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We develop the theory of modulated operators in general principal ideals of compact 
operators. For Laplacian modulated operators we establish Connes’ trace formula in 
its local Euclidean model and a global version thereof. It expresses Dixmier traces 
in terms of the vector-valued Wodzicki residue. We demonstrate the applicability of 
our main results in the context of log-classical pseudo-differential operators, studied 
by Lesch, and a class of operators naturally appearing in noncommutative geometry.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Computing the spectral asymptotics of physically and geometrically significant operators is a classical 
problem in spectral theory. In situations where this is not possible, because of technical limitations or 
substantial reasons such as a lack of classicality (in the sense of asymptotic expansions), it is nevertheless 
of interest to obtain quantitative information about the spectrum by the computation of an “averaged” 
spectral asymptotics. One of the tools to proceed is via the employment of Dixmier traces that determine 
the rate of divergence of spectral asymptotics.

1.1. Background

Throughout this section A is a linear operator acting on a separable Hilbert space. Let Φ : (0, ∞) → (0, ∞)
be a concave function such that limt→∞ Φ(t) = +∞ and let

MΦ :=
{
A is compact and ‖A‖MΦ := sup

n≥0

1
Φ(n + 1)

n∑
k=0

μ(k,A) < ∞
}
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be the corresponding Lorentz ideal. Here μ(k, A) denotes the singular values of the operator A. If

lim
t→∞

Φ(2t)
Φ(t) = 1,

then it was shown by J. Dixmier [15] that for a positive, dilation- and translation invariant functional 
ω ∈ �∞(N)∗ extending the usual limit functional the functional

Trω(A) = ω

(
1

Φ(n + 1)

n∑
k=0

μ(k,A)
)
, 0 ≤ A ∈ MΦ,

extends by linearity to a trace on MΦ. Such traces are called Dixmier traces. Dixmier traces provide an 
“averaged” spectral asymptotics in the sense that Trω(A) = c whenever limk→∞

μ(k,A)
ϕ(k) = c for ϕ = Φ′. 

There is no general method to compute the sequence of singular values of an operator, and the computation 
of Dixmier traces is in general an equally difficult problem. There are several approaches to this problem 
in concrete situations that produce manageable results describing the “averaged” spectral asymptotics ex-
plicitly. One of them is to find formulae relating Dixmier traces to the ζ-function of an operator or to its 
heat expansion. Such formulas first appeared in [13] for MΦ with Φ(t) = log(1 + t) and then were further 
investigated in [6,38,5,36,37]. Recently, such formulae were proved in the case of general ideals MΦ [17]
(with some mild and natural assumptions on Φ).

Another approach, which is more relevant to the present paper, originated in Connes’ paper [10]. To 
state this result we recall the notion of weak-ideals. For a decreasing function ϕ : [0, ∞) → (0, ∞) such that 
supt>0

ϕ(t)
ϕ(2t) < ∞ we define the ideal of compact operators

Lϕ :=
{
A compact and ‖A‖Lϕ

:= sup
n≥0

μ(n,A)
ϕ(n) < ∞

}
. (1)

When ϕ(t) = 1
1+t , the set Lϕ is called the weak trace-class ideal and denoted by L1,∞. It is easy to see 

that Lϕ ⊂ MΦ with ϕ = Φ′. The Dixmier traces on Lϕ are the restrictions of Dixmier traces from the 
corresponding MΦ.

Theorem 1.1 (Connes’ trace formula, Theorem 1 of [10]). Every compactly supported classical pseudo-
differential operator A : C∞

c (Rd) → C∞
c (Rd) of order −d extends to a compact linear operator belonging to 

L1,∞(L2(Rd)) and

Trω(A) = 1
d(2π)dResW (A),

where ResW (A) is the Wodzicki residue of A and Trω is any Dixmier trace.

Note that [10, Theorem 1] was proved for compact manifolds, but the statement is equivalent to the 
one given above. This theorem reduces the computation of Dixmier traces to that of the Wodzicki residue, 
which in turn is defined from the principal symbol of an operator and is therefore more accessible to 
computations. The spectral asymptotics of positive pseudo-differential operators was well known prior to 
Connes’ trace formula by means of a Weyl law, see for instance [23, Chapter 29.1], but Connes’ trace 
formula conceptualized Dixmier traces as an “integral” in noncommutative geometry. There are by now 
several results extending and generalising Connes’ trace formula (see e.g. [3], [16] and [20] for the treatment 
of anisotropic pseudo-differential operators, the perturbed Laplacian on the noncommutative two tori and 
manifolds with boundaries, respectively). We will be particularly interested in extensions of Connes’ trace 



M. Goffeng, A. Usachev / J. Math. Anal. Appl. 488 (2020) 124045 3
formula that enable computations of Dixmier (and/or all normalised) traces of pseudo-differential operators 
that are not necessarily classical.

1.2. Recent developments

A recent extension of Connes’ trace formula (stated as Theorem 1.1 above) appeared in [24] (see also [27]). 
It expresses the Dixmier traces of so-called Laplacian modulated operators (for rigorous definitions, see 
Section 4 below) in terms of a vector-valued Wodzicki residue, which again depends on the symbol of an 
operator. We state the main result of [24] here. Let �∞(N) denote the Banach space of bounded sequences 
with supremum norm.

Theorem 1.2 (Theorem 1.2, [24]). Let A be a compactly supported Laplacian modulated operator with Hilbert-
Schmidt symbol pA ∈ L2(Rd ×Rd). We have A ∈ L1,∞(L2(Rd)). Moreover, for a Dixmier trace Trω,

Trω(A) = 1
d(2π)dω(Res(A))

where ω ∈ �∞(N)∗ is a state vanishing on compactly supported sequences and

Res(A) :=

⎧⎪⎨
⎪⎩

1
log(2 + n)

∫
Rd

∫
|ξ|≤n1/d

pA(x, ξ)dξ dx

⎫⎪⎬
⎪⎭

n∈N

∈ �∞(N),

is the vector-valued residue of A.

We note that the above result compared to the original Connes theorem does not assume the classicality 
of the symbol nor any smoothness of it. Indeed, the class of Laplacian modulated operators is larger than 
the class of classical pseudo-differential operators (of suitable order). More recently, this result was extended 
to allow for the computations of all positive traces [32]. The common value of all positive traces is in [32]
described in terms of the classical notion of almost convergence (introduced by G.G. Lorentz in 1948) of 
the vector-valued Wodzicki residue Res(A) ∈ �∞(N).

1.3. Motivation

Although Theorem 1.2 treats a wide class of operators, it only considers the case when the operator 
A falls into the weak trace-class ideal L1,∞. There is a large number of examples where a physically or 
geometrically important operator does not belong to L1,∞, but rather to Lϕ for some more general function 
ϕ. Here we list two of such examples:

(i) The class of log-classical pseudo-differential operators was considered in [26]. Whereas the symbol of a 
classical pseudo-differential operator has an asymptotic expansion in terms of homogeneous functions, that 
of a log-classical pseudo-differential operator has an expansion in terms of homogeneous functions multiplied 
by powers of the logarithm. Such operators belong to more general ideals Lϕ. We discuss this example in 
details in Section 9;

(ii) Recently, several θ-summable spectral triples have been constructed on purely infinite C∗-algebras 
arising from crossed product constructions [14,19,29]. These constructions take their starting point on a 
closed manifold M , or in some cases more exotic geometries, and a (semi)group action forces the spectral 
growth to be sub-polynomial, even logarithmic. This is dictated by Connes’ tracial obstruction to finite 
summability [11]. An interesting feature of these spectral triples (A, H, D) is that for the a in the subalgebra 
of smooth functions C∞(M) ⊆ A, the commutators [D, a] are not just bounded but belong to a general 
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weak ideal. This phenomena potentially opens up for possibly new and exciting noncommutative geometric 
situations. The results of this paper develops some of the tools needed to deal with these situations.

We have collected some more examples in Subsection 2.2 below.

1.4. Main results

The purpose of this paper is to develop a theory allowing the computation of Dixmier traces for a wide 
class of operators from Lϕ in terms of their Hilbert-Schmidt symbol.

One of the most important technical notions studied in this paper is that of modulated operators in 
general weak ideals. Modulated operators in the weak trace ideal L1,∞ were extensively studied by Lord-
Sukochev-Zanin (see [27]). The proof of Connes’ trace formula in [27] (see Theorem 1.2 above) relies heavily 
on properties of modulated operators in L1,∞. We generalize this notion to ϕ-modulated operators in general 
weak ideals Lϕ. Much of the theory needs to be carefully redone, and relies heavily on the theory of functions 
of regular variation [2]. The theory of ϕ-modulated operators is more delicate than the corresponding theory 
in L1,∞, often due to the function ϕ(t) = 1/t having coincidental properties such as being both its own inverse 
and being the reciprocal of the identity function. In general weak ideals, we separate the notion of being 
modulated into two separate cases: weakly and strongly, see Definition 3.1 and Definition 4.1, respectively. 
These two notions are compared in Lemma 4.9. Being weakly or strongly modulated is a regularity condition, 
as seen from the work [18], and to compute Dixmier traces we require an additional spectral condition in 
general weak ideals; we call this condition having ϕ-reasonable decay (see Definition 5.8).

The main result of the paper is the following generalisation of Connes’ trace formula and its version for 
closed manifolds. For Euclidean spaces, it is stated as Theorem 6.1 in the bulk of the text.

Theorem 1.3. Let W be a d-dimensional inner product space and let ϕ be a decreasing function smoothly 
varying of index −1. Assume that G ∈ Lϕ(L2(W )) is a compactly supported weakly ϕ-Laplacian modulated 
operator with L2-symbol pG of ϕ-reasonable decay. Then, as n → ∞,

∫
W

∫
〈ξ〉≤n1/d

pG(x, ξ) dξdx = O(Φ(n)),

and for every state ω on �∞, vanishing on compactly supported sequences, we have

Trω(G) = ω

⎛
⎜⎝ 1

Φ(n + 1)

∫
W

∫
〈ξ〉≤n1/d

pG(x, ξ) dξdx

⎞
⎟⎠ .

The same formula holds also when replacing W by a closed Riemannian manifold M and G ∈ Lϕ(L2(M))
satisfies the conditions above modified to be coordinate invariant (for details see Theorem 9.1 on page 43).

Note that Theorem 1.3 compared to Theorem 1.2 requires additionally that the symbol has ϕ-reasonable 
decay. For ϕ(t) = O(t−1), ϕ-reasonable decay is automatic for strongly modulated operators. In general, 
this is unclear. Seeing that this is the case, we have chosen to assume the weakest possible modulation 
property in parallel to having ϕ-reasonable decay.

As a demonstration of our main results we prove in Theorem 9.4 that Dixmier traces of log-classical 
pseudo-differential operators considered in [26] are proportional to the higher Wodzicki residues. It is of 
general interest to find operators with exotic ζ-functions. Lesch [26] proved that if A is a log-classical 
pseudo-differential operator and P is an elliptic, invertible and positive classical pseudo-differential operator, 
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then the ζ-function Tr(AP−s) admits a meromorphic extension to the complex plane and has a finite order 
pole at s = 0. The residue at this pole computes the higher Wodzicki residue. Another way to look at 
the ζ-function is to consider the expression Tr(As) for a positive operator A [6,38,17]. We show that for 
log-classical pseudo-differential operators the higher Wodzicki residue can be computed using this function, 
too. However, in general, this ζ-function does not admit a meromorphic extension to a neighbourhood of 
s = 1 (see Remark 9.5).

1.5. Organisation of the paper

1. In Section 2 we collect some well known facts about weak ideals and provide examples of operators 
therein. We also give some preliminary results on weak ideals and recall the theory of functions of regular 
variation.

2. In Section 3 we introduce the notion of operators in B(H) being weakly ϕ-modulated with respect 
to some auxiliary operator V (see Definition 3.1). This notion extends the concept of weakly modulated 
operators from [18] that implicitly appeared in [27, Lemma 11.2.9]. The main result of this section (The-
orem 3.6) provides the formula which computes Dixmier traces of weakly ϕ-modulated operators through 
the expectation values.

3. In Section 4 we develop the theory of modulated operators in the general context. We introduce the 
notion of operators in B(H) that are strongly ϕ-modulated with respect to some auxiliary operator V (see 
Definition 4.1). This notion extends the concept of modulated operators from [27]. In this section we study 
properties of such operators and prove that under additional assumption on ϕ any strongly ϕ-modulated 
operator is, in fact, weakly ϕ-modulated (see Definition 4.5 and Lemma 4.9).

4. In Section 5 we restrict our considerations to the particular case of operators in B(L2(W )), where W is 
a d-dimensional real inner product space and study Laplacian modulated operators, that is those which are 
ϕ-modulated with respect to ϕ[(1 −Δ)d/2]. We characterise such operators in terms of their Hilbert-Schmidt 
symbol. These results lay the ground for our first main result - our generalization of Connes’ trace formula 
proved in Section 6 for Euclidean spaces.

5. In Section 7 we develop a pseudo-differential calculus that widely generalises Lesch’s log-classical 
pseudo-differential operators. With the help of these techniques we study more general operators – locally 
ϕ-Laplacian modulated operators on manifolds – in Section 8. Finally, in Section 9 we prove our second 
main result – our generalization of Connes’ trace formula on closed manifolds (see Theorem 9.1). As a 
consequence of this result we show that Dixmier traces of Lesch’s log-classical pseudo-differential operators 
can be computed by means of the higher Wodzicki’s residues introduced in [26].

6. In Section 10 we discuss the applications our results to noncommutative geometry. In particular, we 
express Dixmier traces of the product of commutators in terms of the integral of their symbols.
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2. Preliminaries

2.1. Weak operator ideals and Lorentz ideals

Throughout the paper we denote by B(H) (resp., K(H)) the algebra of all bounded (resp., compact) 
linear operators on a separable Hilbert space H.

The ideals of operators of relevance in this paper are the weak ideals associated with a decreasing function 
ϕ : [0, ∞) → (0, ∞). For a compact operator A on a separable Hilbert space H, we let (μ(n, A))n∈N denote 
its sequence of singular values and let nA(s) := Tr(E|A|(s, ∞)), where E|A| is a spectral projection of |A|. 
It can be shown that

μ(n,A) = inf{s > 0 : nA(s) ≤ n} and μ(n,A) ≤ s ⇔ nA(s) ≤ n.

We define the set of compact operators

Lϕ :=
{
A ∈ K(H) : ‖A‖Lϕ

:= sup
n≥0

μ(n,A)
ϕ(n) < ∞

}
. (2)

The dependence on the Hilbert space H will be implicit; we write it out only when we wish to emphasize 
which Hilbert space we use. Occasionally, we consider the space

Lϕ(H,H′) = {A ∈ K(H,H′) : (A∗A)1/2 ∈ Lϕ(H′)}
= {A ∈ K(H,H′) : (AA∗)1/2 ∈ Lϕ(H)},

for two possibly different separable Hilbert spaces H and H′.
We will throughout the paper implicitly assume that ϕ : [0, ∞) → (0, ∞) is a decreasing function such 

that

sup
t>0

ϕ(t)
ϕ(2t) < ∞. (3)

The assumption that ϕ is decreasing and satisfies Equation (3) guarantees that Lϕ is an ideal in the 
C∗-algebra of bounded operators B(H). We call Lϕ the weak ideal associated with ϕ. The condition (3)
guarantees that the ideal Lϕ is a quasi-Banach ideal in the quasi-norm ‖·‖Lϕ

. When referring to a weak 
ideal, we mean one of the form Lϕ with ϕ satisfying (3).

There is a larger ideal of operators associated with the function ϕ. We set

Φ(t) :=
t∫

0

ϕ(s)ds + cϕ,

for some constant cϕ ≥ 0. Typically the constant cϕ is chosen to be zero. Since the von Neumann algebra 
B(H) is atomic, adding this constant does not change the setting, but it slightly simplifies the notations.

The Lorentz ideal defined from Φ is the set

MΦ :=
{
A ∈ K(H) : ‖A‖MΦ := sup

n≥0

1
Φ(n + 1)

n∑
k=0

μ(k,A) < ∞
}
. (4)

The set MΦ forms an ideal in the C∗-algebra of bounded operators B(H). It forms a Banach space in the 
norm ‖ · ‖MΦ . The ideal MΦ can be defined as in Equation (4) for an arbitrary increasing concave function 
Φ.
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Below we list some typical examples of functions ϕ and Φ.

Example 2.1. When ϕ(t) = 1
e+t the ideal Lϕ is the well studied weak-trace class ideal L1,∞. In this case, 

Φ(t) = log(e + t). The corresponding Lorentz ideal MΦ is denoted by M1,∞.

Example 2.2. Another interesting example comes from the function ϕ(t) = logk(e+t)
e+t , k ∈ Z, k �= −1. We use 

the notation logk(e + t) = (log(e + t))k. In this case,

Φ(t) = logk+1(e + t)
k + 1 .

Example 2.3. The function ϕ(t) = 1
(e+t) log(e+t) will also be of interest (corresponding to the excluded case 

k = −1 in Example 2.2). In this case, Φ(t) = log(log(e + t)).

Example 2.4. The function ϕ = Φ′, where Φ(t) = elogβ(e+t) with 0 < β < 1. This function appeared in [35].

Example 2.5. The function ϕ(t) = 1
log(e+t) is of interest in noncommutative geometry. In this case, Φ(t) is a 

logarithmic integral, behaving like t
log(t) (1 + o(1)) as t → ∞ (in fact, as the prime counting function).

For q > 0 we denote by L(q)
ϕ the q-convexification of Lϕ, that is L(q)

ϕ consists of all operators A such that 
|A|q ∈ Lϕ. In particular,

L(q)
ϕ = L q

√
ϕ = {A ∈ K(H) : μ(n,A)q = O(ϕ(n))} .

We note that the quasi-norms ‖A‖L(q)
ϕ

:= q
√

‖|A|q‖Lϕ
admit a quasi-Hölder inequality

‖A1A2‖L(q)
ϕ

≤ C‖A1‖L(q0)
ϕ

‖A2‖L(q1)
ϕ

, for q−1 = q−1
0 + q−1

1 . (5)

As such, we have L(q0)
ϕ L(q1)

ϕ ⊆ L(q)
ϕ if q−1 = q−1

0 + q−1
1 . We abuse the notation by setting L(∞)

ϕ to be the 
bounded operators.

Remark 2.6. We will not use the convexification M(q)
Φ in this paper but we nevertheless warn the reader of 

a substantial amount of confusion in the literature regarding the distinction between M(q)
Φ and L(q)

ϕ . This 
mainly concerns the special case ϕ(t) = 1

e+t , in this case, one writes M(q)
Φ = Mq,∞ and L(q)

ϕ = Lq,∞. It is 
not uncommon that M1,∞ is denoted by L1,∞. Sometimes, untrue claims such as Mq,∞ = Lq,∞ can even 
be found.

2.2. Examples of operators in weak ideals and Lorentz ideals

Before proceeding, we give some naturally occurring examples of operators that fall into Lϕ and MΦ.

Example 2.7. It was shown in [33, Theorem 1.5] that if A is the Dirichlet Laplacian for the region D :=
{(x, y) ∈ R2 : |xy| ≤ 1}, then

lim
t→∞

NA(t)
t log t = 1

π
,

where NA(t) is the number of eigenvalues of A less than t. Since n(1+A)−1(s) ∼ NA(1/s), it follows that
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lim
s→0

n(1+A)−1(s)
1
s log 1

s

= 1
π
.

Since the asymptotic inverse of the function s → 1
s log 1

s is ϕ(t) = log(e+t)
e+t , it follows that

lim
n→∞

μ(n, (1 + A)−1)
ϕ(n) = 1

π
.

Hence, the operator (1 + A)−1 ∈ Lϕ(L2(D)).
A related example in [33] is the self-adjoint operator Δa = −Δ + |xy|a on L2(R2). Here a > 0 is a 

parameter. It was shown in [33, Theorem 1.4] that

lim
t→∞

NΔa
(t)

t1+a−1 log t
= 1

π
.

By a similar argument as above, and using that

ϕa(t) =
(

log(e + t)
e + t

) a
a+1

, (6)

is an asymptotic inverse to s → s−1−a−1 log 1
s , we have that (1 + Δa)−1 ∈ Lϕa

(L2(R2)) and

lim
n→∞

μ(n, (1 + Δa)−1)
ϕa(n) = 1

π
.

Example 2.8. Let ϕ be a function satisfying (3) and (M, g) a closed Riemannian manifold. Let Δg denotes the 
(negative) scalar Laplacian on M . The Weyl law [7] guarantees the eigenvalue asymptotics λk((1 +Δg)d/2) =
cgk + o(k) for a suitable constant cg > 0. Condition (3) implies that ϕ((1 − Δg)d/2) ∈ Lϕ.

Example 2.9. If (M, g) is a Riemannian manifold of dimension d, and ρg denotes the geodesic distance, we 
can define an operator T : C∞

c (M) → C∞(M) by

Tf(x) :=
∫
M

f(x) − f(y)
ρg(x, y)d

dVg, (7)

where dVg denotes the volume form associated with g. It can be verified that T is a pseudo-differential 
operator of Hörmander type (1, 0) and any order > 0. A short computation with the Fourier transform 
shows that the symbol of T is proportional to log |ξ|g modulo symbols of order 0. As such, whenever M
is closed there is a non-zero constant c such that T − c log((1 − Δg)d/2) is bounded in the L2-norm. We 
conclude that T is essentially self-adjoint on L2(M) and the Weyl law on the closed manifold M guarantees 
that (i ± T )−1 ∈ Lϕ(L2(M)) for ϕ(t) = 1

log(e+t) being as in Example 2.5.
Operators of the type in Equation (7) have as of lately made its appearances in noncommutative geometry. 

They can be defined on more general metric measure spaces (see [19]). Such operators are geometric yet 
display better compatibility properties with respect to (semi-) group actions in examples (see [14,19,29]).

Example 2.10. In [17, Example 4.9] the following example was considered. For a certain positive operator P
on the Podlès sphere S2

q – a q-analogue of the Laplacian on the sphere – and the flat (positive) Laplacian 
ΔT2 on the 2-torus, the operator A := (1 + P ⊗ 1 + 1 ⊗ ΔT2)−1 ∈ MΦ(L2(S2

q × T 2)), with

Φ(t) = log3(e + t1/3). (8)
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We show that, in fact, A belongs to the corresponding weak ideal. It was shown in [17, Example 4.9] that

Tr(e−tA−1
) ∼ c · log2 t

t
, t → 0.

Writing the heat trace as the Laplace transform

Tr(e−tA−1
) =

∞∫
0

e−tzdNA−1(z)

(where NA−1(t) is the number of eigenvalues of A−1 less than t) and using the classical Karamata Theorem 
(see e.g. [25, Chapter IV, Theorem 8.1]), we obtain

NA−1(t) ∼ c · t log2 t, t → ∞.

Since nA(s) ∼ NA−1(1/s), and the asymptotic inverse of the function s → 1
s log2 1

s is ϕ(t) = log2(e+t)
e+t , it 

follows that μ(n, A) ∼ c · log2(e+n)
e+n as n → ∞. Thus, A ∈ Lϕ(L2(S2

q × T 2)).

Example 2.11. Consider the strictly positive operator

G := (1 + |x|2)−d/4(1 − Δ)−d/2(1 + |x|2)−d/4,

on L2(Rd). Let ‖ · ‖Lp
denote the p:th Schatten class norm. By using the Hausdorff-Young inequalities (see 

[34, Theorem 4.1]) one shows that for a constant C > 0,

‖G‖Lp(L2(Rd)) ≤ C(p− 1)−2 ≤ Φ(e(p−1)−1
), p > 1,

where Φ(t) = log2(e +t). It follows from [17, Proposition 2.13 and formula (28)], that G ∈ MΦ. Alternatively, 
one applies [17, Proposition 2.15] directly to see that G ∈ MΦ. This result can be made more precise using 
the results of [1]. It follows from [1, theorem 4.5] that NG−1 (t)

t log(t) has a limit c as t → ∞. Using the method 

from Example 2.7, we see that with ϕ(t) = log(e+t)
e+t , it holds that

lim
n→∞

μ(n,G)
ϕ(n) = c, and G ∈ Lϕ(L2(Rd)).

The operator G is an elliptic operator of order (−d, −d) in the SG-calculus SG∗,∗(Rd). This pseudo-
differential calculus is also known as the scattering calculus [28, Chapter 6], see also [1]. Similar results 
holds also for more general SG-manifolds. Using [1, Theorem 2.9], we see that Gp/d ∈ SG−p,−p(Rd) for any 
p > 0. Combining this fact with that SG0,0(Rd) acts as bounded operators on L2(Rd) and G ∈ Lϕ, we 
conclude the following inclusion:

SG−p,−p(Rd) ⊆ L(d/p)
ϕ (L2(Rd)), p > 0.

Example 2.12. Other examples come from singular manifolds. The following example is based on the spectral 
properties of operators studied [21]. The Laplacian on a manifold with cuspidal singularities in the metric 
decomposes into an operator with discrete spectrum, and one with continuous spectrum. The discrete part 
of the operator in turn decomposes as a countable direct sum (over different μ and V ) of operators of the 
following form
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H = − d
dx (x2 d

dx ) + x2μ2 − 1
4 + V (x), x > a.

Here μ is a spectral parameter and V ∈ xγL1[a, ∞) (where γ < 2) is a potential. We equip the operator H
with self-adjoint Robin type boundary conditions at x = a. See more in [21, Introduction]. It follows from 
[21, Section 1.1.3] that limt→∞

NH(t)
t1/2 log t

= 1
2π . By an argument similar to that in Example 2.7 we obtain 

(i ±H)−1 ∈ Lϕ(L2([a, ∞))), where ϕ(t) =
(

log(e+t)
e+t

)2
.

2.3. Dixmier traces

A positive operator A ∈ Lϕ will have eigenvalues λn(A) = O(ϕ(n)). A standard problem in spectral 
theory is to determine the spectral asymptotics of A, i.e. if there is a c such that λn(A) = cϕ(n) + o(ϕ(n))
and to determine c. The computation of c can be done using Dixmier traces – a gadget detecting averaged 
spectral asymptotics. Their natural domain of definition is the larger Lorentz ideal. We refer the reader 
to the general definition of Dixmier traces due to J. Dixmier [15] (see also [12,27]); we only consider the 
construction under assumptions relevant later in the paper.

A functional ω ∈ �∞(N)∗ is called an extended limit if it is a state vanishing on the space c0(N) of null 
sequences. Equivalently, ω is a positive unital extension of the limit functional from the closed subspace of 
convergent sequence to �∞(N). We say that an extended limit ω is dilation invariant if

ω(c1, c2, c3, . . .) = ω((cn)n∈N) = ω((c�n/2)n∈N) = ω(c1, c1, c2, c2, c3, c3, . . .),

for any (cn)n∈N ∈ �∞(N).

Definition 2.13. Let Φ be a concave function on (0, ∞) such that limt→∞ Φ(t) = +∞ and

lim
t→∞

Φ(2t)
Φ(t) = 1. (9)

For every dilation invariant extended limit ω on the sequence space �∞(N) the functional

Trω(A) = ω

(
1

Φ(n + 1)

n∑
k=0

μ(k,A)
)
, 0 ≤ A ∈ MΦ (10)

is additive and positive homogeneous [15]. Its extension by linearity to MΦ is called a Dixmier trace.
A Dixmier trace on Lϕ is a restriction of a Dixmier trace (on the corresponding MΦ) to Lϕ. In other 

words, a Dixmier trace on Lϕ is a functional given by the same formula as in Equation (10) for positive 
operators.

2.4. Functions of regular variation

Now we introduce several classes of functions and describe their properties.

Definition 2.14 (see e.g. [2]). A positive measurable function f defined on some interval (a, ∞) is said to be

(i) regularly varying of index ρ if

lim f(λt) = λρ, ∀ λ > 0;

t→∞ f(t)
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(ii) smoothly regularly varying of index ρ if f ∈ C∞ and for any n ∈ N,

lim
t→∞

tnf (n)(t)
f(t) = ρ(ρ− 1)...(ρ− n + 1). (11)

The classes of regularly varying and smoothly regularly varying functions are denoted by Rρ and SRρ, 
respectively. The class R0 is called the class of slowly varying functions.

Proposition 2.15. Let f be a positive measurable monotone function defined on some interval (a, ∞). One 
has f ∈ Rρ if and only if

lim
t→∞

f(λ0t)
f(t) = λρ

0 (12)

for some 0 < λ0 �= 1.

Proof. It is clear that (12) holds for f ∈ Rρ, and it only remains to prove the converse. Without loss of 
generality suppose that (12) holds for λ0 = 2. We first consider the case ρ = 0. For every n ∈ Z, n �= 0 we 
have

lim
t→∞

f(2nt)
f(t) = 1.

Since f is monotone, it follows that for every λ > 0 and some n, m ∈ Z we have

f(2nt)
f(t) ≤ f(λt)

f(t) ≤ f(2mt)
f(t)

which implies the statement.
For a general ρ and f satisfying (12), then g(t) = t−ρf(t) satisfies (12) with ρ = 0. Hence,

lim
t→∞

f(λt)
f(t) = λρ lim

t→∞
g(λt)
g(t) = λρ,

by the first part of the proof. �
Theorem 2.16. [2, Theorem 1.8.2] If f ∈ Rρ, then there exists g ∈ SRρ such that f ∼ g as t → ∞.

Remark 2.17. For the existence of Dixmier traces on MΦ (and Lϕ, too) we only need that the decreasing 
function ϕ : [0, ∞) → (0, ∞) satisfies that

lim
t→∞

ϕ(2t)
ϕ(t) = 1

2 . (13)

Indeed, this implies (9). By Proposition 2.15, Equation (13) is equivalent to ϕ ∈ R−1. Whereas Theorem 2.16
tells that assuming ϕ ∈ SR−1 alter neither the class of ideals Lϕ nor Dixmier traces under consideration.

Throughout most of the paper we assume that ϕ ∈ R−1. Assuming that ϕ has regular variation is crucial 
in several proofs. That we assume the regular variation to be of index −1 is only to ensure the existence of 
Dixmier traces.

Remark 2.18. In Section 7, we use the smooth regular variation of ϕ to construct a well defined pseudo-
differential calculus. In fact, the minimal assumption that can be used in Section 7 is that we in Equation 
(11) have uniform bounds rather than a limit.
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Example 2.19. The functions ϕ(t) = logk(e+t)
e+t , k ∈ Z, from Examples 2.1, 2.2 and 2.3 have smooth regular 

variation of index −1, and so does the function from Example 2.4. The function ϕ(t) = 1
log(e+t) (from 

Example 2.5) is slowly varying, i.e. it has regular variation of index 0. The function ϕa from Equation (6)
(resp., Φ′ with Φ as in Example 2.10) has smooth regular variation of index ρ1 = − a

a+1 (resp., ρ2 = −2/3). 
However, functions ϕρ1

a and (Φ′)ρ2 have smooth regular variation of index −1.

The following result shows that on weak ideals Lϕ all Dixmier traces can be constructed without the 
additional assumption that the extended limit ω is dilation invariant. It is a corollary of [30, Theorem 17].

Theorem 2.20. If ϕ ∈ R−1 is decreasing, then for every extended limit ω on �∞(N), the functional

Trω(A) = ω

(
1

Φ(n + 1)

n∑
k=0

μ(k,A)
)
, 0 ≤ A ∈ Lϕ

is additive and positive homogeneous and thus, extends by linearity to a Dixmier trace on Lϕ.

Proposition 2.21. If ϕ ∈ R−1 is decreasing, then for any p > 1,

Lϕ ⊆ Lp.

Here Lp denotes the ideal of p-th Schatten class operators.

Proof. Using [17, Lemma 2.2] the proposition follows if ϕ ∈ Lp(R+) for any p > 1. It follows from ϕ ∈ R−1
that for any ε > 0, there is a t0 such that ϕ(2t) ≤ ϕ(t)(2 − ε)−1 for t > t0. We conclude that for any ε, there 
is a Cε > 0 such that ϕ(t) ≤ Cε(2 − ε)−k for t ∈ [2k, 2k+1). For p > 1, take ε < 2 − 21/p and estimate

∞∫
0

|ϕ|p(t)dt =
1∫

0

|ϕ|p(t)dt +
∞∑
k=0

2k+1∫
2k

|ϕ|p(t)dt ≤

≤
1∫

0

|ϕ|p(t)dt + Cε

∞∑
k=0

(
2

(2 − ε)p

)k

< ∞. �

Throughout the paper, we will make use of various averaging properties on the function ϕ.

Proposition 2.22. If ϕ ∈ R−1, then
(i) for every α ≥ β − 1 we have

lim
t→∞

tα+1ϕβ(t)∫ t
0 sαϕβ(s)ds

= α− β + 1.

(ii) for every α < β − 1 we have

lim
t→∞

tα+1ϕβ(t)∫∞
t

sαϕβ(s)ds
= −α + β − 1.

Proof. It follows from ϕ ∈ R−1 that

lim ϕβ(2t)
β

= 2−β .

t→∞ ϕ (t)
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This means that the function ϕβ varies regularly with index −β. The assertions follow from [2, Theo-
rem 1.5.11]. �

We shall prove the discrete counterpart of the preceding result. First, we recall the general result from [41].

Theorem 2.23. Let a matrix A = {ank} be such that for some η > 0 the following hold:

∞∑
k=n

|ank|kη = O(nη), n → ∞;
n∑

k=1

|ank|k−η = O(n−η), n → ∞.

Let L be a slowly varying sequence, that is limn→∞
L�λn�
Ln

= 1. If

∞∑
k=1

ank → A, n → ∞,

then
∑∞

k=1 ankLk

Ln
→ A, n → ∞.

We shall need the following particular forms of Theorem 2.23.

Lemma 2.24. If ϕ ∈ R−1, then
(i) for every α > β we have

lim
n→∞

∑n
k=1 2kαϕβ(2k)
2nαϕβ(2n) = 2α−β

2α−β − 1 .

(ii) for every α < β we have

lim
n→∞

∑∞
k=n 2kαϕβ(2k)
2nαϕβ(2n) = 1

1 − 2α−β
.

Proof. Set Lk := [kϕ(k)]β . The fact that ϕ ∈ R−1 implies that the sequence L is slowly varying.
(i) Set

ank =
{

kα−β

nα−β , for k = 2i, 1 ≤ k ≤ n,

0, otherwise.

We have

∞∑
k=1

ank = n−α+β

�log2 n∑
i=1

2i(α−β) → 2α−β

2α−β − 1 , n → ∞.

The other conditions of Theorem 2.23 are verified in a similar way.
It follows from Theorem 2.23 that, in particular,

∑∞
k=1 a2n,kLk =

∑n
k=1 2kαϕβ(2k)

nα β n
→ 2α−β

α−β
, n → ∞.
L2n 2 ϕ (2 ) 2 − 1
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(ii) The proof is similar to that of (ii) upon setting

ank =
{

kα−β

nα−β , for k = 2i, k ≥ n,

0, otherwise. �
3. Weakly modulated operators and formulas for their Dixmier traces

In this section we give a quite general formula for Dixmier traces of an operator with additional regularity 
properties relative to an auxiliary operator V , see Theorem 3.6. This formula is in general unwieldely, but 
can, under some additional assumptions, for operators on manifolds produce closed expressions in terms of 
the operator’s L2-symbol.

To compute Dixmier traces of an operator G ∈ Lϕ, we make use of an auxiliary operator V . We say that 
V is strictly positive if V is positive and VH ⊆ H is dense. For a strictly positive operator V and p > 0, 
V −1/p can be defined as a densely defined unbounded operator with domain V 1/pH. The operator V −1/p

is self-adjoint because it is symmetric and (i ±V −1/p)−1 = V 1/p(iV 1/p ± 1)−1 exists. Recall our convention 
that L(∞)

ϕ denotes the bounded operators. The following definition extends the notion of weakly modulated 
operators [18, Definition 2.12] from L1,∞ to more general ideals Lϕ.

Definition 3.1. Let V ∈ B(H) be strictly positive. We say that G ∈ B(H) is weakly ϕ-modulated with respect 
to V if there is p ≥ 1 such that the densely defined operator GV −1/p extends to a bounded operator with 

GV −1/p ∈ L( p
p−1 )

ϕ (H).

We will later introduce further variations on being ϕ-modulated.

Proposition 3.2. Let V ∈ B(H) be strictly positive. If V ∈ Lϕ, the set of weakly ϕ-modulated operators with 
respect to V forms a left ideal in B(H).

Proof. For p ≥ 1, we set mϕ,V,p := {G ∈ B(H) : GV −1/p ∈ L( p
p−1 )

ϕ (H)}. It is clear from construction that 
for fixed p ≥ 1, the set mϕ,V,p is a left ideal in B(H). For p1 > p0 ≥ 1 and G ∈ mϕ,V,p0 , we can write

GV −1/p1 = GV −1/p0V 1/p0−1/p1 ,

as unbounded operators. By the quasi-Hölder inequality (5) (see page 7), V ∈ Lϕ implies that GV −1/p1 ∈
L( p1

p1−1 )
ϕ (H) whenever G ∈ mϕ,V,p0 . We conclude that mϕ,V,p0 ⊆ mϕ,V,p1 whenever p1 > p0 ≥ 1. The set 

∪p≥1mϕ,V,p is therefore a left ideal in B(H) that by construction coincides with the set of weakly modulated 
operators. �
Remark 3.3. The proof of the previous proposition shows that set of weakly ϕ-modulated operators with 
respect an arbitrary fixed V forms a left ideal for fixed p. It is unclear to the authors if the set of all weakly 
modulated operators (with respect to an arbitrary V ) forms a left ideal when removing the assumption 
V ∈ Lϕ.

For a strictly positive V ∈ B(H) and s ∈ R, we define the Hilbert space

Hs
V :=V sH, with the inner product 〈f1, f2〉Hs

V
:= 〈V −sf1, V

−sf2〉H.

Proposition 3.4. Let V ∈ B(H) be strictly positive. The operator G ∈ B(H) is weakly ϕ-modulated with 
respect to V if and only if there is an s ∈ (0, 1] such that the densely defined operator G : H−s

V ��� H
extends to a bounded operator with G ∈ L( 1

1−s )
ϕ (H−s

V , H).
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Proposition 3.4 should be compared to [18, Lemma 2.21].

Proof. By construction, G ∈ L( 1
1−s )

ϕ (H−s
V , H) if and only if GV −s ∈ L( 1

1−s )
ϕ (H). The proposition follows 

immediately from setting p = 1/s. �
The following result relates the eigenvalues and expectation values of a weakly modulated operator. The 

proof follows that of [27, Lemma 11.2.10] which concerns the case ϕ(t) = 1
e+t , when Lϕ = L1,∞. We sketch 

the proof for the convenience of the reader, focusing mainly on the differences to 1
e+t .

Lemma 3.5. Assume that ϕ ∈ R−1 is decreasing. Let V ∈ Lϕ be strictly positive and let {en}n∈N be an 
eigenbasis for V ordered so that V en = μ(n, V )en, n ≥ 0. If G ∈ B(H) is weakly ϕ-modulated with respect 
to V , then G ∈ Lϕ and

n∑
k=0

λ(k,ReG) −
n∑

k=0

〈(ReG)ek, ek〉 = o(Φ(n)), n → ∞. (14)

Here ReG = G∗+G
2 denotes the real part of G.

Proof. Using standard properties of singular values, we obtain

μ(2n,G) = μ(2n,GV −1/pV 1/p) ≤ μ(n,GV −1/p)μ(n, V 1/p).

Since GV −1/p ∈ L( p
p−1 )

ϕ and V ∈ Lϕ, it follows that

μ(2n,G) = O(ϕ
p−1
p (n))O(ϕ

1
p (n)) = O(ϕ(n)), n ≥ 0.

The property μ(2n, G) = O(ϕ(n)) and ϕ ∈ R−1 imply that μ(2n, G) = O(ϕ(2n)) for n ≥ 0. We conclude 
that G ∈ Lϕ.

The remainder of the proof concerns the property in Equation (14). Let fn be a basis such that (ReG)fn =
λ(n, ReG)fn. Let pn (resp., qn) be the projection on the linear span of ek (resp., fk), 0 ≤ k ≤ n. Let 
rn = pn ∨ qn.

Following the proof of [27, Lemma 11.2.10] we obtain

|Tr((ReG)(rn − qn))| ≤ 2(n + 1)μ(n,ReG)

and

|Tr(G∗(rn − pn))| ≤ μ(n, V )1/p
2n+1∑
k=0

μ(k,GV −1/p).

Since G ∈ Lϕ (and so ReG ∈ Lϕ), it follows from ϕ ∈ R−1 that

|Tr((ReG)(rn − qn))| = O((n + 1)ϕ(n)) = o(Φ(n)), n → ∞,

by Proposition 2.22(i).
Also, since V ∈ Lϕ and GV −1/p ∈ L( p

p−1 )
ϕ , it follows that

|Tr(G∗(rn − pn))| = O(ϕ
1
p (n))O

(2n+1∑
ϕ

p−1
p (k)

)
.

k=0
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While ϕ ∈ R−1, the sequence {ϕ
p−1
p (k)}∞k=0 varies regularly with index 1−p

p . It follows from [4, Theorem 6]
that

lim
n→∞

∑n
k=0 ϕ

p−1
p (k)

nϕ
p−1
p (n)

= 1
1 − p−1

p

= p.

Hence,

|Tr(G∗(rn − pn))| = O
(
ϕ

1
p (n)(2n + 1)ϕ

p−1
p (2n + 1)

)
= O(nϕ(n)) = o(Φ(n)),

as n → ∞, due to ϕ ∈ R−1 and Proposition 2.22(i).
Combining the above estimates with the following estimate ensures the lemma.∣∣∣∣∣

n∑
k=0

λ(k,ReG) −
n∑

k=0

〈(ReG)ek, ek〉
∣∣∣∣∣ = |Tr(Re(G)(pn − qn))|

≤ |Tr(Re(G)(rn − qn))| + 1
2 |Tr(G(rn − pn))| + 1

2 |Tr(Re(G)(rn − pn))|. �
The following result provides a formula to compute Dixmier traces in terms of expectation values.

Theorem 3.6. Assume that ϕ ∈ R−1 is decreasing. Let V ∈ Lϕ be strictly positive and let (en)n∈N be an 
eigenbasis for V ordered so that V en = μ(n, V )en, n ≥ 0. If G ∈ B(H) is weakly ϕ-modulated with respect 
to V , then for every extended limit ω on �∞ we have

Trω(G) = ω

(
1

Φ(n + 1)

n∑
k=0

〈Gek, ek〉
)
.

The proof of Theorem 3.6 follows from linearity of Dixmier traces and Lemma 3.5; it is the same as that 
of [18, Theorem 2.18] and is therefore omitted.

Remark 3.7. The reader should beware of the fact that for any G ∈ Lϕ there is a V ∈ Lϕ with ordered 
eigenbasis (en)n∈N such that for all extended limits ω,

ω

(
1

Φ(n + 1)

n∑
k=0

〈Gek, ek〉
)

= 0.

This statement depends only on the existence of the ON-basis, and the existence proof can be found in [27, 
Corollary 7.5.3]. As such, some compatibility between G and V is in general required to have a formula as 
in Theorem 3.6. In particular, this compatibility is guaranteed when G is weakly ϕ-modulated with respect 
to V .

The formula in Theorem 3.6 works in quite large generality, but is difficult to compute. We now turn to 
a stronger condition which guarantees improved formulas.

4. Strongly modulated operators

The following definition extends the notion of modulated operators [27, Definition 11.2.1] from L1,∞
to more general ideals Lϕ. The reader will note that we have added a number of new adjectives to the 
terminology of [27], all in the purpose of clearer terminology in the more convoluted world of general weak 
ideals. To shorten notation, we let ‖ · ‖p denote the p:th Schatten class norm.
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Definition 4.1. Let V ∈ B(H) be a positive operator and ϕ ∈ R−1 be a decreasing function. An operator 
G ∈ B(H) is said to be strongly ϕ-modulated with respect to V if

‖G‖ϕ,V := sup
t>0

‖G(1 + tV )−1‖2√
ϕ(t)

< ∞.

When ϕ(t) = 1
t+1 , and Lϕ = L1,∞, a strongly ϕ-modulated operator with respect to V is called a 

V -modulated operator in the terminology of [27], see [27, Definition 11.2.1].
The ϕ-modulated operators with respect to V can be characterized in terms of the spectral measure of 

V . We define the spectrally ϕ-modulated norm with respect to V as:

‖G‖ϕ,V,spec := sup
t>0

‖GEV [0, t−1]‖2√
ϕ(t)

.

If G satisfies ‖G‖ϕ,V,spec < ∞, we say that G is spectrally ϕ-modulated with respect to V . The proof of the 
following equivalence between ‖ · ‖ϕ,V,spec and ‖ · ‖ϕ,V is a modified version of [27, Lemma 11.2.5].

Lemma 4.2. Let V be a positive operator and ϕ ∈ R−1 be a decreasing function. An operator G ∈ L2 is 
spectrally ϕ-modulated with respect to V if and only if it is strongly ϕ-modulated with respect to V . In fact, 
there is a constant C = C(V, ϕ) > 0 such that

1
C
‖G‖ϕ,V,spec ≤ ‖G‖ϕ,V ≤ C‖G‖ϕ,V,spec.

Proof. Let G be spectrally ϕ-modulated with respect to V . Without loss of generality we assume that 
V ≤ 1. Let t ∈ [2k, 2k+1) for some k ≥ 0. We estimate

‖G(1 + tV )−1‖2 ≤ ‖GEV [0, 2−k]‖2 +
k−1∑
j=1

‖GEV (2−j−1, 2−j ](1 + tV )−1‖2

≤ ‖G‖ϕ,V,spec

√
ϕ(2k) +

k−1∑
j=1

(1 + t2−j−1)−1‖GEV (2−j−1, 2−j ]‖2

≤ ‖G‖ϕ,V,spec

⎛
⎝√ϕ(2k) +

k−1∑
j=1

2−k+j+1
√
ϕ(2j)

⎞
⎠ .

Since the function ϕ is bounded and belongs to R−1, Lemma 2.24 implies that

k−1∑
j=1

2−k+j+1
√

ϕ(2j) = 2−k+1
k−1∑
j=1

2j
√
ϕ(2j)

= O(1)2−k+12k−1
√

ϕ(2k−1) = O(
√

ϕ(t)), t → ∞,

since ϕ ∈ R−1.
Summing up, for a suitable constant C, we can estimate

‖G(1 + tV )−1‖2 ≤ C‖G‖ϕ,V,spec

√
ϕ(t), t > 0.

That is, G is strongly ϕ-modulated with respect to V if G is spectrally ϕ-modulated with respect to V .
The converse implication is a straightforward repetition of [27, Lemma 11.2.5] and therefore omitted. �
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The following lemma is an analogue of [27, Lemma 11.2.6].

Lemma 4.3. Let V ∈ B(H) be a positive operator, A ∈ B(H) and let ϕ ∈ R−1 be decreasing. If an operator 
G ∈ L2 is strongly ϕ-modulated with respect to V , then GA is strongly ϕ-modulated with respect to |V A|.

Proof. Without loss of generality we assume that ‖V ‖∞ ≤ 1 and ‖A‖∞ ≤ 1. Set pk = EV [0, 2−k] and 
qk = E|V A|[0, 2−k], k ≥ 0. We have

‖(1 − pj)Aqk‖∞ ≤ 2j‖V Aqk‖∞ ≤ 2j−k, ‖Gpj‖2 ≤ c ·
√

ϕ(2j),

by Lemma 4.2.
Thus,

‖GAqk‖2 ≤ ‖GpkAqk‖2 +
k∑

j=1
‖G(pj−1 − pj)Aqk‖2

≤ ‖Gpk‖2 +
k∑

j=1
‖Gpj−1‖2 · ‖(1 − pj)Aqk‖∞

≤ C ·

⎛
⎝√ϕ(2k) +

k∑
j=1

√
ϕ(2j−1) · 2j−k

⎞
⎠

Using (9) and Lemma 2.24 we obtain

k∑
j=1

√
ϕ(2j−1) · 2j−k ≤ C2−k

k∑
j=1

√
ϕ(2j) · 2j = O(

√
ϕ(2k)), k → ∞.

Thus,

‖GAqk‖2 ≤ C
√
ϕ(2k), k ≥ 0.

By Lemma 4.2 the operator GA is strongly ϕ-modulated with respect to |V A|. �
Remark 4.4. It follows from the definition that the set of operators being strongly/spectrally ϕ-modulated 
with respect to V forms a left ideal in B(H).

Next we will use Lemma 4.2 to show that every strongly ϕ-modulated operators is, in fact, weakly 
ϕ-modulated. To do so, we need an additional assumption.

Definition 4.5. We say that the function ϕ : [0, ∞) → (0, ∞) satisfies property (W) if there exist positive 
constants C1 and C2 such that

(W1) C1t
2ϕ(t) ≤ ϕ−1

(
1
t

)
, t → ∞;

(W2) ϕ−1
(

1
t

)
≤ C2t

2ϕ(t), t → ∞.

We remark that property (W) is solely used for relating different notions of being modulated and to 
prove symbol properties of certain modulated operators.
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Remark 4.6. Property (W) relates heat trace asymptotics and the Weyl law through the Karamata Theorem 
(see e.g. Example 2.10 above and [25, Chapter IV, Theorem 8.1]).

Example 4.7. The reader can easily verify that ϕ(t) = 1
e+t , satisfies property (W). With some more work, 

one shows the same for ϕ(t) = logk(e+t)
e+t , k ∈ Z. The situation is more interesting for the function ϕ = Φ′, 

Φ(t) = elogβ t: for 0 < β ≤ 1/2 it satisfies (W1) but does not satisfy (W2); for 1/2 < β < 1 it satisfies (W2) 
but does not satisfy (W1).

Before proving that strongly modulated operators are weakly modulated, we first need a lemma relating 
singular values to the spectral modulation norm.

Lemma 4.8. Let ϕ satisfy Condition (3). For any V ∈ Lϕ, there is a constant C = CV such that for any 
S ∈ L2,

μ(n, S) ≤ n−1/2‖SEV [0, Cϕ(n)]‖L2 , ∀n ≥ 1.

Proof. We can assume that μ(k, V ) ≤ ϕ(k) for all k. In this case, rk(1 −EV [0, ϕ(n)]) ≤ n. We have that

nμ(2n, S)2 ≤
2n∑

k=n+1

μ(k, S)2 ≤
∞∑

k=n+1

μ(k, S)2 =

= inf{‖S −A‖2
L2

: rk(A) ≤ n} ≤ ‖SEV [0, ϕ(n)]‖2
L2
.

The lemma follows from this inequality and Equation (3). �
The following result is an extension of [27, Lemma 11.2.9].

Lemma 4.9. Assume that ϕ ∈ R−1 has property (W1) (see Definition 4.5). Let V ∈ Lϕ be strictly positive. 
Whenever G is spectrally ϕ-modulated with respect to V , G is weakly ϕ-modulated with respect to V .

Recall that when ϕ ∈ R−1, it is equivalent for an operator to be strongly and spectrally ϕ-modulated 
(see Lemma 4.2).

Proof. The proof follows that of [27, Lemma 11.2.9]. We only indicate the differences.
Take p > 2 and assume that G is spectrally ϕ-modulated with respect to V . For 2k ≤ n < 2k+1, we 

estimate

‖GV −1/pEV [0, 1/n]‖2 ≤
∞∑
j=k

2
j+1
p ‖GEV (2−j−1, 2−j ]‖2

≤ O(1)
∞∑
j=k

2
j+1
p

√
ϕ(2j) = O(1)

∞∫
2k

z
1
p−1√ϕ(z) dz.

Using Lemma 2.24 (ii) with α = 1/p and β = 1/2, we obtain

‖GV −1/pEV [0, 1/n]‖2 = O

(
(2k)

1
p

√
ϕ(2k)

)
= O

(
n

1
p

√
ϕ(n)

)

= O
(
n

1
p−1√ϕ−1(n−1)

)
,

(15)
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where we in the last identity used property (W1). Combining Lemma 4.8 with the estimate (15) we obtain 
that there is a constant C such that

μ(k,GV −1/p) ≤ k−1/2‖GV −1/pEV [0, Cϕ(k)]‖2

= k−1/2O
(
(Cϕ(k))1−

1
p

√
ϕ−1(Cϕ(k))

)
.

Since ϕ varies regularly with index −1, [2, Theorem 1.5.12] implies that ϕ−1 varies regularly with index 
−1 at zero, that is

lim
s→0+

ϕ−1(s)
ϕ−1(Cs) = C.

Thus,

μ(k,GV −1/p) = k−1/2O
(
ϕ(k)1−

1
p

√
ϕ−1(ϕ(k))

)
= O(ϕ(k)1−

1
p ).

Therefore, GV −1/p ∈ L
(

p
p−1

)
ϕ and so G is weakly ϕ-modulated with respect to V . �

Proposition 4.10. Assume that ϕ ∈ R−1 is decreasing and satisfies property (W2) (see Definition 4.5). Then 
any V ∈ Lϕ is spectrally ϕ-modulated with respect to itself. In particular, any G ∈ B(H) is spectrally ϕ-
modulated with respect to V whenever it is weakly ϕ-modulated with respect to V for p = 1 (i.e. GV −1 has 
a bounded extension).

Proof. For 2k ≤ t < 2k+1, we estimate

‖V EV [0, 1/t]‖2 ≤
∞∑
j=k

2−j‖EV (2−j−1, 2−j ]‖2 =
∞∑
j=k

2−j
√

Tr(EV (2−j−1, 2−j ])

≤
∞∑
j=k

2−j
√

Tr(EV (2−j−1,∞]) =
∞∑
j=k

2−j(nV (2−j−1))1/2.

Since nV (s) ≤ t if and only if μ(t, V ) ≤ s, it follows that μ(n, V ) ≤ ϕ(n) implies nV (n) ≤ ϕ−1(n). Hence,

‖V EV [0, 1/t]‖2 ≤ 2
∞∑

j=k+1

2−j
√
ϕ−1(2−j).

Since ϕ varies regularly with index −1, [2, Theorem 1.5.12] implies that ϕ−1 varies regularly with index 
−1 at zero, that is

lim
t→0

ϕ−1(t)
ϕ−1(2t) = 2.

Direct verification shows that the function f(t) = 1
ϕ−1(1/t) belongs to R−1. Thus, Proposition 2.24 yields

∞∑
j=k+1

2−j
√
ϕ−1(2−j) =

∞∑
j=k+1

2−j√
f(2j)

= O

(
2−k−1√
f(2k+1)

)

= O

(
1
t

√
ϕ−1(1/t)

)
, t → ∞.
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Using property (W2), we obtain ‖V EV [0, 1/t]‖2 = O(
√

ϕ(t)). Thus, V is spectrally ϕ-modulated with 
respect to itself. �
5. Symbol properties of modulated operators

To make the discussion on modulated operators more concrete, we focus on the case H = L2(W ) for 
a d-dimensional real inner product space W . The case of interest to us later, closed manifolds, will be 
localized to this situation. Associated with the inner product on W , there is a Laplace operator Δ. We 
follow the analyst’s sign convention making the Laplacian negative (in form sense), i.e. Δ =

∑d
j=1

∂2

∂x2
j

for 
an orthonormal choice of linear coordinates x1, . . . , xd.

5.1. Laplacian modulated operators

Definition 5.1. An operator G ∈ B(L2(W )) is said to be weakly/strongly/spectrally ϕ-Laplacian modulated
if it is respectively weakly/strongly/spectrally ϕ-modulated with respect to the operator ϕ[(1 − Δ)d/2], 
where d is the dimension of W .

We remark that the operator ϕ[(1 − Δ)d/2] is not in Lϕ, it is not even a compact operator on L2(W ). 
The operator is however locally in Lϕ by the next proposition. Here we say that G is locally in Lϕ if 
χG, Gχ ∈ Lϕ for all compactly supported χ. The coming three results are strictly speaking not needed to 
develop the general theory, and Lemma 5.2 is proved using machinery for ϕ-pseudo-differential operators 
developed below in Section 7, but we nevertheless include them for explanatory purposes.

Although we are interested in functions ϕ which have smooth regular variation of index −1 (since this 
guarantees the existence of Dixmier traces on the corresponding ideals), results in this subsection hold for 
functions which have smooth regular variation.

Lemma 5.2. Let ϕ be a decreasing function with smooth regular variation. Then for any χ ∈ C∞
c (W ), we 

have χϕ((1 − Δ)d/2) ∈ Lϕ(L2(W )).

We shall return to the proof of Lemma 5.2 below in Corollary 7.18. It seems feasible that much weaker 
assumptions than ϕ having smooth regular variation are needed from ϕ for Lemma 5.2 to hold.

Proposition 5.3. Assume that ϕ is decreasing and has smooth regular variation. Then, for any compactly 
supported χ ∈ L∞(W ) and p ≥ 1, the operator χϕ[(1 − Δ)d/2]

1
p belongs to L(p)

ϕ (L2(W )).

Proof. It follows from Lemma 5.2 that χϕ[(1 − Δ)d/2] ∈ Lϕ(L2(W )). Since any compactly supported χ ∈
L∞(W ) admits a χ′ ∈ C∞

c (W ) with χ′χ = χ, the statement that χϕ[(1 −Δ)d/2]
1
p belongs to L(p)

ϕ (L2(W )) for 
all χ ∈ C∞

c (W ) is equivalent to the same statement for compactly supported L∞-functions. This statement 
is in turn equivalent to L∞(K)V 1/p ⊆ L(p)

ϕ (L2(W )) for any compact K.
We set V := ϕ[(1 − Δ)d/2]. Define the Banach space X := B(L2(W )). We consider the partially defined 

operator T : X ��� X given by T (A) := AV −1 with Dom(T ) = XV ⊆ B(L2(W )). The operator T is closed, 
and admits complex powers Tα(A) := AV −α for Re(α) ∈ [0, 1]. By [31, Theorem 3], Dom(Tα) = XV α =
[X, Dom(T )]α when equipping Dom(T ) with its graph norm.

Fix a compact K ⊆ W . From the discussion in the second paragraph, we conclude that
[L∞(K), L∞(K)V ]α = L∞(K)V α, where we consider L∞(K)V as a closed subset of Dom(T ) in its graph 
norm. By the discussion in the first paragraph of the proof, the mapping L∞(K)V → Lϕ(L2(W )) is a 
continuous inclusion. By complex interpolation, for α = 1

p ,

L∞(K)V α → L(p)
ϕ (L2(W )) = [B(L2(W )),Lϕ(L2(W ))]α,
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is continuous. �
Definition 5.4. Let X be a locally compact space and H a Hilbert space with an action of C0(X). Let 
G ∈ B(H) be an operator.

• G is said to be compactly based if there is a χ ∈ Cc(X) such that χG = G.
• G is said to be compactly supported if G and G∗ are compactly based.

Lemma 5.5. Assume that ϕ is decreasing and has smooth regular variation. Whenever G ∈ B(L2(W )) is 
weakly ϕ-Laplacian modulated and G∗ is compactly based, then G ∈ Lϕ(L2(W )).

Proof. Assume that p ≥ 1 is the number for which GV −1/p ∈ L(p(p−1)−1)
ϕ and set α = 1/p. The fact that 

G∗ is compactly based ensures that there is a χ ∈ C∞
c (W ) such that Gχ = G. We write

G = GV −αV α = GV −αχV α + GV −α(1 − χ)V α = GV −αχV α −GV −α[χ, V α]

By the assumption on G, GV −α ∈ L(p(p−1)−1)
ϕ and by the assumption on ϕ, and Proposition 5.3, χV α ∈ L(p)

ϕ

so GV −αχV α ∈ Lϕ by the Hölder inequalities (5).
It remains to show that GV −α[χ, V α] = GV −α(V αχ −χV α) ∈ Lϕ. However, by the assumption on ϕ, and 

Proposition 5.3, both χV α and V αχ = (χV α)∗ belong to L(p)
ϕ . By assumption on G, GV −α ∈ L(p(p−1)−1)

ϕ , 
so GV −α[χ, V α] ∈ Lϕ by the Hölder inequalities (5). �
5.2. Symbols of Laplacian modulated operators

We now return to the main line of inquiry in this section. It follows from Proposition 2.21 that if 
G ∈ Lϕ(L2(W )), and ϕ ∈ R−1 is decreasing, then there is a function pG ∈ L2(W × W ∗) such that for 
f ∈ L2(W ),

Gf(x) =
∫

W∗

pG(x, ξ)f̂(ξ)ei〈x,ξ〉dξ,

where f̂ ∈ L2(W ∗) denotes the Fourier transform of f . The function pG is uniquely determined by G and is 
called the L2-symbol of G. It follows from the definition that G is compactly based if and only if for some 
compact K ⊆ W , pG is supported in K ×W ∗.

The following lemma describes strongly and spectrally ϕ-Laplacian modulated operators in terms of their 
Hilbert-Schmidt symbol. We use the standard notation 〈ξ〉 := (1 + |ξ|2)1/2 for ξ ∈ W ∗.

Lemma 5.6. Let ϕ ∈ R−1 be a decreasing function and let G : L2(W ) → L2(W ) be a Hilbert-Schmidt 
operator with L2-symbol pG. The operator G is spectrally ϕ-Laplacian modulated if and only if

sup
t>0

1
ϕ(t)

∫
ϕ(〈ξ〉d)<1/t

∫
W

|pG(x, ξ)|2 dxdξ < ∞.

The operator G is strongly ϕ-Laplacian modulated if and only if

sup
t>0

1
ϕ(t)

∫
∗

|pG(x, ξ)|2
(1 + tϕ(〈ξ〉d))2 dxdξ < ∞.
W×W
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The proof is similar to that of [27, Lemma 11.3.13] and is omitted. To give an example of a spectrally 
modulated operator, we consider a localization of ϕ((1 − Δ)d/2).

Proposition 5.7. Let ϕ ∈ R−1 be decreasing and satisfy property (W2) (see Definition 4.5). For every function 
χ ∈ C∞

c (W ) the operator G := χϕ[(1 − Δ)d/2] is spectrally ϕ-Laplacian modulated.

Proof. Note that the symbol of G is pG(x, ξ) = χ(x)ϕ(〈ξ〉d). Let K be a compact set containing the support 
of the function χ. We obtain∫

ϕ(〈ξ〉d)<1/t

∫
W

|pG(x, ξ)|2 dxdξ ≤ c · vol(K)
∫

ϕ(〈ξ〉d)<1/t

ϕ2(〈ξ〉d) dξ

≤ c1

∫
ϕ(|ξ|d)<1/t

ϕ2(|ξ|d) dξ = c1
d

∞∫
ϕ−1(1/t)

ϕ2(s) ds.

It follows from Proposition 2.22, that

∞∫
ϕ−1(1/t)

ϕ2(s) ds = O(sϕ2(s)
∣∣
s=ϕ−1(1/t)) = O(ϕ

−1(1/t)
t2

) = O(ϕ(t)), t → ∞,

by using property (W2).
Hence, ∫

ϕ(〈ξ〉d)<1/t

∫
W

|pG(x, ξ)|2 dxdξ ≤ Cϕ(t), t > 0.

Thus, G is spectrally ϕ-Laplacian modulated by Lemma 5.6. �
The following definition introduces two characteristics of the symbol of a Hilbert-Schmidt operator. Recall 

that we denote Φ(t) =
∫ t
0 ϕ(s) ds.

Definition 5.8. Let ϕ ∈ R−1 be a decreasing function and let G ∈ L2(L2(W )) be an operator with L2-symbol 
pG. We say that G has ϕ-moderate growth if

sup
k

∫
k<Φ(〈ξ〉d)<k+1

∫
W

|pG(x, ξ)|dxdξ < ∞.

We say that the operator G has ϕ-reasonable decay if∫
W×W∗

|pG(x, ξ)|
〈t− 〈ξ〉d〉 dxdξ = o(Φ(t)), as t → ∞.

If ϕ(t) = 1
e+t , then the symbol of a spectrally ϕ-Laplacian modulated operators has the above proper-

ties [27, Proposition 11.3.18]. For the general case it is true only under some additional conditions.

Lemma 5.9. Let G be a Hilbert-Schmidt operator on L2(W ) with ϕ-moderate growth. Then it holds that∫
d

∫
|pG(x, ξ)|dxdξ = O(Φ(t)), as t → ∞.
〈ξ〉 <t W
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Proof. Take n = �Φ(t)�. We have that

∫
〈ξ〉d<t

∫
W

|pG(x, ξ)|dxdξ ≤
n∑

k=0

∫
k<Φ(〈ξ〉d)<k+1

∫
W

|pG(x, ξ)|dxdξ =

= O(1)(n + 1) = O(Φ(t)). �
Proposition 5.10. If ϕ ∈ R−1 is decreasing and Φ(t) :=

∫ t
0 ϕ(s)ds, then there is an ε > 0 and a constant 

C > 0 such that

t− Φ−1(Φ(t) − 1) ≥ Ct
1
2+ε for t large.

In particular, t − Φ−1(Φ(t) − 1) → ∞ as t → ∞.

Proof. Since ϕ ∈ R−1, Φ satisfy (9) and thus Φ varies slowly (see Definition 2.14 above). A direct verification 
shows that

Φ(t) = c(t) · exp

⎛
⎝ t∫

a

f(s)ds
s

⎞
⎠ ,

where c ≡ 1, a > 0 is such that Φ(a) = 1 and f(s) = sϕ(s)
Φ(s) . Since c is a constant function, the function 

Φ is a normalised slowly varying function (see [2, formula (1.3.4)]). In view of [2, Theorem 1.5.5] the class 
of such function coincides with the Zygmund class. In particular, it means that for every 0 < ε < 1/2 the 
function t → t−1/2+εΦ(t) is decreasing for large values of t. Since Φ is non-negative, it follows that the 
function t → t−1/2+εΦ(t) is convergent. Moreover, it converges to zero. Indeed, suppose to the contrary that 
t → t−1/2+εΦ(t) → const �= 0 as t → ∞. Then,

(2t)−1/2+εΦ(2t)
t−1/2+εΦ(t)

−→
t→∞

1.

However, since the function Φ is slowly varying, direct computation show that the above expression tends 
to 2−1/2+ε �= 1. This contradiction shows that t−1/2+εΦ(t) converges to zero. Thus, Φ(t) ≤ t1/2−ε for large 
values of t.

Since both functions t1/2−ε and Φ are concave, it follows that

Φ(t1) − Φ(t2) ≤ t
1/2−ε
1 − t

1/2−ε
2 for large t1, t2. (16)

The functions t1/2−ε and Φ are continuous and increasing to +∞, hence it follows that for every t > 0
such that Φ(t) ≥ 1 (t1/2−ε ≥ 1, resp.) there exist αt > 0 (βt > 0, resp.) such that Φ(t) − Φ(t − αt) = 1
(t1/2−ε − (t − βt)1/2−ε = 1, resp.). From the latter equality we find that

βt = t−
(
t

1
2−ε − 1

) 2
1−2ε = t

(
1 −
(
1 − t−

1
2+ε
) 2

1−2ε
)

= c1t
1
2+ε + O(t2ε),

as t → ∞, where for the last step we used the Taylor expansion of the function s → (1 − s)a. We conclude 
that for a suitable C > 0, βt ≥ Ct

1
2+ε. Moreover, the estimate (16) implies that for large t we have

Φ(t) − Φ(t− βt) ≤ t1/2 − (t− βt)1/2 = 1 = Φ(t) − Φ(t− αt).



M. Goffeng, A. Usachev / J. Math. Anal. Appl. 488 (2020) 124045 25
Thus, Φ(t − βt) ≥ Φ(t − αt) and αt ≥ βt ≥ Ct
1
2+ε. Hence, αt → ∞ as t → ∞.

Finally, we obtain

t− Φ−1(Φ(t) − 1) = t− Φ−1(Φ(t− αt)) = αt ≥ Ct
1
2+ε for t large,

as required. �
Lemma 5.11. Let ϕ ∈ R−1 be decreasing. If the compactly based Hilbert-Schmidt operator G on L2(W ) has 
ϕ-moderate growth and is spectrally ϕ-Laplacian modulated, then G has ϕ-reasonable decay.

Proof. We divide up the integral 
∫
W×W∗

|pG(x,ξ)|
〈t−〈ξ〉d〉 dxdξ into three terms corresponding to the three regions 

Φ(〈ξ〉d) ≤ Φ(t) − 1, Φ(t) − 1 < Φ(〈ξ〉d) ≤ Φ(t) + 1 and Φ(t) + 1 < Φ(〈ξ〉d).
If Φ(〈ξ〉d) ≤ Φ(t) − 1, we have 〈ξ〉d ≤ Φ−1(Φ(t) − 1). As such, 〈t − 〈ξ〉d〉−1 ≤ 〈t − Φ−1(Φ(t) − 1)〉 in the 

region Φ(〈ξ〉d) ≤ Φ(t) − 1. Combining this with Proposition 5.9, we arrive at the estimate

∫
Φ(〈ξ〉d)≤Φ(t)−1

∫
W

|pG(x, ξ)|
〈t− 〈ξ〉d〉 dxdξ = O

(
Φ(t)

〈t− Φ−1(Φ(t) − 1)〉

)
= o(Φ(t)).

In the last equality, we used Lemma 5.10.
In the region Φ(t) −1 < Φ(〈ξ〉d) ≤ Φ(t) +1, we use that 〈t −〈ξ〉d〉 ≥ 1 and the fact that G has ϕ-moderate 

growth to estimate that

∫
Φ(t)−1<Φ(〈ξ〉d)≤Φ(t)+1

∫
W

|pG(x, ξ)|
〈t− 〈ξ〉d〉 dxdξ ≤

≤
∫

Φ(t)−1<Φ(〈ξ〉d)≤Φ(t)+1

∫
W

|pG(x, ξ)|dxdξ

= O(1) = o(Φ(t)).

Let K be a compact set for which pG is supported in K × W ∗. By Proposition 5.10, the estimate 
〈t − 〈ξ〉d〉 ≥ 〈ξ〉d/2+ε holds in the region Φ(t) + 1 < Φ(〈ξ〉d) and we use the Cauchy-Schwarz inequality to 
estimate

∫
Φ(t)+1<Φ(〈ξ〉d)

∫
W

|pG(x, ξ)|
〈t− 〈ξ〉d〉 dxdξ ≤

≤
∫

Φ(t)+1<Φ(〈ξ〉d)

∫
K

|pG(x, ξ)|
〈ξ〉d/2+ε

dxdξ

≤

⎛
⎜⎝vol(K)

∫
〈ξ〉d≥t

〈ξ〉−d−2εdξ
∫

〈ξ〉d≥t

|pG(x, ξ)|2 dxdξ

⎞
⎟⎠

1/2

≤ O(1)

⎛
⎜⎜⎝t−2ε

∫
ϕ(〈ξ〉d)≤ 1

|pG(x, ξ)|2 dxdξ

⎞
⎟⎟⎠

1/2
ϕ(t)−1
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≤ O

(√
t−2εϕ

(
1

ϕ(t)

))
‖G‖ϕ,ϕ((1−Δ)d/2),spec

= O(t−ε) = o(Φ(t)).

In the second last equality, we used that ϕ is bounded. �
Proposition 5.12. Let ϕ ∈ R−1 be decreasing satisfying property (W2) (see Definition 4.5). For every function 
χ ∈ C∞

c (W ) the operator G := χϕ[(1 − Δ)d/2] has ϕ-moderate growth and ϕ-reasonable decay.

Proof. Note that the symbol of G is pG(x, ξ) = χ(x)ϕ(〈ξ〉d). Let K denote the support of the function χ. 
For every k ∈ N we obtain

∫
k<Φ(〈ξ〉d)<k+1

∫
W

|pG(x, ξ)|dxdξ ≤ c · vol(K)
∫

k<Φ(s)<k+1

ϕ(s) ds

≤ c1 Φ(s)|Φ(s)=k+1
Φ(s)=k = c1.

Thus, G has ϕ-moderate growth. Since G is spectrally ϕ-Laplacian modulated by Proposition 5.7, it 
follows from Lemma 5.11 that G has ϕ-reasonable decay. �

The following result shows that under additional assumptions on ϕ the symbol of any spectrally ϕ-
Laplacian modulated operator has nice properties.

Lemma 5.13. Let ϕ ∈ R−1 be decreasing and satisfy that ϕ(t) = O(t−1) as t → ∞. Then compactly based 
spectrally ϕ-Laplacian modulated Hilbert-Schmidt operators on L2(W ) have ϕ-moderate growth, and in par-
ticular ϕ-reasonable decay.

Proof. Let G be a compactly based spectrally ϕ-Laplacian modulated Hilbert-Schmidt operators on L2(W )
with L2-symbol pG. Take a compact set K such that pG is supported in K ×W ∗. We start by making the 
following estimate:

∫
k<Φ(〈ξ〉d)<k+1

dξ ≤ C

Φ−1(k+1)∫
Φ−1(k)

ds = C

k+1∫
k

du
ϕ(Φ−1(u)) ≤ C

1
ϕ(Φ−1(k)) , (17)

where we make the change of variables u = Φ(s) and use that ϕ = Φ′ is decreasing. Here C is a constant 
depending only on Φ and the dimension d.

Using the Cauchy-Schwarz inequality and (17), we estimate that
∫

k<Φ(〈ξ〉d)<k+1

∫
W

|pG(x, ξ)|dxdξ ≤

≤

⎛
⎜⎝C vol(K)

ϕ(Φ−1(k))

∫
k<Φ(〈ξ〉d)<k+1

∫
W

|pG(x, ξ)|2 dxdξ

⎞
⎟⎠

1/2

≤ C ′

⎛
⎜⎝t ∫

ϕ(〈ξ〉d)<1/t

∫
W

|pG(x, ξ)|2 dxdξ

⎞
⎟⎠

1/2
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where t = 1/ϕ(Φ−1(k)). Using that ϕ(t) = O(t−1), we conclude that

∫
k<Φ(〈ξ〉d)<k+1

∫
W

|pG(x, ξ)|dxdξ ≤ C ′′ sup
t>0

1√
ϕ(t)

‖GEϕ((1−Δ)d/2)[0, t−1]‖L2 .

This argument shows that compactly based spectrally ϕ-Laplacian modulated Hilbert-Schmidt operators 
on L2(W ) have ϕ-moderate growth, and by Proposition 5.11 they also have ϕ-reasonable decay. �
Remark 5.14. Lemma 5.13 is crucial for proving Connes’ trace formula for strongly Laplacian modulated 
operators in L1,∞, i.e. when ϕ(t) = 1

e+t , as is best seen in [27, Chapter 11]. By Lemma 5.13, the assumption 
of being strongly Laplacian modulated makes the property of having ϕ-reasonable decay superfluous when 
ϕ(t) = O(t−1). Since we are interested in situations when ϕ(t) = O(t−1) fails, we will separate the operator 
theoretical condition of being modulated (in a suitable way) from the symbol property of having ϕ-reasonable 
decay; both conditions are needed in our approach to proving Connes’ trace formula.

6. Connes’ trace formula in the local model

As above, we let W denote a d-dimensional inner product space with negative Laplacian Δ. Inner product 
spaces locally model Riemannian manifolds via the tangent space.

The following result is an extension of Connes’ trace formula to ϕ-Laplacian modulated operators.

Theorem 6.1. Let ϕ ∈ SR−1 be decreasing. Assume that G ∈ Lϕ(L2(W )) is a compactly supported weakly 
ϕ-Laplacian modulated operator with ϕ-reasonable decay and L2-symbol pG. Then, as n → ∞,

∫
W

∫
〈ξ〉≤n1/d

pG(x, ξ) dξdx = O(Φ(n)),

and for every extended limit ω on �∞ we have

Trω(G) = ω

⎛
⎜⎝ 1

Φ(n + 1)

∫
W

∫
〈ξ〉≤n1/d

pG(x, ξ) dξdx

⎞
⎟⎠ .

Having Theorem 3.6, the key point of the proof is to find a relation between expectation values of an 
operator and the integral of its symbol. To this end, we make some preparatory remarks and lemmas.

Remark 6.2. The reader can compare Theorem 6.1 to the statement [27, Theorem 11.5.1] which considers 
the case ϕ(t) = 1

e+t (when Lϕ = L1,∞). The result [27, Theorem 11.5.1] is stated for compactly supported 
strongly ϕ-modulated operators for ϕ(t) = 1

e+t . At this point, we are dealing with a noncompact space and 
the results from Section 4 and Section 5 are merely indicative of the implication that strong ϕ-Laplacian 
modulation implies weak ϕ-Laplacian modulation and ϕ-reasonable decay. For ϕ-pseudo-differential opera-
tors on a closed manifold (which we introduce below in Section 7), this implication is true by Proposition 5.11
and Theorem 7.17.

Remark 6.3. If G is an operator satisfying the assumptions of Theorem 6.1 and additionally has an L2-symbol 
of ϕ-moderate growth, Lemma 5.9 implies that not only do we have 

∫
W

∫
〈ξ〉≤n1/d pG(x, ξ) dξdx = O(Φ(n))

but in fact 
∫ ∫

1/d |pG(x, ξ)| dξdx = O(Φ(n)).

W 〈ξ〉≤n
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The following definition introduces an analogue of Sobolev spaces. We will discuss them in more details 
(and in more general situations) in Section 8.

Definition 6.4. For ϕ : [0, ∞) → (0, ∞), W a d-dimensional inner product space, and s ∈ R, we define the 
Hilbert space

Hs
ϕ(W ) :=ϕ((1 − Δ)d/2)s/dL2(W ), with the inner product

〈f1, f2〉Hs
ϕ(W ) := 〈ϕ((1 − Δ)d/2)−s/df1, ϕ((1 − Δ)d/2)−s/df2〉L2(W ).

Let Td := Rd/Zd be the d-torus equipped with its flat metric and ΔTd the associated Laplacian. For s ∈ R, 
we define the Hilbert space

H̃s
ϕ(Td) := ϕ((1 − ΔTd)d/2)s/dL2(Td), with the inner product

〈f1, f2〉H̃s
ϕ(Td) := 〈ϕ((1 − ΔTd)d/2)−s/df1, ϕ((1 − ΔTd)d/2)−s/df2〉L2(Td).

After choosing an ON-basis, we can identify W = Rd, Td with a quotient of W by a lattice and the 
cube (0, 1)d as a Lipschitz fundamental domain in W . We identify function spaces on Td with Zd-invariant 
function spaces on W .

Lemma 6.5. Let ϕ to have smooth regular variation. Then for any χ ∈ C∞
c ((0, 1)d) and s ∈ R,

χH̃s
ϕ(Td) = χHs

ϕ(W ),

with equivalent norms.

The proof of this Lemma requires some heavier machinery, and we return to its proof below in Corol-
lary 8.14.

Lemma 6.6. Assume that ϕ is a decreasing function with smooth regular variation. If G ∈ L2(L2(W )) is 
compactly supported in (0, 1)d and weakly ϕ-Laplacian modulated, then G is weakly ϕ-modulated with respect 
to ϕ((1 − ΔTd)d/2) ∈ Lϕ.

Proof. The idea of the proof is to apply Lemma 6.5. Set V := ϕ((1 − Δ)d/2) and VTd := ϕ((1 − ΔTd)d/2). 
If G is compactly supported in (0, 1)d and weakly ϕ-Laplacian modulated we can for some s ∈ (0, d] factor 
GV −s as an operator

L2(W ) V −s

−−−→ H−s
ϕ (W ) χ−→ χH−s

ϕ (W ) G−→ L2((0, 1)d) = L2(Td), (18)

where χ ∈ C∞
c ((0, 1)d) satisfies that G = Gχ. In fact, that G is weakly ϕ-Laplacian modulated is in this 

case equivalent to G extending to an operator in L( d
d−s )

ϕ (H−s
ϕ (W ), L2(W )), see Proposition 3.4.

Assuming that G is compactly supported in K, it is by definition equivalent for G to be weakly ϕ-
modulated with respect to VTd and G extending to an operator in the space L( d

d−s )
ϕ (H̃−s

ϕ (Td), L2(Td)). 
Using Lemma 6.5 and (18), we can factor G as

H̃−s
ϕ (Td) χ−→ χH̃−s

ϕ (Td) = χH−s
ϕ (W ) χ′G−−→ χ′L2(W ) ⊆ L2(Td),

for a χ′ ∈ C∞
c ((0, 1)d) such that χ′G = G. Since G ∈ L( d

d−s )
ϕ (H−s

ϕ (W ), L2(W )) it follows that G ∈
L( d

d−s )
ϕ (H̃−s

ϕ (Td), L2(Td)). We conclude that GV −s
Td ∈ L( d

d−s )
ϕ (L2(Td)), that is G is weakly ϕ-modulated 

with respect to VTd . �
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We will need the following result (Lemma 11.4.4 in [27]). Using the above mentioned ON-basis, we can 
identify Zd with a lattice in W ∗.

Lemma 6.7. For a Schwartz function φ ∈ S(W ) with φ = 1 on [0, 1]d it holds that

∑
k∈Zd: 〈k〉d≤t

e2πi〈u,ξ−k〉φ̂(ξ − k) = χ[0,t](〈ξ〉d) + O
(
〈t− 〈ξ〉d〉−1) , t > 0, ξ ∈ W ∗, (19)

uniformly in u ∈ [0, 1]d.

The following lemma is the key technical result of this section.

Lemma 6.8. Suppose that G ∈ L2(L2(W )) is compactly supported in (0, 1)d and has ϕ-reasonable decay. 
Then

∑
〈k〉d≤t

〈Gek, ek〉L2((0,1)d) −
∫

〈ξ〉d≤t

∫
W

pG(x, ξ)dxdξ = o(Φ(t)).

Here ek ∈ L2((0, 1)d) = L2(Td) denotes the Fourier basis ek(u) := e2πi〈k,u〉, k ∈ Zd, which is an eigenbasis 
for the flat Laplacian ΔTd on Td.

The proof of Lemma 6.8 is identical to that of [27, Lemma 11.4.6]. The reader should beware of the fact 
that ek is used incorrectly as an eigenbasis for the Dirichlet-Laplacian on (0, 1)d in [27]. We remark that 
Lemma 6.8 is the reason for making the assumption that G has ϕ-reasonable decay in the statement of 
Theorem 6.1. To add slightly more detail, we point towards the error term in Equation (19) as justification 
for the definition of ϕ-reasonable decay.

Proof of Theorem 6.1. We can assume that G is compactly supported in (0, 1)d. By Lemma 6.6, G is weakly 
ϕ-modulated with respect to ϕ((1 − ΔTd)d/2). By Lemma 3.5 and Lemma 6.8, as n → ∞ we have

n∑
k=0

(λ(k,ReG) − iλ(k,Re (iG))) −
∫

〈ξ〉d≤n

∫
W

pG(x, ξ)dxdξ = o(Φ(n)).

Since G ∈ Lϕ, it follows that ReG, Re (iG) ∈ Lϕ and thus the sum in the expression above is O(Φ(n)). 
Hence,

∫
〈ξ〉d≤n

∫
W

pG(x, ξ)dxdξ = O(Φ(n)).

By Theorem 3.6 and Lemma 6.8 we compute that

Trω(G) = ω

⎛
⎝ 1

Φ(n + 1)
∑

〈k〉d≤n

〈Gek, ek〉L2((0,1)d)

⎞
⎠

= ω

⎛
⎜⎝ 1

Φ(n + 1)

∫ ∫
d

pG(x, ξ) dξdx

⎞
⎟⎠ . �
W 〈ξ〉 ≤n
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7. ϕ-pseudo-differential operators

In this section we consider a special class of pseudo-differential operators. They are inspired by and 
generalize Lesch’s construction of log-classical pseudo-differential operators. The goal of this section is to 
provide a general machinery for studying pseudo-differential operators belonging to a principal ideal Lϕ and 
the computation of their Dixmier traces. Much of the behaviour found in the class of pseudo-differential 
that we study resembles that in the class of ordinary pseudo-differential operators, of which it is a subclass. 
We will briskly recall the basic constructions of pseudo-differential operators following [22,39] after which 
we proceed to define the so called ϕ-pseudo-differential operators and consider their applications to more 
general situations.

Throughout this section, the minimal assumption we impose on ϕ is that it has smooth regular variation 
of any index. The relevance of this assumption on pseudo-differential calculi stems from the following lemma.

Lemma 7.1. If a function ϕ : [0, ∞) → (0, ∞) has smooth regular variation, one has

(i) for any k, m ∈ N, there are constants Ck,m ≥ 0 such that

∣∣∣∣∂m
t

(
∂k
t ϕ

ϕ

)∣∣∣∣ (t) ≤ Ck,m〈t〉−k−m;

(ii) there exists a constant mϕ ∈ R such that |ϕ(t)| ≤ C〈t〉mϕ .

Proof. (i) For m = 0 the estimate follows from the definition of smoothly regularly varying function and 
the boundedness of ϕ. Suppose that the estimate holds for every 0 ≤ m ≤ n − 1 and every k ∈ N. Since

∂t

(
∂k
t ϕ

ϕ

)
= ∂k+1

t ϕ

ϕ
− ∂k

t ϕ

ϕ
· ∂tϕ

ϕ
,

it follows that

∂n
t

(
∂k
t ϕ

ϕ

)
= ∂n−1

t

(
∂k+1
t ϕ

ϕ

)
−

n−1∑
j=0

(
m− 1

j

)
∂n−1−j
t

(
∂k
t ϕ

ϕ

)
· ∂j

t

(
∂tϕ

ϕ

)
.

Using the assumption of induction we obtain
∣∣∣∣∂n

t

(
∂k
t ϕ

ϕ

)∣∣∣∣ ≤ Ck+1,n−1〈t〉−k−1−n+1+

+
n−1∑
j=0

(
m− 1

j

)
Ck,n−1−j〈t〉−k−n+1+jC1,j〈t〉−1−j

= Ck,n〈t〉−k−n.

This proves part (i). The statement in part (ii) follows from that for ϕ ∈ SRρ, ϕ(t)t−ρ ∈ SR0 is slowly 
varying. Slowly varying functions are polynomially bounded. �

Recall that W denotes a d-dimensional inner product space and 〈ξ〉 := (1 + |ξ|2)1/2, ξ ∈ W ∗. If ϕ has 
smooth regular variation, the function

ϕ0(ξ) := ϕ(〈ξ〉d), ξ ∈ W ∗,
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is a Hörmander symbol of order mϕd and type (1, 0). Here mϕ is as in Lemma 7.1. This fact follows from 
Lemma 7.1 and that for suitable coefficients (cβ,k,l),

∂α
ξ ϕ0(ξ) =

∑
|α|+|β|=k+l

cβ,k,lξ
β〈ξ〉k(d−1)−l[∂k

t ϕ](〈ξ〉d). (20)

The examples we have in mind for ϕ:s in this section are of the form ϕ(t) = 〈t〉m logk(e + t) for m ∈ R

and k ∈ Z. These functions provide examples of elements in SRm. In this case, mϕ is an arbitrary number 
> m if k > 0 and mϕ = m if k ≤ 0.

7.1. The local model using ϕ-symbols

The local model for ϕ-pseudo-differential operators are operators whose symbols behave like ϕ at infinity. 
For an open subset U ⊆ W , we write Sm(U) for the space of all symbols of order m and Hörmander type 
(1, 0) on U , see [22, Definition 18.1.]. To be precise, Sm(U) ⊆ C∞(U×W ∗) and a function a ∈ C∞(U×W ∗)
belongs to Sm(U) if for any α, β ∈ Nd and any compact K ⊆ U , there are constants Cα,β,K > 0 such that

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Cα,β,K〈ξ〉m−|β|,

for (x, ξ) ∈ K × W ∗. We write S−∞(U) := ∩m∈RS
m(U), see [22, Definition 18.1.1]. If a1, a2 ∈ Sm(U)

we write a1 ∼ a2 if a1 − a2 ∈ S−∞(U). The space of symbols Sm(U) is asymptotically complete in the 
following sense. By [22, Proposition 18.1.3], if (aj)j∈N ⊆ Sm(U) is a sequence such that aj ∈ Smj (U) for 
a sequence mj → −∞, then there is a symbol a ∈ Sm(U) such that for any N , there is a k > 0 such 
that a −

∑
j<k aj ∈ S−N (U). We write a ∼

∑
j aj . The reader should beware that 

∑
j aj rarely exists as a 

pointwise defined sum.
For a symbol a ∈ Sm(U), the associated operator Op(a) := C∞

c (U) → C∞(U) is defined by

Op(a)f(x) := 1
(2π)d

∫
W∗

a(x, ξ)f̂(ξ)eix·ξdξ, (21)

where f̂ denotes the Fourier transform of f . In [22, Theorem 18.1.6], the operator Op(a) is denoted by 
a(x, D). The space L−∞(U) := C∞(U × U) acts as operators C∞(U)′ → C∞(U), we call these operators 
smoothing operators. We define Lm(U) := Op(Sm(U)) +L−∞(U) which is a subspace of the space of opera-
tors C∞

c (U) → C∞(U) by [22, Theorem 18.1.6]. An element of Lm(U) is called a pseudo-differential operator 
of order m on U . For two pseudo-differential operators P1 and P2, we write P1 ∼ P2 if P1 − P2 ∈ L−∞(U). 
The quantization in Equation (21) induces an isomorphism Op : Sm(U)/S−∞(U) → Lm(U)/L−∞(U) by 
[22, Proposition 18.1.19].

A pseudo-differential operator P ∈ Lm(U) on an open subset U ⊆ W is said to be properly supported 
if the Schwartz kernel KP satisfies that the two projections supp(KP ) → U are proper mappings, see [22, 
Definition 18.1.21]. We write Lm,prop(U) ⊆ Lm(U) for the space of properly supported pseudo-differential 
operators on U of order m. In fact, properly supported pseudo-differential operators preserve compact 
support and we can consider Lm,prop(U) as a subalgebra of the space of linear operators on C∞

c (U), see [22, 
Definition 18.1.21, Theorem 18.1.23]. Similarly, operators from Lm,prop(U) naturally extend to operators on 
C∞(U). The filtered spaces (Lm,prop(U))m∈R and (Lm(U))m∈R come equipped with products that coincide 
with the composition of operators

Lm(U) × Lm′,prop(U) → Lm+m′
(U) and Lm,prop(U) × Lm′

(U) → Lm+m′
(U).
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By [22, Proposition 18.1.22] it holds that

Lm(U)/L−∞(U) = Lm,prop(U)/(Lm,prop(U) ∩ L−∞(U)) = Sm(U)/S−∞(U).

We tacitly assume that the composition of operators is well defined. Since our operators arise from closed 
manifolds this assumption will not restrict us. If Pi = Op(ai) + Si for ai ∈ Smi(U) and Si ∈ L−∞(U), 
i = 1, 2, then P1P2 = Op(b) + S3 where S3 ∈ L−∞(U) and b ∈ Sm1+m2(U) is given by

b(x, ξ) ∼
∑
α

1
α!D

α
ξ a1(x, ξ)∂α

x a2(x, ξ). (22)

Here Dα
ξ := (i∂ξ)α, see [22, Theorem 18.1.8].

Definition 7.2. Let U ⊆ W be an open subset and m ∈ R. Define the space of ϕ-symbols on U to be

Sm
ϕ (U) := ϕ0S

m(U) + S−∞(U).

If ϕ has smooth regular variation, we define

Lm
ϕ (U) := Op(Sm

ϕ (U)) + L−∞(U).

We also define the subspace Lm,prop
ϕ (U) := Lm

ϕ (U) ∩ Lm+mϕd,prop(U) of properly supported operators.

Note here that if ϕ has smooth regular variation, Sm
ϕ (U) ⊆ Sm+mϕd(U) by Lemma 7.1 and Op(Sm

ϕ (U)) ⊆
Lm+mϕd(U) is well defined. We call an element of Lm

ϕ (U) a ϕ-pseudo-differential operator of order m on U .

Proposition 7.3. The space of symbols Sm
ϕ (U) is asymptotically complete, that is, if (aj)j∈N ⊆ Sm

ϕ (U) is a 
sequence such that aj ∈ S

mj
ϕ (U) for a sequence mj → −∞, then there is a symbol a ∈ Sm

ϕ (U) such that for 
any N , there is a k > 0 such that a −

∑
j<k aj ∈ S−N

ϕ (U).

We write a ∼
∑

j aj when in the situation of Proposition 7.3. The proof of Proposition 7.3 is immediate 
from the asymptotic completeness of Sm(U) (see discussion above or [22, Proposition 18.1.3]) and is therefore 
omitted.

Proposition 7.4. Assume that ϕ has smooth regular variation. Then T ∈ Lm
ϕ (U) if and only if there is a 

T0 ∈ Lm(U) and a S ∈ L−∞(U) such that T = T0Op(ϕ0) + S.

Proof. Since Lm(U)/L−∞(U) = Sm(U)/S−∞(U), it follows that

Lm
ϕ (U)/L−∞(U) = Sm

ϕ (U)/S−∞(U).

Indeed, T ∈ Lm
ϕ (U) if and only if there is an a ∈ Sm

ϕ (U) such that T ∼ Op(a). Finally, a ∈ Sm
ϕ (U) if and 

only if a = a0ϕ0 + s for symbols a0 ∈ Sm(U) and s ∈ S−∞(U). Seeing that ϕ0 only depends on ξ, we have 
the identity Op(a0ϕ0) = Op(a0)Op(ϕ0). �
Proposition 7.5. Assume that ϕ has smooth regular variation. The subspace Sm

ϕ (U) ⊆ Sm+mϕd(U) is closed 
under pointwise multiplication by S0(U) and the operator product defines products

Lm(U) × Lm′,prop
ϕ (U) → Lm+m′

ϕ (U) and Lm,prop(U) × Lm′

ϕ (U) → Lm+m′

ϕ (U).

In particular, the space L0,prop
ϕ (U) forms a ∗-algebra if mϕ ≤ 0.
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Proof. By Proposition 7.4, it suffices to show that if a1 ∈ Sm(U) and a2 = a0ϕ0 ∈ Sm′
ϕ (U), then 

Op(a1)Op(a2) ∈ Lm+m′
ϕ (U). Equation (22) implies that Op(a1)Op(a2) = Op(b) where b ∈ Sm+m′(U)

takes the form

b(x, ξ) ∼
∑
α

1
α!D

α
ξ a1(x, ξ)∂α

x a2(x, ξ) =
∑
α

1
α!D

α
ξ a1(x, ξ)∂α

x a0(x, ξ)ϕ0(ξ). (23)

Therefore, Op(b) ∼ Op(a1)Op(a0)Op(ϕ0) which by Proposition 7.4 belongs to Lm+m′
ϕ (U). �

The action of an operator T ∈ L0,prop(U) on C∞
c (U) is locally bounded in the L2-norm by [22, Theo-

rem 18.1.11]. By density, we can consider L0,prop(U) as an algebra of bounded operators on L2,loc(U).

7.2. Coordinate changes and additional assumptions on ϕ

For a smoothly regularly varying ϕ, we now ensure that the property for an operator to have a symbol 
in Sϕ(U) is coordinate independent. With these properties at hand, we will be able to define ϕ-pseudo-
differential operators on manifolds and prove that these operators are Laplacian modulated.

Remark 7.6. Using Equation (20) and Lemma 7.1, it is easily seen that smooth regular variation implies 
that for any dimension d, the function ϕ0(ξ) := ϕ(〈ξ〉d) satisfies the following property for any multi-index 
α,

∂α
ξ ϕ0 ∈ S−|α|

ϕ .

Proposition 7.7. If ϕ is a decreasing function with smooth regular variation then for any χ, χ′ ∈ C∞
c (U) it 

holds that χL0,prop
ϕ (U)χ′ = χL0

ϕ(U)χ′ ⊆ Lϕ(L2(U)) when represented as operators on L2(U).

Proof. It is clear that χL0,prop
ϕ (U)χ′ ⊆ χL0

ϕ(U)χ′ and the converse inclusion follows from the fact that the 
Schwartz kernel of an operator in χL0

ϕ(U)χ′ is compactly supported in U ×U . Clearly, if T1 ∼ T2 in L0
ϕ(U), 

then χT1χ
′ − χT2χ

′ smoothing and compactly supported, so it belongs to Lϕ(L2(U)).
For T ∈ χL0,prop

ϕ (U) there is a symbol a0 ∈ S0(U) and a χ̃ ∈ C∞
c (U) such that

T ∼ χOp(a0)χ̃Op(ϕ0).

Since χOp(a0) is compactly based and of order 0, it acts as a bounded operator. It therefore suffices to show 
that χ̃Op(ϕ0) ∈ Lϕ(L2(U)) for any compactly supported χ̃ ∈ C∞

c (U). We can assume that U = W and the 
claim follows from Lemma 5.2. �

The reader wary of circular proofs should note that we are not using Proposition 7.7 to prove Corol-
lary 7.18 – the result that proves the yet unproven Lemma 5.2.

Proposition 7.8. Let ϕ have smooth regular variation. Then for any k ∈ N and b > 0, there is a constant 
Ck > 0 such that,

∣∣∣∣∂k
t

(
ϕ(t)
ϕ(bt)

)∣∣∣∣ ≤ Ck〈t〉−k.

In particular, for any positive definite quadratic form g on W , the function

σg(ξ) := ϕ(〈ξ〉d)
ϕ
(
(1 + |ξ|2)d/2

) ,

g



34 M. Goffeng, A. Usachev / J. Math. Anal. Appl. 488 (2020) 124045
is a symbol σg ∈ S0(W ) and Hörmander type (1, 0) depending smoothly on g.

Proof. Define the function σb(t) := ϕ(t)
ϕ(bt) . For suitable constants cα,l,j ≥ 0, we can for any k write

∂k
t σb(t) =

k∑
l=0

l∑
j=0

∑
α∈Nj , |α|=j

cα,l,j
bl∂k−l

t ϕ(t)
∏j

p=1 ∂
αp

t ϕ(bt)
ϕ(bt)j+1 .

We set am := ∂m
t ϕ
ϕ , which is a symbol of order −m and Hörmander type (1, 0) by Lemma 7.1. Using that 

|σb(t)| is bounded (by (3)), we estimate

|∂k
t σb(t)| ≤ C

k∑
l=0

l∑
j=0

∑
α∈Nj , |α|=l

cα,l,j |ak−l(t)|
j∏

p=1
|aαp

(bt)| ≤ Ck〈t〉−k,

where we in the last step used that ak−l(t) 
∏j

p=1 aαp
is a symbol of order −(k−l) −|α| = −k and Hörmander 

type (1, 0). The verification of the statements about σg goes as in the 1-dimensional case g = b modulo 
tedious computations, and will be omitted. �
Proposition 7.9. Let ϕ have smooth regular variation and g be a metric on an open subset U ⊆ W and define 
σg(x, ξ) := σg(x)(ξ), (x, ξ) ∈ U ×W ∗. Then σg ∈ S0(U) is elliptic.

Proof. By Proposition 7.8, σg ∈ S0(U) is a smooth symbol of order 0. To verify that σg is elliptic, we 
assume that g1 and g2 are two metrics on U and consider the function

σg1,g2(x, ξ) := σg1(x, ξ)
σg2(x, ξ)

=
ϕ
(
(1 + |ξ|2g2(x))d/2

)
ϕ
(
(1 + |ξ|2g1(x))d/2

) (24)

The same proof as that of Proposition 7.8 shows that σg1,g2 ∈ S0(U). Since σg1,g2 = σ−1
g2,g1

the proof is 
complete. �
Remark 7.10. It should be remarked that we expect that the main results Theorem 9.1 and Corollary 9.3
in this paper hold when relaxing the condition for ϕ to have smooth regular variation to the expression in 
Equation (11) only being bounded for finitely many k below some dimensionally dependent cut-off. The 
pseudo-differential techniques can in this case not be used in our cavalier way, but controlling the relevant 
remainders ought to only require finitely many derivatives of ϕ0 as in [40].

Proposition 7.11. Suppose that ϕ has smooth regular variation. If a ∈ Sm
ϕ (U), then ∂α

x ∂
β
ξ a ∈ S

m−|β|
ϕ (U).

Proof. Assume that a = a0ϕ0 for a0 ∈ Sm(U). By the product rule,

∂α
x ∂

β
ξ a =

∑
α′≤α, β′≤β

∂α′

x ∂β′

ξ a0∂
α−α′

x ∂β−β′

ξ ϕ0 =
∑
β′≤β

∂α
x ∂

β′

ξ a0∂
β−β′

ξ ϕ0.

The proposition follows using Remark 7.6. �
Proposition 7.12. Let κ : U → U ′ be a diffeomorphism of two open sets and κ∗ : C∞

c (U ′) → C∞
c (U) the 

associated pull back operator. Consider a pseudo-differential operator T ∈ Lm
ϕ (U) with T ∼ Op(a) for a 

ϕ-symbol a = a(x, ξ) ∈ Sm
ϕ (U). Then the operator Tκ := (κ−1)∗Tκ∗ : C∞

c (U ′) → C∞(U ′) is a pseudo-
differential operator of order m on U ′ and Tκ ∼ Op(aκ) where
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aκ(y, η) ∼
∑
α

1
α! [∂

α
ξ a](κ−1(y), (Dκ)T (κ−1(y))η)Dα

z ei〈ρy(z),η〉|κ(z)=y, (25)

where ρy(z) := κ(z) − y −Dκ(κ−1(y))(z − κ−1(y)). In particular, if ϕ has smooth regular variation, then 
aκ ∈ Sm

ϕ (U ′) whenever a ∈ Sm
ϕ (U) and Tκ ∈ Lm

ϕ (U ′) whenever T ∈ Lm
ϕ (U).

The first statement of Proposition 7.12 and the formula in Equation (25) follows immediately from [22, 
Theorem 18.1.17]. The statement about Lm

ϕ (U) being coordinate invariantly defined follows from Equation 
(25), Proposition 7.11 and the asymptotic completeness of Sm

ϕ (U) (see Proposition 7.3).

7.3. ϕ-pseudo-differential operators on closed manifolds

We now turn to closed manifolds.

Definition 7.13. Let ϕ have smooth regular variation, m ∈ R and M a closed manifold. Define Lm
ϕ (M) as 

the space of linear operators T : C∞(M) → C∞(M) such that for any χ, χ′ ∈ C∞(M) being compactly 
supported in an arbitrary coordinate chart κ : U → U ′ ⊆ Rd, there is an operator A ∈ Lm

ϕ (Rd) such that 
κ∗ ◦ (χTχ′) ◦ (κ−1)∗ ∼ A.

For a closed manifold M , we can define the symbols Sm(M) ⊆ C∞(T ∗M) on M of order m to consist 
of those functions a ∈ C∞(T ∗M) such that in any coordinate chart κ : U → U ′ ⊆ Rd, (κ−1)∗a ∈ Sm(U ′). 
Choose a metric g on M and define ϕg ∈ C∞(T ∗M) by

ϕg(x, ξ) := ϕ((1 + |ξ|2g)d/2).

If ϕ has smooth regular variation then ϕg ∈ S0(M). We define Sm
ϕ (M) ⊆ C∞(T ∗M) as in the local case by

Sm
ϕ (M) := ϕgS

m(M) + S−∞(M). (26)

Proposition 7.14. Let ϕ be a function with smooth regular variation, m ∈ R and M a closed manifold. The 
space Sm

ϕ (M) is independent of choice of metric g.

Proof. The proposition is an immediate corollary of Proposition 7.9. Indeed, Proposition 7.9 implies that 
a ∈ Sm

ϕ (M) if and only if for any coordinate chart κ : U → U ′ ⊆ Rd, (κ−1)∗a ∈ Sm
ϕ (U ′). �

Definition 7.15. Let ϕ be a function having smooth regular variation, m ∈ R and M a closed manifold. Fix 
a covering (Uj)Nj=1 of M , coordinate charts κj : Uj → Rd and a partition of unity (χj)Nj=1 subordinate to 
(Uj)Nj=1 (i.e. 

∑
χ2
j = 1 and χj ∈ C∞

c (Uj)). We define Op : Sm
ϕ (M) → Lm

ϕ (M) by

Op(a)f :=
∑
j

χjκ
∗
jOp(κ∗

ja)[(κ−1
j )∗(χjf)],

for a ∈ S0
ϕ(M). Here κ∗

ja is supported in Rd, and Op(κ∗
ja) is defined as in (21).

Lemma 7.16. If ϕ has smooth regular variation, the mapping Op is well defined and the composition

Sm
ϕ (M) Op−−→ Lm

ϕ (M) → Lm
ϕ (M)/Lm−1

ϕ (M),

is independent of the choices involved in defining Op. In particular,

Op(ϕg) − ϕ((1 − Δg)d/2) ∈ L−1
ϕ (M).
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We note that it is not necessary for M to be closed for this lemma to hold, although one would need to 
use a locally finite countable covering of coordinate charts rather than a finite one.

Proof. By Proposition 7.12, each summand χjκ
∗
j ◦ Op(κ∗

ja)(κ
−1
j )∗ ◦ χj in Op(a) belongs to Lm

ϕ (M). A 
partition of unity argument and the product formula (23) shows that the property of Op being independent 
of choices up to lower order terms is local. In local coordinates, it is clear that Op is independent of 
choices up to lower order terms from the coordinate covariance up to lower order terms of the symbol, see 
Proposition 7.12.

It remains to prove that Op(ϕg) − ϕ((1 − Δg)d/2) ∈ L−1
ϕ (M). It follows from [39, Theorem 1.3, Chapter 

XII, Section 1] that ϕ((1 −Δg)d/2) ∈ L0
ϕ(M). In fact, the argument in [39] shows that the symbol q = q(x, ξ)

of ϕ((1 − Δg)d/2) coincides with ϕg up to a term from S−1
ϕ (M). This shows that q − ϕg ∈ S−1

ϕ (M) and as 
such the argument in the paragraph above shows that

Op(ϕg) − ϕ((1 − Δg)d/2) = Op(ϕg) −Op(q) + Op(q) − ϕ((1 − Δg)d/2)

∈ L−1
ϕ (M) + L−∞(M). �

Theorem 7.17. Let ϕ, ϕ1 and ϕ2 be functions of smooth regular variation. The filtration of spaces 
(Lm

ϕ (M))m∈R satisfies

a) For any m ∈ R, Lm
ϕ (M) ⊆ Lm+mϕd(M).

b) The composition of operators on C∞(M) defines a product Lm
ϕ1

(M) × Lm′
ϕ2

(M) → Lm+m′
ϕ1ϕ2

(M).

Furthermore, if g is a metric on M and T ∈ Lm+mϕd(M), the following statements are equivalent:

(i) It holds that T ∈ Lm
ϕ (M).

(ii) There exists T0 ∈ Lm(M) such that

T − T0ϕ((1 − Δg)d/2) ∈ Lm−1
ϕ (M).

(iii) For any coordinate chart κ : U → U ′ ⊆ Rd, and χ, χ′ ∈ C∞
c (U), there is an operator T00 ∈ Lm(U ′)

such that

κ∗ ◦ (χTχ′) ◦ (κ−1)∗ − T00Op(ϕ0) ∈ Lm−1
ϕ (U ′).

In fact, Lm
ϕ (M) = Lm(M)ϕ((1 − Δg)−d/2) = ϕ((1 − Δg)−d/2)Lm(M).

Proof. Part (a) follows directly from the fact that Sm
ϕ (M) ⊆ Sm(M). Part b) is seen directly from the 

product formula (23) and from the fact that the function ϕ1ϕ2 have smooth regular variation.
Note that (ii), is by Lemma 7.16 and (b) equivalent to there existing T0 with T −T0Op(ϕg) ∈ Lm−1

ϕ (M). 
We further note that (iii) is by Proposition 7.9 equivalent to there for any metric g′ and cutoffs χ, χ′ in 
a coordinate chart existing a T00 such that κ∗ ◦ (χTχ′) ◦ (κ−1)∗ − T00Op(ϕg′) ∈ Lm−1

ϕ (U ′). As such, the 
equivalence of the statements (i)–(iii) follows from that Op is local, canonically defined and multiplicative1

up to lower order terms combined with the definition (26) (see also Definition 7.2). The final statement of 
the theorem follows from asymptotic completeness of Lm

ϕ and 2). �
Corollary 7.18. Let (M, g) be a d-dimensional complete Riemannian manifold and ϕ a decreasing function 
with smooth regular variation. Then χϕ((1 − Δg)d/2) ∈ Lϕ(L2(M)) for any χ ∈ C∞

c (M).

1 Cf. the product formula (22).
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This proves Lemma 5.2 and finalizes the proof of Proposition 7.7.

Proof. We fix χ and assume it is positive. It is clear that χϕ((1 − Δg)d/2) ∈ Lϕ if and only if χϕ((1 −
Δg)d/2)2χ ∈ Lϕ2 . We note that ϕ2 has smooth regular variation whenever ϕ does. We pick a closed 
Riemannian manifold (M ′, g′) such that for a smooth domain U ⊆ M ′ there is a smooth isometric mapping 
κ : U → M which is a diffeomorphism onto its image and assumed to contain the support of χ.

By Lemma 7.16, we have that χϕ((1 −Δg)d/2)2χ is a compactly supported element of L0
ϕ2(M). By using 

Theorem 7.17, an induction step shows that for any N there is a TN ∈ 1 + L−1
ϕ2 (M ′) compactly supported 

in U and χ′ ∈ C∞
c (U) such that

χϕ((1 − Δg)d/2)2χ− (κ−1)∗ ◦ (χ′TNϕ((1 − Δg′)d/2)) ◦ κ∗ ◦ [χ′ ◦ κ−1] ∈ L−N
ϕ2 (M).

Since all operators have compact support, the Weyl law on the compact manifold M ′ guarantees that

μ(n, χϕ((1 − Δg)d/2)2χ) = cd,χϕ(n)2 + O(n−1/dϕ(n)2),

for a suitable constant cd,χ. It follows that χϕ((1 − Δg)d/2)2χ ∈ Lϕ2 and χϕ((1 − Δg)d/2) ∈ Lϕ. �
Corollary 7.19. If ϕ is a decreasing function with smooth regular variation, the representation L0(M) →
B(L2(M)) restricts to a representation L0

ϕ(M) → Lϕ(L2(M)).

Proof. Pick a metric g on M . Using induction, we can by Theorem 7.17 write any T ∈ L0
ϕ(M) in the form 

T = TNϕ((1 −Δg)d/2) +L−N
ϕ (M) for a TN ∈ L0(M). Since M is closed, L0(M) acts as bounded operators 

and the Weyl law for Δg guarantees that

μ(n, T ) ≤ ‖TN‖B(L2(M))ϕ(n) + o(ϕ(n)) = O(ϕ(n)). �
8. Localizing ϕ-modulated operators on manifolds

In this section we will use the theory of the previous section to study more general operators on L2(M)
for a closed manifold M . We are interested in computing Dixmier traces, and can therefore to a large extent 
work modulo the kernel of all traces. A key tool is to localize to operators that propagate supports small 
distances. Along the way we prove Lemma 6.5 which allowed us to localize the property of being weakly 
ϕ-Laplacian modulated in an inner product space. To extend the computations for ϕ-Laplacian modulated 
operators from Section 6 to a general manifold, we localize our operators to coordinate neighbourhoods.

Definition 8.1. Let X be a proper metric space and H a Hilbert space with an action of C0(X). An 
operator G ∈ B(H) is said to have propagation speed ε, if χGχ′ = 0 whenever χ, χ′ ∈ Cc(X) satisfy 
d(supp(χ), supp(χ′)) > ε.

For ε > 0, the subspace L2,ε(H) ⊆ L2(H) is defined as the Hilbert-Schmidt operators of propagation 
speed ε.

Remark 8.2. We note that L2,ε(H) is not closed under multiplication, but L2,ε(H)L2,ε(H) ⊆ L2,2ε(H).

The situation of interest in this paper is L2(M) for a closed manifold M .

Definition 8.3. For a closed manifold M , covering data is a collection

U := (Uj , κj , χj)Nj=1,
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where (Uj)Nj=1 is a cover of M with coordinate charts κj : Uj → U ′
j ⊆ Rd and (χj)Nj=1 a subordinate smooth 

subordinate partition of unity.
If M is Riemannian, and diam(Uj) < ε/2 we say that U is a set of ε-covering data for M .

It is easily seen that we can find ε-covering data for M for any ε strictly smaller than half the injectivity 
radius of M . We tacitly assume that ε is small enough for ε-covering data for M to exist.

Assuming that κj extends smoothly to a neighbourhood of U j , we obtain a bounded invertible operator 
κ∗
j : L2(U ′

j) → L2(Uj). Let Zj : L2(U ′
j) → L2(Uj) denote the unitary associated with κ∗

j through polar 
decomposition, in fact Z∗

j κ
∗
j and κ∗

jZ
∗
j are multiplication operators. Moreover, Zj(af) = κ∗

j (a)Zj(f) for 
f ∈ L2(U ′

j) and a ∈ Cc(U ′
j). We define the following operators

uU,0 : L2(M) →
N⊕
j=1

L2(Uj), f → (χjf)Nj=1,

Z := ⊕N
j=1Zj :

N⊕
j=1

L2(U ′
j) →

N⊕
j=1

L2(Uj), and

uU := Z∗uU,0 : L2(M) →
N⊕
j=1

L2(U ′
j) ⊆

N⊕
j=1

L2(Rd). (27)

The operators uU,0 and uU are isometries and Z is unitary. We note that for an operator G ∈ B(L2(M)),

uU,0Gu∗
U,0 = (Gjk)Nj,k=1,

where Gjk := χjGχk : L2(Uk) → L2(Uj). As such

u∗
U,0(Gjk)Nj,k=1uU,0 =

∑
j,k

χjGjkχk =
∑
j,k

χ2
jGχ2

k = G.

Proposition 8.4. Let ϕ ∈ R−1 be decreasing and U be ε-covering data for M as in Definition 8.3. Define the
localization mapping �U : L2(L2(M)) → L2,ε(L2(M)) by

�U (G) :=
∑
j

Gjj , where Gjj := χjGχj .

It holds that �U : Lϕ(L2(M)) → Lϕ(L2(M)) ∩ L2,ε(L2(M)) and

Trω(G) = Trω(�U (G)),

for any G ∈ Lϕ and any Dixmier trace. In particular, up to terms of vanishing Dixmier traces, any element 
of Lϕ(L2(M)) is a finite sum of operators with propagation ε, compactly supported in a coordinate chart 
and belonging to Lϕ(L2(M)).

Proof. The ideal property for Hilbert-Schmidt operators and the fact that the diameter of Uj is bounded 
by ε implies that Gjj ∈ L2,ε(L2(M)) for any j. The ideal property for Lϕ implies that Gjj ∈ Lϕ if G ∈ Lϕ. 
Finally, we compute that

Trω(G) = Trω(uU,0Gu∗
U,0) =

N∑
Trω(Gjj) = Trω(�U (G)). �
j=1
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Definition 8.5. Let G ∈ B(L2(M)) be an operator. We say that G is locally strongly (or spectrally, or 
weakly) ϕ-Laplacian modulated if for any coordinate chart κ : U → U ′ ⊆ Rd, and χ, χ′ ∈ C∞

c (U), the 
compactly supported operator κ∗ ◦ (χGχ′) ◦ (κ−1)∗ on L2(Rd) is strongly (or spectrally, or weakly) ϕ-
Laplacian modulated.

The following is an immediate consequence of the definition of local modulation.

Proposition 8.6. Let ϕ be a decreasing function of smooth regular variation and U be ε-covering data for M
as in Definition 8.3. Suppose that G ∈ B(L2(M)) is locally strongly (or spectrally, or weakly) ϕ-Laplacian 
modulated. Then each of the operators

Gjk := χjGχk,

are locally strongly (or spectrally, or weakly) ϕ-Laplacian modulated. In particular, for any locally strongly 
(or spectrally, or weakly) ϕ-Laplacian modulated operator G, the localization �U(G) is a finite sum of locally 
strongly (or spectrally, or weakly) ϕ-Laplacian modulated operators with propagation ε, compactly supported 
in a coordinate chart and belongs to Lϕ(L2(M)).

Proof. It follows from the construction that each Gjk is locally strongly (or spectrally, or weakly) ϕ-
Laplacian modulated. The last statement follows from Proposition 8.4 and the fact that compactly supported 
strongly (or spectrally, or weakly) ϕ-Laplacian modulated operators on Rd belong to Lϕ(L2(M)) by 
Lemma 3.5, Lemma 4.3, and Lemma 4.9 (see Lemma 3.5 and Corollary 7.18 for the weakly modulated 
case). �
8.1. ϕ-Sobolev spaces

An important tool will be that of ϕ-Sobolev spaces. These spaces were introduced in Definition 6.4 for 
inner product spaces. We shall define their analogues for manifolds.

Definition 8.7. Let M be a closed d-dimensional Riemannian manifold with metric g. For s ∈ R, we define 
Hs

ϕ(M) as the space of distributions f ∈ D′(M) such that for any coordinate chart κ : U → U ′ ⊆ Rd, and 
χ ∈ C∞

c (U), (κ−1)∗(χf) ∈ Hs
ϕ(Rd).

We topologize Hs
ϕ(M) as a Banach space by picking covering data U (as in Definition 8.3) and declaring 

the operator uU from Equation (27) to be an isometry

uU : Hs
ϕ(M) →

N⊕
j=1

Hs
ϕ(Rd).

The careful reader notes that uU is well defined while for any f , uU (f) = (Z∗
j (χjf))Nj=1 and by definition, 

Z∗
j (χjf) ∈ Hs

ϕ(Rd) whenever f ∈ Hs
ϕ(M). It is at this point not immediate that Hs

ϕ(M) is well behaved. 
The next theorem gives a coordinate free definition of Hs

ϕ(M) inducing a Hilbert space structure related to 
the “ϕ-Laplacian” ϕ((1 − Δg)d/2).

Theorem 8.8. Let ϕ be a smoothly regularly varying function and M a closed manifold. The space Hs
ϕ(M)

is well defined and

Hs
ϕ(M) = ϕ((1 − Δg)d/2)s/dL2(M).
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Remark 8.9. The space Hs
ϕ(M) is by Theorem 8.8 a Hilbert space in the inner product

〈f1, f2〉Hs
ϕ(M) := 〈ϕ((1 − Δg)d/2)−s/df1, ϕ((1 − Δg)d/2)−s/df2〉L2(M).

We also note that

Hs
1
ϕ
(M) = H−s

ϕ (M).

To prove Theorem 8.8, we require some lemmas.

Lemma 8.10. Let M be a closed manifold and ϕ be a function of smooth regular variation. The action of 
L0(M) on L2(M) defines a continuous action of L0(M) on Hs

ϕ(M) for all s ∈ R.

Proof. By a partition of unity argument, and Theorem 7.17, for k ∈ dN, f ∈ Hk
ϕ(M) if and only if there is 

an f0 ∈ L2(M) such that f − Op(ϕg)k/df0 ∈ Hk−d
ϕ (M). By an induction argument over k ∈ dN, and the 

fact that [A, B] ∈ Lm−1
ϕ (M) for A ∈ L0(M) and B ∈ Lm

ϕ (M), by Proposition 7.5 and the product formula 
(23), we see that the action of L0(M) on Hk

ϕ(M) is well defined and continuous for k ∈ dN.
The isometry uU : f →

(
Z∗
j (χjf)

)N
j=1 is split by the mapping u∗ : (fj)Nj=1 →

∑N
j=1 χjZj(fj). We 

can deduce that (Hs
ϕ(M))∗ = H−s

ϕ (M), with equivalent norms, via the L2-pairing. Moreover, we can for 
s0, s1 ∈ R do complex interpolation

[Hs0
ϕ (M), Hs1

ϕ (M)]θ = Hsθ
ϕ (M), sθ = (1 − θ)s0 + θs1.

It now follows by interpolation and duality that the action of L0(M) on Hs
ϕ(M) is well defined and continuous 

for s ∈ R. �
Lemma 8.11. Let M be a complete manifold and ϕ to have smooth regular variation. For any two metrics 
g1, g2 on M there is an elliptic operator Λg1,g2 ∈ L0(M) such that Λg1,g2ϕ((1 − Δg1)d/2) − ϕ((1 − Δg2)d/2)
is a smoothing operator.

Proof. Consider the elliptic symbol σg1,g2 ∈ S0(M) defined from Equation (24), it is elliptic by Propo-
sition 7.9. The product formula (22) implies that B0 := Op(σg1,g2) ∈ L0(M) satisfies that A0 :=
B0ϕ((1 − Δg1)d/2) − ϕ((1 − Δg2)d/2) ∈ L−1

ϕ (M). Using Theorem 7.17, we can find a C0 ∈ L−1(M) such 
that A0 −C0ϕ((1 −Δg2)d/2) ∈ L−2

ϕ (M). Let Q0 be a parametrix to 1 +C0 and B1 := Q0B0. We note that 
B1 −B0 ∈ L−1(M) and A1 := B1ϕ((1 − Δg1)d/2) − ϕ((1 − Δg2)d/2) ∈ L−2

ϕ (M).
Again using Theorem 7.17, we can find a C1 ∈ L−2(M) such that A1 − C1ϕ((1 − Δg2)d/2) ∈ L−3

ϕ (M). 
Let Q1 be a parametrix to 1 +C1 and B2 := Q1B1. We note that B2 −B1 ∈ L−2(M) and A2 := B2ϕ((1 −
Δg1)d/2) − ϕ((1 − Δg2)d/2) ∈ L−3

ϕ (M).
Proceeding by induction, we find elliptic B0, . . . , BN ∈ L0(M) such that Bk − Bk+1 ∈ L−k−1(M) and 

AN := BNϕ((1 −Δg1)d/2) −ϕ((1 −Δg2)d/2) ∈ L−N−1
ϕ (M). By asymptotic completeness, we can define the 

elliptic operator Λg1,g2 ∼ B0 +
∑∞

k=0(Bk+1 − Bk) ∈ L0(M); this operator will satisfy that Λg1,g2ϕ((1 −
Δg1)d/2) − ϕ((1 − Δg2)d/2) is a smoothing operator. �
Proof of Theorem 8.8. We need only to consider the case s = d, the other cases follow from induction 
using Lemma 8.10, interpolation and duality. We need only to prove that f ∈ ϕ((1 − Δg)d/2)L2(M) if 
and only if f ∈ Hd

ϕ(M) for f supported in one coordinate chart. In this case, we can clearly reduce to 
showing that f ∈ ϕ((1 − Δg)d/2)L2(M) if and only if f ∈ ϕ((1 − Δg̃)d/2)L2(M) for a metric g̃ which is 
the pullback of the Euclidean metric to the support of f . But f ∈ ϕ((1 − Δg)d/2)L2(M) is equivalent to 
f ∈ ϕ((1 − Δg̃)d/2)L2(M) by elliptic regularity and Lemma 8.11. �
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Corollary 8.12. Let ϕ be a decreasing function of smooth regular variation and pick ε-covering data U of 
M (see Definition 8.3). For G ∈ L2(L2(M)), let �U (G) be its localization as in Proposition 8.4. Then the 
following holds

1. �U (G) is locally weakly ϕ-Laplacian modulated if and only if �U(G) ∈ Lϕ is weakly ϕ-modulated with 
respect to ϕ((1 − Δg)d/2).

2. If G is weakly ϕ-modulated with respect to ϕ((1 −Δg)d/2), then G is locally weakly ϕ-Laplacian modulated.
3. If G is locally weakly ϕ-Laplacian modulated, then �U(G) is locally weakly ϕ-Laplacian modulated.

Proof. By Proposition 3.4 and Theorem 8.8, we can assume that G is compactly supported in M = Rd and 
g being the Euclidean metric. By Lemma 8.11, it is equivalent for compactly supported operators in Rd

to be locally weakly ϕ-Laplacian modulated and to be weakly ϕ-modulated with respect to ϕ((1 − Δ)d/2). 
This proves 1) and 2). Part 3) was already proven in Proposition 8.6. �
Corollary 8.13. Let ϕ be a decreasing function of smooth regular variation. Consider a closed Riemannian 
manifold (M, g). The set of strongly ϕ-modulated operators with respect to ϕ((1 − Δg)d/2) is closed under 
left and right multiplication by L0(M). Moreover, an operator is strongly ϕ-modulated operators with respect 
to ϕ((1 −Δg)d/2) if and only if it is strongly ϕ-modulated operators with respect to ϕ((1 −Δg′)d/2) for any 
metric g′.

The proof goes as in [27, Lemma 11.6.2 and 11.6.2] using Theorem 7.17 and Lemma 8.11.
We now turn to proving Lemma 6.5 by means of a corollary to Theorem 8.8. Recall the definition of 

H̃s
ϕ(Td) from Definition 6.4. By Theorem 8.8, H̃s

ϕ(Td) = Hs
ϕ(Td) and the following corollary holds.

Corollary 8.14. Let χ ∈ C∞
c ((0, 1)d). Via the inclusion (0, 1)d ↪→ Td := R/Zd of the fundamental domain 

and (0, 1)d ↪→ Rd, we have the equality

χH̃s
ϕ(Td) = χHs

ϕ(Rd).

8.2. Symbols and symbol properties on arbitrary closed manifolds

In this subsection, we will define abstract symbols of general Hilbert-Schmidt operators on closed mani-
folds. The construction of an abstract symbol will depend on covering data (see Definition 8.3) and say little 
about the operator except for its Dixmier traces when it is weakly ϕ-Laplacian modulated. Connes’ trace 
formula on closed manifolds will be the means through which the Dixmier trace computations are done, and 
the abstract symbol will be the main player. For operators of pseudo-differential type, the abstract symbol 
and the pseudo-differential symbol provide the same formulas for Dixmier traces.

For a closed Riemannian manifold M , we denote

Diagε := {(x, y) ∈ M ×M : d(x, y) < ε}.

For ε > 0 small enough, Diagε is a tubular neighbourhood of the diagonal in M ×M and we can therefore 
choose a diffeomorphism φ : Diag2ε → TM such that πTM ◦ φ(x, y) = x. Here πTM : TM → M denotes the 
tangent bundle. Under the identification of L2(L2(M)) with L2(M×M), the space L2,ε(L2(M)) corresponds 
to L2(Diagε).

Definition 8.15. The abstract symbol σε,φ : L2,ε(L2(M)) → L2(T ∗M) is defined as the composition

L2,ε(L2(M)) ∼= L2(Diagε)
(φ−1)∗−−−−→ L2(TM) F−→ L2(T ∗M),
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where F : L2(TM) ∼−→ L2(T ∗M) is the fiberwise Fourier transform.
For a choice of covering data U (see Definition 8.3), we define the localized symbol

σε,φ,U : L2(L2(M)) → L2(T ∗M), σε,φ,U := σε,φ ◦ �U .

Remark 8.16. The reader should note that we are using a diffeomorphism φ : Diag2ε → TM since we do not 
wish to concern ourselves with the boundary behaviour at the boundary of the tubular neighbourhood. This 
choice will not affect values of traces that only depend on the behaviour near the diagonal. This obstructs 
the abstract symbol σε,φ : L2,ε(L2(M)) → L2(T ∗M) being surjective, but it is nevertheless injective.

Proposition 8.17. Let ϕ ∈ SR−1. For G ∈ Lϕ(L2(M)), the value of Trω(G) depends only on the localized 
abstract symbol σε,φ,U(G) ∈ L2(T ∗M).

Proof. This fact follows trivially from Proposition 8.4 because σε,φ is injective. �
For G ∈ L2(L2(M)), and a choice of auxiliary data (ε, φ, U) as above, we often write

pG := σε,φ,U (G). (28)

We call pG a localized abstract symbol of G when we wish to suppress the dependence on the auxiliary 
data. The arbitrariness in the construction of a localized abstract symbol is less so, yet still present, for 
ϕ-pseudo-differential operators as the next proposition shows.

Proposition 8.18. Let ϕ be a decreasing function of smooth regular variation, M a closed manifold, (ε, φ)
as in the paragraph proceeding Definition 8.15 and U covering data. If G ∈ L0

ϕ(M) has pseudo-differential 
symbol p ∈ S0

ϕ(M), then σε,φ,U (G) ∈ S0
ϕ(M) and

p− σε,φ,U (G) ∈ S−1
ϕ (M).

In particular, the trace Trω(G) depends only on the pseudo-differential symbol [p] ∈ S0
ϕ(M)/S−1

ϕ (M).

Proof. The product formula (23) implies that G −�U (G) ∈ L−1
ϕ (M). Therefore, we have that �U(G) −Op(p) ∈

L−1
ϕ (M). Proposition 7.16 and injectivity of σε,φ implies that p − σε,φ,U (G) ∈ S−1

ϕ (M). Since p ∈ S0
ϕ(M)

we have σε,φ,U(G) ∈ S0
ϕ(M). We have that Trω(G) only depends on the class [p] ∈ S0

ϕ(M)/S−1
ϕ (M) because 

Dixmier traces vanishes on L−1
ϕ (M) = L0

ϕ(M)L−1(M) as it is a subalgebra of the norm closure of the finite 
rank operators in Lϕ. �

Prior to the next definition, note that on a closed Riemannian manifold, the function 〈t −〈ξ〉d〉−1 belongs 
to L2(T ∗M) for any t > 0. As such, the function pG(x,ξ)

〈t−〈ξ〉d〉 is integrable for any p ∈ L2(T ∗M).

Definition 8.19. Let M be a closed Riemannian manifold. We say that p ∈ L2(T ∗M) has ϕ-reasonable decay 
if

∫
T∗M

|p(x, ξ)|
〈t− 〈ξ〉d〉 dxdξ = o(Φ(t)), as t → ∞.

Remark 8.20. It is easily seen that for the function p ∈ L2(T ∗M), the property of having ϕ-reasonable decay 
is independent of metric and is equivalent to (Dκ−1)∗(π∗

T∗M (χ)p) ∈ L2(R2d) having ϕ-reasonable decay (in 
the sense of Definition 5.8) for any coordinate chart κ : U → Rd and χ ∈ C∞

c (U).
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Proposition 8.21. Let ϕ ∈ SR−1 be a decreasing function satisfying (W2) (see Definition 4.5 on page 18) 
and M be a closed Riemannian manifold. Any p ∈ S0

ϕ(M) has ϕ-reasonable decay.

Proof. By definition, if p ∈ S0
ϕ(M) there is a C > 0 such that |p(x, ξ)| ≤ Cϕg(ξ). The proposition now 

follows from Proposition 5.12. �
Proposition 8.22. Let ϕ ∈ SR−1 be a decreasing function, M be a closed Riemannian manifold and G ∈
B(L2(M)) be an operator which is strongly ϕ-modulated with respect to ϕ((1 − Δg)d/2). Then G is locally 
strongly ϕ-Laplacian modulated.

In particular, if ϕ(t) = O(t−1) then any localized abstract symbol of an operator which is strongly ϕ-
modulated with respect to ϕ((1 − Δg)d/2) has ϕ-reasonable decay.

Proof. The proof that G is locally strongly ϕ-Laplacian modulated whenever it is strongly ϕ-modulated 
with respect to ϕ((1 − Δg)d/2) goes as in [27, Proposition 11.6.7] (using Lemma 4.3 and Theorem 7.17) 
and is omitted. To prove the final statement, fix the auxiliary data (ε, φ, U) needed to define the localized 
abstract symbol. We note that �U(G) is by Proposition 8.6 a finite sum of locally strongly ϕ-Laplacian 
modulated operators compactly supported in a coordinate chart. As such, the localized abstract symbol 
σε,φ,U (G) has ϕ-reasonable decay by Lemma 5.13. �
9. Connes’ trace formula on closed manifolds

Now we prove Connes’ trace formula for ϕ-Laplacian modulated operators on manifolds.

Theorem 9.1. Let ϕ ∈ SR−1 be a decreasing function. Assume that M is a d-dimensional Riemannian closed 
manifold. Consider an operator G ∈ Lϕ(L2(M)) which is

1. locally weakly ϕ-Laplacian modulated (see Definition 8.5),
2. having a localized abstract symbol pG with ϕ-reasonable decay (see Definition 8.19).

Then for every extended limit ω on �∞ we have

Trω(G) = ω

⎛
⎜⎝ 1

Φ(n + 1)

∫
M

∫
|ξ|≤n1/d

pG(x, ξ) dξdx

⎞
⎟⎠ .

Proof. We can by Corollary 8.12 assume that G is supported in a coordinate chart U in which it is defined 
from an L2-symbol pG having ϕ-reasonable decay. Theorem 6.1 implies that

Trω(G) = ω

⎛
⎜⎝ 1

Φ(n + 1)

∫
U

∫
|ξ|≤n1/d

pG(x, ξ) dξdx

⎞
⎟⎠

= ω

⎛
⎜⎝ 1

Φ(n + 1)

∫
M

∫
|ξ|≤n1/d

pG(x, ξ) dξdx

⎞
⎟⎠ . �

Remark 9.2. By Corollary 8.12, Theorem 9.1 applies if the operator G is weakly ϕ-modulated with respect to 
ϕ((1 −Δg)d/2) and has a localized abstract symbol of ϕ-reasonable decay. Moreover, the reader is encouraged 
to recall Lemma 4.9 stating that strongly ϕ-modulated operators are weakly ϕ-modulated if ϕ has property 
(W1).
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If ϕ(t) = O(t−1) then having symbols of ϕ-reasonable decay is automatic for any strongly ϕ-modulated 
operator by Proposition 8.22.

Corollary 9.3. Let ϕ ∈ SR−1 be a decreasing function. Assume that M is a d-dimensional Riemannian 
closed manifold. For G ∈ L0

ϕ(M), with ϕ-symbol p ∈ S0
ϕ(M), and for every extended limit ω on �∞ we have

Trω(G) = ω

⎛
⎜⎝ 1

Φ(n + 1)

∫
M

∫
|ξ|≤n1/d

p(x, ξ) dξdx

⎞
⎟⎠ .

Proof. We note that G − Op(p) ∈ L−1
ϕ (M) so Trω(G) = Trω(Op(p)) because all Dixmier traces vanish on 

L−1
ϕ (M). To prove the corollary, we can assume that G = Op(p) and in this case verify the assumptions of 

Theorem 9.1. It follows from Theorem 7.17 that any G ∈ L0
ϕ(M) is locally weakly ϕ-Laplacian modulated, 

in fact, Theorem 7.17 shows that any G ∈ L0
ϕ(M) is weakly ϕ-modulated with respect to ϕ((1 − Δg)d/2). 

By Proposition 8.21, any symbol p ∈ S0
ϕ(M) has ϕ-reasonable decay. �

9.1. log-classical pseudo-differential operators

In [26], Lesch considered classes of pseudo-differential operators CLm,k(M), m ∈ Z, k ∈ N, consisting 
of log-polyhomogeneous pseudo-differential operators on a d-dimensional manifold M . These are operators 
given by (21) with symbols of the following form:

a(x, ξ) ∼
∞∑
j=0

k∑
i=0

am−j,i(x, ξ) logi |ξ|,

where functions am−j,i are homogeneous of degree m − j in the second argument.
The classes CL−d,k(M) are subclasses of L0

ϕk
(M) for ϕk(t) = logk(e+t)

e+t , k ∈ N. For the classes CLm,k(M), 
Lesch constructed a Wodzicki-type non-commutative residue Resk and established the following expression 
for Resk in terms of the symbol of an operator:

If M is a d-dimensional manifold and A ∈ CL−d,k(M), then

Resk(A) = (k + 1)!
(2π)d

∫
S∗M

a−d,k(x, ξ) dξdx. (29)

Theorem 9.4. Let M be a compact Riemannian d-dimensional manifold and let A ∈ CL−d,k(M), k ∈ N, 
then

(i) A ∈ Lϕk
for ϕk(t) = logk(e+t)

e+t ;
(ii) For every Dixmier trace Trω on Lϕk

we have

Trω(A) = (2π)d

(k + 1)! · dk+1 Resk(A). (30)

Proof. (i) Since CL−d,k(M) ⊂ L0
ϕk

(M), it follows from Proposition 5.7 and Lemma 3.5 that A ∈ Lϕk
.

(ii) The leading symbol of operator A is a−d,k(x, ξ) logk |ξ| where a−d,k is a homogeneous function of 
degree −d in the second argument. Hence,

∫ ∫
1/d

a−d,k(x, ξ) logk |ξ|dξdx =
∫ ∫

1/d

a−d,k(x, ξ) logk |ξ|dξdx

M |ξ|≤n M 1≤|ξ|≤n
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+ O(1).

Setting ξ = |ξ|ρ with ρ ∈ Sd−1, we have a−d,k(x, ξ) = |ξ|−da−d,k(x, ρ) and dξ = |ξ|d−1d|ξ|dρ. Thus,
∫
M

∫
|ξ|≤n1/d

a−d,k(x, ξ) logk |ξ|dξdx

=
∫
M

∫
Sd−1

n1/d∫
1

|ξ|−da−d,k(x, ρ) logk |ξ||ξ|d−1 d|ξ|dρdx + O(1)

=
∫
M

∫
Sd−1

a−d,k(x, ρ)dρdx ·
n1/d∫
1

|ξ|−1 logk |ξ|d|ξ| + O(1)

= (2π)d

(k + 1)! Resk(A) · logk+1 n1/d

k + 1 + O(1)

= (2π)d

(k + 1)! · dk+1 Resk(A) · Φk(n + 1) + O(1),

where Φk is a primitive function of ϕk.
Therefore, for the complete symbol pA of A we have

∫
M

∫
|ξ|≤n1/d

pA(x, ξ) dξdx = (2π)d

(k + 1)! · dk+1 Resk(A) · Φk(n + 1) + o(Φk(n + 1))

and

1
Φk(n + 1)

∫
M

∫
|ξ|≤n1/d

pA(x, ξ) dξdx = (2π)d

(k + 1)! · dk+1 Resk(A) + o(1).

The assertion follows from Theorem 9.1. �
9.2. Non-commutative residues and zeta-functions

The residue Resk from (29) can also be expressed in terms of the residue of a ζ-function. If M is a 
d-dimensional manifold, P ∈ CLm,0(M) is a classical pseudo-differential operator and A ∈ CL−d,k(M), 
then a ζ-function Tr(AP−s) has a meromorphic continuation to C with poles in {−j/m : j ∈ N} of order 
k + 1 (see the discussion after Theorem 3.7 in [26]). Moreover,

Resk(A) = mk+1resk+1Tr(AP−s)|s=0, (31)

independently of P [26, Theorem 4.4]. Here, resk+1 is the usual (k+1)-st residue of a meromorphic function. 
In fact, in [26] the formula (31) was used as a definition and (29) was established as a theorem.

Let ϕ ∈ SR−1 and let G ∈ Lϕ(L2(M)) be a positive weakly ϕ-Laplacian modulated operator with an 
L2-symbol pG of ϕ-reasonable decay. Following [27, Definition 11.3.19] we define the vector-valued residue 
of G as follows:

Res(G) :=

⎡
⎢⎣
⎧⎪⎨
⎪⎩

1
Φ(n + 1)

∫
M

∫
|ξ|≤n1/d

pG(x, ξ) dξdx

⎫⎪⎬
⎪⎭

⎤
⎥⎦ ,
n∈N
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where [·] denotes an equivalence class in l∞/c0.
We shall show how Res(G) can be computed in terms of a ζ-function of G ∈ CL−d,k(M).
It is proved in [17, Theorem 3.3] that for ϕ(t) = logk(e+t)

e+t , every positive G ∈ Lϕ and every exponentiation 
invariant extended limit ω the following formula holds:

Trω(G) = 1
(k + 1)!ω

(
Tr(G1+1/ logn)

Φ(n)

)
.

If Res(G) is scalar-valued (that is, if the sequence Res(G) converges), then for every G ∈ CL−d,k(M) it 
follows from Theorem 9.4, properties of extended limits and the preceding formula that

Res(G) = (k + 1)! · dk+1

(2π)d Trω(G) = dk+1

(2π)d lim
n→∞

Tr(G1+1/ logn)
Φ(n)

= dk+1

(2π)d lim
s→1+

(s− 1)k+1Tr(Gs),

since Φ(t) = logk+1(e + t).

Remark 9.5. Although the residue can be evaluated via the asymptotic of the ζ-function ζG(s) := Tr(Gs)
for a positive G ∈ Lϕ, it is not guaranteed that ζG is meromorphic at s = 1. In particular, if G satisfies 
that λn(G) = logk(2+n)

2+n , n ≥ 0, then ζG is not analytic in any punctured neighbourhood of s = 1. We shall 
demonstrate this for k = 1. So, the question is whether the function

s →
∞∑

n=1

(
log(n)

n

)s

admits an analytic continuation to a punctured neighbourhood of s = 1 and has a pole of second order in 
s = 1.

Consider the analytic functions αn defined near 1 by the formula

αn(s) =
(

log(n)
n

)s

−
n+1∫
n

(
log(t)

t

)s

dt.

It is easy to see that

|αn(s)| ≤ const · logRe (s)(n)
n1+Re (s) .

Hence, the series 
∑∞

n=1 αn(s) converges uniformly and is, therefore, analytic near s = 1.
It, therefore, suffices to consider the behaviour of the function

s →
∞∑

n=1

n+1∫
n

(
log(t)

t

)s

dt =
∞∫
1

(
log(t)

t

)s

dt.

Making the substitution t = eu, we infer that

∞∫ ( log(t)
t

)s

dt =
∞∫
use−u(s−1)du = (s− 1)−s−1Γ(1 + s).
1 0
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The latter function is analytic at C\(−∞, 1]. It cannot be extended to an analytic function in a punctured 
neighbourhood of s = 1, so formally the residue is not defined. However, the limit

lim
s→1+

(s− 1)2
∞∑

n=1

(
log(n)

n

)s

exists and equals 1.

10. Examples from noncommutative geometry

One of the motivations to consider more general weak ideals and to study rather general pseudo-
differential operators as in Section 7, comes from recent constructions in noncommutative geometry. We 
review these constructions here, how they fit into the machinery of Section 7 and some peculiar consequences 
of Corollary 9.3 in this context.

The fundamental objects of study in noncommutative geometry are spectral triples. A spectral triple 
(A, H, D) consists of a Hilbert space H, a ∗-subalgebra A ⊆ B(H) and a self-adjoint operator D, densely 
defined on H, such that a(i ±D)−1 ∈ K(H) for a ∈ A and A ⊆ Lip(D). Here

Lip(D) := {T ∈ B(H) : TDom(D) ⊆ Dom(D) and [D,T ] is norm bounded}.

The condition a(i ±D)−1 ∈ K(H) is an ellipticity type condition, guaranteeing that D has “locally compact” 
resolvent relative to A. The fact that [D, a] is bounded for all a ∈ A is a “differentiability” condition, indeed 
by [9, Theorem 2.4], Lip(D) consists of operators T such that t → eitDT e−itD is weakly differentiable at 
t = 0.

The prototypical example of a spectral triple is on a complete Riemannian manifold M for a choice of 
Dirac operator /D acting on a Clifford bundle S → M , the triple (C∞

c (M), L2(M, S), /D) is a spectral triple. 
In several applications, it is of interest to understand the dynamics of a (semi)group action. This is done 
by incorporating the (semi)group action Γ � M into the spectral triple by considering the crossed product 
C(M) � Γ. It is problematic to incorporate the (semi)group action yet retaining bounded commutators 
with /D unless the action is isometric. In [13] this problem is solved by leaving M and going to a frame 
bundle. Recent works [14,19,29] show that upon applying functional calculus by a logarithm to /D, a spectral 
triple pertaining several properties of M can be constructed on C(M) �Γ. In this section we show how the 
pseudo-differential techniques developed in this paper are relevant to the study of such noncommutative 
geometries. Some results of this section appeared in [14]. Here we use different techniques simplifying several 
proofs.

10.1. Setup for the Dirac operator

We consider a Dirac operator /D acting on a Clifford bundle S → M over a complete Riemannian manifold 
M . The operator /D is essentially self-adjoint for the core C∞

c (M, S) by [8], and we use /D to denote the 
self-adjoint operator obtained from the graph closure of C∞

c (M, S). Consider the globally Lipschitz function

h : R → R, h(s) := sign(s) log(1 + s2). (32)

We introduce the notation

ϕm,k(t) = (e + t)m(log(e + t))k, m ∈ R, k ∈ Z, (33)
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and note that L0
ϕm/d,k

(M) = Lm
ϕ0,k

(M) for any m ∈ R and k ∈ Z. For a vector bundle S → M we can define 
classes Lm

ϕ (M, S) of ϕ-pseudo-differential operators acting C∞
c (M, S) → C∞(M, S), in the same way as in 

Section 7.
We use c : T ∗M → End(S) to denote Clifford multiplication, so cx(ξ) ∈ End(Sx) is the endomorphism 

defined by Clifford multiplying by ξ ∈ T ∗
xM .

Proposition 10.1. The operator

D := h( /D),

satisfies the following:

1. D ∈ L0
ϕ0,1

(M) and D −Op(p) ∈ L−1
ϕ0,1

(M, S) where

p(x, ξ) := cx(ξ)|ξ|−1
x log(1 + |ξ|2x), |ξ| > 1.

2. As an operator on L2(M, S), D is self-adjoint, (i ± D)−1 ∈ L0
ϕ0,−1

(M) and (i ± D)−1 − Op(p−1) ∈
L−1
ϕ0,−1

(M, S) for p as in (1).
3. a(i ±D)−1 ∈ Lϕ0,−1(L2(M, S)) for any a ∈ C∞

c (M).

Proof. For the Laplacian Δ = − /D
2 and the operator F := /D| /D|−1 ∈ L0(M, S), we have that D = F log(1 −

Δ). Here /D| /D|−1 is defined from functional calculus using the sign function defined as sign(x) := x|x|−1

for x �= 0 and sign(0) := 0, the sign function is continuous on the spectrum of /D because the spectrum is 
discrete. It follows from Lemma 7.16 (see page 35) that D ∈ L0

ϕ0,1
(M) is of the form Op(p) + L−1

ϕ0,1
(M, S). 

Therefore (1) follows. Since D is constructed by functional calculus applied to the self-adjoint /D, (2) follows 
from the composition formula (22) (see page 32). From (2) and Corollary 7.18 (see page 36) we deduce 
(3). �
Remark 10.2. The function h in Equation (32) is not smooth at s = 0 but satisfies the estimates

|∂k
sh(s)| ≤ ck〈s〉−k,

for some constant ck, any k > 0 and |s| > 1. Therefore, h differs from a Hörmander symbol h0 of any order 
m > 0 by a compactly supported Lipschitz function. The difference D − h0( /D) is therefore smoothing.

Proposition 10.3. Assume that M is a closed manifold and that D is as above. Then (C∞(M), L2(M, S), D)
is a spectral triple satisfying the following:

1. (C∞(M), L2(M, S), D) is θ-summable, i.e. e−tD2 ∈ L1(L2(M, S)) for any t > 0;
2. [D, a] ∈ L0

ϕ−1/d,1
(M, S) ⊆ Lϕ−1/d,1(L2(M, S)) for any a ∈ C∞(M);

3. It holds that

[(C∞(M), L2(M,S), D)] = [(C∞(M), L2(M,S), /D)],

in the K-homology group K∗(C(M)).

Proof. If (C∞(M), L2(M, S), D) is a well defined spectral triple, (3) is immediate from the fact that 
D|D|−1 = /D| /D|−1. By Proposition 10.1, D ∈ L0

ϕ0,1
(M, S) ⊆ ∩m>0L

m(M, S) so [D, a] ∈ L0
ϕ−1/d,1

(M, S) ⊆
Lϕ−1/d,1(L2(M, S)) for any a ∈ C∞(M) by the composition formula (22) (see page 32). Therefore, 
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(C∞(M), L2(M, S), D) is a well defined spectral triple as soon as e−tD2 ∈ L1(L2(M, S)) which implies 
that D has compact resolvent.

The Weyl law guarantees that for a constant C, the eigenvalues of D satisfies |λk(D)| ≥ C log(1 + k2). 
We therefore have Tr (e−tD2) ≤

∑∞
k=0 e−tC2 log2(1+k2) which is finite for all t > 0 by an elementary integral 

estimate. �
This proposition shows that D defines a spectral triple on C∞(M) whose topological features, i.e. K-

homology class, are the same as that of /D. The spectral features of D see (C∞(M), L2(M, S), D) as infinite-
dimensional, through its θ-summability, but the finite-dimensionality is remembered in the commutators 
[D, a] ∈ Lϕ−1/d,1(L2(M, S)) for a ∈ C∞(M). We call D the logarithmic dampening of /D.

10.2. Setup for the group action

Interesting features arise when we consider an action on M . Let f : M → M be a smooth mapping. For 
now, we do not assume f to be a diffeomorphism, or even a homeomorphism. We shall however assume the 
following properties.

Definition 10.4. Let (M, g) be a Riemannian manifold, S → M a Clifford bundle and f : M → M smooth.

1. We say that f acts conformally if there is a cf ∈ C∞(M, R>0) such that

f∗g = cfg.

2. If f acts conformally, we say that f lifts to S if there is a unitary isomorphism of Clifford bundles

uf : f∗S → S.

We remark at this point that if f acts conformally, the inverse mapping theorem guarantees that f is a 
local diffeomorphism. We could possibly relax the assumption for f to be conformal in defining the notion 
of f lifting to S, but we will only use them in combination.

For a closed manifold M and a mapping f : M → M that acts conformally and lifts to S, we define the 
operator

Vf : L2(M,S) → L2(M,S), Vfξ := c
d/4
f n−1/2uf (ξ ◦ f).

Here n ∈ C∞(M, N) is the function defined by n(x) := #f−1({x}); this number is well defined since M is 
closed and is locally constant since f is a local diffeomorphism.

Proposition 10.5. The operator Vf is an isometry preserving Dom(D) such that

Vfa = (a ◦ f)Vf , a ∈ C(M).

Moreover, V ∗
f DVf −D ∈ L0(M, S) so [D, Vf ] is bounded in the L2-norm.

We omit the proof of this result here and refer the reader to [14, Proposition 8.3 and 8.12]. The gist of 
the proof is that D and Vf have bounded commutators because the symbol p from Proposition 10.1 satisfies 
the property

p(x, ξ) − p(f(x), (Df)T ξ) ∈ S0(M).
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The fact that Vf preserves Dom(D) follows from the fact that Vf preserves the core C∞(M, S) for D and 
the boundedness of the commutator [D, Vf ]|C∞(M,S).

10.3. The spectral triple

We can now construct the relevant spectral triple on an algebra generated by functions on the closed 
manifold M and by translation operators such as Vf .

Theorem 10.6. Let M be closed manifold and S → M be a Clifford bundle with D as above. Assume that 
A ⊆ B(L2(M, S)) is the unital ∗-algebra generated by C∞(M) and a collection {Vfi}i∈I for a collection of 
smooth mappings fi : M → M , i ∈ I, that act conformally and lift to S. Let A denote the norm closure of 
A. The data (A, L2(M, S), D) is a spectral triple such that

1. (A, L2(M, S), D) is θ-summable, i.e. e−tD2 ∈ L1(L2(M, S)) for any t > 0;
2. [D, a] ∈ L0

ϕ−1/d,1
(M, S) ⊆ Lϕ−1/d,1(L2(M, S)) in the subalgebra a ∈ C∞(M) ⊆ A, and V ∗

fi
DVfi −D ∈

L0(M, S) for any i ∈ I;
3. If ι : C(M) → A denotes the inclusion, then

ι∗[(A, L2(M,S), D)] = [(C∞(M), L2(M,S), /D)],

in the K-homology group K∗(C(M)).

The theorem follows directly from the Propositions 10.3 and 10.5.

Remark 10.7. We remark here that the C∗-algebra A can be rather exotic. For example, many (iterated) 
Cuntz-Pimsner algebras have the form that the C∗-algebras in Theorem 10.6 have. For more examples, see 
[29,14]. An important property of these C∗-algebras is that they can be purely infinite, and would not allow
any finitely summable spectral triple by [11]. In particular, when A admits no tracial state (a property true 
for some f) the results of [11] obstructs /D having bounded commutators with Vf .

10.4. Computations with singular traces

For a closed manifold M , Connes’ trace formula for ϕ-pseudo-differential operators, from Corollary 9.3, 
has several interesting consequences for the operator D := h( /D) ∈ L0

ϕ0,1
(M, S), where ϕ0,1(t) = log(e + t)

as above. The reader is encouraged to recall the notation from Equation (33) (see page 47).
In theorem below the notation Trω,ϕ stands for the Dixmier trace on Lϕ constructed via the extended 

limit ω.

Theorem 10.8. Let M be a closed d-dimensional manifold and D be as above acting on sections of the Clifford 
bundle S → M . For a classical T ∈ CL0(M, S) and a1, a2, . . . , ad ∈ C∞(M),

T [ /D, a1] · · · [ /D, ad](1 + /D
2)−d/2 ∈ L−d(M,S) = L0

ϕ−1,0
(M,S)

⊆ L1,∞(L2(M,S))

and T [D, a1] · · · [D, ad] ∈ L0
ϕ−1,d

(M,S) ⊆ Lϕ−1,d(L2(M,S)).

The corresponding Dixmier traces of these operators are proportional and can be computed using the 
principal symbol σT ∈ C∞(S∗M, End(S)) of T by
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Trω,ϕ−1,0(T [ /D, a1] · · · [ /D, ad](1 + /D
2)−d/2) = dd · Trω,ϕ−1,d(T [D, a1] · · · [D, ad])

= 1
d

∫
S∗M

TrS (σT (x, ξ)cx(da1) · · · cx(dad)) dξdx.

Proof. We first compute the symbol of [D, a] for a ∈ C∞(M) modulo lower order terms. By Proposition 10.1, 
we can replace D by Op(p) where p(x, ξ) := cx(ξ)|ξ|−1

x log(1 + |ξ|2x). Using the product formula (22) (see 
page 32), we can write [Op(p), a] ∼ Op(b) where

b = i{p, a} mod S−1
ϕ0,1

(M,S),

and {·, ·} denotes the Poisson bracket on C∞(T ∗M). One computes that

i{p, a} = cx(da)|ξ|−1
x log(1 + |ξ|2x) mod S−1

ϕ0,1
(M,S).

Therefore, the symbol of T [D, a1] · · · [D, ad] is

σT (x, ξ)cx(da1) · · · cx(dad)
logd(1 + |ξ|2)
(1 + |ξ|2)d/2 mod S−1

ϕ−1,d
(M,S).

The theorem now follows from Theorem 9.4 using the fact that the symbol of T [ /D, a1] · · · [ /D, ad](1 + /D
2)−d/2

is

σT (x, ξ)cx(da1) · · · cx(dad)(1 + |ξ|2)−d/2 mod S−d−1(M,S) = S−1
ϕ−1,0

(M,S). �
It is not clear to the authors if the identities of Theorem 10.8 have any deeper meaning and how they 

extend to the algebra A of Theorem 10.6. In this context it would be interesting to ask for a reasonable “local” 
approach to index theory for logarithmically dampended operators. The ϕ-pseudo-differential operators are 
pseudo-differential operators and their index theory is clear from the Atiyah-Singer index theorem, but 
in the context of the algebra A from Theorem 10.6, or even more exotic situation, it is not clear how to 
proceed. Here we mean “local” in the sense of [13], i.e. computable by residues and singular traces.
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