each simulated dataset in the same figure. 

This results in 100 different curves that should cover the straight line. If this is the case, we conclude 

that the model fit is adequate. If on the other hand, all curves are above or below the straight line at 

some location, this indicates that the residuals have the wrong distribution.  
 

To compare different models in terms of model fit, we use R2 values as well as the continuous ranked 

probability score (CRPS) (Gneiting and Raftery, 2007).  R2 is computed as one minus the ratio of mean 

squared error of a model to the mean squared error of an intercept-only model. The former is computed 

by taking the mean fitted value (which includes the random effects) for each observation and comparing 

it to the true data.  

 

The R2 values thus show how well the model can predict the pedestrian counts. However, another 

important aspect of predictive models is to also get the uncertainty of the predictions correct (a point 

prediction does not say anything unless we also have a measure of the certainty of this prediction). 

Because of this, we also use the CRPS values to compare the model fits. CRPS is a so-called proper 

scoring rule that measures the correctness of the entire predictive distribution. For a given count 𝑦<, the 

CRPS value is computed as  

𝐶𝑅𝑃𝑆(𝑦<) = 0,5𝔼{8,{P	(|𝑋8 − 𝑋P|) −	𝔼{	(|𝑦< − 𝑋|)  (6) 

where X, X1, X2 are independent and follow the distribution of 𝑦< according to the model26. Thus, the 

score compares the expected absolute difference between to potential counts  𝑋8 and 𝑋P to the expected 

absolute difference between a potential count 𝑋 and the actual count 𝑦<. To get a single value which we 

can use to compare different models, we compute the average CRPS score over all pedestrian counts, 

CRPS =  8
|
∑ CRPS(y<)|
<T8 . As for R2, a larger value indicates a better model fit.  

3. RESULTS  
In this section we present the model fit results of the three negative Binomial statistical models – the 

Network, Spatial and Attraction model. We will compare them in relation to their explanatory and 

                                                                    
 

 
25 That	is,	we	plot	the	values	𝑒st	sorted	in	increasing	size	against	the	sorted	𝑒<	values.	
26 The	CRPS	value	is	computed	by approximating the expected values by Monte Carlo averages. For 
example, 𝔼{	(|𝑦< − 𝑋|) is approximated by 8

�
∑ |y� − X�|�
kT8 , where X� is a draw from the distribution 

of y< and we use m = 10	000.	
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predictive power, also considering the number of variables included in each model. We will then 

compare the coefficient estimates in each model individually. Finally, we will compare the explanatory 

and predictive power of the two statistical modelling solutions, the negative Binomial and the regular 

logarithmic regression model, used in a lot of studies in the field. Whenever needed, references to 

relevant statistical tests which scrutinize the validity of the models will be used.   

3.1. Negative Binomial models. Model fit and coefficients 

When the three negative Binomial models are compared (Fig3), using the predictive performance 

indicators, we see that R2 values are comparable for the three model and the value only slightly rises as 

we move from the Configuration model (0,649) to the Spatial model (0,652) and finally to the Attraction 

model (0,661). This suggests that a model including only the two Angular centrality measures can 

explain a large part of the Intensity of the pedestrian flows. The prediction accuracy improves only 

slightly as we add more variables. What is also important is that while the simple correlations for the 

network variables independently in each city did not show consistent high correlations (Fig2), the R2 

when both Angular Integration and Betweenness are included increased significantly.  The CRPS values 

show that the Configurational and spatial models have very similar predictive power, but that the 

Attraction model has a slightly higher predictive power. Thus, in summary there is no gain in using the 

Spatial model instead of the simpler Configurational model, but the accuracy of the predictive 

distributions is increased if the Attraction model is used. Looking at the Q-Q plots for each model 

(Fig4), we see no clear indication for any of the models that they have the wrong residual distributions.  

 

Figure 3. Model scores and R2 for the negative Binomial models. CRPS are estimated from 105 simulations.  

 

Figure 4. Q-Q plots for the negative Binomial model (left to right: Configurational, Spatial, Attraction) 

If we then look at each model separately we can see the coefficient estimates (Fig5). The coefficients 

which are significant at a level of 0.05 are marked with a star. 
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Figure 5. Table of the mean values of the coefficient estimates for the negative Binomial models. Significant variables are marked 
with a star 

In the Configurational model, we see that Angular Integration (1000m) has a larger effect on the 

intensity of pedestrian movement than Angular Betweenness (3500m), but both are significant27. 

In the Spatial model, when Accessible FSI (indicator of built density) and Accessible number of plots 

(indicator of land division) were added to the model, Accessible FSI is the more important variable, 

followed by Angular Integration and Angular Betweenness; Accessible number of plots is not 

significant. 

In the Attraction model, when all the attraction variables are added, only one attraction variable is 

significant, that is the Number of Public transport nodes on the street segment, but with less impact than 

both the configurational variables and density. The accessible number of plots and the other five 

attraction variables are not significant. 

3.2. The importance of control variables and the random effect  

To control for the possible impact of weekday or variation in the findings between cities, two control 

variables (weekday and city) were added in each model as discussed in Section 2.4. Figure 5 shows that 

none of the control variables are significant, meaning that we do not see an effect of the day of the week 

the survey was conducted, neither do we see significant differences between cities.  

Looking at the residuals for the Configurational model in London (Figure 6), the top two plots show the 

residuals of the negative Binomial model with only fixed effects. There is no indication of a direct linear 

relation between latitude or longitude and the residuals, but it seems that we have correlation between 

residuals corresponding to streets in the same area. This is indicated by the fact that residuals for 

observations with very close long-/latitudes seem to all fall on the same side of 0 (i.e. where residual 

                                                                    
 

 
27	Remember that our chosen radii were decided after correlating the pedestrian counts to 10 different 
radii (see section 2.4). The same radii were used in all models.	
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value is 0) more frequently than is expected to happen by chance. The bottom two plots show the final 

model where we have added a random intercept for each neighbourhood in the data, which improves 

the distribution of residuals; the residuals for each group are (more or less) symmetric around zero. The 

inclusion of the random effect therefore seems to handle the possible spatial structure (spatial 

autocorrelation) in the data. Similar results were found in the other cities (Amsterdam and Stockholm) 

and the other models (Spatial and Attraction model). 

 

Figure 6. Residuals plotted on coordinates for the Configurational model in London, with only fixed effects (top two plots) and 
with added random effects (bottom two plots). 
 

Further, Figure 7 shows Q-Q plots for the residuals for the three models without random effects, where 

we can see that the models seem to have a worse fit than the models with the random effects included 

(remember Fig4). Here the straight line goes outside the band of simulated residuals for low values 

(indicating that the lower tail of the distribution is wrong). 
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Figure 7. Q-Q plots for the negative Binomial model without the random effects (from left to right: Configurational, Spatial, 
Attraction) 

3.4. Comparison of negative Binomial model results to Logarithmic regression model results 

The comparison of the results of the negative Binomial model with the results of a typical logarithmic 

regression model are discussed here, because regression models are the most commonly used models 

in the field of space syntax. Although this is not the optimum model in principle as described in section 

2.4, it is useful to see if the results change significantly compared to the negative Binomial model. Note 

that we included the same explanatory and control variables, as well as the random effect.  

 

Figure 8. Model scores and R2 for the models. Top half: Negative binomial models. Bottom half: Logarithmic models. The CRPS 
scores are estimated from 105 simulations. 

Figure 8 shows the CRPS scores and the R2 values for the negative Binomial and the logarithmic 

regression model, for the Configurational, Spatial and Attraction models. We see very similar values 

between the two modelling solutions. The only thing that changes is that the R2 increases slightly when 

we add more variables to the negative Binomial model (i.e. from the Configurational to the Spatial to 

the Attraction model), while in the regression model, the Spatial model has the highest R2. Overall, the 

differences are minimal. However, we see that CRPS values are higher for the negative Binomial 

models than for the logarithmic models, meaning that the negative Binomial models give more reliable 

results when also taking uncertainty into account. 

Thus, in conclusion the negative Binomial models are preferable. However, it might be of interest to 

also compare the coefficient estimates of the logarithmic regression model to the negative Binomial 

model (Fig 9) to see if the worse fit of the logarithmic regression affects the conclusions about the 

explanatory variables. Both the significance of the variables as well as their relative importance does 

not change. The only minor changes are, first, that for the Spatial model in the logarithmic regression, 

Integration has a higher importance than FSI, while in the negative Binomial model, it is the opposite. 
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Another difference is that for the Attraction model, in the logarithmic regression, one more attraction 

variable becomes significant; that is the Accessible number of Public transportation nodes in 500m. 

Thus, if one only is interested in finding which explanatory variables that are most important for 

explaining the pedestrian counts, it does not matter much whether the logarithmic regression or the 

negative Binomial model is used. 

 

Figure 9. Table of the mean values of all the coefficient estimates for all the models. Top half: Negative binomial models. Bottom 
half: Logarithmic models. Significant variables are marked with a star 

4. CONCLUSIONS 
There are three major areas that we see our study contributing to. First, the high and consistent 

correlations between spatial form and pedestrian movement, in a study of unprecedented size, 

comprising three cities and including a large range of neighbourhoods of varying morphological types, 

offer convincing proof that the tested morphological variables have a strong impact on the spatial 

distribution of pedestrian flows in cities. This is a vital finding, confirming a large number of earlier 

studies that albeit rigorous within their given frameworks have either been far smaller, not comprised 

the same range of urban types, or have not offered rigorous comparability between cities. 

20



 Proceedings of the 12th Space Syntax Symposium 

Second, the study shows that the model with all explanatory variables has the highest explanatory power 

and the best model fit. The relative importance of the explanatory variables shows that angular 

integration and accessible FSI effect the number of pedestrians equally strong and significantly more 

than angular betweenness, while plot size is not significant. The study also showed that the combination 

of the two angular centrality measures is far more powerful in predicting, than Angular integration 

alone. Of the attraction variables, only the presence of a public transport nodes in the street has a 

significant, but small effect. 

Third, this study contributes to the advancement of methodology, first concerning the comparability of 

GIS-models used, second, the method that allows for large scale pedestrian surveys and the statistical 

modelling that is suitable for the specificities of spatial data, and pedestrian data in particular. Related 

to the last case, we propose the use of the negative Binomial model instead of linear regression models 

since it avoids the ad hoc procedure of logging the data. Further, and perhaps more importantly, 

regression is a model for continuous data, which pedestrian counts are not. We moreover addressed the 

problem of spatial correlation in the data, which makes the results unreliable if not accounted for. As a 

solution it is proposed to include a random effect that models the spatial dependence. Finally, we 

propose to use CRPS for comparing models in addition to R2-values. While R2-values show how well 

the model predicts pedestrian counts, it does not reflect the uncertainty of the predictions, something 

CRPS can do. 

Regarding the choice between using negative Binomial regressions or standard multiple regression 

models for transformed data, we saw for our data that the negative Binomial models had higher 

predictive accuracy compared to the standard regression. However, the conclusions drawn regarding 

the effect of the different explanatory variables did not change much between the two choices. It should 

be noted here that the importance of using a proper regression model for count data should increase for 

datasets with higher proportions of low counts, since in that case, the approximation that is done when 

using a regression model for continuous data on counts will be worse. Thus, the conclusion is that proper 

model validation checks have to be performed if a standard regression model is used for count data, or 

for data where there may be remaining spatial dependence in the residuals of the regressions. Blindly 

using regression models in those cases can lead to inaccurate conclusions. 

Besides these three achievements, the study also reveals some new questions that could be studied next, 

three of which we want to highlight here. First, although this study comprises three cities, including a 

large range of neighbourhoods of varying morphological types, it is of importance to look beyond the 

European context and add cities in other continents to study the generalisability of the findings across 

cities. Related to this, a study of the specificities within cities would be an interesting addition to the 

current study, where differences between neighbourhoods could be in focus. Second, staying closer to 

the material at hand, it is of interest to look into the pedestrian survey in more detail and also study the 

fluctuation of pedestrian flow during the day and variations in speed in relation to urban form. Third, 

some statistical deeper investigations are needed. A next step for improving the statistical models used 

here is to replace the independent random effects that were used for each neighbourhood by a random 

field that also can capture the dependence between these random effects. Again, an interesting topic, 
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also for future statistical research, would be to model the fluctuation of pedestrian flows during the day, 

which would require replacing the regression models with models for functional data. 
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